JP7092358B2 - Ultra-fine bubble generator and ultra-fine bubble generator - Google Patents

Ultra-fine bubble generator and ultra-fine bubble generator Download PDF

Info

Publication number
JP7092358B2
JP7092358B2 JP2019022683A JP2019022683A JP7092358B2 JP 7092358 B2 JP7092358 B2 JP 7092358B2 JP 2019022683 A JP2019022683 A JP 2019022683A JP 2019022683 A JP2019022683 A JP 2019022683A JP 7092358 B2 JP7092358 B2 JP 7092358B2
Authority
JP
Japan
Prior art keywords
flow path
fluid
gas
bubble generator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019022683A
Other languages
Japanese (ja)
Other versions
JP2020127932A (en
Inventor
忠 雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION
Original Assignee
PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION filed Critical PUBLIC UNIVERSITY CORPORATION SUWA UNIVERSITY OF SCIENCE FOUNDATION
Priority to JP2019022683A priority Critical patent/JP7092358B2/en
Publication of JP2020127932A publication Critical patent/JP2020127932A/en
Application granted granted Critical
Publication of JP7092358B2 publication Critical patent/JP7092358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は超微細気泡発生器及び超微細気泡発生装置に関する。 The present invention relates to an ultrafine bubble generator and an ultrafine bubble generator.

従来から、ファインバブルやウルトラファインバブルなどと呼ばれる超微細気泡を生成するための各種の装置が開発されている。例えば、液中における安定性の高いナノサイズの気泡を生成する方法としては、界面活性剤添加微細孔式、超音波キャビテーション式などが知られている。また、高速旋回式、加圧溶解式、エジェクター式などの流路形状による気泡生成作用を用いた超微細気泡発生装置も知られている(例えば、以下の特許文献1~3を参照)。これらの各種装置により生成されたバブルは、農作物栽培、微生物活性、魚類養殖、殺菌、洗浄、水処理、食品加工、医療などの各種の分野において利活用が検討されている。 Conventionally, various devices for generating ultrafine bubbles called fine bubbles and ultrafine bubbles have been developed. For example, as a method for generating highly stable nano-sized bubbles in a liquid, a surfactant-added micropore type, an ultrasonic cavitation type, and the like are known. Further, an ultrafine bubble generator using a bubble generation action based on a flow path shape such as a high-speed swirl type, a pressure melting type, and an ejector type is also known (see, for example, Patent Documents 1 to 3 below). Bubbles generated by these various devices are being studied for utilization in various fields such as crop cultivation, microbial activity, fish farming, sterilization, washing, water treatment, food processing, and medical care.

特開2002-085949号公報JP-A-2002-0854949 特開2012-250138号公報Japanese Unexamined Patent Publication No. 2012-250138 特開2017-176924号公報Japanese Unexamined Patent Publication No. 2017-176924

上述のような超微細気泡の発生方法として、微細孔や超音波を用いる場合には、高品質、高密度な気泡生成を行うことが難しく、流量が限定される。このため、上述の各分野での技術応用の実現性においてコスト面などの制約があるという問題がある。 When micropores or ultrasonic waves are used as the method for generating ultrafine bubbles as described above, it is difficult to generate high-quality and high-density bubbles, and the flow rate is limited. Therefore, there is a problem that there are restrictions such as cost in the feasibility of the technical application in each of the above-mentioned fields.

また、高速旋回式、加圧溶解式、エジェクター式などの流路形状による気泡生成作用を用いた超微細気泡発生装置では、比較的容易に超微細気泡を生成することができるものの、各分野において高い性能を発揮できる程度の高密度の超微細気泡を得ることが難しいという問題があった。 In addition, although ultra-fine bubble generators that use bubble generation action based on the shape of the flow path, such as high-speed swirl type, pressure melting type, and ejector type, can generate ultra-fine bubbles relatively easily, in each field. There is a problem that it is difficult to obtain high-density ultrafine bubbles that can exhibit high performance.

そこで、本発明は上記問題を解決するものであり、その課題は、微細な気泡を高密度に生成させることのできる超微細気泡発生器及び超微細気泡発生装置を実現することにある。 Therefore, the present invention solves the above-mentioned problems, and an object thereof is to realize an ultrafine bubble generator and an ultrafine bubble generator capable of generating fine bubbles at high density.

上記課題を解決するために、本発明の超微細気泡発生器は、気液導入口と流体導出口を備え、前記気液導入口から前記流体導出口までの流路が内部に構成される流路構成体と、前記流路内において流路方向に沿って配置される流路内在体とを具備する。そして、前記流路内在体は、前記流路内において、前記流路方向に沿って相互に並行する複数の分流路を構成する。前記流路には、前記気液導入口を介して導入された気液混合流体が収容される流体導入部と、該流体導入部から前記気液混合流体を受け入れる流入口をそれぞれ備える前記複数の分流路が構成される流体分流部と、前記複数の分流路の流出口からそれぞれ流出する前記気液混合流体が合流する流体混合部とが設けられる。このとき、前記流出口における前記気液混合流体の流速が相互に異なる第1の前記分流路と第2の前記分流路を有することが好ましい。ここで、複数の分流路を備えていればよく、3以上の分流路を備えるようにしても構わない。この場合においては、特に、前記第1の分流路と前記第2の分流路のうちの一方の分流路においては前記流入口の断面積よりも前記流出口の断面積が大きく、他方の分流路においては前記流入口の断面積が前記流出口の断面積よりも大きいことが望ましい。この場合には、例えば、前記一方の分流路は、少なくとも流路全長の半分を越える範囲にわたって流路方向に沿って流路断面積が徐々に増大していくように構成され、前記他方の分流路は、少なくとも流路全長の半分を越える範囲にわたって流路方向に沿って流路断面積が徐々に減少していくように構成されることがさらに望ましい。各分流路では、気液混合流体はそれぞれ気泡を破壊しながら進み、第1の分流路と第2の分流路の流出口における流速の差ができるだけ大きくなることが望ましい。 In order to solve the above problems, the ultrafine bubble generator of the present invention is provided with a gas-liquid inlet and a fluid outlet, and a flow path from the gas-liquid inlet to the fluid outlet is internally configured. It includes a road structure and a flow path internal body arranged along the flow path direction in the flow path. Then, the body in the flow path constitutes a plurality of branch flow paths parallel to each other along the flow path direction in the flow path. The flow path includes a fluid introduction section for accommodating the gas-liquid mixed fluid introduced through the gas-liquid introduction port, and an inflow port for receiving the gas-liquid mixed fluid from the fluid introduction section. A fluid diversion section in which the diversion channels are formed and a fluid mixing section in which the gas-liquid mixed fluids flowing out from the outlets of the plurality of diversion channels meet are provided. At this time, it is preferable to have the first branch flow path and the second branch flow path in which the flow velocities of the gas-liquid mixed fluid at the outlet are different from each other. Here, it suffices to have a plurality of branch channels, and may be provided with three or more branch channels. In this case, in particular, in one of the first branch and the second branch, the cross section of the outlet is larger than the cross section of the inlet, and the other branch has a larger cross section. It is desirable that the cross-sectional area of the inflow port is larger than the cross-sectional area of the outlet. In this case, for example, the one branch channel is configured so that the cross-sectional area of the channel gradually increases along the channel direction over a range exceeding at least half of the total length of the channel, and the other branch channel is configured. It is more desirable that the road is configured so that the cross-sectional area of the flow path gradually decreases along the flow path direction over a range exceeding at least half of the total length of the flow path. In each branch flow path, it is desirable that the gas-liquid mixed fluid proceeds while destroying bubbles, and the difference in flow velocity between the outlets of the first branch flow path and the second branch flow path is as large as possible.

本発明において、前記複数の分流路のうちの少なくとも一の前記分流路は、前記流路方向に沿って前記流路断面積がスロート部において一旦減少した後に増大する構造を備えることが好ましい。この場合において、前記少なくとも一の分流路は、後述する内側分流路であることが望ましい。また、前記少なくとも一の分流路は、後述する内側分流路と外側分流路の双方であることがさらに望ましい。 In the present invention, it is preferable that at least one of the plurality of branch channels has a structure in which the cross-sectional area of the channel decreases once in the throat portion and then increases along the direction of the channel. In this case, it is desirable that the at least one branch channel is an inner branch channel described later. Further, it is more desirable that the at least one branch channel is both an inner branch channel and an outer branch channel, which will be described later.

本発明において、前記流路内在体は筒状構造を備え、前記分流路として、前記流路内在体の内面の内側に構成される内側分流路と、前記流路内在体の外面の周囲に構成される外側分流路とを有することが好ましい。上記内側分流路が前記第1の分流路であり、上記外側分流路が前記第2の分流路であってもよい。ここで、前記分流路の上流側に内側流入口及び外側流入口が構成されるとともに、前記分流路の下流側に内側流出口及び外側流出口が構成される。このとき、前記内側分流路は、前記流路方向に沿って前記流路断面積が増大し、前記外側分流路は、前記流路方向に沿って前記流路断面積が減少することが望ましい。 In the present invention, the flow path internal body has a tubular structure, and the branch flow path is configured around the inner branch flow path formed inside the inner surface of the flow path internal body and the outer surface of the flow path internal body. It is preferable to have an outer branch flow path to be formed. The inner branch channel may be the first branch channel, and the outer branch channel may be the second branch channel. Here, an inner inflow port and an outer inflow port are formed on the upstream side of the branch flow path, and an inner outflow port and an outer outflow port are formed on the downstream side of the branch flow path. At this time, it is desirable that the cross-sectional area of the flow path of the inner branch flow path increases along the flow path direction and the cross-sectional area of the flow path of the outer branch flow path decreases along the flow path direction.

なお、一般的には、超微細気泡(ウルトラファインバブル、ナノバブル)とは1μm以下の直径を備える気泡を言うが、本発明に係る超微細気泡発生器及び超微細気泡発生装置の名称自体は、条件によりこのような超微細気泡を発生しうる機器であることを示すに過ぎず、また、1μm以上の直径を備える微細気泡(マイクロバブル)等を発生しないことを意味するものでもない。 In general, ultrafine bubbles (ultrafine bubbles, nanobubbles) refer to bubbles having a diameter of 1 μm or less, but the names of the ultrafine bubble generator and the ultrafine bubble generator according to the present invention are themselves. It merely indicates that the device can generate such ultrafine bubbles depending on the conditions, and does not mean that it does not generate fine bubbles (microbubbles) having a diameter of 1 μm or more.

本発明において、前記流路内在体が筒状構造を備える場合には、前記流路内在体の前記流路方向に沿った断面形状は、前縁(上流側の端縁)が凸曲線状(例えば、弧状)で後縁(下流側の端縁)が尖鋭状とされた翼型形状であることが好ましい。また、前記流路内在体は、上記断面形状を当該形状から離間した流路方向に伸びる軸線の周りに回転させたときに構成される回転体構造を有することが望ましい。さらに、前記前縁と前記後縁を結ぶ翼弦線が流路方向に対して傾斜角を有するように、上記断面形状の姿勢を流路方向に対して傾斜させることにより、前記複数の分流路の流出口における流体間の流速差を大きくすることができる。すなわち、流路方向に対する翼型形状の軸線(翼弦線)の傾斜角θを設けることが好ましい。 In the present invention, when the flow path internal body has a tubular structure, the cross-sectional shape of the flow path internal body along the flow path direction has a convex curved shape at the leading edge (upstream end edge). For example, it is preferable to have an airfoil shape having an arc shape and a sharp trailing edge (downstream end edge). Further, it is desirable that the body inside the flow path has a rotating body structure formed when the cross-sectional shape is rotated around an axis extending in the flow path direction away from the shape. Further, by inclining the posture of the cross-sectional shape with respect to the flow path direction so that the chord line connecting the leading edge and the trailing edge has an inclination angle with respect to the flow path direction, the plurality of branch flow paths are further divided. It is possible to increase the difference in flow velocity between fluids at the outlet of. That is, it is preferable to provide an inclination angle θ of the airfoil-shaped axis (chord line) with respect to the flow path direction.

本発明において、前記流体導出口は、前記流路構成体の内部側から外部側へ向けて開口範囲が拡大する構造を備えることが好ましい。特に、前記流体導出口の内面は、前記外部側へ向けて開口範囲が拡大する円錐面状に構成されることが望ましい。このとき、前記流体導出口の前記内面の開き角φは、前記流体導出口の軸線を基準として15~75度の範囲内が好ましく、特に、25~65度の範囲内であることが望ましい。 In the present invention, it is preferable that the fluid outlet has a structure in which the opening range expands from the inner side to the outer side of the flow path structure. In particular, it is desirable that the inner surface of the fluid outlet is formed in a conical shape whose opening range expands toward the outside. At this time, the opening angle φ of the inner surface of the fluid outlet is preferably in the range of 15 to 75 degrees with respect to the axis of the fluid outlet, and particularly preferably in the range of 25 to 65 degrees.

また、本発明の超微細気泡発生装置は、上記いずれかの超微細気泡発生器と、前記気液導入口を介して前記流体導入部に気体と液体を供給する気液供給機構と、前記流体導出口から前記気液混合流体を受け入れる流体槽と、を具備することが好ましい。ここで、前記流体導出口は前記流体槽の内部の流体中に直接開口していることが望ましい。また、前記流体槽の内部に収容された流体を前記気液供給機構を介して前記流体導入部に供給する循環路をさらに具備することが望ましい。 Further, the ultrafine bubble generator of the present invention includes any of the above ultrafine bubble generators, a gas / liquid supply mechanism for supplying gas and liquid to the fluid introduction portion via the gas / liquid introduction port, and the fluid. It is preferable to provide a fluid tank that receives the gas-liquid mixed fluid from the outlet. Here, it is desirable that the fluid outlet is directly opened in the fluid inside the fluid tank. Further, it is desirable to further provide a circulation path for supplying the fluid contained in the fluid tank to the fluid introduction portion via the air-liquid supply mechanism.

この発明によれば、気液混合流体が複数の分流路を通過した後に合流することにより、微細な気泡を高密度に生成させることのできる超微細気泡発生器及び超微細気泡発生装置を実現することができる。 According to the present invention, it is possible to realize an ultrafine bubble generator and an ultrafine bubble generator capable of generating fine bubbles at a high density by merging the gas-liquid mixed fluid after passing through a plurality of branch channels. be able to.

本発明に係る各実施形態の超微細気泡発生器の基本構造及び作用を示すための説明図である。It is explanatory drawing for demonstrating the basic structure and operation of the hyperfine bubble generator of each embodiment which concerns on this invention. 第1実施形態の超微細気泡発生器の構造を模式的に示す概略断面図(a)及び第2実施形態の超微細気泡発生器の構造を模式的に示す概略断面図(b)である。It is a schematic cross-sectional view (a) which schematically shows the structure of the ultrafine bubble generator of 1st Embodiment, and the schematic sectional view (b) which schematically shows the structure of the ultrafine bubble generator of 2nd Embodiment. 第3実施形態の超微細気泡発生器の構造を模式的に示す概略断面図(a)及び第4実施形態の超微細気泡発生器の構造を模式的に示す概略断面図(b)である。It is a schematic cross-sectional view (a) which schematically shows the structure of the ultrafine bubble generator of 3rd Embodiment, and the schematic sectional view (b) which schematically shows the structure of the ultrafine bubble generator of 4th Embodiment. 第5実施形態の超微細気泡発生器の構造を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the structure of the ultrafine bubble generator of 5th Embodiment. 第6実施形態の超微細気泡発生器の構造を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the structure of the ultrafine bubble generator of 6th Embodiment. 第7実施形態の超微細気泡発生器の構造を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the structure of the ultrafine bubble generator of 7th Embodiment. 第8実施形態の超微細気泡発生器の構造を模式的に示す概略断面図である。It is the schematic sectional drawing which shows typically the structure of the ultrafine bubble generator of 8th Embodiment. 第9実施形態の超微細気泡発生装置の全体構成を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the whole structure of the ultrafine bubble generator of 9th Embodiment. 第10実施形態の超微細気泡発生装置の全体構成を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the whole structure of the ultrafine bubble generator of tenth embodiment. 実施例の気泡数密度の気泡径依存性を対比して示すグラフである。It is a graph which contrasts and shows the bubble diameter dependence of the bubble number density of an Example. 実施例の平均気泡径の時間経過を対比して示すグラフである。It is a graph which shows the time passage of the average bubble diameter of an Example in comparison. 実施例の気泡数密度の時間経過を対比して示すグラフである。It is a graph which shows the time passage of the bubble number density of an Example in comparison. 実施例のゼータ電位の測定結果を示すグラフである。It is a graph which shows the measurement result of the zeta potential of an Example.

次に、添付図面を参照して本発明の実施形態について詳細に説明する。最初に、図1を参照して、本発明に係る超微細気泡発生器の実施形態の基本構成と作用効果について説明する。 Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings. First, with reference to FIG. 1, the basic configuration and the action and effect of the embodiment of the ultrafine bubble generator according to the present invention will be described.

図1に示すように、実施形態の超微細気泡発生器10は、内部に流路11aを構成する流路構成体11と、この流路構成体11の内部に配置される流路内在体12とを具備する。流路構成体11は、流体導入部11Xの上流側に接続された気液導入口11bと、流体混合部11Zの下流側に形成された流体導出口11cとを有する。流路11a内に流路内在体12が配置されることにより、流路11aの上流側に内側流入口11ib及び外側流入口11obが構成されるとともに、流路11aの下流側に内側流出口11ic及び外側流出口11ocが構成される。また、流路内在体12の内面12iの内側には、内側流入口11ibから内側流出口11icへ向かう内側分流路11iaが構成されるとともに、流路内在体12の外面12oの周囲には、内側分流路11iaに並行し、外側流入口11obから外側流出口11ocへ向かう、環状の流路断面を備える外側分流路11oaが構成される。 As shown in FIG. 1, the ultrafine bubble generator 10 of the embodiment has a flow path constituent 11 constituting the flow path 11a inside and a flow path internal body 12 arranged inside the flow path constituent 11. And. The flow path component 11 has a gas-liquid introduction port 11b connected to the upstream side of the fluid introduction section 11X, and a fluid outlet port 11c formed on the downstream side of the fluid mixing section 11Z. By arranging the inner body 12 in the flow path 11a, the inner inflow port 11ib and the outer inflow port 11ob are configured on the upstream side of the flow path 11a, and the inner outflow port 11ic is formed on the downstream side of the flow path 11a. And the outer outlet 11oc are configured. Further, an inner branch flow path 11ia from the inner inlet 11ib to the inner outlet 11ic is formed inside the inner surface 12i of the flow path inner body 12, and the inner side is formed around the outer surface 12o of the flow path inner body 12. An outer branch flow path 11oa having an annular flow path cross section is configured, which is parallel to the branch flow path 11ia and goes from the outer inlet 11ob to the outer outlet 11oc.

流路11aは、流路内在体12の上流側に構成された、気体と液体からなる気液混合流体10xが導入される流体導入部11Xと、内側分流路11iaの気液混合流体10yinと外側分流路11oaの気液混合流体10youtとが分離した状態で並行して流れる流体分流部11Yと、流路内在体12の下流側に構成された、気液混合流体10yinと10youtが合流して気液混合流体10zとなる流体混合部11Zとを備える。 The flow path 11a includes a fluid introduction section 11X for introducing a gas-liquid mixed fluid 10x composed of a gas and a liquid, which is configured on the upstream side of the flow path internal body 12, and a gas-liquid mixed fluid 10y in of the inner branch flow path 11ia. The gas-liquid mixed fluid 10y in and 10y out configured on the downstream side of the flow path inner body 12 and the fluid diversion portion 11Y flowing in parallel with the gas-liquid mixed fluid 10y out of the outer branch flow path 11oa separated from each other. It is provided with a fluid mixing unit 11Z that merges to form a gas-liquid mixed fluid 10z.

流路構成体11は、流体導入部11Xの上流側と、流体混合部11Zの下流側が共に閉鎖された筒状構造を備える。図示例では、流路構成体11は、流路方向に同径に構成された、断面円形の円筒状の容器によって構成される。流体導入部11Xには、気液導入口11bを介して気体と液体が供給される。なお、気液導入口11bの構造や態様については後に詳述する。上記の気体と液体の供給によって流体導入部11Xには気液混合流体10xが導入される。この気液混合流体10xには、上記気体と液体の供給態様に応じた大きさや密度の気泡10xaが含まれる。この気液混合流体10xは、上記の気体と液体の供給圧に応じて流体分流部11Yに圧送される。上記供給圧及び流体導入部11Xの内圧は、大気圧よりも高くすることが好ましく、2~10気圧の範囲が望ましい。特に、3~5気圧の範囲とすることが実際の供給系を考慮すると現実的である。 The flow path structure 11 has a tubular structure in which both the upstream side of the fluid introduction portion 11X and the downstream side of the fluid mixing portion 11Z are closed. In the illustrated example, the flow path constituent 11 is composed of a cylindrical container having a circular cross section and having the same diameter in the flow path direction. Gas and liquid are supplied to the fluid introduction unit 11X via the gas-liquid introduction port 11b. The structure and mode of the gas / liquid introduction port 11b will be described in detail later. The gas-liquid mixture fluid 10x is introduced into the fluid introduction unit 11X by the above supply of gas and liquid. The gas-liquid mixed fluid 10x includes bubbles 10xa having a size and density according to the supply mode of the gas and the liquid. The gas-liquid mixed fluid 10x is pressure-fed to the fluid diversion section 11Y according to the supply pressure of the gas and the liquid. The supply pressure and the internal pressure of the fluid introduction unit 11X are preferably higher than the atmospheric pressure, and preferably in the range of 2 to 10 atm. In particular, it is realistic to set the range to 3 to 5 atm in consideration of the actual supply system.

流体分流部11Yにおいては、流路内在体12が配置されることにより、内側流入口11ibと外側流入口11obとがそれぞれ上流側に開口しているため、上記気液混合流体10xは、内側流入口11ibを介して内側分流路11iaに流入する気液混合流体10yinと、外側流入口11obを介して外側分流路11oaに流入する気液混合流体10youtとに分かれる。内側分流路11iaと外側分流路11oaのそれぞれにおいては、上記の流体導入部11Xの内圧により、気泡の微細化に有効な十分な流速のジェット流が形成されることが好ましい。 In the fluid diversion section 11Y, since the inner inflow port 11ib and the outer inflow port 11ob are opened to the upstream side by arranging the body 12 inside the flow path, the gas-liquid mixed fluid 10x is the inner flow. It is divided into a gas-liquid mixed fluid 10y in that flows into the inner branch flow path 11ia via the inlet 11ib and a gas-liquid mixed fluid 10y out that flows into the outer branch flow path 11oa through the outer inflow port 11ob. In each of the inner branch flow path 11ia and the outer branch flow path 11oa, it is preferable that the internal pressure of the fluid introduction portion 11X forms a jet flow having a sufficient flow velocity effective for the miniaturization of bubbles.

流路内在体12の流路方向に沿った半径方向の断面形状は、上流側の端縁である前縁12aが凸曲線状(例えば、弧状)で下流側の端縁である後縁12bが尖鋭状とされた翼型形状である。また、この流路内在体12は、上記の断面形状を、当該形状から離間した流路方向に伸びる軸線11xの周りに回転させたときに構成される回転体構造を備える。ただし、流路内在体12は厳密な回転体構造である必要はなく、筒状構造体となっていればよい。このような流線形状構造を備えることにより、気液混合流体10xをスムーズに内側分流路11iaと外側分流路11oaに流入させることができる。また、後述するように、流体導入部11X内において気液混合流体10xが旋回流10xbを形成する場合には、当該旋回流10xbの下流側への伝搬を阻害しにくくなり、旋回流による気泡の微細化の促進作用を享受しやすくなる。図示例では、上記断面形状は流線形であり、流路内在体12の前縁12aを含めた内面12i及び外面12oは平滑面で構成される。しかし、本発明においては、上記各面は必ずしも平滑面である必要はなく、気泡のせん断作用をもたらすような凹凸状の表面に構成されても構わない。 The cross-sectional shape of the body 12 in the flow path in the radial direction along the flow path is such that the leading edge 12a, which is the upstream end edge, is convexly curved (for example, arcuate) and the trailing edge 12b, which is the downstream end edge. It has a sharp wing shape. Further, the flow path internal body 12 includes a rotating body structure formed when the above-mentioned cross-sectional shape is rotated around an axis 11x extending in a flow path direction away from the shape. However, the body 12 in the flow path does not have to have a strict rotating body structure, and may have a tubular structure. By providing such a streamlined structure, the gas-liquid mixed fluid 10x can be smoothly flowed into the inner branch flow path 11ia and the outer branch flow path 11oa. Further, as will be described later, when the gas-liquid mixed fluid 10x forms a swirling flow 10xb in the fluid introduction section 11X, it becomes difficult to hinder the propagation of the swirling flow 10xb to the downstream side, and the bubbles due to the swirling flow are less likely to be hindered. It becomes easier to enjoy the effect of promoting miniaturization. In the illustrated example, the cross-sectional shape is streamlined, and the inner surface 12i and the outer surface 12o including the leading edge 12a of the flow path inner body 12 are composed of smooth surfaces. However, in the present invention, each of the above surfaces does not necessarily have to be a smooth surface, and may be configured as an uneven surface that causes a shearing action of bubbles.

上記断面形状の姿勢は特に限定されないが、図示例では、流路11aの下流側に向けて外周側へ開くように傾斜角θ(軸線11xを基準とした角度)を有する。すなわち、図示左右方向である流路方向に対して、前縁12aと後縁12bを結ぶ翼弦線が角度θだけ傾斜している。傾斜角θは、3~30度の範囲内であることが好ましく、特に、5~20度の範囲内であることが望ましい。これによって、後述するように、内側分流路11iaの内側流入口11ibの流入速度よりも内側流出口11icの流出速度を低下させることができる。また、流路内在体12の上記翼形断面により、内側分流路11iaの上流側の内面12iの狭窄部12sの内側に設けられるスロート部(絞り)11isで一時的に流路断面が絞られるため、内側分流路11iaを流れる気液混合流体10yinは、このスロート部で一時的に高速化されるとともに圧力が低下する。一方、外側分流路11oaでは、当初は急激に流路断面積が低下し、その後、翼型形状の影響により、流路断面積の変化は小さくなるか、或いは、その後、流路断面積が増大する。翼型形状の断面を有する流路内在体12の上記傾斜角θを上記の範囲内に設定することにより、内側分流路11iaと外側分流路11oaの少なくとも一方の分流路を、流路方向に沿って、流路断面積がスロート部11is,11osで一旦減少してから、その後、増大するように構成することができる。特に、上記翼型形状と上記傾斜角θを適宜に設定することにより、内側分流路11iaと外側分流路11oaの双方が流路断面積の上述の流路方向に沿った変化態様(スロート部を有する分流路構造)を有するように構成することも可能である。 The posture of the cross-sectional shape is not particularly limited, but in the illustrated example, it has an inclination angle θ (an angle with respect to the axis 11x) so as to open toward the outer peripheral side toward the downstream side of the flow path 11a. That is, the chord line connecting the leading edge 12a and the trailing edge 12b is inclined by an angle θ with respect to the flow path direction, which is the left-right direction shown in the drawing. The inclination angle θ is preferably in the range of 3 to 30 degrees, and particularly preferably in the range of 5 to 20 degrees. As a result, as will be described later, the outflow speed of the inner outflow port 11ic can be made lower than the inflow speed of the inner inflow port 11ib of the inner branch flow path 11ia. Further, due to the airfoil cross section of the body 12 inside the flow path, the cross section of the flow path is temporarily narrowed by the throat portion (throttle) 11is provided inside the narrowed portion 12s of the inner surface 12i on the upstream side of the inner branch flow path 11ia. The pressure of the gas-liquid mixed fluid 10y in flowing through the inner branch flow path 11ia is temporarily increased at this throat portion and the pressure is reduced. On the other hand, in the outer branch flow path 11oa, the flow path cross-section decreases sharply at first, and then the change in the flow path cross-section becomes small due to the influence of the airfoil shape, or the flow path cross-section increases thereafter. do. By setting the inclination angle θ of the flow path inner body 12 having an airfoil-shaped cross section within the above range, at least one branch flow path of the inner branch flow path 11ia and the outer branch flow path 11oa can be set along the flow path direction. Therefore, the cross-sectional area of the flow path can be configured to decrease once at the throat portions 11is and 11os and then increase. In particular, by appropriately setting the airfoil shape and the inclination angle θ, both the inner branch flow path 11ia and the outer branch flow path 11oa change in the flow path cross section along the flow path direction (throat portion). It is also possible to configure it to have a branch flow structure).

なお、流路内在体12は、流路構成体11の内部において支持体12dによって固定される。図示例では、支持体12dは流体の流れを妨げないように流路方向に沿った板状(より具体的には流線形状を備えた薄材状)に構成される。また、支持体12dを流路内在体12の周囲(軸線11xの周り)に複数個所設けることにより、流路構成体11に対する流路内在体12の取付剛性を高めることができる。 The body 12 in the flow path is fixed by the support 12d inside the flow path component 11. In the illustrated example, the support 12d is configured in a plate shape (more specifically, a thin material shape having a streamline shape) along the flow path direction so as not to obstruct the flow of the fluid. Further, by providing a plurality of supports 12d around the flow path internal body 12 (around the axis 11x), it is possible to increase the mounting rigidity of the flow path internal body 12 with respect to the flow path constituent body 11.

内側分流路11iaでは、前述のように、内側流入口11ibにおける流路断面積と、内側流出口11icにおける流路断面積とを比べると、内側流入口11ibにおける流路断面積が相対的に小さく、内側流出口11icにおける流路断面積が相対的に大きい。また、より詳細に述べると、内側分流路11iaの流路断面積は、流路11aの流路方向(軸線11xに沿った方向)に見ていくと、内側流入口11ibから徐々に小さくなっていき、内面12iの最も小さい内径を備える狭窄部12sの内側のノズル状のスロート部11isを通過すると、今度は内側流出口11icに向けてディフューザ状に徐々に増大していく。このような流路断面積の変化態様により、内側分流路11ia内の上記気液混合流体10yinは、一旦、上記スロート部11isで流速が増大して圧力が低下する。このとき、圧力低下により膨張した気泡が高い流速により微細化される。その後、内側流出口11icに向けて徐々に流速が低下しながら圧力は増大し、気泡は圧壊されていく。この内側分流路11iaでは、内側流入口11ibの流路断面積よりも内側流出口11icの流路断面積が大きいため、内側流出口11icでの流速は当初よりも小さく、圧力は当初よりも増大している。ここで、内側分流路11iaの流路断面積は、流路全長の半分を越える範囲(図示例では約80%)で流路方向(下流側)に向けて漸増している。 In the inner branch flow path 11ia, as described above, the flow path cross-section at the inner inflow port 11ib is relatively small when the flow path cross-section at the inner inflow port 11ib is compared with the flow path cross-section at the inner outlet 11ic. , The cross-sectional area of the flow path at the inner outlet 11ic is relatively large. More specifically, the cross-sectional area of the inner branch flow path 11ia gradually becomes smaller from the inner inflow port 11ib when viewed in the flow path direction of the flow path 11a (direction along the axis 11x). When it passes through the nozzle-shaped throat portion 11is inside the narrowed portion 12s having the smallest inner diameter of the inner surface 12i, it gradually increases in a diffuser shape toward the inner outlet 11ic. Due to such a change mode of the cross-sectional area of the flow path, the flow velocity of the gas-liquid mixed fluid 10y in in the inner branch flow path 11ia is temporarily increased at the throat portion 11is, and the pressure is lowered. At this time, the bubbles expanded due to the decrease in pressure are miniaturized due to the high flow velocity. After that, the pressure increases while the flow velocity gradually decreases toward the inner outlet 11ic, and the bubbles are crushed. In this inner branch flow path 11ia, since the flow path cross section of the inner outlet 11ic is larger than the flow path cross section of the inner inlet 11ib, the flow velocity at the inner outlet 11ic is smaller than the initial flow and the pressure is higher than the initial one. is doing. Here, the cross-sectional area of the inner branch flow path 11ia gradually increases toward the flow path (downstream side) in a range exceeding half of the total length of the flow path (about 80% in the illustrated example).

一方、外側分流路11oaでは、外側流入口11obにおける流路断面積と、外側流出口11ocにおける流路断面積とを比べると、外側流入口11obにおける流路断面積が相対的に大きく、外側流出口11ocにおける流路断面積が相対的に小さい。なお、外側分流路11oaの流路断面形状は環状である。外側分流路11oaの流路断面積は、流路11aの流路方向に沿って見ると、外側流入口11obから徐々に小さくなっていく。ここで、外側分流路11oaの流路断面積は、流路全長の半分を越える範囲(図示例では約65%)で流路方向(下流側)に向けて漸減している。外側分流路11oaの途中で流路断面積の減少はほとんどなくなり、或いは、逆に僅かに増大していく。このとき、上記スロート部11isと同様の上記スロート部11osが存在する場合には、上記と同様に圧力低下により膨張した気泡が高い流速により微細化され、その後、圧力増大によりさらに圧壊される。全体としては、上記のような流路断面積の変化態様により、外側分流路11oa内の上記気液混合流体10youtは、内側流出口11icに向けて徐々に流速が増大し、圧力は低下していく。この外側分流路11oaでは、外側流入口11obの流路断面積よりも外側流出口11ocの流路断面積が小さいため、外側流出口11ocでの流速は当初よりも大きく、圧力は当初よりも低下している。 On the other hand, in the outer branch flow path 11oa, when the flow path cross section at the outer inflow port 11ob and the flow path cross section at the outer outlet 11oc are compared, the flow path cross section at the outer inflow port 11ob is relatively large, and the outer flow The cross-sectional area of the flow path at the outlet 11oc is relatively small. The cross-sectional shape of the outer branch flow path 11oa is annular. The cross-sectional area of the outer branch flow path 11oa gradually decreases from the outer inflow port 11ob when viewed along the flow path direction of the outer flow path 11a. Here, the cross-sectional area of the outer branch flow path 11oa gradually decreases toward the flow path (downstream side) in a range exceeding half of the total length of the flow path (about 65% in the illustrated example). The decrease in the cross-sectional area of the flow path almost disappears in the middle of the outer branch flow path 11oa, or conversely, it increases slightly. At this time, when the throat portion 11os similar to the throat portion 11is is present, the bubbles expanded due to the pressure decrease are made finer by the high flow velocity as in the above case, and then are further crushed by the pressure increase. As a whole, due to the change mode of the cross-sectional area of the flow path as described above, the flow velocity of the gas-liquid mixed fluid 10y out in the outer branch flow path 11oa gradually increases toward the inner outlet 11ic, and the pressure decreases. To go. In this outer branch flow path 11oa, since the flow path cross section of the outer outlet 11oc is smaller than the flow path cross section of the outer inlet 11ob, the flow velocity at the outer outlet 11oc is larger than the initial flow rate and the pressure is lower than the initial flow path. is doing.

以上のように、気液混合流体10yinと気液混合流体10yout内の気泡は、内側分流路11iaと外側分流路11oaのの内部で、剪断作用、引断作用、圧壊作用などを受け、微細化されていく。特に、上記スロート部11is,iiosのノズル作用による流速の増大と圧力の低下がさらに大きくなれば、気泡の微細化がさらに生じやすくなると考えられる。内側分流路11iaと外側分流路11oaのいずれにおいても、スロート部11is,11osを備えた分流路形状により、気液混合流体10yin,10youtの流速が増大し、圧力が低下する程度は、スロート部11is,11osの流路断面積Asに依存する。一般的には、スロート部11is,11osの流路断面積Asが小さくなるほど、スロート部11is,11osにおける流速Vsは増大し、スロート部11is,11osにおける圧力Psは低下するので、上述の気泡の微細化作用も増大すると考えられる。なお、内側分流部11iaは前述のように多くの範囲にわたって下流側へ向けて流路断面積が増大することから、スロート部11isと内側流出口11icの流速差と圧力差を大きく設定できるため、気泡の微細化作用が特に高くなると考えられる。 As described above, the bubbles in the gas-liquid mixed fluid 10y in and the gas-liquid mixed fluid 10y out undergo shearing action, tearing action, crushing action, etc. inside the inner branch flow path 11ia and the outer branch flow path 11oa. It will be miniaturized. In particular, if the increase in the flow velocity and the decrease in the pressure due to the nozzle action of the throat portions 11is and ios become larger, it is considered that the miniaturization of bubbles is more likely to occur. In both the inner branch flow path 11ia and the outer branch flow path 11oa, the flow velocity of the gas-liquid mixed fluid 10y in and 10y out increases due to the branch flow path shape provided with the throat portions 11is and 11os, and the throat decreases to the extent that the pressure decreases. It depends on the flow path cross-sectional area As of the parts 11is and 11os. Generally, as the cross-sectional area As of the flow path of the throat portions 11is and 11os becomes smaller, the flow velocity Vs in the throat portions 11is and 11os increases and the pressure Ps in the throat portions 11is and 11os decreases. It is thought that the chemical effect also increases. Since the cross-sectional area of the flow path of the inner diversion portion 11ia increases toward the downstream side over a large range as described above, the flow velocity difference and the pressure difference between the throat portion 11is and the inner outlet 11ic can be set large. It is considered that the miniaturization effect of bubbles is particularly high.

スロート部11is,iiosの流路断面積Asを小さくすることにより、流速Vsを増大させ、圧力Psを低下させると、スロート部11is,iiosとその下流側の流路部分との間に大きな逆圧力勾配を備えた流域を形成することができる。このようにして、大きな流速Vsと大きな逆圧力勾配とを設けることにより、気泡が急膨張するとともに、剪断作用、引断作用、圧壊作用を受けやすくなるため、気泡の微細化を促進することができる。一方、流路断面積Asを小さくしすぎると、流量Qsが小さくなり、気泡を含む流体の生成量が低下する。このため、スロート部11is,11osの流路断面積Asは、気液供給系の能力や発生器10の内部構造などにより定まる条件に応じて、なるべく流速Vsが大きくなるとともに、必要な流量Qsが確保できる範囲に設定することが好ましい。 When the flow velocity Vs is increased and the pressure Ps is decreased by reducing the flow path cross-sectional area As of the throat portions 11is, ios, a large reverse pressure is generated between the throat portions 11is, ios and the flow path portion on the downstream side thereof. A basin with a gradient can be formed. By providing a large flow velocity Vs and a large reverse pressure gradient in this way, the bubbles are rapidly expanded and are susceptible to shearing action, pulling action, and crushing action, so that the miniaturization of the bubbles can be promoted. can. On the other hand, if the cross-sectional area As of the flow path is made too small, the flow rate Qs becomes small and the amount of fluid containing bubbles decreases. Therefore, the flow path cross-sectional area As of the throat portions 11is and 11os has a flow velocity Vs as large as possible and a required flow rate Qs according to conditions determined by the capacity of the gas-liquid supply system and the internal structure of the generator 10. It is preferable to set it within a range that can be secured.

上述のように分流された気液混合流体10yinと気液混合流体10youtは内側流出口11icと外側流出口11ocから流出した後に流体混合部11Zにおいて合流する。このとき、気液混合流体10yinと気液混合流体10youtは、それぞれ内側流入口11ibと外側流入口11obでは相互にほとんど同様の速度及び圧力を持っていたとみなすことができるので、上述のような流入口から流出口への流路断面積の変化態様に伴う速度及び圧力の変化態様の差から、流出口では、気液混合流体10yinが気液混合流体10youtよりも速度が小さく、圧力が大きくなる。このため、上記流体混合部11Zにおいて、速度差と圧力差を有する気液混合流体10yinと気液混合流体10youtの合流により二重ジェット乱流が形成され、乱流渦運動により、強いせん断力が発生し、既に微細化されている気泡10zaがさらに微細化される。ここで、上記の速度差と圧力差が大きくなるほど二重ジェット乱流による干渉が強くなり、様々なスケールの渦を生じさせるため、気泡の微細化をさらに促進できる。なお、複数の分流路の流出口における各気液混合流体の速度差は、結果として乱流を生ずる態様で存在すればよい。例えば、内側分流路11iaの内側流出口11icにおける流れの向きと、外側分流路11oaの外側流出口11ocにおける流れの向きとが相違するに過ぎない場合にも乱流は発生する。 The gas-liquid mixed fluid 10y in and the gas-liquid mixed fluid 10y out separated as described above flow out from the inner outlet 11ic and the outer outlet 11oc, and then merge in the fluid mixing section 11Z. At this time, the gas-liquid mixed fluid 10y in and the gas-liquid mixed fluid 10y out can be considered to have almost the same speed and pressure at the inner inlet 11ib and the outer inlet 11ob, respectively, as described above. At the outlet, the speed of the gas-liquid mixed fluid 10y in is smaller than that of the gas-liquid mixed fluid 10y out . The pressure increases. Therefore, in the fluid mixing unit 11Z, a double jet turbulence is formed by the confluence of the gas-liquid mixed fluid 10y in and the gas-liquid mixed fluid 10y out having a speed difference and a pressure difference, and strong shearing is caused by the turbulent vortex motion. A force is generated, and the bubbles 10za that have already been made finer are further made finer. Here, as the velocity difference and the pressure difference become larger, the interference due to the double jet turbulence becomes stronger, and vortices of various scales are generated, so that the miniaturization of bubbles can be further promoted. It should be noted that the velocity difference of each gas-liquid mixed fluid at the outlets of the plurality of branch channels may exist in a manner that causes turbulence as a result. For example, turbulence also occurs when the direction of the flow at the inner outlet 11ic of the inner branch flow path 11ia and the direction of the flow at the outer outlet 11oc of the outer branch flow path 11oa are merely different.

本実施形態において、上記流体導入部11X内で気液混合流体10xaの旋回流10xbが発生する場合には、上記流体分流部11Yにおいて、上記内側分流路11ia及び上記外側分流路11oaの内部においても旋回流が伝搬し、さらに、上記流体混合部11Zにおいても旋回流が残存する。このため、これらの旋回流によるせん断作用も気泡10xa、10ya、10zaに作用することから、さらに微細化されやすくなる。この場合、旋回流10xbは、気液導入口11bを介した気体及び液体の供給方向を軸線11xの周りの旋回成分を持つように設定することで、生じさせることができる。ただし、旋回流10xbは流路11a(流体導入部11X)内に設置された旋回ファンなどによって強制的に発生させてもよい。また、この場合には、流路構成体11の流路方向と直交する断面形状を軸線11xの周りの円状とし、また、流路内在体12の同断面形状を軸線11xの周りの環状とすることが好ましい。これにより、旋回流が発生しやすくなるとともに、流路方向に旋回流が伝搬しやすくなる。 In the present embodiment, when a swirling flow 10xb of the gas-liquid mixed fluid 10xa is generated in the fluid introduction section 11X, the inside branch flow path 11ia and the outer branch flow path 11oa are also inside the fluid diversion section 11Y. The swirling flow propagates, and the swirling flow remains in the fluid mixing unit 11Z. Therefore, the shearing action due to these swirling flows also acts on the bubbles 10xa, 10ya, and 10za, so that the particles are more likely to be miniaturized. In this case, the swirling flow 10xb can be generated by setting the supply direction of the gas and the liquid through the gas / liquid introduction port 11b so as to have a swirling component around the axis 11x. However, the swirling flow 10xb may be forcibly generated by a swirling fan or the like installed in the flow path 11a (fluid introduction portion 11X). Further, in this case, the cross-sectional shape orthogonal to the flow path direction of the flow path constituent 11 is a circle around the axis 11x, and the same cross-sectional shape of the flow path internal body 12 is an annular shape around the axis 11x. It is preferable to do so. As a result, the swirling flow is likely to be generated, and the swirling flow is likely to propagate in the flow path direction.

流路11aの下流端には、流体導出口11cが設けられるため、流体混合部11Z内の気液混合流体10zは、流体導出口11cを介して、流路構成体11の外部へ導出される。すなわち、相対的に高圧の流体混合部11Z内で上述の乱流の作用によって微細化された気泡10zaを含む気液混合流体10zは、流体導出口11cを介して相対的に低圧の流路構成体11の外部へと噴出する。そして、流体混合部11Zの内圧と、流体導出口11cの外側(下流側)の圧力との差圧によって、流体が高速で噴出することにより、気液混合流体10z中の微細な気泡がさらに崩壊し、さらなる微細化が生ずる。すなわち、本実施形態では、流体導出口11cは、内外の圧力差によって高速で噴出する流体噴出ノズルを構成するので、気液混合流体10z内の気泡10zaは流体導出口11cにおいてもさらに微細化され得る。 Since the fluid outlet 11c is provided at the downstream end of the flow path 11a, the gas-liquid mixed fluid 10z in the fluid mixing section 11Z is led out to the outside of the flow path component 11 via the fluid outlet 11c. .. That is, the gas-liquid mixed fluid 10z containing the bubbles 10za refined by the action of the above-mentioned turbulence in the relatively high-pressure fluid mixing unit 11Z has a relatively low-pressure flow path configuration via the fluid outlet 11c. It spouts out of the body 11. Then, the fluid is ejected at high speed due to the differential pressure between the internal pressure of the fluid mixing unit 11Z and the pressure outside (downstream side) of the fluid outlet 11c, so that fine bubbles in the gas-liquid mixed fluid 10z further collapse. However, further miniaturization occurs. That is, in the present embodiment, since the fluid outlet 11c constitutes a fluid ejection nozzle that ejects at high speed due to the pressure difference between the inside and outside, the bubble 10za in the gas-liquid mixed fluid 10z is further miniaturized in the fluid outlet 11c as well. obtain.

流体導出口11cは、図示のように、流体混合部11Zの内部側から外部側に向けて円錐状に広がる形状(円錐台形状、或いは、逆テーパー状)の傾斜面11dを備える。このような流体導出口11cの外部側に開いた構造により、流体導出口11cにおいて圧力が急激に解放されることによって気泡の微細化が促進される。このとき、傾斜面11dの軸線11xに対する傾斜角度である開き角φは、特に限定されるものではないものの、15~75度の範囲内であることが好ましく、特に、25~65度の範囲内であることが望ましい。さらに、30~60度の範囲内であれば、より効果的である。開き角φが小さすぎると気泡の微細化作用が抑制されやすくなり、開き角φが大きすぎると開口縁の剛性が低下する。また、複数の流体導出口11cを設けることにより、流量が増加する。このことは、気泡密度を高める上でも効果的である。 As shown in the figure, the fluid outlet 11c includes an inclined surface 11d having a shape (conical trapezoidal shape or reverse taper shape) that extends in a conical shape from the inner side to the outer side of the fluid mixing portion 11Z. Due to the structure open to the outside of the fluid outlet 11c, the pressure is rapidly released at the fluid outlet 11c, and the miniaturization of bubbles is promoted. At this time, the opening angle φ, which is the inclination angle of the inclined surface 11d with respect to the axis 11x, is not particularly limited, but is preferably in the range of 15 to 75 degrees, and particularly in the range of 25 to 65 degrees. Is desirable. Further, it is more effective if it is within the range of 30 to 60 degrees. If the opening angle φ is too small, the miniaturization action of bubbles tends to be suppressed, and if the opening angle φ is too large, the rigidity of the opening edge decreases. Further, by providing the plurality of fluid outlets 11c, the flow rate is increased. This is also effective in increasing the bubble density.

以上は、本発明の実施形態の概略構成と、この概略構成による作用効果を示したものである。このような構成により、本実施形態では、従来よりも高密度の超微細気泡を生成することができる。特に、本実施形態では、数十[nm]~1[μm]程度の径の気泡を、従来技術よりも高密度に生成することが可能になっている。気泡径は、50~500[nm]の範囲が好ましく、特に、100~400[nm]の範囲が望ましい。本実施形態の構成を備えた実施例では、後述するように、常圧(1atm)において、平均気泡径が150~300[nm]の範囲内に入る超微細気泡を生成することができた。 The above shows the schematic configuration of the embodiment of the present invention and the action and effect of this schematic configuration. With such a configuration, in the present embodiment, it is possible to generate ultrafine bubbles having a higher density than before. In particular, in the present embodiment, it is possible to generate bubbles having a diameter of about several tens [nm] to 1 [μm] at a higher density than in the prior art. The bubble diameter is preferably in the range of 50 to 500 [nm], and particularly preferably in the range of 100 to 400 [nm]. In the embodiment provided with the configuration of the present embodiment, as will be described later, it was possible to generate ultrafine bubbles having an average bubble diameter in the range of 150 to 300 [nm] at normal pressure (1 atm).

ここで、流路構成体11の軸線11xに沿った長さは流路内在体12の軸線11xに沿った長さの2~4倍の範囲内、或いは、サイズを考慮しなければそれ以上であることが好ましく、流体導入部11Xと流体混合部11Zの軸線11xに沿った長さが流路内在体12の軸線11xに沿った長さの0.5倍以上であることが望ましい。また、発生器10の内圧が2~5気圧の範囲内にあるときには、前述のようにスロート部における流速の増大を図りつつ流量の低下を抑制するために、内側分流路11iaのスロート部11isの直径や外側分流路11oaのスロート部11osの径方向の隙間は1~4mmの範囲内であることが好ましく、特に、1.5~3.5mmの範囲内であることが好ましい。さらに、流体導出口11cの最も狭い開口断面の直径も、上記と同じ理由から、1~4mmの範囲内であることが好ましく、特に、1.5~3.5mmの範囲内であることが望ましい。 Here, the length along the axis 11x of the flow path constituent 11 is within the range of 2 to 4 times the length along the axis 11x of the flow path internal body 12, or longer if the size is not taken into consideration. It is preferable that the length of the fluid introduction unit 11X and the fluid mixing unit 11Z along the axis 11x is 0.5 times or more the length of the flow path internal body 12 along the axis 11x. Further, when the internal pressure of the generator 10 is in the range of 2 to 5 atm, in order to suppress the decrease in the flow rate while increasing the flow velocity in the throat portion as described above, the throat portion 11is of the inner branch flow path 11ia The diameter and the radial gap of the throat portion 11os of the outer branch flow path 11oa are preferably in the range of 1 to 4 mm, and particularly preferably in the range of 1.5 to 3.5 mm. Further, the diameter of the narrowest opening cross section of the fluid outlet 11c is also preferably in the range of 1 to 4 mm, particularly preferably in the range of 1.5 to 3.5 mm for the same reason as described above. ..

図2(a)には、第1実施形態の超微細気泡発生器の構造を模式的に示す。なお、図2及び図3に示す第1実施形態から第4実施形態までは、図1に示す実施形態の流体導入部11Xの気液導入口11bの構造に関するものであるので、当該気液導入口11bの構成以外については、図1に示すものと同じであるとして、或いは、第5実施形態~第8実施形態のいずれかと同様であるとして、説明を省略する。この第1実施形態では、流体導入部11Xに対して気体と液体が一緒に供給される。すなわち、上記流路構成体11には、上記気液導入口11bとして、流体導入部11Xに連通する単一の供給口が流路構成体11の上流側の外周に形成される。この場合には、気液導入口11bを介して気体と液体の二相流が流体導入部11Xに供給される。気液導入口11bを介して供給される液体と気体の状態は様々であるが、単一のポンプなどの供給系により液体と気体を供給できるという利点がある。なお、図示例では、気液導入口11bの供給方向は、流路11aの軸線11xとは直交する方向に設定されているので、軸線11xの周りの圧力成分を有する方向に供給すれば、上記旋回流10xbを形成しやすいという利点もある。 FIG. 2A schematically shows the structure of the ultrafine bubble generator of the first embodiment. Since the first to fourth embodiments shown in FIGS. 2 and 3 relate to the structure of the gas / liquid introduction port 11b of the fluid introduction unit 11X of the embodiment shown in FIG. 1, the air / liquid introduction thereof. Except for the configuration of the mouth 11b, the same as that shown in FIG. 1 or the same as any of the fifth to eighth embodiments, the description thereof will be omitted. In this first embodiment, the gas and the liquid are supplied together to the fluid introduction unit 11X. That is, in the flow path component 11, as the gas / liquid introduction port 11b, a single supply port communicating with the fluid introduction portion 11X is formed on the outer periphery on the upstream side of the flow path structure 11. In this case, a two-phase flow of gas and liquid is supplied to the fluid introduction unit 11X via the gas-liquid introduction port 11b. The state of the liquid and the gas supplied through the gas-liquid introduction port 11b varies, but there is an advantage that the liquid and the gas can be supplied by a supply system such as a single pump. In the illustrated example, the supply direction of the gas / liquid introduction port 11b is set to be orthogonal to the axis 11x of the flow path 11a. There is also an advantage that it is easy to form a swirling flow 10xb.

図2(b)には、第2実施形態の超微細気泡発生器の構造を模式的に示す。この第2実施形態では、流体導入部11Xに対して気体と液体が別々に供給される。すなわち、上記流路構成体11には、上記気液導入口11bとして、流体導入部11Xに連通する液体供給口11b1と気体導入口11b2が流路構成体11の上流側の外周に別々に形成されている。この場合には、液体供給口11b1と気体供給口11b2に対してそれぞれ所定圧力により液体と気体を供給する必要がある。一方、液体と気体の供給量をそれぞれ個別に制御できるという利点がある。また、図示例では、液体供給口11b1と気体供給口11b2の供給方向は、流路11aの流路方向Fとは直交する方向に設定されているので、軸線11xの周りの圧力成分を有する方向で供給すれば、上記旋回流10xbを形成しやすいという利点もある。なお、図示例では、液体供給口11b1と気体導入口11b2が軸線11xに沿った方向に配列される位置関係で形成されているが、液体供給口11b1と気体導入口11b2が軸線11xの周りに配列される位置関係で形成されていてもよい。 FIG. 2B schematically shows the structure of the ultrafine bubble generator of the second embodiment. In this second embodiment, the gas and the liquid are separately supplied to the fluid introduction unit 11X. That is, in the flow path component 11, as the gas / liquid introduction port 11b, a liquid supply port 11b1 and a gas introduction port 11b2 communicating with the fluid introduction portion 11X are separately formed on the outer periphery on the upstream side of the flow path structure 11. Has been done. In this case, it is necessary to supply the liquid and the gas to the liquid supply port 11b1 and the gas supply port 11b2 at predetermined pressures, respectively. On the other hand, there is an advantage that the supply amounts of liquid and gas can be controlled individually. Further, in the illustrated example, since the supply directions of the liquid supply port 11b1 and the gas supply port 11b2 are set to be orthogonal to the flow path direction F of the flow path 11a, the direction having the pressure component around the axis 11x. If it is supplied by, there is also an advantage that the swirling flow 10xb can be easily formed. In the illustrated example, the liquid supply port 11b1 and the gas introduction port 11b2 are formed in a positional relationship in which they are arranged in the direction along the axis 11x, but the liquid supply port 11b1 and the gas introduction port 11b2 are formed around the axis line 11x. It may be formed in a positional relationship in which they are arranged.

図3(a)には、第3実施形態の超微細気泡発生器の構造を模式的に示す。この第3実施形態では、上記気液導入口11bとして、流路構成体11の上流側の外周に形成された外周供給口11b3と、流路構成体11の上流側の端部の内周側に形成された内周供給口11b4とが設けられる点で先の例とは異なる。内周供給口11b4は流路構成体11の上流側の端部において、外周供給口11b3よりも内周側に設けられていればよい。図示例のように、内周供給口11b4は流路構成体11の軸線11xに対向する中央部に形成されることが望ましいが、供給される流体を旋回流10xbに乗せるために、内周供給口11b4を中央部以外の偏心位置に形成してもよい。この実施形態では、外周供給口11b3と内周供給口11b4のうちの一方の供給口を介して液体を供給し、他方の供給口を介して気体を供給することにより、流体導入部11Xに気体と液体を導入することができる。このようにすると、供給方向の相違により気体と液体の撹拌作用を高めることができる。また、内周供給口11b4を介して軸線11x(流路方向)に向けて高速に気体又は液体を供給できるとともに、外周供給口11b3を介して軸線11x周りに旋回流を形成することも可能になる。このため、流体中の気泡の微細化にも効果があると考えられる。 FIG. 3A schematically shows the structure of the ultrafine bubble generator of the third embodiment. In the third embodiment, as the gas / liquid introduction port 11b, the outer peripheral supply port 11b3 formed on the outer periphery on the upstream side of the flow path component 11 and the inner peripheral side of the upstream end portion of the flow path component 11 It is different from the previous example in that the inner peripheral supply port 11b4 formed in the above is provided. The inner peripheral supply port 11b4 may be provided at the upstream end of the flow path component 11 on the inner peripheral side of the outer peripheral supply port 11b3. As shown in the illustrated example, the inner peripheral supply port 11b4 is preferably formed in the central portion facing the axis 11x of the flow path component 11, but the inner peripheral supply port 11b4 is supplied in order to put the supplied fluid on the swirling flow 10xb. The mouth 11b4 may be formed at an eccentric position other than the central portion. In this embodiment, the liquid is supplied through one of the outer peripheral supply port 11b3 and the inner peripheral supply port 11b4, and the gas is supplied through the other supply port, whereby the gas is supplied to the fluid introduction unit 11X. And liquid can be introduced. In this way, the stirring action of the gas and the liquid can be enhanced by the difference in the supply direction. In addition, gas or liquid can be supplied at high speed toward the axis 11x (flow path direction) via the inner peripheral supply port 11b4, and a swirling flow can be formed around the axis 11x via the outer peripheral supply port 11b3. Become. Therefore, it is considered that it is also effective in miniaturizing bubbles in the fluid.

図3(b)には、第4実施形態の超微細気泡発生器の構造を模式的に示す。この第4実施形態では、上記気液導入口11bとして、流路構成体11の上流側の外周に形成された外周供給口11b3と、流路構成体11の上流側の端部の内周側に形成された内周供給口11b4とが設けられる点で第3実施形態と同様である。また、内周供給口11b4は流路構成体11の上流側の端部において、外周供給口11b3よりも内周側に設けられていればよい点も第3実施形態と同様である。そして、図示例のように、内周供給口11b4は流路構成体11の軸線11xに対向する中央部に形成されることが望ましいが、供給される流体を旋回流10xbに乗せるために、内周供給口11b4を中央部以外の偏心位置に形成してもよい。この第4実施形態では、外周供給口11b3と内周供給口11b4のうちの少なくとも一方の供給口において気体と液体を共に供給する。例えば、気液二相流をポンプなどにより圧送する。また、両方の供給口において気体と液体を共にを供給することが望ましい。これにより、流体導入部11Xに気体と液体を導入することができる。このようにすると、軸線11xに向けて高速に気液混合流体を供給できるとともに、軸線11x周りに気液混合流体の旋回流を形成することもできる。このとき、両供給口11b3,11b4にいずれも気液混合流体が供給される場合には、双方の気液混合流体が異なる方向に供給されるため、流体導入部11X内の混合状態を高めることができる。このため、流体中の気泡の微細化にも効果があると考えられる。 FIG. 3B schematically shows the structure of the ultrafine bubble generator of the fourth embodiment. In the fourth embodiment, as the gas / liquid introduction port 11b, the outer peripheral supply port 11b3 formed on the outer periphery on the upstream side of the flow path component 11 and the inner peripheral side of the upstream end portion of the flow path component 11 It is the same as the third embodiment in that the inner peripheral supply port 11b4 formed in is provided. Further, the same as in the third embodiment, the inner peripheral supply port 11b4 may be provided at the upstream end of the flow path component 11 on the inner peripheral side of the outer peripheral supply port 11b3. Then, as shown in the illustrated example, it is desirable that the inner peripheral supply port 11b4 is formed in the central portion facing the axis 11x of the flow path constituent 11, but in order to put the supplied fluid on the swirling flow 10xb, the inner peripheral supply port 11b4 is formed inside. The peripheral supply port 11b4 may be formed at an eccentric position other than the central portion. In this fourth embodiment, gas and liquid are supplied together at at least one of the outer peripheral supply port 11b3 and the inner peripheral supply port 11b4. For example, a gas-liquid two-phase flow is pumped by a pump or the like. It is also desirable to supply both gas and liquid at both supply ports. As a result, gas and liquid can be introduced into the fluid introduction unit 11X. In this way, the gas-liquid mixed fluid can be supplied at high speed toward the axis 11x, and a swirling flow of the gas-liquid mixed fluid can be formed around the axis 11x. At this time, when the gas-liquid mixed fluid is supplied to both supply ports 11b3 and 11b4, both gas-liquid mixed fluids are supplied in different directions, so that the mixed state in the fluid introduction unit 11X is enhanced. Can be done. Therefore, it is considered that it is also effective in miniaturizing bubbles in the fluid.

図4には、第5実施形態の超微細気泡発生器の構造を模式的に示す。この第5実施形態では、流路構成体11の内側寸法(内径)が流路方向に変化することにより、流体導入部11Xの流路断面積が、それよりも下流側の流体分流部11Yや流体混合部11Zの流路断面積よりも大きく構成されている点で先の例とは異なる。なお、図4においては、気液導入口11bや流体導出口11cの構造などは特に限定されず、他の実施形態のいずれかと同様に構成することができるという意味で、二点鎖線で示してある。このように構成すると、流体導入部11Xから流体分流部11Yへ気液混合流体10xが流入するときに流路11a全体の流路断面積が低下するため、内側分流路11iaと外側分流路11oaに流れる気液混合流体10yin及び10youtの流速が増大し、流体混合部11Zでの乱流も激しくなると考えられることから、流体混合部11Zにおける気泡の微細化がさらに促進されると考えられる。 FIG. 4 schematically shows the structure of the ultrafine bubble generator according to the fifth embodiment. In the fifth embodiment, the inner dimension (inner diameter) of the flow path component 11 changes in the flow path direction, so that the flow path cross-sectional area of the fluid introduction section 11X becomes the fluid diversion section 11Y on the downstream side thereof. It differs from the previous example in that it is configured to be larger than the flow path cross-sectional area of the fluid mixing unit 11Z. In FIG. 4, the structure of the gas / liquid introduction port 11b and the fluid outlet port 11c is not particularly limited, and is shown by a two-dot chain line in the sense that it can be configured in the same manner as any of the other embodiments. be. With this configuration, when the gas-liquid mixed fluid 10x flows from the fluid introduction section 11X to the fluid diversion section 11Y, the flow path cross-sectional area of the entire flow path 11a decreases, so that the inner branch flow path 11ia and the outer branch flow path 11oa are formed. Since it is considered that the flow velocities of the flowing gas-liquid mixed fluids 10 y in and 10 y out increase and the turbulent flow in the fluid mixing section 11Z also becomes intense, it is considered that the miniaturization of bubbles in the fluid mixing section 11Z is further promoted.

図5には、第6実施形態の超微細気泡発生器の構造を模式的に示す。この第6実施形態では、流路構成体11の外形(外径)が流路方向に変化することにより、流体分流部11Yの流路断面積が途中で低下している点で先の例とは異なる。このようにすると、外側分流路11oaの流路断面積が途中で減少することとなるため、気液混合流体10youtの流速が途中で増加し、これにより、内側流出口11icにおける気液混合流体10yinの流速に対する外側流出口11ocにおける流速差がさらに大きくなることから、流体混合部11Zにおける気泡の微細化がさらに促進されると考えられる。 FIG. 5 schematically shows the structure of the ultrafine bubble generator of the sixth embodiment. In the sixth embodiment, the outer diameter (outer diameter) of the flow path component 11 changes in the flow path direction, so that the flow path cross-sectional area of the fluid diversion portion 11Y is reduced in the middle, which is the same as the previous example. Is different. In this way, the flow path cross-sectional area of the outer branch flow path 11oa decreases in the middle, so that the flow velocity of the gas-liquid mixed fluid 10y out increases in the middle, whereby the gas-liquid mixed fluid at the inner outlet 11ic increases. Since the difference in flow velocity at the outer outlet 11 oc with respect to the flow velocity of 10 y in is further increased, it is considered that the miniaturization of bubbles in the fluid mixing portion 11Z is further promoted.

図6には、第7実施形態の超微細気泡発生器の構造を模式的に示す。この第7実施形態では、流路構成体11の外形(外径)が流路方向に変化することにより、流体混合部11Zの流路断面積が途中で低下している点で先の例とは異なる。このようにすると、外側分流路11oaの外側流出口11ocから流入する気液混合流体10youtの流速が流体混合部11Zの内部で増加し、また、気液混合流体10youtの流体混合部11Z内での流れの向きも内側にずれることから、内側分流路11iaの内側流出口11icから流入する気液混合流体10yinに対する巻き込み作用がさらに増大する。このことから、流体混合部11Zにおける気泡の微細化がさらに促進されると考えられる。 FIG. 6 schematically shows the structure of the ultrafine bubble generator according to the seventh embodiment. In the seventh embodiment, the outer diameter (outer diameter) of the flow path component 11 changes in the flow path direction, so that the flow path cross-sectional area of the fluid mixing portion 11Z decreases in the middle, which is the same as the previous example. Is different. In this way, the flow velocity of the gas-liquid mixed fluid 10y out flowing in from the outer outlet 11oc of the outer branch flow path 11oa increases inside the fluid mixing section 11Z, and also in the fluid mixing section 11Z of the gas-liquid mixed fluid 10y out . Since the direction of the flow is also shifted inward, the entrainment action on the gas-liquid mixed fluid 10y in flowing from the inner outlet 11ic of the inner branch flow path 11ia is further increased. From this, it is considered that the miniaturization of bubbles in the fluid mixing unit 11Z is further promoted.

図7には、第8実施形態の超微細気泡発生器の構造を模式的に示す。この第8実施形態では、流路構成体11の下流側の端部に複数の流体導出口11cが設けられる点で先の例とは異なる。すなわち、流体混合部11Z内から気液混合流体10zを噴出する噴出ノズルが複数設けられることで、噴出時に生ずる気泡の微細化の態様が変化するものと考えられる。図示例では、軸線11xの周囲に等間隔で4つの流体導出口11cを形成した。それぞれの流体導出口11cは上述と同様に外部側に開いた構造を備える。流体導出口11cを複数設けることにより、導出される気液混合流体の流量を増大させることができる。ただし、発生器10の内部圧力が低下すると、上述の圧力の解放による流体の高速の噴出作用が変化し、この噴出による気泡の微細化の態様も変化するので、内部圧力を維持する必要があると考えられる。 FIG. 7 schematically shows the structure of the ultrafine bubble generator of the eighth embodiment. This eighth embodiment is different from the previous example in that a plurality of fluid outlets 11c are provided at the downstream end of the flow path structure 11. That is, it is considered that the mode of miniaturization of the bubbles generated at the time of ejection changes by providing a plurality of ejection nozzles for ejecting the gas-liquid mixed fluid 10z from the fluid mixing unit 11Z. In the illustrated example, four fluid outlets 11c were formed around the axis 11x at equal intervals. Each fluid outlet 11c has a structure open to the outside as described above. By providing a plurality of fluid outlets 11c, the flow rate of the gas-liquid mixed fluid to be derived can be increased. However, when the internal pressure of the generator 10 decreases, the high-speed ejection action of the fluid due to the release of the pressure described above changes, and the mode of miniaturization of bubbles due to this ejection also changes, so it is necessary to maintain the internal pressure. it is conceivable that.

図8には、超微細気泡発生装置1に関する第9実施形態の全体構成を模式的に示す。この第9実施形態では、前述の超微細気泡発生器10に気体及び液体を供給する流体供給ポンプ2と、この供給ポンプ2と超微細気泡発生器10とを接続する供給路3と、流体供給ポンプ2を制御する制御部4と、超微細気泡発生器10から放出される流体を収容する流体槽5と、超微細気泡発生器10と流体槽5とを接続する導出路6とを備える。また、排出弁8は、流体槽5からの流体の取り出しに用いる。ここで、制御部4は、流体供給ポンプ2の稼働の有無や供給圧などを制御する。この流体供給ポンプ2と、これを制御する制御部4は、上記超微細気泡発生器10に前記気液導入口を介して気体と液体を供給する気液供給機構20を構成する。なお、上記超微細気泡発生器10に開閉弁や調圧弁などの制御対象が含まれる場合には、図示点線で示すように、制御部4により超微細気泡発生器10を制御するように構成してもよい。 FIG. 8 schematically shows the overall configuration of the ninth embodiment of the ultrafine bubble generator 1. In the ninth embodiment, a fluid supply pump 2 that supplies gas and liquid to the above-mentioned ultrafine bubble generator 10, a supply path 3 that connects the supply pump 2 and the ultrafine bubble generator 10, and a fluid supply. A control unit 4 for controlling the pump 2, a fluid tank 5 for accommodating the fluid discharged from the ultrafine bubble generator 10, and a lead-out path 6 for connecting the ultrafine bubble generator 10 and the fluid tank 5 are provided. Further, the discharge valve 8 is used to take out the fluid from the fluid tank 5. Here, the control unit 4 controls whether or not the fluid supply pump 2 is operating, the supply pressure, and the like. The fluid supply pump 2 and the control unit 4 that controls the fluid supply pump 2 constitute a gas-liquid supply mechanism 20 that supplies gas and liquid to the ultrafine bubble generator 10 via the gas-liquid introduction port. When the ultrafine bubble generator 10 includes a control target such as an on-off valve or a pressure regulating valve, the control unit 4 is configured to control the ultrafine bubble generator 10 as shown by the dotted line in the figure. You may.

上記の超微細気泡発生装置1では、流体供給ポンプ2によって気体と液体の二相流を所定圧力で供給することができる。このとき、気体と液体の比率は流体供給ポンプ2に設けられた気体導入弁の制御によって調整することができる。また、前述のように気体と液体を別々に供給する場合には、上記気液供給機構20において、個々の供給のためのポンプや調整弁などを設けることができる。 In the above-mentioned ultrafine bubble generator 1, the fluid supply pump 2 can supply a two-phase flow of gas and liquid at a predetermined pressure. At this time, the ratio of gas to liquid can be adjusted by controlling the gas introduction valve provided in the fluid supply pump 2. Further, when the gas and the liquid are supplied separately as described above, the gas-liquid supply mechanism 20 may be provided with a pump, a regulating valve, or the like for each supply.

また、図示のように、流体槽5に収容された流体を上記流体供給ポンプ2へ戻す循環路7を設けることが好ましい。このようにすると、循環路7により既に気泡が形成された流体を超微細気泡発生器10に再度導入することができるため、繰り返し超微細気泡発生器10内を通過させることにより、流体中の気泡密度をさらに高めることができる。 Further, as shown in the figure, it is preferable to provide a circulation path 7 for returning the fluid contained in the fluid tank 5 to the fluid supply pump 2. By doing so, the fluid in which bubbles have already been formed by the circulation path 7 can be introduced into the ultrafine bubble generator 10 again. Therefore, the bubbles in the fluid are repeatedly passed through the ultrafine bubble generator 10. The density can be further increased.

図9には、超微細気泡発生装置に関する第10実施形態の全体構成を模式的に示す。この第10実施形態の超微細気泡発生装置1では、上記第9実施形態と同様の、流体供給ポンプ2、供給路3、制御部4、流体槽5、及び、必要に応じて設けられる循環路7や排出弁8を備えているが、上述と同様であるので、それらの説明は省略する。この第10実施形態では、超微細気泡発生器10の流体導出口11cが流体槽5内の流体中に直接配置されている点で、第9実施形態とは異なる。このように、流体導出口11cが流体(液体)中に直接露出することで、流体混合部11Z内の気液混合流体10zが噴出する際に流体導出口11cの前後で受ける圧力差が大きくなり、気泡が受ける微細化作用も増大するため、超微細気泡の密度が向上すると考えられる。 FIG. 9 schematically shows the overall configuration of the tenth embodiment relating to the ultrafine bubble generator. In the ultrafine bubble generator 1 of the tenth embodiment, the fluid supply pump 2, the supply path 3, the control unit 4, the fluid tank 5, and the circulation path provided as needed are the same as those of the ninth embodiment. 7 and the discharge valve 8 are provided, but since they are the same as described above, their description will be omitted. The tenth embodiment is different from the ninth embodiment in that the fluid outlet 11c of the ultrafine bubble generator 10 is directly arranged in the fluid in the fluid tank 5. By directly exposing the fluid outlet 11c to the fluid (liquid) in this way, the pressure difference received before and after the fluid outlet 11c when the gas-liquid mixed fluid 10z in the fluid mixing portion 11Z is ejected becomes large. It is considered that the density of ultrafine bubbles is improved because the miniaturization action received by the bubbles also increases.

図10には、実施例により得られた気泡プロファイルを比較した結果を示す。ここで、実施例1は、流体導入部11Xの気液導入口11bとして上記第1実施形態の基本構成を有し、流路方向に同径の流路断面を有する流路構成体11を備えるとともに、単一の流体導出口11cを設けた超微細気泡発生器10を用い、図9に示す全体構成を有する超微細気泡発生装置1により気泡を生成させた。上記開き角φは30度である。また、実施例2では、上記の実施例1と同様の全体構成を有するとともに上記第6実施形態のように4つの流体導出口11cを有する超微細気泡発生器10を用いて気泡を生成させた。上記開き角φは30度である。さらに、実施例3では、上記の実施例1と同様の全体構成を有するとともに、上記第6実施形態のように4つの流体導出口11cを設けた超微細気泡発生器10を用い、図9に示す全体構成を有する超微細気泡発生装置1により気泡を生成させた。上記開き角φは60度である。 FIG. 10 shows the results of comparing the bubble profiles obtained by the examples. Here, the first embodiment has the basic configuration of the first embodiment as the gas / liquid introduction port 11b of the fluid introduction unit 11X, and includes a flow path configuration 11 having a flow path cross section having the same diameter in the flow path direction. At the same time, using an ultrafine bubble generator 10 provided with a single fluid outlet 11c, bubbles were generated by the ultrafine bubble generator 1 having the overall configuration shown in FIG. The opening angle φ is 30 degrees. Further, in Example 2, bubbles were generated by using an ultrafine bubble generator 10 having the same overall configuration as that of Example 1 and having four fluid outlets 11c as in the sixth embodiment. .. The opening angle φ is 30 degrees. Further, in the third embodiment, an ultrafine bubble generator 10 having the same overall configuration as that of the first embodiment and provided with four fluid outlets 11c as in the sixth embodiment is used, and is shown in FIG. Bubbles were generated by the ultrafine bubble generator 1 having the overall configuration shown. The opening angle φ is 60 degrees.

このとき、実施例1~3においては、いずれも蒸留水を使用し、図9に示す全体構成の上記超微細気泡発生装置1を、流体槽5内の流体を循環路7により3回循環させた場合に相当する時間だけ稼働させることによって得られた流体をサンプルとした。また、気液導入口11bに供給される気液混合流体の供給圧を調整し、発生器10の内圧を4~5気圧の範囲内に維持した。因みに、各実施例のスロート部11isの直径とスロート部11osの隙間はいずれも2~3mmの間とし、流体導出口11bの最小直径も2~3mmの間の値に設定した。さらに、上記各実施例では、流路構成体11の軸線11xに沿った長さは流路内在体12の3倍とし、流体導入部11Xと流体混合部11Zの軸線11xに沿った長さが相互に等しい値とした。そして、超微細気泡生成後5日目に、粒子追跡法で気泡径と気泡密度を測定した。そして、図10では、これらの各実施例1~3の結果を示した。 At this time, in Examples 1 to 3, distilled water was used, and the fluid in the fluid tank 5 was circulated three times by the circulation path 7 in the hyperfine bubble generator 1 having the overall configuration shown in FIG. The fluid obtained by operating the sample for a corresponding period of time was used as a sample. Further, the supply pressure of the gas-liquid mixed fluid supplied to the gas-liquid introduction port 11b was adjusted to maintain the internal pressure of the generator 10 within the range of 4 to 5 atm. Incidentally, the diameter of the throat portion 11is and the gap between the throat portions 11os of each embodiment were set to be between 2 and 3 mm, and the minimum diameter of the fluid outlet 11b was also set to a value between 2 and 3 mm. Further, in each of the above embodiments, the length of the flow path constituent 11 along the axis 11x is three times the length of the flow path internal body 12, and the length of the fluid introduction section 11X and the fluid mixing section 11Z along the axis 11x is set. The values were equal to each other. Then, on the 5th day after the generation of ultrafine bubbles, the bubble diameter and the bubble density were measured by the particle tracking method. And in FIG. 10, the result of each of these Examples 1 to 3 is shown.

図10に示すように、上記各実施例1~3ではいずれも気泡径が10~300[nm]を中心とした超微細気泡が生成されている。また、実施例1~3の気泡密度は、従来の値を大幅に上回る15億個以上の数値となった。また、各実施例の気泡径分布は基本的に5~500[nm]の範囲を主体とし、さらに20~300[nm]の範囲に集中している。特に、40~200[nm]の領域では高い気泡密度を示している。このように、実施例1~3の気泡密度は、気泡径が100[nm]付近を中心として高い集中度を備え、高品質の超微細気泡(ナノバブル)が効率的に生成されていることがわかる。特に、実施例3の気泡径分布は分散が極めて小さく、100[nm]付近を中心に極めて高い集中度を示した。以上のように、各実施例1~3では、従来技術に比べて大幅に気泡密度を高くすることができるとともに、特定の気泡径に集中した高品質の超微細気泡を生成することができた。 As shown in FIG. 10, in each of the above Examples 1 to 3, ultrafine bubbles having a bubble diameter of 10 to 300 [nm] are generated. In addition, the bubble densities of Examples 1 to 3 were 1.5 billion or more, which greatly exceeded the conventional values. Further, the bubble diameter distribution of each embodiment is basically mainly in the range of 5 to 500 [nm], and further concentrated in the range of 20 to 300 [nm]. In particular, it shows a high bubble density in the region of 40 to 200 [nm]. As described above, the bubble densities of Examples 1 to 3 have a high degree of concentration centered on a bubble diameter of around 100 [nm], and high-quality ultrafine bubbles (nano bubbles) are efficiently generated. Recognize. In particular, the bubble diameter distribution of Example 3 had extremely small dispersion and showed an extremely high concentration centering around 100 [nm]. As described above, in each of Examples 1 to 3, the bubble density could be significantly increased as compared with the prior art, and high-quality ultrafine bubbles concentrated on a specific bubble diameter could be generated. ..

また、微細気泡の生成時における流量は、実施例1では8.0[l(リットル)/min]、実施例2では12.0[l(リットル)/min]、実施例3では12.5[l(リットル)/min]となり、いずれも従来技術よりも大きな流量を得ることができた。したがって、各実施例1~3では、低いランニングコストで効率的に気泡を生成することができることがわかる。 The flow rate at the time of generating fine bubbles was 8.0 [l (liter) / min] in Example 1, 12.0 [l (liter) / min] in Example 2, and 12.5 in Example 3. It became [l (liter) / min], and in each case, a larger flow rate than that of the conventional technique could be obtained. Therefore, in each of Examples 1 to 3, it can be seen that bubbles can be efficiently generated at a low running cost.

図11及び図12には、実施例1及び2によって生成した気液混合流体を保管し、気泡の平均気泡径と、平均個数密度の変化を観察した結果を示した。これらを見ると、超微細気泡の安定性に関して、常に高い密度が31日間にわたり維持されていることがわかる。また、実施例では、従来技術よりも微細な気泡径が長期間にわたり確実に保存されていることが示されている。 11 and 12 show the results of storing the gas-liquid mixed fluid produced in Examples 1 and 2 and observing changes in the average bubble diameter and the average number density of bubbles. Looking at these, it can be seen that a high density is always maintained for 31 days with respect to the stability of hyperfine bubbles. Further, in the examples, it is shown that the bubble diameter finer than that of the prior art is reliably stored for a long period of time.

図13には、各実施例1~3において生成された気泡のゼータ電位の測定結果を示す。ここで、ゼータ電位は、顕微鏡電子泳動法により測定した。このゼータ電位(Zeta Potential)とは、溶液中の微粒子の周りに形成される電気二重層において、流体流動が起こり始めるすべり面の電位として定義される。ゼータ電位の絶対値が低いと微粒子は不安定になり、凝集しやすいのに対して、ゼータ電位の絶対値が高くなると、微粒子は安定し、分散した状態が維持されやすい。従来技術における微細気泡のゼータ電位は一般に-50[mV]程度であるのに対して、各実施例1~3では、いずれもゼータ電位として-100[mV]前後の値が得られている。したがって、各実施例で生成された超微細気泡は、従来よりも極めて高い安定性を備えていることがわかる。 FIG. 13 shows the measurement results of the zeta potentials of the bubbles generated in Examples 1 to 3. Here, the zeta potential was measured by microelectrophoresis. This Zeta Potential is defined as the potential of the slip surface where fluid flow begins to occur in the electric double layer formed around the fine particles in the solution. When the absolute value of the zeta potential is low, the fine particles become unstable and tend to aggregate, whereas when the absolute value of the zeta potential is high, the fine particles tend to be stable and maintain a dispersed state. While the zeta potential of fine bubbles in the prior art is generally about −50 [mV], in each of Examples 1 to 3, a value of about −100 [mV] is obtained as the zeta potential. Therefore, it can be seen that the ultrafine bubbles generated in each example have extremely high stability as compared with the conventional case.

以上のように、本実施形態によれば、従来技術に比べて極めて高い密度の超微細気泡を効率的に生成することができる。また、集中した気泡径分布を備える極めて高品質の超微細気泡が得られ、その高い持続性や安定性も確認されている。さらに、このような超微細気泡を簡易な装置により従来よりも大流量で生成することができるため、従来装置よりもランニングコストを低減することが可能である。そして、このように従来技術に比べて高品質、高密度の微細気泡を生成することができるので、微細気泡の種々の効果、例えば、物質搬送機能、衝撃圧力作用、表面活性作用、生理活性作用、酸化力維持効果、浸透力作用、表面積増加効果などを、より効率的、効果的に発揮することができる。 As described above, according to the present embodiment, it is possible to efficiently generate ultrafine bubbles having an extremely high density as compared with the prior art. In addition, extremely high quality ultrafine bubbles with a concentrated bubble diameter distribution have been obtained, and their high durability and stability have been confirmed. Further, since such ultrafine bubbles can be generated at a larger flow rate than the conventional device by a simple device, it is possible to reduce the running cost as compared with the conventional device. Since it is possible to generate fine bubbles of high quality and high density as compared with the prior art in this way, various effects of the fine bubbles, for example, a substance transport function, an impact pressure action, a surface active action, and a physiologically active action. , Oxidizing power maintaining effect, penetrating power effect, surface area increasing effect, etc. can be exhibited more efficiently and effectively.

なお、本発明の超微細気泡発生器及び超微細気泡発生装置は、上述の図示例のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態では、超微細気泡発生器10の流体分流部11Yにおいて、内外二重の内側分流路11iaと外側分流路11oaとが設けられているが、三つ以上の分流路に分かれていても構わない。また、複数の分流路は並行して設けられていればよく、必ずしも内外に同軸状に設けられている必要はない。さらに、気体としては、空気の他に、オゾン、水素、酸素、窒素、二酸化炭素などの種々のものを用いることができるとともに、液体としては、水の他に、アルコール、灯油などの燃料類、各種溶剤などの種々のものを用いることができる。 It should be noted that the ultrafine bubble generator and the ultrafine bubble generator of the present invention are not limited to the above-mentioned illustrated examples, and of course, various changes can be made without departing from the gist of the present invention. be. For example, in the above embodiment, the fluid diversion section 11Y of the ultrafine bubble generator 10 is provided with an inner diversion channel 11ia and an outer diversion channel 11oa, which are double inner and outer, but is divided into three or more diversion channels. It doesn't matter. Further, a plurality of branch channels may be provided in parallel, and are not necessarily provided coaxially inside and outside. Further, as the gas, various substances such as ozone, hydrogen, oxygen, nitrogen and carbon dioxide can be used in addition to air, and as the liquid, fuels such as alcohol and kerosene can be used in addition to water. Various substances such as various solvents can be used.

1…超微細気泡発生装置、2…流体供給ポンプ、3…供給路、4…制御部、5…流体槽、6…導出路、7…循環路、10…超微細気泡発生器、10x、10yin、10yout、10z…気液混合流体、11…流路構成体、11a…流路、11b…気液導入口、11c…流体導出口、11d…傾斜面、11X…流体導入部、11Y…流体分流部、11Z…流体混合部、11ia…内側分流路、11ib…内側流入口、11ic…内側流出口、11oa…外側分流路、11ob…外側流入口、11oc…外側流出口、11is,11os…スロート部、12…流路内在体、12i…内面、12o…外面、12a…前縁、12b…後縁、20…気液供給機構 1 ... ultrafine bubble generator, 2 ... fluid supply pump, 3 ... supply path, 4 ... control unit, 5 ... fluid tank, 6 ... lead path, 7 ... circulation path, 10 ... ultrafine bubble generator, 10x, 10y in , 10y out , 10z ... Gas-liquid mixed fluid, 11 ... Flow path configuration, 11a ... Flow path, 11b ... Gas-liquid introduction port, 11c ... Fluid outlet port, 11d ... Inclined surface, 11X ... Fluid introduction section, 11Y ... Fluid diversion section, 11Z ... Fluid mixing section, 11ia ... Inner branch flow path, 11ib ... Inner inlet, 11ic ... Inner outlet, 11oa ... Outer branch flow path, 11ob ... Outer inlet, 11oc ... Outer outlet, 11is, 11os ... Throat portion, 12 ... Internal body of the flow path, 12i ... Inner surface, 12o ... Outer surface, 12a ... Front edge, 12b ... Trailing edge, 20 ... Gas / fluid supply mechanism

Claims (11)

気液導入口と流体導出口を備え、前記気液導入口から前記流体導出口までの流路が内部に構成される流路構成体と、前記流路内において流路方向に沿って配置される流路内在体とを具備し、
前記流路内在体は、前記流路内において、前記流路方向に沿って相互に並行する複数の分流路を構成し、
前記流路には、前記気液導入口を介して導入された気液混合流体を収容する流体導入部と、該流体導入部から前記気液混合流体を受け入れる流入口をそれぞれ備える前記複数の分流路が構成される流体分流部と、前記複数の分流路の流出口からそれぞれ流出する前記気液混合流体が合流する流体混合部とが設けられ、
前記流出口における前記気液混合流体の流速が相互に異なる第1の前記分流路と第2の前記分流路を有し、
前記第1の分流路と前記第2の分流路のうちの一方の分流路においては前記流入口の断面積よりも前記流出口の断面積が大きく、他方の分流路においては前記流入口の断面積が前記流出口の断面積よりも大きい、
超微細気泡発生器。
A flow path structure having a gas / liquid introduction port and a fluid outlet, and a flow path from the gas / liquid introduction port to the fluid outlet is internally configured, and a flow path structure arranged along the flow path direction in the flow path. It is equipped with a fluid inside the flow path.
The body in the flow path constitutes a plurality of branch flow paths parallel to each other along the flow path direction in the flow path.
The flow path includes the fluid introduction section for accommodating the gas-liquid mixed fluid introduced through the gas-liquid introduction port, and the plurality of diversion streams each having an inflow port for receiving the gas-liquid mixed fluid from the fluid introduction section. A fluid diversion section forming a path and a fluid mixing section where the gas-liquid mixed fluids flowing out from the outlets of the plurality of diversion channels meet are provided .
It has a first branch flow path and a second branch flow path in which the flow rates of the gas-liquid mixed fluid at the outlet are different from each other.
The cross-sectional area of the outlet is larger than the cross-sectional area of the inflow port in one of the first branch flow path and the second branch flow path, and the inflow port is cut off in the other branch flow path. The area is larger than the cross-sectional area of the outlet,
Ultra-fine bubble generator.
前記複数の分流路のうちの少なくとも一の前記分流路は、前記流路方向に沿って前記流路断面積がスロート部において一旦減少した後に増大する構造を備える、
請求項1に記載の超微細気泡発生器。
At least one of the plurality of branch channels has a structure in which the cross-sectional area of the channel decreases once in the throat portion and then increases along the direction of the channel.
The ultrafine bubble generator according to claim 1 .
気液導入口と流体導出口を備え、前記気液導入口から前記流体導出口までの流路が内部に構成される流路構成体と、前記流路内において流路方向に沿って配置される流路内在体とを具備し、
前記流路内在体は、前記流路内において、前記流路方向に沿って相互に並行する複数の分流路を構成し、
前記流路には、前記気液導入口を介して導入された気液混合流体を収容する流体導入部と、該流体導入部から前記気液混合流体を受け入れる流入口をそれぞれ備える前記複数の分流路が構成される流体分流部と、前記複数の分流路の流出口からそれぞれ流出する前記気液混合流体が合流する流体混合部とが設けられ、
前記流路内在体は筒状構造を備え、
前記分流路として、前記流路内在体の内面の内側に構成される内側分流路と、前記流路内在体の外面の周囲に構成される外側分流路と、を有する、
超微細気泡発生器。
A flow path structure having a gas / liquid introduction port and a fluid outlet, and a flow path from the gas / liquid introduction port to the fluid outlet is internally configured, and a flow path structure arranged along the flow path direction in the flow path. It is equipped with a fluid inside the flow path.
The body in the flow path constitutes a plurality of branch flow paths parallel to each other along the flow path direction in the flow path.
The flow path includes the fluid introduction section for accommodating the gas-liquid mixed fluid introduced through the gas-liquid introduction port, and the plurality of diversion streams each having an inflow port for receiving the gas-liquid mixed fluid from the fluid introduction section. A fluid diversion section forming a path and a fluid mixing section where the gas-liquid mixed fluids flowing out from the outlets of the plurality of diversion channels meet are provided .
The body inside the flow path has a tubular structure and has a tubular structure.
The branch flow path has an inner branch flow path formed inside the inner surface of the flow path inner body and an outer branch flow path formed around the outer surface of the flow path inner body.
Ultra-fine bubble generator.
前記内側分流路における前記流入口の断面積よりも前記流出口の断面積が大きく、しかも、前記内側分流路は、前記流路方向に沿って前記流路断面積がスロート部において一旦減少した後に増大する構造を備える、
請求項に記載の超微細気泡発生器。
The cross-sectional area of the outlet is larger than the cross-sectional area of the inflow port in the inner branch flow path, and the inner branch flow path is formed after the cross-sectional area of the flow path is once reduced in the throat portion along the flow path direction. With an increasing structure,
The ultrafine bubble generator according to claim 3 .
前記流路内在体は、前記流路方向に沿った断面形状が前縁が凸曲線状で後縁が尖鋭状とされた翼型形状である筒状構造を有する、
請求項3又は4に記載の超微細気泡発生器。
The body inside the flow path has a cylindrical structure having a wing-shaped cross-sectional shape along the flow path with a convex curved front edge and a sharp trailing edge.
The ultrafine bubble generator according to claim 3 or 4 .
前記翼型形状は前記流路方向に対して前記前縁と前記後縁を結ぶ翼弦線が傾斜角を有する、
請求項に記載の超微細気泡発生器。
In the airfoil shape, the chord line connecting the leading edge and the trailing edge has an inclination angle with respect to the flow path direction.
The ultrafine bubble generator according to claim 5 .
前記流体導出口は、前記流路構成体の内部側から外部側へ向けて開口範囲が拡大する構造を備える、
請求項1~のいずれか一項に記載の超微細気泡発生器。
The fluid outlet has a structure in which the opening range expands from the inner side to the outer side of the flow path structure.
The ultrafine bubble generator according to any one of claims 1 to 6 .
前記流路構成体は複数の前記流体導出口を備える、
請求項1~のいずれか一項に記載の超微細気泡発生器。
The flow path structure comprises a plurality of the fluid outlets.
The ultrafine bubble generator according to any one of claims 1 to 7 .
請求項1~のいずれか一項に記載の超微細気泡発生器と、
前記気液導入口を介して前記流体導入部に気体と液体を供給する気液供給機構と、
前記流体導出口から前記気液混合流体を受け入れる流体槽と、
を具備する超微細気泡発生装置。
The ultrafine bubble generator according to any one of claims 1 to 8 .
A gas-liquid supply mechanism that supplies gas and liquid to the fluid introduction unit via the gas-liquid introduction port,
A fluid tank that receives the gas-liquid mixing fluid from the fluid outlet, and
An ultrafine bubble generator equipped with.
前記流体導出口は前記流体槽の内部の流体中に直接開口している、
請求項に記載の超微細気泡発生装置。
The fluid outlet is directly open to the fluid inside the fluid tank.
The ultrafine bubble generator according to claim 9 .
前記流体槽の内部に収容された流体を前記気液供給機構を介して前記流体導入部に供給する循環路をさらに具備する、
請求項9又は10に記載の超微細気泡発生装置。
Further provided with a circulation path for supplying the fluid contained in the fluid tank to the fluid introduction portion via the gas-liquid supply mechanism.
The ultrafine bubble generator according to claim 9 or 10 .
JP2019022683A 2019-02-12 2019-02-12 Ultra-fine bubble generator and ultra-fine bubble generator Active JP7092358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022683A JP7092358B2 (en) 2019-02-12 2019-02-12 Ultra-fine bubble generator and ultra-fine bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022683A JP7092358B2 (en) 2019-02-12 2019-02-12 Ultra-fine bubble generator and ultra-fine bubble generator

Publications (2)

Publication Number Publication Date
JP2020127932A JP2020127932A (en) 2020-08-27
JP7092358B2 true JP7092358B2 (en) 2022-06-28

Family

ID=72173982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022683A Active JP7092358B2 (en) 2019-02-12 2019-02-12 Ultra-fine bubble generator and ultra-fine bubble generator

Country Status (1)

Country Link
JP (1) JP7092358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029682A1 (en) * 2005-09-07 2007-03-15 Nippon Kayaku Kabushiki Kaisha Semiconductor bridge, igniter, and gas generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023741B (en) * 2020-08-28 2021-11-05 中南大学 Two-section cavitation bubble generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000843A (en) 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Apparatus for generating fine bubble
JP2008178806A (en) 2007-01-25 2008-08-07 Matsushita Electric Works Ltd Microbubble generating apparatus
WO2013011570A1 (en) 2011-07-20 2013-01-24 株式会社Japan Star Bubble generation mechanism and shower head with bubble generation mechanism

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046115B1 (en) * 2009-07-23 2015-06-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Eddy current minimizing flow plug for use in flow conditioning and flow metering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000843A (en) 2005-06-27 2007-01-11 Matsushita Electric Works Ltd Apparatus for generating fine bubble
JP2008178806A (en) 2007-01-25 2008-08-07 Matsushita Electric Works Ltd Microbubble generating apparatus
WO2013011570A1 (en) 2011-07-20 2013-01-24 株式会社Japan Star Bubble generation mechanism and shower head with bubble generation mechanism

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029682A1 (en) * 2005-09-07 2007-03-15 Nippon Kayaku Kabushiki Kaisha Semiconductor bridge, igniter, and gas generator

Also Published As

Publication number Publication date
JP2020127932A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6169749B1 (en) Microbubble generator
KR0173996B1 (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP5712292B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
US6557834B2 (en) Device and method for fluid aeration via gas forced through a liquid within an orifice of a pressure chamber
US6196525B1 (en) Device and method for fluid aeration via gas forced through a liquid within an orifice of a pressure chamber
CN106660842B (en) Micro-bubble nozzle
JP7092358B2 (en) Ultra-fine bubble generator and ultra-fine bubble generator
JP2008086868A (en) Microbubble generator
JP4933582B2 (en) Microbubble generator and shower head
JP5731650B2 (en) Bubble generation mechanism and shower head with bubble generation mechanism
JP6048841B2 (en) Fine bubble generator
JP2010075838A (en) Bubble generation nozzle
KR20170104351A (en) Apparatus for generating micro bubbles
JP2009028579A (en) Bubble generating apparatus
CN109562336B (en) System and method for supplying gas into liquid
JP5825852B2 (en) Fine bubble generating nozzle and fine bubble generating device
JP2007117799A (en) Microbubble generator and microbubble generating apparatus using the same
JPH1094722A (en) Fine bubble feeder
JP6449531B2 (en) Microbubble generator
KR20090033319A (en) Minuteness bubble generating nozzle
JP2007000848A (en) Method for generating fine bubble
JP2008036612A (en) Apparatus for aerial spraying of gas-liquid mixture containing high-density microbubbles
JP2007111616A (en) Fine air-bubble generating device
JPH0747264A (en) Method for foaming and apparatus therefor
JP2011240210A (en) Mechanism for generating microbubble

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7092358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150