JP7088010B2 - 赤外発光led - Google Patents

赤外発光led Download PDF

Info

Publication number
JP7088010B2
JP7088010B2 JP2018527629A JP2018527629A JP7088010B2 JP 7088010 B2 JP7088010 B2 JP 7088010B2 JP 2018527629 A JP2018527629 A JP 2018527629A JP 2018527629 A JP2018527629 A JP 2018527629A JP 7088010 B2 JP7088010 B2 JP 7088010B2
Authority
JP
Japan
Prior art keywords
group
radiation
hept
microlens
ene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018527629A
Other languages
English (en)
Other versions
JPWO2018012534A1 (ja
Inventor
努 羽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Publication of JPWO2018012534A1 publication Critical patent/JPWO2018012534A1/ja
Application granted granted Critical
Publication of JP7088010B2 publication Critical patent/JP7088010B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Led Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、赤外発光LEDに係り、さらに詳しくは、高輝度、かつ信頼性の高い赤外発光LEDに関する。
発光波長が赤外領域(700~1500nm)にある赤外発光LED(赤外LED:Light Emitting Diode)は、フォトカプラーや、リモコンの光源などの赤外線通信に広く利用されている。
このような赤外発光LEDは、Ga1-xAlAs系化合物半導体や、GaAs系化合物半導体を用いたものなどが知られている(例えば、特許文献1参照)。
特開2001-339099号公報
上記特許文献1などに開示された赤外発光LEDは、その素子上に、劣化や損傷を防止するための表面保護膜と、この表面保護膜上に2~10μm程度のレンズ径を有するマイクロレンズとが形成されることが一般的であり、これらのうち、表面保護膜としては、SiNなどの無機膜が一般的に用いられているが、赤外領域における透過率が低く、そのため、赤外発光LEDとしての輝度が低くなってしまうという問題があった。
また、表面保護膜上に形成されるマイクロレンズとしては、感放射線性樹脂組成物を用い、ドットパターンを形成した後、加熱処理することによってパターンを変形させることにより形成されるものが一般的である。このようなマイクロレンズは、その形成工程、あるいは、配線等の周辺装置の形成工程において、高温での加熱処理(メルトフロー)が行われるが、このとき、感放射線性樹脂組成物の耐熱形状保持性が不充分な場合には、レンズ形状が変形しパターン形状を維持できず、マイクロレンズとしての機能を果たさなくなる場合がある。そのため、所望の変形パターンを安定して形成し、これにより、赤外発光LEDを高輝度なものとするという観点より、これに用いられる感放射線性樹脂組成物としては、透過率に優れていることに加え、耐熱形状保持性に優れていることも求められている。
本発明は、このような実状に鑑みてなされたものであり、高輝度、かつ信頼性の高い赤外発光LEDを提供することにある。
本発明者等は、上記目的を達成するために鋭意研究した結果、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物が、光線透過性(特に、赤外領域(700~1500nm)における光線透過性)に優れ、しかも、耐熱形状保持性に優れた絶縁膜を与えることができものであること、さらには、素子上に形成された絶縁膜と、絶縁膜上に形成されたマイクロレンズとを備える赤外発光LEDにおいて、絶縁膜及びマイクロレンズを、このような感放射線樹脂組成物を用いて形成することにより、得られる赤外発光LEDを高輝度、かつ信頼性の高いものとすることができることを見出し、本発明を完成させるに至った。
すなわち、本発明によれば、
〔1〕素子上に形成された絶縁膜と、前記絶縁膜上に形成されたマイクロレンズとを備える赤外発光LEDであって、前記絶縁膜及び前記マイクロレンズが、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成されたことを特徴とする赤外発光LED、
〔2〕前記絶縁膜の厚みが1~10μmであり、前記マイクロレンズの厚みが0.5~5μmである前記〔1〕に記載の赤外発光LED、
〔3〕前記絶縁膜の厚みと、前記マイクロレンズの厚みとの比率が、「絶縁膜の厚み:マイクロレンズの厚み」で1:1~10:1である前記〔1〕又は〔2〕に記載の赤外発光LED、
〔4〕前記絶縁膜の屈折率と、前記マイクロレンズの屈折率の差が0.1以下である前記〔1〕~〔3〕のいずれかに記載の赤外発光LED、
〔5〕前記絶縁膜と前記マイクロレンズとが、前記環状オレフィン重合体(A)として、同じ重合体を含有する感放射線樹脂組成物をそれぞれ用いて形成されたものである前記〔1〕~〔4〕のいずれかに記載の赤外発光LED、
〔6〕前記絶縁膜と前記マイクロレンズとが、全て同じ成分から構成される感放射線樹脂組成物をそれぞれ用いて形成されたものである前記〔5〕に記載の赤外発光LED、ならびに、
〔7〕前記絶縁膜と前記マイクロレンズとが、全て同じ成分を同じ含有割合で含有する感放射線樹脂組成物をそれぞれ用いて形成されたものである前記〔6〕に記載の赤外発光LED、
が提供される。
本発明によれば、高輝度、かつ信頼性の高い赤外発光LEDを提供することができる。
図1は、本発明の一実施形態に係る赤外発光LEDの断面図である。 図2は、実施例における透過率の測定結果を示す図である。
本発明の赤外発光LEDは、素子上に形成された絶縁膜と、前記絶縁膜上に形成されたマイクロレンズとを備え、前記絶縁膜及び前記マイクロレンズが、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成されたものである。
(赤外発光LEDの構成)
以下、図1に示す本発明の一実施形態に係る赤外発光LED10を例示して、本発明について詳細に説明する。ただし、本発明は、図1に示す態様に特に限定されるものではない。
図1に示すように、本発明の一実施形態に係る赤外発光LED10は、エピタキシャルウエハ20と、このエピタキシャルウエハ20の一方の主面に形成された複数のnドット電極30と、エピタキシャルウエハ20の他方の主面に形成されたpパッド電極40とを備える。また、本発明の一実施形態に係る赤外発光LED10は、このような、エピタキシャルウエハ20、nドット電極30及びpパッド電極40から形成される素子本体の、pパッド電極40が形成されている側の主面上に、保護絶縁膜50、及び保護絶縁膜50上に形成されたマイクロレンズ60をさらに備えるものである。
エピタキシャルウエハ20は、図1に示すように、AlGaAs基板(Ga1-xAlAs基板(0≦x≦1))21と、AlGaAs基板21上に形成されたエピタキシャル層22と、エピタキシャル層22上に形成された透明導電膜23とを備える。
AlGaAs基板21としては、特に限定されないが、例えば、GaAs基板と、GaAs基板上にAlGaAs層が形成されてなるものの他、AlGaAs層のみからなるものなどが用いられる。
エピタキシャル層22は、AlGaAs基板21上に、OMVPE(Organo Metallic Vapor Phase Epitaxy:有機金属気相成長)法や、MBE(Molecular Beam Epitaxy:分子線エピタキシ)法などにより形成される活性層を含む層であり、このような活性層としては、井戸層と、井戸層よりもバンドギャップの大きなバリア層とが交互に積層された多重量子井戸構造(MQW構造)を有しているものなどが好適に挙げられる。
透明導電膜23は、エピタキシャルウエハ20の上面において、全面に電流を広がらせるための層であり、これにより、素子全面に渡り、エピタキシャル層22に含まれる活性層に電流が注入され、これにより、適切に発光を起こさせることが可能となる。透明導電膜23としては、例えばスズ(Sn)がドープされた酸化インジウム(In)であるITO、酸化インジウム(In)、フッ素(F)がドープされたInあるIFO、酸化スズ(SnO)、アンチモン(Sb)がドープされたSnOであるATO、FがドープされたSnOであるFTO、カドミウム(Cd)がドープされたSnOであるCTO、アルミニウム(Al)がドープされた酸化亜鉛(ZnO)であるAZO、InがドープされたZnOであるIZO、GaがドープされたZnOであるGZOなどが挙げられるが、これらのなかでも、ITOが好適である。透明導電膜23は、電子ビーム蒸着法やスパッタ法などを用いて形成される。
nドット電極30は、エピタキシャルウエハ20の一方の主面にドット状に形成された電極であり、nドット電極30は、導電性を有する材料から形成されたものであればよく、特に限定されないが、例えば、Au(金)とGe(ゲルマニウム)との合金で形成することができる。
pパッド電極40は、エピタキシャルウエハ20の、nドット電極30が形成された面と反対側の面に形成された電極であり、pパッド電極40は、導電性を有する材料から形成されたものであればよく、特に限定されないが、例えば、Au(金)とZn(亜鉛)との合金で形成することができる。pパッド電極40は、光を取り出すために、エピタキシャルウエハ20の表面の一部のみを覆い、残部を露出させるような態様で形成されている。
保護絶縁膜50は、エピタキシャルウエハ20、nドット電極30及びpパッド電極40から形成される素子本体を保護するための絶縁性の保護膜であり、pパッド電極40を覆うように、エピタキシャルウエハ20を構成する透明導電膜23の表面に形成される。本発明においては、保護絶縁膜50は、後述する、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成される。
マイクロレンズ60は、保護絶縁膜50上に形成された2~10μm程度のレンズ径を有するレンズである。本発明においては、マイクロレンズ60は、後述する、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成される。
(感放射線樹脂組成物)
次いで、保護絶縁膜50及びマイクロレンズ60を形成するための感放射線樹脂組成物について、説明する。
保護絶縁膜50及びマイクロレンズ60を形成するための感放射線樹脂組成物は、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線性の樹脂組成物である。
本発明で用いるプロトン性極性基を有する環状オレフィン重合体(A)(以下、単に、「環状オレフィン重合体(A)」とする。)は、主鎖に、環状オレフィン単量体単位の環状構造(脂環又は芳香環)を有する、環状オレフィン単量体の単独重合体又は共重合体であって、プロトン性極性基を有するものである。なお、環状オレフィン重合体(A)は、環状オレフィン単量体以外の単量体から導かれる単位を有していてもよい。
プロトン極性基とは、周期律表第15族又は第16族に属する原子に水素原子が直接結合している原子を含む基をいう。周期律表第15族又は第16族に属する原子は、好ましくは周期律表第15族又は第16族の第1周期又は第2周期に属する原子であり、より好ましくは酸素原子、窒素原子又は硫黄原子であり、特に好ましくは酸素原子である。
プロトン性極性基の具体例としては、水酸基、カルボキシ基(ヒドロキシカルボニル基)、スルホン酸基、リン酸基等の酸素原子を有する極性基;第一級アミノ基、第二級アミノ基、第一級アミド基、第二級アミド基(イミド基)等の窒素原子を有する極性基;チオール基等の硫黄原子を有する極性基;等が挙げられる。これらの中でも、酸素原子を有するものが好ましく、より好ましくはカルボキシ基である。
本発明において、プロトン性極性基を有する環状オレフィン重合体に結合しているプロトン性極性基の数に特に限定はなく、また、相異なる種類のプロトン性極性基が含まれていてもよい。
プロトン性極性基を有する環状オレフィン単量体(a)(以下、適宜、「単量体(a)」という。)の具体例としては、2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-カルボキシメチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-メトキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-エトキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-プロポキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ブトキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ペンチルオキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ヘキシルオキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-シクロヘキシルオキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-フェノキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ナフチルオキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ビフェニルオキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ベンジルオキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-2-ヒドロキシエトキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、2,3-ジヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-メトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-エトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-プロポキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ブトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ペンチルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-フェノキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ナフチルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ビフェニルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ベンジルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ヒドロキシエトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニル-3-ヒドロキシカルボニルメチルビシクロ[2.2.1]ヘプト-5-エン、3-メチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、3-ヒドロキシメチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシカルボニルトリシクロ[5.2.1.02,6]デカ-3,8-ジエン、4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4,5-ジヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-カルボキシメチル-4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、N-(ヒドロキシカルボニルメチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルエチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルペンチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ジヒドロキシカルボニルエチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ジヒドロキシカルボニルプロピル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルフェネチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-(4-ヒドロキシフェニル)-1-(ヒドロキシカルボニル)エチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシカルボニルフェニル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド等のカルボキシ基含有環状オレフィン;2-(4-ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-(4-ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト-5-エン、4-(4-ヒドロキシフェニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-(4-ヒドロキシフェニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、2-ヒドロキシビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2-ヒドロキシエチルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-ヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2,3-ジヒドロキシメチルビシクロ[2.2.1]ヘプト-5-エン、2-(ヒドロキシエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-(ヒドロキシエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-(1-ヒドロキシ-1-トリフルオロメチル-2,2,2-トリフルオロエチル)ビシクロ[2.2.1]ヘプト-5-エン、2-(2-ヒドロキシ-2-トリフルオロメチル-3,3,3-トリフルオロプロピル)ビシクロ[2.2.1]ヘプト-5-エン、3-ヒドロキシトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、3-ヒドロキシメチルトリシクロ[5.2.1.02,6]デカ-4,8-ジエン、4-ヒドロキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-ヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4,5-ジヒドロキシメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-(ヒドロキシエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-(ヒドロキシエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、N-(ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ヒドロキシフェニル)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、等の水酸基含有環状オレフィン等が挙げられる。これらのなかでも、得られる保護絶縁膜50及びマイクロレンズ60の密着性、特に、保護絶縁膜50の透明導電膜23に対する密着性が高くなるという点より、カルボキシ基含有環状オレフィンが好ましく、4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エンが特に好ましい。これら単量体(a)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
環状オレフィン重合体(A)中における、単量体(a)の単位の含有割合は、全単量体単位に対して、好ましくは10~90モル%、より好ましくは40~70モル%、さらに好ましくは50~60モル%である。単量体(a)の単位の含有割合を状恋範囲とすることにより、感放射線性を十分なものとすることができ、さらには、現像時における溶解残渣の発生を有効に抑制することができ、これにより、保護絶縁膜50やマイクロレンズ60を良好に形成できるため、好ましい。
また、本発明で用いる環状オレフィン重合体(A)は、プロトン性極性基を有する環状オレフィン単量体(a)と、これと共重合可能な単量体(b)とを共重合して得られる共重合体であってもよい。このような共重合可能な単量体としては、プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)、極性基を持たない環状オレフィン単量体(b2)、及び環状オレフィン以外の単量体(b3)(以下、適宜、「単量体(b1)」、「単量体(b2)」、「単量体(b3)」という。)が挙げられる。
プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)としては、例えば、N-置換イミド基、エステル基、シアノ基、酸無水物基又はハロゲン原子を有する環状オレフィンが挙げられる。
N-置換イミド基を有する環状オレフィンとしては、例えば、下記一般式(1)で表される単量体、又は下記一般式(1)で表される単量体が挙げられる。
Figure 0007088010000001
(上記一般式(1)中、Rは水素原子もしくは炭素数1~16のアルキル基又はアリール基を表す。nは1ないし2の整数を表す。)
Figure 0007088010000002
(上記一般式(2)中、Rは炭素数1~3の2価のアルキレン基、Rは、炭素数1~10の1価のアルキル基、又は、炭素数1~10の1価のハロゲン化アルキル基を表す。)
上記一般式(1)中において、Rは炭素数1~16のアルキル基又はアリール基であり、アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基等の直鎖アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、ノルボルニル基、ボルニル基、イソボルニル基、デカヒドロナフチル基、トリシクロデカニル基、アダマンチル基等の環状アルキル基;2-プロピル基、2-ブチル基、2-メチル-1-プロピル基、2-メチル-2-プロピル基、1-メチルブチル基、2-メチルブチル基、1-メチルペンチル基、1-エチルブチル基、2-メチルヘキシル基、2-エチルヘキシル基、4-メチルヘプチル基、1-メチルノニル基、1-メチルトリデシル基、1-メチルテトラデシル基などの分岐状アルキル基;などが挙げられる。また、アリール基の具体例としては、ベンジル基などが挙げられる。これらの中でも、耐熱性及び極性溶剤への溶解性により優れることから、炭素数6~14のアルキル基及びアリール基が好ましく、炭素数6~10のアルキル基及びアリール基がより好ましい。炭素数が4以下であると極性溶剤への溶解性に劣り、炭素数が17以上であると耐熱性に劣り、さらに感放射線樹脂組成物を用いて形成される樹脂膜をパターン化した場合に、熱により溶融しパターンを消失してしまうという問題がある。
上記一般式(1)で表される単量体の具体例としては、ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-フェニル-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-メチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-エチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-プロピルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-ブチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-シクロヘキシルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-アダマンチルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルブチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-ブチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-ブチルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-エチルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-プロピルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-プロピルペンチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-エチルヘプチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-プロピルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-プロピルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-プロピルヘキシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(5-メチルノニル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(3-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-エチルオクチル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルドデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルウンデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルドデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルトリデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルテトラデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(1-メチルペンタデシル)-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボキシイミド、N-(2,4-ジメトキシフェニル)-テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボキシイミド等が挙げられる。なお、これらはそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
一方、上記一般式(2)において、Rは炭素数1~3の2価のアルキレン基であり、炭素数1~3の2価のアルキレン基としては、メチレン基、エチレン基、プロピレン基及びイソプロピレン基が挙げられる。これらの中でも、重合活性が良好であるため、メチレン基及びエチレン基が好ましい。
また、上記一般式(2)において、Rは、炭素数1~10の1価のアルキル基、又は、炭素数1~10の1価のハロゲン化アルキル基である。炭素数1~10の1価のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基及びシクロヘキシル基などが挙げられる。炭素数1~10の1価のハロゲン化アルキル基としては、例えば、フルオロメチル基、クロロメチル基、ブロモメチル基、ジフルオロメチル基、ジクロロメチル基、ジフルオロメチル基、トリフルオロメチル基、トリクロロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、パーフルオロブチル基及びパーフルオロペンチル基などが挙げられる。これら中でも、極性溶剤への溶解性に優れるため、Rとしては、メチル基及びエチル基が好ましい。
なお、上記一般式(1)、(2)で表される単量体は、例えば、対応するアミンと、5-ノルボルネン-2,3-ジカルボン酸無水物とのイミド化反応により得ることができる。また、得られた単量体は、イミド化反応の反応液を公知の方法で分離・精製することにより効率よく単離できる。
エステル基を有する環状オレフィンとしては、例えば、2-アセトキシビシクロ[2.2.1]ヘプト-5-エン、2-アセトキシメチルビシクロ[2.2.1]ヘプト-5-エン、2-メトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-エトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-プロポキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-ブトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-メトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-エトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-プロポキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-ブトキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-5-エン、2-(2,2,2-トリフルオロエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-(2,2,2-トリフルオロエトキシカルボニル)ビシクロ[2.2.1]ヘプト-5-エン、2-メトキシカルボニルトリシクロ[5.2.1.02,6]デカ-8-エン、2-エトキシカルボニルトリシクロ[5.2.1.02,6]デカ-8-エン、2-プロポキシカルボニルトリシクロ[5.2.1.02,6]デカ-8-エン、4-アセトキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-メトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-エトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-プロポキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-ブトキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-(2,2,2-トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-(2,2,2-トリフルオロエトキシカルボニル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン等が挙げられる。
シアノ基を有する環状オレフィンとしては、例えば、4-シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-シアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4,5-ジシアノテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、2-シアノビシクロ[2.2.1]ヘプト-5-エン、2-メチル-2-シアノビシクロ[2.2.1]ヘプト-5-エン、2,3-ジシアノビシクロ[2.2.1]ヘプト-5-エン、等が挙げられる。
酸無水物基を有する環状オレフィンとしては、例えば、テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン-4,5-ジカルボン酸無水物、ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸無水物、2-カルボキシメチル-2-ヒドロキシカルボニルビシクロ[2.2.1]ヘプト-5-エン無水物、等が挙げられる。
ハロゲン原子を有する環状オレフィンとしては、例えば、2-クロロビシクロ[2.2.1]ヘプト-5-エン、2-クロロメチルビシクロ[2.2.1]ヘプト-5-エン、2-(クロロフェニル)ビシクロ[2.2.1]ヘプト-5-エン、4-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン、4-メチル-4-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン等が挙げられる。
これら単量体(b1)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
極性基を持たない環状オレフィン単量体(b2)としては、ビシクロ[2.2.1]ヘプト-2-エン(「ノルボルネン」ともいう。)、5-エチル-ビシクロ[2.2.1]ヘプト-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプト-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプト-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプト-2-エン、トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(「テトラシクロドデセン」ともいう。)、9-メチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-メチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデン-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-5,12-ジエン、シクロブテン、シクロペンテン、シクロペンタジエン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロオクタジエン、インデン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、9-フェニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン、ペンタシクロ[9.2.1.13,9.02,10.04,8]ペンタデカ-12-エン等が挙げられる。
これら単量体(b2)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
環状オレフィン以外の単量体(b3)の具体例としては、エチレン;プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン等の炭素数2~20のα-オレフィン;1,4-ヘキサジエン、1,5-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエン等の非共役ジエン、及びこれらの誘導体;等が挙げられる。これらの中でも、α-オレフィンが好ましい。
これら単量体(b3)は、それぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これら単量体(b1)~(b3)のなかでも、本発明の効果がより一層顕著となるという観点より、プロトン性極性基以外の極性基を有する環状オレフィン単量体(b1)が好ましく、N-置換イミド基を有する環状オレフィンが特に好ましい。
環状オレフィン重合体(A)中における、共重合可能な単量体(b)の単位の含有割合は、全単量体単位に対して、好ましくは10~90モル%、より好ましくは30~60モル%、さらに好ましくは40~50モル%である。共重合可能な単量体(b)の単位の含有割合を上記範囲とすることで、環状オレフィン重合体(A)の極性溶剤への溶解性を十分なものとしながら、感放射線性を向上させることができ、さらには、現像時における溶解残渣の発生を有効に抑制することができ、これにより、保護絶縁膜50やマイクロレンズ60を良好に形成できるため、好ましい。
なお、本発明においては、プロトン性極性基を有しない環状オレフィン系重合体に、公知の変性剤を利用してプロトン性極性基を導入することで、環状オレフィン重合体(A)としてもよい。
プロトン性極性基を有しない重合体は、上述した単量体(b1)及び(b2)のうち少なくとも一種と、必要に応じて単量体(b3)とを任意に組み合わせて重合することによって得ることができる。
プロトン性極性基を導入するための変性剤としては、通常、一分子内にプロトン性極性基と反応性の炭素-炭素不飽和結合とを有する化合物が用いられる。
このような化合物の具体例としては、アクリル酸、メタクリル酸、アンゲリカ酸、チグリン酸、オレイン酸、エライジン酸、エルカ酸、ブラシジン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、アトロパ酸、ケイ皮酸等の不飽和カルボン酸;アリルアルコール、メチルビニルメタノール、クロチルアルコール、メタリルアルコール、1-フェニルエテン-1-オール、2-プロペン-1-オール、3-ブテン-1-オール、3-ブテン-2-オール、3-メチル-3-ブテン-1-オール、3-メチル-2-ブテン-1-オール、2-メチル-3-ブテン-2-オール、2-メチル-3-ブテン-1-オール、4-ペンテン-1-オール、4-メチル-4-ぺンテン-1-オール、2-ヘキセン-1-オール等の不飽和アルコール;等が挙げられる。
これら変性剤を用いた重合体の変性反応は、常法に従えばよく、通常、ラジカル発生剤の存在下で行われる。
なお、本発明で用いる環状オレフィン重合体(A1)は、上述した単量体を開環重合させた開環重合体であってもよいし、あるいは、上述した単量体を付加重合させた付加重合体であってもよいが、本発明の効果がより一層顕著になるという点より、開環重合体であることが好ましい。
開環重合体は、プロトン性極性基を有する環状オレフィン単量体(a)及び必要に応じて用いられる共重合可能な単量体(b)を、メタセシス反応触媒の存在下に開環メタセシス重合することにより製造することができる。製造方法としては、例えば、国際公開第2010/110323号の[0039]~[0079]に記載されている方法等を用いることができる。
また、本発明で用いる環状オレフィン重合体(A)が、開環重合体である場合には、さらに水素添加反応を行い、主鎖に含まれる炭素-炭素二重結合が水素添加された水素添加物とすることが好ましい。環状オレフィン重合体(A1)が水素添加物である場合における、水素化された炭素-炭素二重結合の割合(水素添加率)は、通常50%以上であり、耐熱性の観点から、70%以上であるのが好ましく、90%以上であるのがより好ましく、95%以上であるのがさらに好ましい。
本発明で用いる環状オレフィン重合体(A)の重量平均分子量(Mw)は、通常、1,000~1,000,000、好ましくは1,500~100,000、より好ましくは2,000~30,000の範囲である。
また、環状オレフィン重合体(A)の分子量分布は、重量平均分子量/数平均分子量(Mw/Mn)比で、通常、4以下、好ましくは3以下、より好ましくは2.5以下である。
環状オレフィン重合体(A)の重量平均分子量(Mw)や分子量分布(Mw/Mn)は、テトラヒドロフラン等の溶媒を溶離液としたゲル・パーミエーション・クロマトグラフィー(GPC)により、ポリスチレン換算値として求められる値である。
感放射線化合物(B)は、紫外線や電子線等の放射線の照射により、化学反応を引き起こすことのできる化合物である。感放射線化合物(B)としては、感放射線樹脂組成物から形成されてなる樹脂膜のアルカリ溶解性を制御できるものが好ましく、特に、光酸発生剤を使用することが好ましい。
このような感放射線化合物(B)としては、例えば、アセトフェノン化合物、トリアリールスルホニウム塩、キノンジアジド化合物等のアジド化合物等が挙げられるが、好ましくはアジド化合物、特に好ましくはキノンジアジド化合物である。
キノンジアジド化合物としては、例えば、キノンジアジドスルホン酸ハライドとフェノール性水酸基を有する化合物とのエステル化合物を用いることができる。キノンジアジドスルホン酸ハライドの具体例としては、1,2-ナフトキノンジアジド-5-スルホン酸クロライド、1,2-ナフトキノンジアジド-4-スルホン酸クロライド、1,2-ベンゾキノンジアジド-5-スルホン酸クロライド等が挙げられる。フェノール性水酸基を有する化合物の代表例としては、1,1,3-トリス(2,5-ジメチル-4-ヒドロキシフェニル)-3-フェニルプロパン、4,4’-[1-[4-[1-[4-ヒドロキシフェニル]-1-メチルエチル]フェニル]エチリデン]ビスフェノール等が挙げられる。これら以外のフェノール性水酸基を有する化合物としては、2,3,4-トリヒドロキシベンゾフェノン、2,3,4,4’-テトラヒドロキシベンゾフェノン、2-ビス(4-ヒドロキシフェニル)プロパン、トリス(4-ヒドロキシフェニル)メタン、1,1,1-トリス(4-ヒドロキシ-3-メチルフェニル)エタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、ノボラック樹脂のオリゴマー、フェノール性水酸基を1つ以上有する化合物とジシクロペンタジエンとを共重合して得られるオリゴマー等が挙げられる。
また、光酸発生剤としては、キノンジアジド化合物の他、オニウム塩、ハロゲン化有機化合物、α,α’-ビス(スルホニル)ジアゾメタン系化合物、α-カルボニル-α’-スルホニルジアゾメタン系化合物、スルホン化合物、有機酸エステル化合物、有機酸アミド化合物、有機酸イミド化合物等、公知のものを用いることができる。
これらの感放射線化合物は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
本発明で用いる感放射線樹脂組成物中における感放射線化合物(B)の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは20~100重量部であり、より好ましくは25~70重量部、さらに好ましくは30~50重量部である。感放射線化合物(B)の含有量をこの範囲とすることにより、感放射線樹脂組成物を用いて形成される樹脂膜の放射線感度を高くすることでき、これにより、該樹脂膜をパターン化する際に、放射線照射部(露光部)と放射線未照射部(未露光部)との現像液への溶解度差(溶解性のコントラスト)を大きくすることができ、現像によるパターン化を容易にすることができるため、好ましい。
架橋剤(C)は、加熱により架橋剤分子間に架橋構造を形成するものや、環状オレフィン重合体(A)と反応して樹脂分子間に架橋構造を形成するものであり、具体的には、2以上の反応性基を有する化合物が挙げられる。このような反応性基としては、例えば、アミノ基、カルボキシ基、水酸基、エポキシ基、イソシアネート基が挙げられ、より好ましくはアミノ基、エポキシ基及びイソシアネート基であり、エポキシ基が特に好ましい。
架橋剤(C)の分子量は、特に限定されないが、通常、100~100,000、好ましくは300~50,000、より好ましくは500~10,000である。架橋剤(C)の重量平均分子量が前記の範囲内にあると、架橋剤(C)と環状オレフィン重合体(A)との相溶性が良く、得られる樹脂膜が均一な膜になり好適である。
なお、架橋剤(C)の重量平均分子量はゲルパーミエーションクロマトグラフィーを用いてポリスチレン換算で測定を行うなどの常法に従い分析することができる。
架橋剤(C)は、それぞれ単独で又は2種以上を組み合わせて用いることができる。
架橋剤(C)の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ポリフェノール型エポキシ樹脂、環状脂肪族エポキシ樹脂、脂肪族グリシジルエーテル、エポキシアクリレート重合体等のエポキシ化合物;を挙げることができる。
エポキシ化合物の具体例としては、ジシクロペンタジエンを骨格とする3官能性のエポキシ化合物(商品名「XD-1000」、日本化薬社製)、2,2-ビス(ヒドロキシメチル)1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(シクロヘキサン骨格及び末端エポキシ基を有する15官能性の脂環式エポキシ樹脂、商品名「EHPE3150」、ダイセル化学工業社製)、エポキシ化3-シクロヘキセン-1,2-ジカルボン酸ビス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(脂肪族環状3官能性のエポキシ樹脂、商品名「エポリードGT301」、ダイセル化学工業社製)、エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン(脂肪族環状4官能性のエポキシ樹脂、商品名「エポリードGT401」、ダイセル化学工業社製)、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(商品名「セロキサイド2021」、ダイセル化学工業社製)、1,2:8,9-ジエポキシリモネン(商品名「セロキサイド3000」、ダイセル化学工業社製)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(商品名「Z-6043」、東レ・ダウコーニング社製)等の脂環構造を有するエポキシ化合物;
芳香族アミン型多官能エポキシ化合物(商品名「H-434」、東都化成工業社製)、イソシアヌル酸トリス(2,3-エポキシプロピル)(トリアジン骨格を有する多官能エポキシ化合物、商品名「TEPIC」、日産化学工業社製)、クレゾールノボラック型多官能エポキシ化合物(商品名「EOCN-1020」、日本化薬社製)、フェノールノボラック型多官能エポキシ化合物(エピコート152、154、ジャパンエポキシレジン社製)、ナフタレン骨格を有する多官能エポキシ化合物(商品名EXA-4700、DIC株式会社製)、鎖状アルキル多官能エポキシ化合物(商品名「SR-TMP」、阪本薬品工業株式会社製)、多官能エポキシポリブタジエン(商品名「エポリードPB3600」、ダイセル化学工業社製)、グリセリンのグリシジルポリエーテル化合物(商品名「SR-GLG」、阪本薬品工業株式会社製)、ジグリセリンポリグリシジルエーテル化合物(商品名「SR-DGE」、阪本薬品工業株式会社製、ポリグリセリンポリグリシジルエーテル化合物(商品名「SR-4GL」、阪本薬品工業株式会社製)、グリシドキシプロピルトリメチルシラン(商品名「Z-6040」、東レ・ダウコーニング社製)等の脂環構造を有さないエポキシ化合物;を挙げることができる。
上述したエポキシ化合物の中でも、エポキシ基を2つ以上有する多官能エポキシ化合物が好ましく、感放射線樹脂組成物を用いて得られる樹脂膜を耐熱形状保持性により優れるものとすることができることから、脂環構造を有し、かつ、エポキシ基が3個以上の多官能エポキシ化合物が、特に好ましい。
本発明で用いる感放射線樹脂組成物中における架橋剤(C)の含有量は、特に限定されないが、感放射線樹脂組成物を用いて形成される保護絶縁膜50及びマイクロレンズ60に求められる耐熱性の程度を考慮して任意に設定すればよいが、架橋剤(C)の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは5~80重量部、より好ましくは20~75重量部、さらに好ましくは25~70重量部である。
また、本発明に用いる感放射線樹脂組成物は、本発明の効果が阻害されない範囲であれば、所望により、溶剤、界面活性剤、酸性基を有する化合物、カップリング剤又はその誘導体、増感剤、酸化防止剤、光安定剤、消泡剤、顔料、染料、フィラー等のその他の配合剤;等を含有していてもよい
溶剤としては、特に限定されず、樹脂組成物の溶剤として公知のもの、例えば、アセトン、メチルエチルケトン、シクロペンタノン、2-ヘキサノン、3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-オクタノン、3-オクタノン、4-オクタノンなどの直鎖のケトン類;n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、シクロヘキサノールなどのアルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジオキサンなどのエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルなどのアルコールエーテル類;ギ酸プロピル、ギ酸ブチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、酪酸エチル、乳酸メチル、乳酸エチルなどのエステル類;セロソルブアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピルセロソルブアセテート、ブチルセロソルブアセテートなどのセロソルブエステル類;プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルなどのプロピレングリコール類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテルなどのジエチレングリコール類;γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-カプリロラクトンなどの飽和γ-ラクトン類;トリクロロエチレンなどのハロゲン化炭化水素類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルアセトアミド、ジメチルホルムアミド、N-メチルアセトアミドなどの極性溶媒などが挙げられる。これらの溶剤は、単独でも2種以上を組み合わせて用いてもよい。溶剤の含有量は、環状オレフィン重合体(A)100重量部に対して、好ましくは10~10000重量部、より好ましくは50~5000重量部、さらに好ましくは100~1000重量部の範囲である。なお、感放射線樹脂組成物に溶剤を含有させる場合には、溶剤は、通常、樹脂膜形成後に除去されることとなる。
界面活性剤は、ストリエーション(塗布筋あと)の防止、現像性の向上等の目的で使用される。界面活性剤の具体例としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアリールエーテル類;ポリオキシエチレンジラウレート、ポリオキシエチレンジステアレート等のポリオキシエチレンジアルキルエステル類等のノニオン系界面活性剤;フッ素系界面活性剤;シリコーン系界面活性剤;メタクリル酸共重合体系界面活性剤;アクリル酸共重合体系界面活性剤;等が挙げられる。
酸性基を有する化合物は、酸性基を有するものであればよく、特に限定されないが、酸性基を有する脂肪族化合物、芳香族化合物、複素環化合物が好ましく、酸性基を有する芳香族化合物、複素環化合物がより好ましい。なお、酸性基を有する化合物としては、例えば、特開2011-75610号公報の[0099]~[0105]に記載されているもの等を用いることができる。
また、酸性基を有する化合物としては、同様な効果が得られることから、潜在的酸発生剤を用いることができる。潜在的酸発生剤としては、加熱により酸を発生するカチオン重合触媒である、スルホニウム塩、ベンゾチアゾリウム塩、アンモニウム塩、ホスホニウム塩、ブロックカルボン酸等が挙げられる。これらの中でも、ブロックカルボン酸が好ましい。
カップリング剤又はその誘導体としては、ケイ素原子、チタン原子、アルミニウム原子、ジルコニウム原子から選ばれる1つの原子を有し、該原子に結合したヒドロカルビルオキシ基又はヒドロキシ基を有する化合物等が使用できる。カップリング剤又はその誘導体としては、例えば、特開2011-75609号公報の[0104]~[0106]に記載されているもの等を用いることができる
増感剤の具体例としては、2H-ピリド-(3,2-b)-1,4-オキサジン-3(4H)-オン類、10H-ピリド-(3,2-b)-1,4-ベンゾチアジン類、ウラゾール類、ヒダントイン類、バルビツール酸類、グリシン無水物類、1-ヒドロキシベンゾトリアゾール類、アロキサン類、マレイミド類等が挙げられる。
酸化防止剤としては、特に限定されないが、例えば、通常の重合体に使用されている、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤、ラクトン系酸化防止剤等が使用できる。フェノール系酸化防止剤としては、従来公知のものが使用でき、例えば、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジ-t-アミル-6-[1-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)エチル]フェニルアクリレートなどの特開昭63-179953号公報や特開平1-168643号公報に記載されているアクリレート系化合物;2 ,6-ジ-t-ブチル-4-メチルフェノール、p-メトキシフェノール、スチレン化フェノール、n-オクタデシル-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス( 4-メチル-6-t-ブチルフェノール)、2-t-ブチル-6-(3’-t-ブチル-5 ’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、4 ,4 ’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、4,4’-チオ-ビス(3-メチル-6-t-ブチルフェノール)、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル) プロピオネート]、アルキル化ビスフェノール等を挙げることができる。
リン系酸化防止剤としては、亜リン酸トリフェニル、亜リン酸トリス( ノニルフェニル)、イオウ系酸化防止剤としては、チオジプロピオン酸ジラウリル等が挙げられる。
光安定剤としては、ベンゾフェノン系、サリチル酸エステル系、ベンゾトリアゾール系、シアノアクリレート系、金属錯塩系等の紫外線吸収剤、ヒンダードアミン系(HALS)等、光により発生するラジカルを捕捉するもの等のいずれでもよい。これらのなかでも、HALSはピペリジン構造を有する化合物で、本発明で用いる感放射線樹脂組成物に対する着色が少なく、安定性がよいため好ましい。具体的な化合物としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、1,2,2,6,6-ペンタメチル-4-ピペリジル/トリデシル1,2,3,4-ブタンテトラカルボキシレート、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート等が挙げられる。
本発明で用いる感放射線樹脂組成物の調製方法は、特に限定されず、感放射線樹脂組成物を構成する各成分を公知の方法により混合すればよい。
混合の方法は特に限定されないが、感放射線樹脂組成物を構成する各成分を溶剤に溶解又は分散して得られる溶液又は分散液を混合するのが好ましい。これにより、感放射線樹脂組成物は、溶液又は分散液の形態で得られる。
感放射線樹脂組成物を構成する各成分を溶剤に溶解又は分散する方法は、常法に従えばよい。具体的には、攪拌子とマグネティックスターラーを使用した攪拌、高速ホモジナイザー、ディスパー、遊星攪拌機、二軸攪拌機、ボールミル、三本ロール等を使用して行なうことができる。また、各成分を溶剤に溶解又は分散した後に、例えば、孔径が0.5μm程度のフィルター等を用いて濾過してもよい。
本発明で用いる感放射線樹脂組成物の固形分濃度は、通常、1~70重量%、好ましくは5~60重量%、より好ましくは10~50重量%である。
(絶縁膜、マイクロレンズの形成方法)
次いで、上述した感放射線樹脂組成物を用いて、本発明の赤外発光LEDを形成する、絶縁膜及びマイクロレンズを形成するための方法について、図1に示す本発明の一実施形態に係る赤外発光LED10を例示して、説明する。
まず、エピタキシャルウエハ20、nドット電極30及びpパッド電極40から形成される素子本体の、pパッド電極40が形成されている側の主面上に、保護絶縁膜50を形成するための樹脂膜(以下、「絶縁膜用樹脂膜」とする。)を、上述した感放射線樹脂組成物を用いて形成する。感放射線樹脂組成物からなる絶縁膜用樹脂膜を形成する方法としては、特に限定されないが、塗布法やフィルム積層法等が挙げられるが、塗布法が好ましい。
塗布法は、例えば、感放射線樹脂組成物を、塗布した後、加熱乾燥して溶剤を除去する方法である。感放射線樹脂組成物を塗布する方法としては、例えば、スプレー法、スピンコート法、ロールコート法、ダイコート法、ドクターブレード法、回転塗布法、バー塗布法、スクリーン印刷法、インクジェット法等の各種の方法を採用することができる。加熱乾燥条件は、各成分の種類や配合割合に応じて異なるが、通常、30~150℃、好ましくは60~120℃で、通常、0.5~90分間、好ましくは1~60分間、より好ましくは1~30分間で行なえばよい。
フィルム積層法は、感放射線樹脂組成物を、樹脂フィルムや金属フィルム等のBステージフィルム形成用基材上に塗布した後に加熱乾燥により溶剤を除去してBステージフィルムを得、次いで、このBステージフィルムを、積層する方法である。加熱乾燥条件は、各成分の種類や配合割合に応じて適宜選択することができるが、加熱温度は、通常、30~150℃であり、加熱時間は、通常、0.5~90分間である。フィルム積層は、加圧ラミネータ、プレス、真空ラミネータ、真空プレス、ロールラミネータ等の圧着機を用いて行なうことができる。
そして、形成した絶縁膜用樹脂膜について、架橋反応を行なうことで、図1に示す保護絶縁膜50とする。架橋反応は、感放射線樹脂組成物に含有させた架橋剤(C)の種類に応じて適宜方法を選択すればよいが、通常、加熱により行なう。加熱方法は、例えば、ホットプレート、オーブン等を用いて行なうことができる。加熱温度は、通常、180~250℃であり、加熱時間は、得ようとする保護絶縁膜50の面積や厚さ、使用機器等により適宜選択され、例えばホットプレートを用いる場合は、通常、5~60分間、オーブンを用いる場合は、通常、30~90分間の範囲である。加熱は、必要に応じて不活性ガス雰囲気下で行ってもよい。不活性ガスとしては、酸素を含まず、かつ、樹脂膜を酸化させないものであればよく、例えば、窒素、アルゴン、ヘリウム、ネオン、キセノン、クリプトン等が挙げられる。これらの中でも窒素とアルゴンが好ましく、特に窒素が好ましい。特に、酸素含有量が0.1体積%以下、好ましくは0.01体積%以下の不活性ガス、特に窒素が好適である。これらの不活性ガスは、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
次いで、このようにして形成した保護絶縁膜50上に、マイクロレンズ60を形成するために、上述した感放射線樹脂組成物からなる樹脂膜(以下、「マイクロレンズ用樹脂膜」とする。)をさらに形成する。感放射線樹脂組成物からなるマイクロレンズ用樹脂膜を形成する方法としては、特に限定されないが、上記した絶縁膜用樹脂膜と同様に、塗布法やフィルム積層法等が挙げられるが、塗布法が好ましい。塗布法やフィルム積層法等を用いる場合における製造条件についても上記した絶縁膜用樹脂膜と同様とすればよい。
なお、マイクロレンズ60を形成するための感放射線樹脂組成物としては、保護絶縁膜50を形成するための感放射線樹脂組成物と同じ組成を有するものを用いてもよいし、あるいは、異なる組成を有するものを用いてもよいが、保護絶縁膜50とマイクロレンズ60との屈折率の差をできるだけ小さくするという観点より、少なくとも環状オレフィン重合体(A)については同じものを用いることが好ましく、全て同じ成分から構成されるものを用いることがより好ましく、全て同じ成分、かつ各成分の含有割合も同じとしたものを用いることがさらに好ましい。
次いで、形成されたマイクロレンズ用樹脂膜について、マイクロレンズ60に対応する形状を形成するために、パターン化を行う。マイクロレンズ用樹脂膜をパターン化する方法としては、例えば、パターン化前のマイクロレンズ用樹脂膜に対し、活性放射線を照射して潜像パターンを形成し、次いで潜像パターンを有するマイクロレンズ用樹脂膜に現像液を接触させることによりパターンを顕在化させる方法などが挙げられる。なお、この際において、通常、図1に示す赤外LED10を製造する際には、図1に示す構成を有する赤外LED10がウエハ上に複数配列されたアレイシートを得て、このようなアレイシートをダイシングすることにより製造されるものであるため、マイクロレンズ用樹脂膜をパターン化する際には、アレイシートを構成する各赤外LED10に応じたドットパターンにてパターン化されることとなる。
活性放射線としては、感放射線樹脂組成物に含有される感放射線化合物(B)を活性化させ、感放射線化合物(B)を含む感放射線樹脂組成物のアルカリ可溶性を変化させることができるものであれば特に限定されない。具体的には、紫外線、g線やi線等の単一波長の紫外線、KrFエキシマレーザー光、ArFエキシマレーザー光等の光線;電子線のような粒子線;等を用いることができる。これらの活性放射線を選択的にパターン状に照射して潜像パターンを形成する方法としては、常法に従えばよく、例えば、縮小投影露光装置等により、紫外線、g線、i線、KrFエキシマレーザー光、ArFエキシマレーザー光等の光線を所望のマスクパターンを介して照射する方法、又は電子線等の粒子線により描画する方法等を用いることができる。活性放射線として光線を用いる場合は、単一波長光であっても、混合波長光であってもよい。照射条件は、使用する活性放射線に応じて適宜選択されるが、例えば、波長200~450nmの光線を使用する場合、照射量は、通常10~5,000mJ/cm、好ましくは50~1,500mJ/cmの範囲であり、照射時間と照度に応じて決まる。このようにして活性放射線を照射した後、必要に応じ、マイクロレンズ用樹脂膜を60~130℃程度の温度で1~2分間程度加熱処理する。
次に、パターン化前のマイクロレンズ用樹脂膜に形成された潜像パターンを現像して顕在化させる。現像液としては、通常、アルカリ性化合物の水性溶液が用いられる。アルカリ性化合物としては、例えば、アルカリ金属塩、アミン、アンモニウム塩を使用することができる。アルカリ性化合物は、無機化合物であっても有機化合物であってもよい。これらの化合物の具体例としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム等のアルカリ金属塩;アンモニア水;エチルアミン、n-プロピルアミン等の第一級アミン;ジエチルアミン、ジ-n-プロピルアミン等の第二級アミン;トリエチルアミン、メチルジエチルアミン等の第三級アミン;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン等の第四級アンモニウム塩;ジメチルエタノールアミン、トリエタノールアミン等のアルコールアミン;ピロール、ピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、N-メチルピロリドン等の環状アミン類;等が挙げられる。これらアルカリ性化合物は、それぞれ単独で、又は2種以上を組み合わせて用いることができる。
アルカリ水性溶液の水性媒体としては、水;メタノール、エタノール等の水溶性有機溶剤を使用することができる。アルカリ水性溶液は、界面活性剤等を適当量添加したものであってもよい。
潜像パターンを有する樹脂膜に現像液を接触させる方法としては、例えば、パドル法、スプレー法、ディッピング法等の方法が用いられる。現像は、通常、0~100℃、好ましくは5~55℃、より好ましくは10~30℃の範囲で、通常、30~180秒間の範囲で適宜選択される。
このようにしてマイクロレンズ60に対応するパターンが形成されたマイクロレンズ用樹脂膜は、必要に応じて、現像残渣を除去するために、リンス液でリンスすることができる。リンス処理の後、残存しているリンス液を圧縮空気や圧縮窒素により除去する。
さらに、必要に応じて、感放射線樹脂組成物に含有させた感放射線化合物(B)を失活させるために、電子部品全面に、活性放射線を照射することもできる。活性放射線の照射には、上記潜像パターンの形成に例示した方法を利用できる。照射と同時に、又は照射後にマイクロレンズ用樹脂膜を加熱してもよい。加熱方法としては、例えば、電子部品をホットプレートやオーブン内で加熱する方法が挙げられる。温度は、通常、80~300℃、好ましくは100~200℃の範囲である。
次いで、このようにして形成されたパターン化後のマイクロレンズ用樹脂膜を、メルトフローに供することで、現像により断面形状が角張った形状で得られたマイクロレンズ用樹脂膜を、角部がなだらかになるように変形させ、角のないなだらかな形状のパターンに形状変化させる。具体的には、なだらかな半球体形状(すなわち、図1に示すマイクロレンズ60に対応する形状)へと変形させることで、すなわち、二次パターンを形成させることで、図1に示すマイクロレンズ60とする。なお、メルトフローにおける、加熱方法としては、例えば、ホットプレートやオーブン内で加熱する方法が挙げられる。また、メルトフローにおける、加熱温度は、特に限定されないが、通常、140~170℃、好ましくは150~160℃であり、加熱時間は、通常、2~15分、好ましくは5~10分である。
また、上述したメルトフローによる、二次パターンの形成においては、メルトフローによる二次パターンの形成と同時に、バランスよく、架橋剤(C)によるマイクロレンズ用樹脂膜の架橋を進行させることができ、これにより、二次パターン化後のマイクロレンズ用樹脂膜のパターン形状の保持に必要な架橋構造を形成させることが可能となる。すなわち、上述した感放射線性樹脂組成物によれば、メルトフローにより二次パターンを容易に形成できる一方、得られる二次パターン化後のマイクロレンズ用樹脂膜は、メルトフローを行う際における温度よりも高い温度に曝された際においても、パターン形状を適切に維持することができ、そのため、メルトフロー時の温度マージンを広くとることができるという利点をも備える。
本発明によれば、保護絶縁膜50及びマイクロレンズ60を上述した感放射線樹脂組成物を用いて形成するものであり、上述した感放射線樹脂組成物は、環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有し、光線透過性(特に、赤外領域(700~1500nm)における光線透過性)に優れ、しかも、耐熱形状保持性に優れた樹脂膜を与えることができものである。そのため、このような耐感放射線樹脂組成物を用い、保護絶縁膜50及びマイクロレンズ60を形成することにより、得られる赤外発光LED10を高輝度、かつ信頼性の高いものとすることができるものである。
特に、本発明によれば、上述した感放射線樹脂組成物を用いることにより、光線透過性に優れた樹脂膜を形成することができることから、これを用いて形成される保護絶縁膜50の厚みt1を、好ましくは1~10μm、より好ましくは2~7μm、さらに好ましくは3~5μmと比較的厚くした場合でも、十分な光線透過性を確保することができ、しかも、このように厚みを厚くすることで、保護絶縁膜50による絶縁性能を十分なものとすることができ、これにより、高い信頼性を確保できるものである。
なお、マイクロレンズ60の厚みt2は、特に限定されないが、光の拡散を抑えるという観点より、好ましくは0.5~5μm、より好ましくは1~4μm、さらに好ましくは2~3μmである。なお、マイクロレンズ60の厚みt2は、図1に示すように、マイクロレンズ60の最大高さ(保護絶縁膜50から見て、最も高い箇所における厚み)を意味する。
また、保護絶縁膜50の厚みt1と、マイクロレンズ60の厚みt2との比率は、「保護絶縁膜の厚みt1:マイクロレンズの厚みt2」で、好ましくは1:1~10:1、より好ましくは2:1~7:1、さらに好ましくは3:1~5:1である。これらの比率を上記範囲とすることにより、集光効率をより高めることができる。
加えて、本発明によれば、保護絶縁膜50と、マイクロレンズ60とを、共に、上述した、環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成するものであることから、保護絶縁膜50と、マイクロレンズ60との屈折率の差を、0.1以下と小さくできるものである。そのため、本発明によれば、屈折率の差に起因する輝度の低下を有効に防止することでき、これにより、赤外発光LED10の輝度を適切に高めることができるものである。なお、保護絶縁膜50と、マイクロレンズ60との屈折率の差は、より好ましくは0.05以下であり、さらに好ましくは0.02以下である。なお、屈折率の差をより小さくするという観点から、保護絶縁膜50を形成するための感放射線樹脂組成物と、マイクロレンズ60を形成するための感放射線樹脂組成物との組成をなるべく近いものとすることが好ましく、少なくとも環状オレフィン重合体(A)については同じものを用いることが好ましく、全て同じ成分から構成されるものを用いることがより好ましく、全て同じ成分、かつ各成分の含有割合も同じとしたものを用いることがさらに好ましい。
以下に、実施例及び比較例を挙げて、本発明についてより具体的に説明する。各例中の「部」は、特に断りのない限り、重量基準である。
《実施例1》
<環状オレフィン重合体(A-1)の調製>
N-フェニル-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド(NBPI)40モル%、及び4-ヒドロキシカルボニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-9-エン(TCDC)60モル%からなる単量体混合物100部、1,5-ヘキサジエン2.0部、(1,3-ジメシチルイミダゾリン-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド(Org.Lett.,第1巻,953頁,1999年 に記載された方法で合成した)0.02部、及びジエチレングリコールエチルメチルエーテル200部を、窒素置換したガラス製耐圧反応器に仕込み、攪拌しつつ80℃にて4時間反応させて重合反応液を得た。
そして、得られた重合反応液をオートクレーブに入れて、150℃、水素圧4MPaで、5時間攪拌して水素化反応を行い、環状オレフィン重合体(A-1)を含む重合体溶液を得た。得られた環状オレフィン重合体(A-1)の重合転化率は99.7%、ポリスチレン換算重量平均分子量は7,150、数平均分子量は4,690、分子量分布は1.52、水素添加率は、99.7%であった。また、得られた環状オレフィン重合体(A-1)の重合体溶液の固形分濃度は34.4重量%であった。
<感放射線樹脂組成物の調製>
環状オレフィン重合体(A)として、合成例1で得られた環状オレフィン重合体(A-1)の重合体溶液291部(環状オレフィン重合体(A-1)として100部)、感放射線化合物(B)として、1,1,3-トリス(2,5-ジメチル-4-ヒドロキシフェニル)-3-フェニルプロパンと1,2-ナフトキノンジアジド-5-スルホン酸クロライドとの縮合物35部、架橋剤(C)として、エポキシ化ブタンテトラカルボン酸テトラキス(3-シクロヘキセニルメチル)修飾ε-カプロラクトン50部、溶剤として、ジエチレングリコールエチルメチルエーテル600部を混合し、溶解させた後、孔径0.45μmのポリテトラフルオロエチレン製フィルターでろ過して感放射線樹脂組成物を調製した。
そして、上記にて得られた感放射線樹脂組成物を用いて、以下の方法にしたがって、透過率及びパターン化後の耐熱形状保持性の評価を行った。
<透過率>
上記にて得られた感放射線樹脂組成物をガラス基板上にスピンコートし、ホットプレートを用いて110℃で120秒間乾燥し、乾燥後の膜厚が3.0μmになるように成膜した。この樹脂膜に1,000mW/cmの紫外線を照射してブリーチ(感放射線化合物(B)の失活処理)した後、窒素雰囲気下で230℃、60分間焼成することで、透過率評価用ガラス基板サンプルを作製した。そして、得られたガラス基板サンプルを用いて、紫外可視近赤外分光光度計(「LAMBDA900」、PerklnElmer社製)により赤外波長域の透過率を測定した。測定結果を図2に示す。図2には、SiNからなる無機絶縁膜が形成されたガラス基板サンプルの結果も併せて示した。なお、SiNからなる無機絶縁膜が形成されたガラス基板サンプルは、上記と同様のガラス基板を用い、スパッタンリング法により、SiNからなる無機絶縁膜を形成することにより製造した。
図2からも明らかなように、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成される樹脂膜は、700~1500nmの波長域において、透過率が98%以上であり、さらには、赤外発光LEDにおいて通常用いられる850nm及び940nmにおける透過率が、いずれも99%以上と特に良好な結果であった。
一方、SiNからなる無機絶縁膜は、850nmにおける透過率は92%であり、また、940nmにおける透過率が90%であり、いずれも透過性に劣るものであった。
<パターン化後の耐熱形状保持性>
上記の透過率評価用ガラス基板サンプル作製と同様の方法で膜厚3.0μmの熱硬化性樹脂膜が成膜されたシリコンウエハー基板上に、さらに上記にて得られた感放射線性樹脂組成物をスピンコートし、ホットプレートを用いて110℃で120秒間乾燥し、乾燥後の膜厚が3.0μm(先に作製した熱硬化性樹脂膜と合わせた合計の膜厚は6.0μm)になるように成膜した。この樹脂膜に、3.5μmドット、1.5μmスペースのパターンのマスクを介して、光強度が10mW/cm(Wは、J/sに相当)である紫外線を空気中で30秒間照射した。次いで、テトラメチルアンモニウムヒドロキシド0.4%溶液を用いて23℃で100秒間現像処理を行った後、超純水で30秒間リンス処理し、ポジ型の3.5μmのドットパターン化樹脂膜を形成した。
そして、得られたパターン化樹脂膜の断面形状を電子顕微鏡(SEM)にて観察し、SEM像(倍率:10,000倍)に基づきドットパターン間の幅aを測定した。次にパターン化樹脂膜の全面に、光強度が10mW/cmである紫外線を空気中で60秒間照射し、次いでホットプレートを用いてこのパターンが形成された基板に対し140~170℃で10分間にわたり1回目の加熱処理(メルトフロー)をし、パターン化された樹脂膜を溶融させて、パターンをドット形状から半球体形状(マイクロレンズ形状)に変形させた。さらにメルトフローを施した基板についてホットプレートを用いて230℃、30分間にて2回目の加熱処理(ポストベイク)を施すことで、頂点部の厚みが2.5μmである半球体形状部(マイクロレンズ)を形成した。そして、ポストベイク後のパターンの断面形状を、上記前記と同様にしてSEMで観察し、SEM像に基づいてドットパターン間の幅bを測定した。得られた測定結果を用いて、パターン化樹脂膜形成後のドットパターン間の幅aとポストベイク後のドットパターン間の幅bの差(a-b)を求め、以下の評価基準に従ってパターン化樹脂膜の耐熱形状保持性を評価した。なお、上記評価は、形成されたドットパターンのうち、10箇所について行った。
〔評価基準〕
優:パターンが半球体形状で、(a-b)が0.5μm以下である。
良:パターンが半球体形状で、(a-b)が0.5μmを超え、1μm以下である。
可:パターンが半球体形状で、(a-b)が1μmを超え、1.5μm以下である。
不可:パターンが完全に溶融し、隣接パターンと融着している。
上記測定の結果、上記にて得られた感放射線性樹脂組成物を用いて得られたパターン化樹脂膜においては、評価を行った10箇所のいずれも、上記評価基準において、「優」、又は「良」であり、図2に示すマイクロレンズ60を良好に形成可能なものであり、しかも、耐熱形状保持性にも優れたものであった。
<実施例1の評価>
以上の結果より、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いることで、700~1500nmの波長域、特に、850nm及び940nmにおける透過性に優れる保護絶縁膜50、及び、このような波長域において透過性に優れ、しかも、耐熱形状保持性に優れたマイクロレンズ60を形成可能であることが確認できる。特に、700~1500nmの波長域において、透過率が98%以上であり、さらには、赤外発光LEDにおいて通常用いられる850nm及び940nmにおける透過率が、いずれも99%以上であることから、保護絶縁膜50の厚みt1を3~5μmと比較的厚くし、かつ、マイクロレンズ60の厚みt2を2~3μmとした場合でも、優れた透過性を実現することができ、さらには、保護絶縁膜50の厚みを厚くできることで、優れた透過性を実現しながら、保護絶縁膜50による絶縁性能を十分に確保できるものである。また、耐熱形状保持性に優れたマイクロレンズ60を形成可能であることから、得られる赤外LED10を、信頼性に優れたものとすることができるものである。
加えて、本発明によれば、保護絶縁膜50及びマイクロレンズ60を、共に、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成することができるため、これらの屈折率の差を0.1以下とすることができるものであり、これにより、赤外発光LEDの輝度を適切に高めることができるものである。
以上より、本発明によれば、高輝度かつ信頼性の高い赤外発光LEDを適切に提供できるものである。
10…赤外発光LED
20…エピタキシャルウエハ
21…AlGaAs基板
22…エピタキシャル層
23…透明導電膜
30…nドット電極
40…pパッド電極
50…保護絶縁膜
60…マイクロレンズ

Claims (6)

  1. 素子上に形成された絶縁膜と、前記絶縁膜上に形成されたマイクロレンズとを備える赤外発光LEDであって、
    前記絶縁膜及び前記マイクロレンズが、プロトン性極性基を有する環状オレフィン重合体(A)、感放射線化合物(B)及び架橋剤(C)を含有する感放射線樹脂組成物を用いて形成され、
    前記プロトン性極性基を有する環状オレフィン重合体(A)が、カルボキシ基含有環状オレフィン単量体の単位と、N-置換イミド基を有する環状オレフィンの単位とを含む重合体であり、
    前記感放射線化合物(B)が、アジド化合物であり、
    前記架橋剤(C)が、2以上のエポキシ基を有する化合物であり、
    前記感放射線樹脂組成物中における、前記環状オレフィン重合体(A)100重量部に対する、前記感放射線化合物(B)の含有量が20~100重量部であり、前記架橋剤(C)の含有量が5~80重量部であり、
    前記絶縁膜の厚みが1~10μmであり、前記マイクロレンズの厚みが0.5~5μmである赤外発光LED。
  2. 前記絶縁膜の厚みと、前記マイクロレンズの厚みとの比率が、「樹脂膜の厚み:マイクロレンズの厚み」で1:1~10:1である請求項1に記載の赤外発光LED。
  3. 前記絶縁膜の屈折率と、前記マイクロレンズの屈折率の差が0.1以下である請求項1または2に記載の赤外発光LED。
  4. 前記絶縁膜と前記マイクロレンズとが、前記環状オレフィン重合体(A)として、同じ重合体を含有する感放射線樹脂組成物をそれぞれ用いて形成されたものである請求項1~のいずれかに記載の赤外発光LED。
  5. 前記絶縁膜と前記マイクロレンズとが、全て同じ成分から構成される感放射線樹脂組成物をそれぞれ用いて形成されたものである請求項に記載の赤外発光LED。
  6. 前記絶縁膜と前記マイクロレンズとが、全て同じ成分を同じ含有割合で含有する感放射線樹脂組成物をそれぞれ用いて形成されたものである請求項に記載の赤外発光LED。
JP2018527629A 2016-07-14 2017-07-12 赤外発光led Active JP7088010B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016139071 2016-07-14
JP2016139071 2016-07-14
PCT/JP2017/025407 WO2018012534A1 (ja) 2016-07-14 2017-07-12 赤外発光led

Publications (2)

Publication Number Publication Date
JPWO2018012534A1 JPWO2018012534A1 (ja) 2019-05-09
JP7088010B2 true JP7088010B2 (ja) 2022-06-21

Family

ID=60953072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527629A Active JP7088010B2 (ja) 2016-07-14 2017-07-12 赤外発光led

Country Status (7)

Country Link
US (1) US10622527B2 (ja)
EP (1) EP3486957A4 (ja)
JP (1) JP7088010B2 (ja)
KR (1) KR20190029533A (ja)
CN (1) CN109417115A (ja)
TW (1) TW201813126A (ja)
WO (1) WO2018012534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009278A1 (ja) * 2002-07-18 2004-01-29 Kazumasa Matsuura リングソーの駆動装置及びリングソー付き切断装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7512889B2 (ja) * 2018-03-30 2024-07-09 日本ゼオン株式会社 樹脂組成物及び電子部品
TWI728726B (zh) * 2020-02-27 2021-05-21 大陸商上海燦瑞科技股份有限公司 紅外線發射二極體裝置
CN115668407A (zh) * 2020-05-27 2023-01-31 京瓷株式会社 有机绝缘体及布线基板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229553A (ja) 2002-02-05 2003-08-15 Sharp Corp 半導体装置及びその製造方法
JP2004277697A (ja) 2002-10-07 2004-10-07 General Electric Co <Ge> エポキシ樹脂組成物、該組成物で封止された固体素子、並びに方法
WO2005096100A1 (ja) 2004-03-31 2005-10-13 Zeon Corporation 感放射線組成物、積層体及びその製造方法並びに電子部品
WO2006129875A1 (ja) 2005-06-01 2006-12-07 Zeon Corporation 感放射線性樹脂組成物、積層体及びその製造方法
JP2008076552A (ja) 2006-09-19 2008-04-03 Jsr Corp 薄型の光学レンズ
JP2010266829A (ja) 2009-05-18 2010-11-25 Three M Innovative Properties Co 光学部材およびこれを用いたデバイス
JP2011258675A (ja) 2010-06-07 2011-12-22 Toshiba Corp 光半導体装置
JP2013049257A (ja) 2011-08-31 2013-03-14 Fuji Xerox Co Ltd 発光部品、プリントヘッドおよび画像形成装置
US20130140580A1 (en) 2010-07-26 2013-06-06 Osram Opto Semiconductors Gmbh Optoelectronic Component
JP2015094910A (ja) 2013-11-14 2015-05-18 日本ゼオン株式会社 感放射線性樹脂組成物、及び積層体
WO2015137314A1 (ja) 2014-03-11 2015-09-17 ウシオ電機株式会社 発光モジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179953A (ja) 1987-01-21 1988-07-23 Asahi Chem Ind Co Ltd 重合体組成物の製造方法
JPH0764786B2 (ja) 1987-12-23 1995-07-12 住友化学工業株式会社 フェノール系化合物およびこれを有効成分とするブタジエン系ポリマー用安定剤
JP2001339099A (ja) 2000-05-26 2001-12-07 Showa Denko Kk 赤外発光ダイオード用エピタキシャルウェハ、およびこれを用いた発光ダイオード
ES2547416T3 (es) * 2009-03-11 2015-10-06 Asahi Kasei E-Materials Corporation Composición de recubrimiento, película de recubrimiento, laminado y procedimiento para la producción del laminado
JP2011075610A (ja) 2009-09-29 2011-04-14 Nippon Zeon Co Ltd 感放射線性樹脂組成物、及び積層体
JP5413097B2 (ja) 2009-09-29 2014-02-12 日本ゼオン株式会社 感放射線性樹脂組成物、及び積層体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229553A (ja) 2002-02-05 2003-08-15 Sharp Corp 半導体装置及びその製造方法
JP2004277697A (ja) 2002-10-07 2004-10-07 General Electric Co <Ge> エポキシ樹脂組成物、該組成物で封止された固体素子、並びに方法
WO2005096100A1 (ja) 2004-03-31 2005-10-13 Zeon Corporation 感放射線組成物、積層体及びその製造方法並びに電子部品
WO2006129875A1 (ja) 2005-06-01 2006-12-07 Zeon Corporation 感放射線性樹脂組成物、積層体及びその製造方法
JP2008076552A (ja) 2006-09-19 2008-04-03 Jsr Corp 薄型の光学レンズ
JP2010266829A (ja) 2009-05-18 2010-11-25 Three M Innovative Properties Co 光学部材およびこれを用いたデバイス
JP2011258675A (ja) 2010-06-07 2011-12-22 Toshiba Corp 光半導体装置
US20130140580A1 (en) 2010-07-26 2013-06-06 Osram Opto Semiconductors Gmbh Optoelectronic Component
JP2013049257A (ja) 2011-08-31 2013-03-14 Fuji Xerox Co Ltd 発光部品、プリントヘッドおよび画像形成装置
JP2015094910A (ja) 2013-11-14 2015-05-18 日本ゼオン株式会社 感放射線性樹脂組成物、及び積層体
WO2015137314A1 (ja) 2014-03-11 2015-09-17 ウシオ電機株式会社 発光モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004009278A1 (ja) * 2002-07-18 2004-01-29 Kazumasa Matsuura リングソーの駆動装置及びリングソー付き切断装置

Also Published As

Publication number Publication date
JPWO2018012534A1 (ja) 2019-05-09
US10622527B2 (en) 2020-04-14
EP3486957A1 (en) 2019-05-22
CN109417115A (zh) 2019-03-01
KR20190029533A (ko) 2019-03-20
US20190221729A1 (en) 2019-07-18
EP3486957A4 (en) 2020-02-12
WO2018012534A1 (ja) 2018-01-18
TW201813126A (zh) 2018-04-01

Similar Documents

Publication Publication Date Title
EP3121651B1 (en) Radiation-sensitive resin composition and electronic component
JP7088010B2 (ja) 赤外発光led
KR102377464B1 (ko) 감방사선 수지 조성물 및 전자 부품
EP3136173B1 (en) Radiation-sensitive resin composition, resin film, and electronic device
JP7003988B2 (ja) 感放射線樹脂組成物および電子部品
JP4380702B2 (ja) 感放射線組成物、積層体及びその製造方法並びに電子部品
KR102539141B1 (ko) 수지 조성물
JPWO2017038620A1 (ja) 樹脂組成物
JP2017181557A (ja) 感放射線樹脂組成物及び電子部品
JP6819674B2 (ja) 感放射線樹脂組成物及び電子部品
JP2005292277A (ja) 感放射線組成物、積層体及びその製造方法並びに電子部品
JP2013222170A (ja) 永久膜および永久膜の形成方法
JP2017181556A (ja) 感放射線樹脂組成物及び電子部品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7088010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150