JP7080965B2 - Tertiary structure electrodes and electrochemical devices containing them - Google Patents

Tertiary structure electrodes and electrochemical devices containing them Download PDF

Info

Publication number
JP7080965B2
JP7080965B2 JP2020503724A JP2020503724A JP7080965B2 JP 7080965 B2 JP7080965 B2 JP 7080965B2 JP 2020503724 A JP2020503724 A JP 2020503724A JP 2020503724 A JP2020503724 A JP 2020503724A JP 7080965 B2 JP7080965 B2 JP 7080965B2
Authority
JP
Japan
Prior art keywords
electrode
active material
dimensional structural
oxide
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020503724A
Other languages
Japanese (ja)
Other versions
JP2020529102A (en
Inventor
イン-ソン・オム
サン-ヨン・イ
ソン-ジュン・カン
ジョン-ア・キム
ジェ-ヨン・キム
ジュ-ミョン・キム
ヨン-ヒ・イ
ジェ-ヒョン・イ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Publication of JP2020529102A publication Critical patent/JP2020529102A/en
Application granted granted Critical
Publication of JP7080965B2 publication Critical patent/JP7080965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Description

本発明は、三次元構造電極及びそれを含む電気化学素子に関する。 The present invention relates to three-dimensional structural electrodes and electrochemical devices including them.

本出願は、2017年11月8日出願の韓国特許出願第10-2017-0148354号に基づく優先権を主張し、該当出願の明細書及び図面に開示された内容は、すべて本出願に組み込まれる。 This application claims priority based on Korean Patent Application No. 10-2017-0148354 filed on November 8, 2017, and all the contents disclosed in the specification and drawings of the relevant application are incorporated into this application. ..

近年、スマートフォン、タブレットPC、高性能ノートパソコンなどのIT電子機器に対する市場の需要が増加している。また、地球温暖化及び資源枯渇に対する対策の一環として、電気自動車、スマートグリッドのような大容量電力貯蔵装置に対する要求が高まり、二次電池を始めとした電気化学素子に対する需要は急増している。 In recent years, the market demand for IT electronic devices such as smartphones, tablet PCs, and high-performance notebook PCs has been increasing. In addition, as part of measures against global warming and resource depletion, the demand for large-capacity power storage devices such as electric vehicles and smart grids is increasing, and the demand for electrochemical elements such as secondary batteries is rapidly increasing.

特に、リチウム二次電池は、優れたサイクル寿命及び高いエネルギー密度のため、最も注目されている電気化学素子である。しかし、高出力及び高容量の要求に応えるためには、それを満足する電気化学素子に対する改善策が必要な実情である。 In particular, lithium secondary batteries are the most noticeable electrochemical elements due to their excellent cycle life and high energy density. However, in order to meet the demands for high output and high capacity, it is necessary to take improvement measures for electrochemical devices that satisfy them.

これに関連して、電気化学素子の容量に寄与する電極は、金属集電体と、その上に塗布された活物質、導電材及びバインダーの混合物とからなるが、このような電極の構成物質のうち、実質的に電気化学素子の容量及びエネルギー密度に寄与するものは活物質だけである。そこで、活物質の多様な構造及び成分に対する研究が行われてきた。 In this regard, the electrode that contributes to the capacitance of the electrochemical element consists of a metal collector and a mixture of active material, conductive material and binder applied on it, which is a constituent material of such an electrode. Of these, only the active material substantially contributes to the capacity and energy density of the electrochemical element. Therefore, research has been conducted on various structures and components of active materials.

しかし、高い理論容量を有する活物質であっても、固有の電子及びイオン伝導度が低いため可逆容量が十分ではない。また、このような短所を補うため、電極を設計するとき、過量の伝導性物質が含まれるようになるが、これは電池のエネルギー密度向上に重大な問題になっている。 However, even an active material having a high theoretical capacity does not have a sufficient reversible capacity because of its low intrinsic electron and ionic conductivity. Further, in order to make up for such a shortcoming, when designing the electrode, an excessive amount of a conductive substance is contained, which is a serious problem for improving the energy density of the battery.

したがって、導電材及びバインダーなどの添加物質を最小化することで、電極の重量当り容量または体積当り容量が増加するようになり、結果的に電気化学素子のエネルギー密度を高めることができる。 Therefore, by minimizing the additive substances such as the conductive material and the binder, the capacity per weight or the capacity per volume of the electrode can be increased, and as a result, the energy density of the electrochemical element can be increased.

これと共に、金属集電体の代わりに軽い素材の集電体を使用することが望ましい。金属集電体の場合、電極内でかなりの重量及び体積を占めるため、電極の重量当り容量、体積当り容量を低減させる原因の一つになるためである。 At the same time, it is desirable to use a current collector made of a light material instead of a metal current collector. This is because the metal current collector occupies a considerable weight and volume in the electrode, which is one of the causes for reducing the capacity per weight and the capacity per volume of the electrode.

また、導電材の役割をする伝導性物質を使用すれば、電極が均一な電子伝導ネットワークを有し得る。電極内の活物質の間に均一な電子伝導ネットワークを形成することで、電子伝導性を向上させ、その結果、電気化学素子の出力特性を改善することができる。 Further, if a conductive material acting as a conductive material is used, the electrode may have a uniform electron conduction network. By forming a uniform electron conduction network between the active materials in the electrode, the electron conductivity can be improved, and as a result, the output characteristics of the electrochemical device can be improved.

このように、導電材及びバインダーなどの添加物質を最小化し、金属集電体の代わりに軽い素材の集電体を使用し、優れた電子伝導ネットワークを形成した電極を電気化学素子に適用することで、高容量、高出力及び高エネルギー密度などの優れた特性を実現することができるが、未だこのような三つの面を全て考慮した電極に関する研究は十分ではない。 In this way, the electrodes that form an excellent electron conduction network are applied to the electrochemical element by minimizing the additive substances such as conductive materials and binders, using the current collector of a light material instead of the metal current collector. Therefore, excellent characteristics such as high capacity, high output, and high energy density can be realized, but research on electrodes considering all three aspects is still insufficient.

上記の問題点を解決するため、本発明は、電極層内の添加物質の最小化、軽い素材の集電体、及び優れた電子伝導ネットワークの三つの面を全て満たす三次元構造電極を提供することを目的とする。 To solve the above problems, the present invention provides a three-dimensional structure electrode that meets all three aspects of minimizing additives in the electrode layer, a light collector, and an excellent electron conduction network. The purpose is.

また、本発明は、上記三次元構造電極を含む電気化学素子を提供することを他の目的とする。 Another object of the present invention is to provide an electrochemical device including the above-mentioned three-dimensional structural electrode.

本発明の一態様によれば、
複数の高分子繊維を含む多孔性不織布と、
前記複数の高分子繊維の間に位置し、活物質粒子及び第1伝導性物質を備える活物質複合体と、
前記活物質複合体の外面に位置する第2伝導性物質とを含み、
前記複数の高分子繊維によって相互連結された気孔構造(interconnected porous network)が形成され、
前記相互連結された気孔構造内に前記活物質複合体及び前記第2伝導性物質が均一に充填されて三次元充填構造を形成した、三次元構造電極が提供される。
According to one aspect of the invention
A porous non-woven fabric containing multiple polymer fibers and
An active material complex located between the plurality of polymer fibers and having active material particles and a first conductive material,
Containing a second conductive material located on the outer surface of the active material complex,
An interconnected pore structure (interconnected molecule network) is formed by the plurality of polymer fibers.
Provided is a three-dimensional structural electrode in which the active material complex and the second conductive material are uniformly packed in the interconnected pore structure to form a three-dimensional packed structure.

前記多孔性不織布は、前記複数の高分子繊維が三次元的に不規則且つ連続的に連結された集合体であり得る。 The porous nonwoven fabric may be an aggregate in which the plurality of polymer fibers are three-dimensionally irregularly and continuously connected.

一方、前記三次元構造電極の気孔度は、5~95体積%であり得る。 On the other hand, the porosity of the three-dimensional structural electrode can be 5 to 95% by volume.

前記三次元構造電極は、活物質粒子100重量部を基準にして、5~50重量部の多孔性不織布、1~50重量部の第1伝導性物質、及び0.1~20重量部の第2伝導性物質を含み得る。 The three-dimensional structural electrode is a porous nonwoven fabric of 5 to 50 parts by weight based on 100 parts by weight of active material particles, a first conductive substance of 1 to 50 parts by weight, and a first of 0.1 to 20 parts by weight. 2 May contain conductive material.

前記複数の高分子繊維の平均直径は、0.001~1000μmであり得る。 The average diameter of the plurality of polymer fibers can be 0.001 to 1000 μm.

前記活物質粒子の平均直径は、0.001~30μmであり得る。 The average diameter of the active material particles can be 0.001 to 30 μm.

前記三次元構造電極の厚さは、1~1000μmであり得る。 The thickness of the three-dimensional structure electrode can be 1 to 1000 μm.

前記三次元構造電極の面積当り重量は、0.001mg/cm~1g/cmであり得る。 The weight per area of the tertiary structure electrode can be 0.001 mg / cm 2-1 g / cm 2 .

前記三次元構造電極は、複数個の電極が積層された多層構造であり得る。 The three-dimensional structure electrode may have a multi-layer structure in which a plurality of electrodes are laminated.

このような多層構造である三次元構造電極の面積当り重量は、0.002g/cm~10g/cmであり得る。 The weight per area of such a multi-layered three-dimensional structure electrode can be 0.002 g / cm 2 to 10 g / cm 2 .

前記複数の高分子繊維を構成する高分子は、ポリエチレンテレフタレート、ポリイミド、ポリアミド、ポリスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリエーテルイミド、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸、ポリビニルピロリドン、アガロース、アルジネート、ポリビニリデンヘキサフルオロプロピレン、ポリウレタン、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン及びこれらの誘導体からなる群より選択された少なくとも一つであり得る。 The polymers constituting the plurality of polymer fibers include polyethylene terephthalate, polyimide, polyamide, polysulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, polyetherimide, polyvinyl alcohol, polyethylene oxide, polyacrylic acid, polyvinylpyrrolidone, and the like. It may be at least one selected from the group consisting of agarose, alginate, polyvinylidene hexafluoropropylene, polyurethane, polypyrrole, poly3,4-ethylenedioxythiophene, polyaniline and derivatives thereof.

本発明の一実施形態によれば、多孔性不織布にカーボンナノチューブ(carbon nanotube)、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド及びカーボンナノ繊維(carbon nanofiber)を含む群より選択された少なくとも一つをさらに含み得る。 According to one embodiment of the present invention, at least one selected from the group containing carbon nanotubes (carbon nanotube), graphene, graphene oxide, reduced graphene oxide and carbon nanofibers (carbon nanofiber) in a porous non-woven fabric. Further may be included.

前記活物質粒子は、炭素系物質、リチウム金属系酸化物、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、硫黄(S)、これらの誘導体、及びこれらの混合物を含む群より選択された少なくとも一つであり、前記酸化物は、鉄系酸化物、コバルト系酸化物、スズ系酸化物、チタン系酸化物、ニッケル系酸化物、亜鉛系酸化物、マンガン系酸化物、ケイ素酸化物、バナジウム系酸化物、銅系酸化物及びこれらの組合せを含む群より選択された少なくとも一つであり得る。 The active material particles are selected from the group containing carbon-based materials, lithium metal-based oxides, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), derivatives thereof, and mixtures thereof. The oxide is at least one, and the oxide is an iron-based oxide, a cobalt-based oxide, a tin-based oxide, a titanium-based oxide, a nickel-based oxide, a zinc-based oxide, a manganese-based oxide, or a silicon oxide. , Vanadium oxides, copper oxides and combinations thereof may be at least one selected from the group.

前記第1伝導性物質及び第2伝導性物質は、それぞれ独立して、カーボンナノチューブ、銀ナノワイヤ、ニッケルナノワイヤ、金ナノワイヤ、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン、これらの誘導体及びこれらの混合物を含む群より選択された少なくとも一つであり得る。 The first conductive substance and the second conductive substance are independently carbon nanotubes, silver nanowires, nickel nanowires, gold nanowires, graphene, graphene oxide, reduced graphene oxide, polypyrrole, poly3,4-ethylene. It can be at least one selected from the group comprising dioxythiophene, polyaniline, derivatives thereof and mixtures thereof.

前記三次元構造電極は、極性を有し得る。 The three-dimensional structural electrode may have polarity.

前記三次元構造電極は、正極及び負極から選択されたいずれか一つであり得る。 The three-dimensional structure electrode may be any one selected from a positive electrode and a negative electrode.

本発明の他の態様によれば、
正極と、負極と、前記正極と負極との間に位置する分離膜と、前記正極、負極及び分離膜に含浸された電解質とを含み、
前記正極及び前記負極の少なくとも一つは、上述した三次元構造電極である、電気化学素子が提供される。
According to another aspect of the invention.
It contains a positive electrode, a negative electrode, a separation film located between the positive electrode and the negative electrode, and an electrolyte impregnated in the positive electrode, the negative electrode, and the separation film.
At least one of the positive electrode and the negative electrode is provided with an electrochemical device which is the above-mentioned three-dimensional structural electrode.

前記電気化学素子は、リチウム二次電池、スーパーキャパシタ、リチウム-硫黄電池、ナトリウムイオン電池、リチウム-空気電池、亜鉛-空気電池、アルミニウム-空気電池及びマグネシウムイオン電池を含む群から選択されたいずれか一つであり得る。 The electrochemical element is any one selected from the group including lithium secondary batteries, supercapsules, lithium-sulfur batteries, sodium ion batteries, lithium-air batteries, zinc-air batteries, aluminum-air batteries and magnesium ion batteries. Can be one.

本発明のさらに他の態様によれば、
活物質と第1伝導性物質とを複合化して活物質複合体を製造する段階と、
高分子を溶媒に溶解して高分子溶液を製造する段階と、
前記活物質複合体及び第2伝導性物質を分散媒に分散させてコロイド溶液を製造する段階と、
前記高分子溶液及び前記コロイド溶液を同時に紡糸して三次元構造繊維を製造する段階と、
前記三次元構造繊維を圧着する段階とを含む三次元構造電極の製造方法が提供される。
前記高分子溶液及び前記コロイド溶液を同時に紡糸して三次元構造繊維を製造する段階は、複数の高分子繊維を含む多孔性不織布を形成し、前記多孔性不織布に含まれた複数の高分子繊維の間に、前記活物質粒子及び前記伝導性物質を均一に充填して気孔を形成する工程を含み得る。
According to still another aspect of the invention.
At the stage of producing an active material complex by combining an active material and a first conductive material,
At the stage of dissolving a polymer in a solvent to produce a polymer solution,
The stage of producing a colloidal solution by dispersing the active substance complex and the second conductive substance in a dispersion medium, and
At the stage of simultaneously spinning the polymer solution and the colloidal solution to produce three-dimensional structural fibers,
Provided is a method of manufacturing a three-dimensional structural electrode comprising the step of crimping the three-dimensional structural fiber.
At the stage of simultaneously spinning the polymer solution and the colloidal solution to produce a three-dimensional structural fiber, a porous polymer fiber containing a plurality of polymer fibers is formed, and the plurality of polymer fibers contained in the porous polymer fiber are formed. May include a step of uniformly filling the active material particles and the conductive material to form pores.

前記活物質粒子と第1伝導性物質との複合化は、粉砕装置を用いて活物質粒子と第1伝導性物質とを混合することで行われ得る。 The complexing of the active material particles and the first conductive material can be performed by mixing the active material particles and the first conductive material using a pulverizer.

前記活物質粒子と第1伝導性物質とを複合化するとき、均一な複合体を生成するための分散剤が添加され得る。 When complexing the active material particles with the first conductive material, a dispersant for forming a uniform complex may be added.

前記分散剤は、ポリビニルピロリドン、ポリ3,4-エチレンジオキシチオフェン:ポリスチレンスルホネート、これらの誘導体、及びこれらの混合物を含む群より選択された少なくとも一つであり得る。 The dispersant may be at least one selected from the group comprising polyvinylpyrrolidone, poly 3,4-ethylenedioxythiophene: polystyrene sulfonates, derivatives thereof, and mixtures thereof.

具体的には、前記高分子溶液及び前記コロイド溶液を同時に紡糸して三次元構造繊維を製造する段階は、デュアルエレクトロスピニング、デュアルエレクトロスプレー、デュアルスプレー及びこれらの組合せを含む群より選択されたいずれか一つの方法で行われ得る。 Specifically, the step of simultaneously spinning the polymer solution and the colloidal solution to produce a three-dimensional structural fiber is selected from the group including dual electrospinning, dual electrospray, dual spray and combinations thereof. It can be done in one way.

前記高分子溶液の紡糸速度は2~15μl/minであり、前記コロイド溶液の紡糸速度は30~150μl/minであり得る。 The spinning speed of the polymer solution can be 2 to 15 μl / min and the spinning speed of the colloidal solution can be 30 to 150 μl / min.

前記高分子溶液内の高分子の含量は、前記高分子溶液の総重量に対し、5~30重量%であり得る。 The content of the polymer in the polymer solution can be 5 to 30% by weight based on the total weight of the polymer solution.

前記溶媒は、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン及びこれらの組合せを含む群より選択された少なくとも一つであり得る。 The solvent may be at least one selected from the group comprising N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and combinations thereof.

前記コロイド溶液内の活物質粒子の含量は、前記コロイド溶液の総重量に対し、1~50重量%であり得る。 The content of the active material particles in the colloidal solution can be 1-50% by weight based on the total weight of the colloidal solution.

前記コロイド溶液は、分散剤をさらに含み得、前記コロイド溶液内の分散剤の含量は、前記コロイド溶液の総重量に対し、0.001~10重量%であり得る。 The colloidal solution may further contain a dispersant, and the content of the dispersant in the colloidal solution may be 0.001 to 10% by weight based on the total weight of the colloidal solution.

具体的には、前記分散剤は、ポリビニルピロリドン、ポリ3,4-エチレンジオキシチオフェン及びこれらの混合物を含む群より選択された少なくとも一つであり得る。 Specifically, the dispersant may be at least one selected from the group comprising polyvinylpyrrolidone, poly3,4-ethylenedioxythiophene and mixtures thereof.

前記分散媒は、脱イオン水、イソプロピルアルコール、ブタノール、エタノール、ヘキサノール、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-メチルピロリドン及びこれらの組合せを含む群より選択されたいずれか一つであり得る。 The dispersion medium is selected from the group containing deionized water, isopropyl alcohol, butanol, ethanol, hexanol, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-methylpyrrolidone and combinations thereof. It can be either one.

本発明の一実施形態によれば、上述した活物質/伝導性物質複合体の三次元密集充填構造によって添加物質を最小化し、軽い素材の集電体を使用することで電極の重量当り容量及び体積当り容量を向上させながら、均一な電子伝導ネットワークを形成することで電気化学素子の高出力特性に寄与する、三次元構造電極を提供することができる。 According to one embodiment of the present invention, the additive substance is minimized by the three-dimensional densely packed structure of the active material / conductive material complex described above, and by using a current collector made of a light material, the capacity per weight of the electrode and the capacity per weight and the capacity per weight of the electrode are used. It is possible to provide a three-dimensional structural electrode that contributes to the high output characteristics of an electrochemical element by forming a uniform electron conduction network while improving the capacity per volume.

本発明の他の実施形態によれば、電極の重量当り容量及び体積当り容量に優れ、高エネルギー密度及び高出力特性を有する電気化学素子を提供することができる。 According to another embodiment of the present invention, it is possible to provide an electrochemical element having excellent capacitance per weight and capacitance per volume, high energy density and high output characteristics.

実施例1で製造された活物質/第1伝導性物質の活物質複合体を観察した走査電子顕微鏡(SEM)写真である。6 is a scanning electron microscope (SEM) photograph of an active material complex of the active material / first conductive material produced in Example 1. 本発明の一実施形態による三次元構造電極とともに、本発明の他の実施形態による三次元構造電極の製造方法を概略的に示した図である。FIG. 6 is a diagram schematically showing a method for manufacturing a three-dimensional structure electrode according to another embodiment of the present invention together with a three-dimensional structure electrode according to one embodiment of the present invention. 本発明の一実施形態による三次元繊維構造電極を含むリチウム二次電池モジュールの概略図である。It is a schematic diagram of the lithium secondary battery module which includes the three-dimensional fiber structure electrode by one Embodiment of this invention. 本発明の実施例1によって製造された電極断面を高倍率及び低倍率で観察したSEMイメージである。It is an SEM image which observed the electrode cross section produced by Example 1 of this invention at a high magnification and a low magnification. 本発明の実施例1によって製造された電極の外観写真である。It is an appearance photograph of the electrode manufactured by Example 1 of this invention. 本発明の実施例1によって製造された三次元構造電極、及び比較例1、比較例2、比較例3によって製造された電極の電子伝導度を測定して比べた結果である。It is the result of measuring and comparing the electron conductivity of the three-dimensional structure electrode manufactured by Example 1 of this invention, and the electrode manufactured by Comparative Example 1, Comparative Example 2, and Comparative Example 3. 本発明の実施例1によって製造された三次元構造電極、及び比較例1によって製造された電極を繰り返して曲げながら抵抗変化を測定して比べた結果である。It is the result of measuring the resistance change while repeatedly bending the three-dimensional structure electrode manufactured by Example 1 of the present invention and the electrode manufactured by Comparative Example 1 and comparing them. 本発明の実施例1、比較例1、比較例2及び比較例3によって製造されたリチウム二次電池に対し、放電率を変えながら活物質粒子の重量当り放電容量を観察した結果を示したグラフである。A graph showing the results of observing the discharge capacity per weight of active material particles with respect to the lithium secondary batteries manufactured according to Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3 of the present invention while changing the discharge rate. Is.

以下、本発明の実施形態を詳しく説明するが、これは例示として提示されるものに過ぎず、本発明を制限するものではない。本発明は後述する特許請求の範囲の範疇によって定義される。 Hereinafter, embodiments of the present invention will be described in detail, but this is merely an example and does not limit the present invention. The present invention is defined by the scope of claims described later.

特に定義しない限り、本明細書で使われるすべての用語(技術及び科学的用語を含む)は、本発明が属する技術分野で通常の知識を持つ者に共通して理解される意味で使用され得る。明細書において、ある部分がある構成要素を「含む」とすることは、特に言及しない限り、他の構成要素を除外するものではなく、他の構成要素をもさらに含み得ることを意味する。また、単数の表現は、特に言及しない限り、複数の形態も含む。 Unless otherwise defined, all terms used herein (including technical and scientific terms) may be used in the sense commonly understood by those with ordinary knowledge in the art to which the invention belongs. .. In the specification, the term "contains" a component to a certain component does not exclude other components unless otherwise specified, and means that other components may be further included. The singular representation also includes multiple forms, unless otherwise noted.

図2は、本発明の一実施形態による三次元構造電極とともに、本発明の他の実施形態による三次元構造電極の製造方法を概略的に示した図である。以下、図2を参照して説明する。なお、明細書全体に亘って同一部材番号は同一構成要素を示す。 FIG. 2 is a diagram schematically showing a method for manufacturing a three-dimensional structure electrode according to another embodiment of the present invention together with the three-dimensional structure electrode according to one embodiment of the present invention. Hereinafter, it will be described with reference to FIG. In addition, the same member number indicates the same component throughout the specification.

本発明の一態様によれば、複数の高分子繊維を含む多孔性不織布と、上記複数の高分子繊維の間に位置し、活物質粒子及び第1伝導性物質を備える活物質複合体と、上記活物質複合体の外面に位置する第2伝導性物質とを含み、上記複数の高分子繊維によって相互連結された気孔構造が形成され、上記相互連結された気孔構造内に上記活物質複合体及び上記第2伝導性物質が均一に充填されて三次元充填構造を形成した、三次元構造電極が提供される。 According to one aspect of the present invention, a porous non-woven fabric containing a plurality of polymer fibers and an active material composite located between the plurality of polymer fibers and provided with active material particles and a first conductive substance. A pore structure interconnected by the plurality of polymer fibers including a second conductive substance located on the outer surface of the active material composite is formed, and the active material composite is contained in the interconnected pore structure. And a three-dimensional structure electrode in which the second conductive substance is uniformly filled to form a three-dimensional packed structure is provided.

図2を参照すれば、上記三次元構造電極は、三次元充填構造(super lattice)であって、上記多孔性不織布に含まれた複数の高分子繊維110が支持体の役割をし、上記複数の高分子繊維110の間には、上記活物質粒子120/第1伝導性物質130の活物質複合体、及び上記第2伝導性物質140が均一に充填され、上記複数の高分子繊維110によって相互連結された気孔構造が形成された形態である。 Referring to FIG. 2, the three-dimensional structure electrode has a three-dimensional packed structure (super lattice), and a plurality of polymer fibers 110 contained in the porous non-woven fabric act as a support, and the plurality of polymer fibers 110 act as a support. The active material composite of the active material particles 120 / the first conductive material 130 and the second conductive material 140 are uniformly filled between the polymer fibers 110 of the above, and the plurality of polymer fibers 110 It is a form in which interconnected pore structures are formed.

これは、添加物質の最小化、軽い素材の集電体、及び優れた電子伝導ネットワークの三つの面がすべて考慮された形態の電極である。 This is an electrode in a form that takes into account all three aspects: minimization of additives, current collectors of light materials, and excellent electron conduction networks.

具体的には、別途のバインダーを含まないことで添加物質を最小化し、金属集電体の代わりに軽い素材である多孔性不織布を使用することで、電極の重量当り容量及び体積当り容量を向上させることができる。 Specifically, by minimizing the additive substance by not including a separate binder and using a porous non-woven fabric which is a light material instead of the metal current collector, the capacity per weight and the capacity per volume of the electrode are improved. Can be made to.

さらに、上記三次元充填構造内の活物質粒子/第1伝導性物質の活物質複合体が上記第2伝導性物質に囲まれた形態を有することで、電子伝導ネットワークを均一化して電気化学素子の高出力特性に寄与でき、これは一般的な電極と比べて、放電率特性が向上したものである。特に、電子伝導性の良くない活物質粒子を適用する場合も、出力特性を極大化することができる。 Further, the active material particle / active material composite of the first conductive material in the three-dimensional packed structure has a form surrounded by the second conductive material, so that the electron conduction network is made uniform and the electrochemical element is obtained. It can contribute to the high output characteristics of the above, which is an improvement in the discharge rate characteristics compared to general electrodes. In particular, even when active material particles having poor electron conductivity are applied, the output characteristics can be maximized.

以下、本発明の一実施形態で提供する三次元構造電極についてより詳しく説明する。 Hereinafter, the three-dimensional structural electrode provided in one embodiment of the present invention will be described in more detail.

上述したように、上記三次元構造電極は、上記多孔性不織布に含まれた複数の高分子繊維110が三次元的に不規則且つ連続的に連結された集合体を形成することで、不均一な多数の空間を形成するようになる。 As described above, the three-dimensional structural electrode is non-uniform by forming an aggregate in which a plurality of polymer fibers 110 contained in the porous nonwoven fabric are three-dimensionally irregularly and continuously connected. Will form a large number of spaces.

このように形成された空間の間に、上記活物質粒子120/第1伝導性物質130を含む活物質複合体、及び上記第2伝導性物質140が均一に充填され、上記複数の高分子繊維110によって相互連結された気孔構造が形成される。 The active material composite containing the active material particles 120 / the first conductive material 130 and the second conductive material 140 are uniformly filled in the space thus formed, and the plurality of polymer fibers are uniformly filled. A pore structure interconnected by 110 is formed.

このとき、第1伝導性物質と活物質粒子との複合体を形成することで、単なる活物質ナノ粒子ではなく、準二次粒子(Quasi-secondary particle)が形成されるため、コロイド溶液などを用いて活物質粒子と伝導性物質とを単に混合して得られた混合物とはその構造及び性能が異なる。 At this time, by forming a complex of the first conductive material and the active material particles, quasi-secondary particles (Quasi-secondary particles) are formed instead of mere active material nanoparticles, so a colloidal solution or the like is used. The structure and performance are different from the mixture obtained by simply mixing the active material particles and the conductive material.

上記活物質複合体は、第1伝導性物質及び活物質粒子から構成された二次粒子であり、上記二次粒子の内部及び表面に第1伝導性物質が位置し得る。したがって、上記二次粒子の内部にある第1伝導性物質は、上記活物質粒子同士を連結及び固定させる結合剤の役割を果たし、同時に、上記二次粒子の表面に位置した第1伝導性物質は、隣接する活物質複合体の表面に位置した他の第1伝導性物質、及び第2伝導性物質と連結する役割を果たすことができる。 The active material complex is a secondary particle composed of a first conductive material and active material particles, and the first conductive material can be located inside and on the surface of the secondary particles. Therefore, the first conductive substance inside the secondary particles acts as a binder that connects and fixes the active material particles to each other, and at the same time, the first conductive substance located on the surface of the secondary particles. Can play a role of linking with other first conductive material and second conductive material located on the surface of the adjacent active material complex.

その結果、本発明の一実施形態による三次元構造電極は、活物質複合体内の第1伝導性物質によって活物質複合体を構成する活物質粒子同士の電子伝導ネットワークが形成され、さらに、活物質複合体の外面に形成された第2伝導性物質によって活物質複合体同士も均一な電子伝導ネットワークを形成することができる。 As a result, in the three-dimensional structural electrode according to the embodiment of the present invention, an electron conduction network between the active material particles constituting the active material complex is formed by the first conductive material in the active material complex, and further, the active material is further formed. The second conductive material formed on the outer surface of the composite allows the active material composites to form a uniform electron conduction network.

具体的には、上記三次元構造電極の気孔度は、5~95体積%であり得る。上記気孔度が上記の範囲内である場合、電解質を容易に吸収できるだけでなく、イオンの移動度を適切に調節することができ、電気化学素子の性能改善に寄与することができる。 Specifically, the porosity of the three-dimensional structural electrode can be 5 to 95% by volume. When the porosity is within the above range, not only the electrolyte can be easily absorbed, but also the ion mobility can be appropriately adjusted, which can contribute to the improvement of the performance of the electrochemical device.

また、上記気孔度が上記の範囲を満足する場合、電極のローディング量が体積に比べて少な過ぎるという問題が発生せず、上記活物質粒子及び上記伝導性物質間の距離が適切に制御されて電子伝導ネットワークを形成し易く、三次元構造電極のイオン伝導性を容易に維持することができる。 Further, when the porosity satisfies the above range, the problem that the loading amount of the electrode is too small compared to the volume does not occur, and the distance between the active material particles and the conductive material is appropriately controlled. It is easy to form an electron conduction network, and the ionic conductivity of the three-dimensional structure electrode can be easily maintained.

より具体的には、上記三次元構造電極の気孔度は、30~90体積%であり得、この場合、上記三次元構造電極のイオン伝導性が一層高まり、機械的強度を向上させることができる。 More specifically, the porosity of the three-dimensional structure electrode can be 30 to 90% by volume, in which case the ionic conductivity of the three-dimensional structure electrode can be further enhanced and the mechanical strength can be improved. ..

さらに、上記三次元構造電極の気孔度は、上記活物質粒子の直径または含量によって制御可能であるが、これについては後述する。 Further, the porosity of the three-dimensional structural electrode can be controlled by the diameter or content of the active material particles, which will be described later.

一方、上記三次元構造電極に含まれたそれぞれの物質の含量について、以下のように説明する。 On the other hand, the content of each substance contained in the three-dimensional structural electrode will be described as follows.

上記三次元構造電極内の多孔性不織布の含量は、上記三次元構造電極内の活物質粒子100重量部を基準にして、5~50重量部、詳しくは10~40重量部、より詳しくは15~30重量部であり得る。金属集電体の代わりに上記の範囲の多孔性不織布を含むことで、電極の重量当り容量及び体積当り容量を増大させることができる。 The content of the porous non-woven fabric in the three-dimensional structure electrode is 5 to 50 parts by weight, specifically 10 to 40 parts by weight, and more particularly 15 parts by weight, based on 100 parts by weight of the active material particles in the three-dimensional structure electrode. It can be up to 30 parts by weight. By including the porous non-woven fabric in the above range instead of the metal current collector, the capacity per weight and the capacity per volume of the electrode can be increased.

上記多孔性不織布の含量が上記の範囲を満足する場合、多孔性不織布が支持体の役割を十分果たすことによって、三次元構造電極の構造を維持することができ、活物質粒子及び上記伝導性物質が適切に含まれて電極の電子伝導性が低下する問題を防止することができる。 When the content of the porous nonwoven fabric satisfies the above range, the porous nonwoven fabric sufficiently plays the role of a support, so that the structure of the three-dimensional structural electrode can be maintained, and the active material particles and the conductive substance can be maintained. Can be properly contained to prevent the problem that the electron conductivity of the electrode is lowered.

また、活物質粒子の含量に基づいた上記多孔性不織布の含量が上記の範囲を満足する場合、電気化学素子の容量及びエネルギー密度を向上でき、上記の範囲の三次元構造電極の気孔度を形成するのに寄与することができる。これは、上記活物質粒子が上記三次元構造電極を構成する物質のうち電気化学素子の容量及びエネルギー密度の発現に実質的に寄与する要素であり、上記三次元構造電極内の活物質粒子の含量が上記三次元構造電極の気孔度を決定する要素の一つになるためである。 Further, when the content of the porous non-woven fabric based on the content of the active material particles satisfies the above range, the capacity and energy density of the electrochemical element can be improved, and the porosity of the three-dimensional structural electrode in the above range is formed. Can contribute to doing so. This is an element in which the active material particles substantially contribute to the development of the capacity and energy density of the electrochemical element among the substances constituting the three-dimensional structural electrode, and the active material particles in the three-dimensional structural electrode. This is because the content is one of the factors that determine the porosity of the three-dimensional structural electrode.

活物質粒子とともに活物質複合体を構成する上記第1伝導性物質の含量は、活物質粒子100重量部を基準にして、1~50重量部、詳しくは5~40重量部、より詳しくは10~30重量部であり得る。 The content of the first conductive substance constituting the active material complex together with the active material particles is 1 to 50 parts by weight, specifically 5 to 40 parts by weight, and more particularly 10 parts by weight, based on 100 parts by weight of the active material particles. It can be up to 30 parts by weight.

上記第1伝導性物質の含量がこのような範囲を満足する場合、上記活物質粒子と上記第1伝導性物質との間の電子伝導ネットワークが容易に形成され、それにより電極の寿命特性及び出力特性が改善され、活物質の体積膨張が生じても電子伝導ネットワークを維持することができる。 When the content of the first conductive material satisfies such a range, an electron conduction network between the active material particles and the first conductive material is easily formed, whereby the life characteristics and output of the electrode are formed. The properties are improved and the electron conduction network can be maintained even if the volume expansion of the active material occurs.

上記第2伝導性物質の含量は、活物質粒子100重量部を基準にして、0.1~20重量部、詳しくは1~15重量部、より詳しくは5~10重量部であり得る。上記第2伝導性物質の含量がこのような範囲を満足する場合、電極を製造するとき、紡糸溶液の分散状態が安定的に維持され、電極の物理的変形が起きても電子伝導ネットワークを維持することができる。このような観点から、上記第2伝導性物質は、第1伝導性物質に比べて縦横比が大きいほど、電極の物性を向上させ易い。 The content of the second conductive substance may be 0.1 to 20 parts by weight, more specifically 1 to 15 parts by weight, and more specifically 5 to 10 parts by weight, based on 100 parts by weight of the active material particles. When the content of the second conductive substance satisfies such a range, the dispersed state of the spinning solution is stably maintained when the electrode is manufactured, and the electron conduction network is maintained even if the electrode is physically deformed. can do. From this point of view, the larger the aspect ratio of the second conductive substance as compared with the first conductive substance, the easier it is to improve the physical characteristics of the electrode.

第2伝導性物質なく、活物質粒子及び第1伝導性物質を備える活物質複合体のみで多孔性不織布と電極を構成する場合、活物質複合体内に閉じ込められている第1伝導性物質のみでは活物質複合体間の伝導性を付与することができない。第2伝導性物質が活物質複合体同士の間に位置して、これら活物質複合体の外面で相互に接しながら連結されて位置することで、活物質複合体の間に伝導性を付与可能な均一な電子伝導ネットワークを形成できるようになる。 When the porous non-woven fabric and the electrode are composed of only the active material composite containing the active material particles and the first conductive material without the second conductive material, only the first conductive material confined in the active material composite is used. It is not possible to impart conductivity between active material complexes. By locating the second conductive material between the active material complexes and connecting them so as to be in contact with each other on the outer surface of these active material complexes, it is possible to impart conductivity between the active material complexes. It becomes possible to form a uniform electron conduction network.

第2伝導性物質の含量は、第1伝導性粒子100重量部を基準にして、0.2~2000、詳しくは2.5~300、より詳しくは10~100であり得る。上記の重量比を満足する場合、均一な電子伝導ネットワークの連結によって電子移動を極大化することができる。 The content of the second conductive substance may be 0.2 to 2000, more particularly 2.5 to 300, and more particularly 10 to 100, based on 100 parts by weight of the first conductive particle. If the above weight ratio is satisfied, electron transfer can be maximized by connecting uniform electron conduction networks.

上記複数の高分子繊維の平均直径は、0.001~1000μm、詳しくは0.005~50μm、より詳しくは0.01~5μmであり得る。上記の範囲の平均直径を有する複数の高分子繊維が三次元的に集合体を形成することで、上記活物質粒子及び上記伝導性物質が充填され易い空間を確保でき、均一な気孔構造を有するため、電極内の電解質の吸収及びイオンの移動が円滑になる。 The average diameter of the plurality of polymer fibers may be 0.001 to 1000 μm, more particularly 0.005 to 50 μm, and more particularly 0.01 to 5 μm. By three-dimensionally forming an aggregate of a plurality of polymer fibers having an average diameter in the above range, it is possible to secure a space in which the active material particles and the conductive material are easily filled, and have a uniform pore structure. Therefore, the absorption of the electrolyte and the movement of ions in the electrode become smooth.

また、上記の平均直径の範囲を満足する場合、上記複数の高分子繊維によって形成される支持体の厚さが適切に制御されて、上記活物質複合体及び第2伝導性物質が充填される気孔を確保でき、上記支持体の役割を果たすのに十分な物性を有し得る。具体的には、上記複数の高分子繊維の平均直径は、約0.01~1μmであり得、この場合、上記の効果が極大化される。 Further, when the above average diameter range is satisfied, the thickness of the support formed by the plurality of polymer fibers is appropriately controlled, and the active material composite and the second conductive substance are filled. Pore can be secured and it may have sufficient physical properties to play the role of the support. Specifically, the average diameter of the plurality of polymer fibers can be about 0.01 to 1 μm, in which case the above effects are maximized.

上記活物質粒子の平均直径は、0.001~30μm、詳しくは0.001~10μmであり得る。このような範囲の平均直径を有する活物質粒子は、上記三次元構造電極の気孔度を上述した範囲に制御するのに寄与する。また、後述する三次元電極の製造方法において、上記活物質粒子を含むコロイド溶液内の分散性を向上させ、デュアルエレクトロスピニング法の問題発生を最小化することで、最終的に収得される三次元構造電極の気孔を均一にすることができる。 The average diameter of the active material particles can be 0.001 to 30 μm, more specifically 0.001 to 10 μm. The active material particles having an average diameter in such a range contribute to controlling the porosity of the three-dimensional structural electrode in the above range. Further, in the method for manufacturing a three-dimensional electrode, which will be described later, the dispersibility in the colloidal solution containing the active material particles is improved, and the problem of the dual electrospinning method is minimized. The pores of the structural electrode can be made uniform.

また、上記活物質粒子の平均直径がこのような範囲を満足する場合、電極製造のための紡糸溶液の分散状態が維持され、工程中に粒子を取り扱い易い。 Further, when the average diameter of the active material particles satisfies such a range, the dispersed state of the spinning solution for manufacturing the electrode is maintained, and the particles can be easily handled during the process.

上記三次元構造電極の面積当り重量は、0.001mg/cm~1g/cm、詳しくは0.01mg/cm~0.1g/cm、より詳しくは0.5mg/cm~20mg/cmであり得る。上記三次元構造電極内の添加物質を最小化し、金属集電体の使用を避けて上記多孔性不織布を使用することで、このように電極の面積当り重量が改善された。その結果、電極のエネルギー密度、及び電気化学素子の容量が増大される。 The weight per area of the three-dimensional structure electrode is 0.001 mg / cm 2 to 1 g / cm 2 , specifically 0.01 mg / cm 2 to 0.1 g / cm 2 , more specifically 0.5 mg / cm 2 to 20 mg. / Cm 2 can be. By minimizing the additives in the three-dimensional structure electrode, avoiding the use of metal collectors, and using the porous non-woven fabric, the weight per area of the electrode was thus improved. As a result, the energy density of the electrodes and the capacitance of the electrochemical device are increased.

一方、上記三次元構造電極が単層で形成される場合、その面積当り重量が1g/cmを超過することができない。 On the other hand, when the three-dimensional structural electrode is formed of a single layer, the weight per area thereof cannot exceed 1 g / cm 2 .

これに関連して、上記三次元構造電極は、複数個の電極が多層構造を形成したものであり得る。それによって、上記三次元構造電極内の活物質複合体及び第2伝導性物質を含む電極物質のローディング量が極大化でき、その結果、電気化学素子の容量及びエネルギー密度を改善することができる。 In this regard, the three-dimensional structure electrode may be one in which a plurality of electrodes form a multilayer structure. Thereby, the loading amount of the electrode material including the active material complex and the second conductive material in the three-dimensional structural electrode can be maximized, and as a result, the capacity and energy density of the electrochemical element can be improved.

具体的には、上記多層構造である三次元構造電極における面積当り電極物質の重量(ローディング量)は、0.002g/cm~10g/cm、0.005g/cm~10g/cm、または、0.007g/cm~10g/cmであり得る。 Specifically, the weight (loading amount) of the electrode material per area in the three-dimensional structure electrode having the above-mentioned multi-layer structure is 0.002 g / cm 2 to 10 g / cm 2 , 0.005 g / cm 2 to 10 g / cm 2 . , Or 0.007 g / cm 2 to 10 g / cm 2 .

これとは独立的に、上記三次元構造電極の厚さは、1~1000μmであり得る。上記の範囲内で、厚さが厚くなるほど、電極のエネルギー密度が向上される。 Independently of this, the thickness of the three-dimensional structural electrode can be 1 to 1000 μm. Within the above range, the thicker the thickness, the higher the energy density of the electrode.

一般に、電極の厚さが厚くなるほど、厚さ方向の電子伝導性が低下して電池の出力特性が減少するという問題がある。しかし、上記三次元構造電極の場合、上記の厚さ範囲で、厚さ方向でも円滑な電子伝導ネットワークが維持される利点がある。 Generally, as the thickness of the electrode becomes thicker, there is a problem that the electron conductivity in the thickness direction decreases and the output characteristics of the battery decrease. However, in the case of the three-dimensional structure electrode, there is an advantage that a smooth electron conduction network can be maintained even in the thickness direction within the thickness range.

一方、上記三次元構造電極に含まれた各物質についての詳しい説明は、以下のようである。 On the other hand, a detailed description of each substance contained in the three-dimensional structural electrodes is as follows.

上記複数の高分子繊維は、不均一に集合されて上記多孔性不織布を形成できるものであれば特に限定されないが、上記複数の高分子繊維を構成する高分子が耐熱性高分子であれば、電極の熱安定性の確保に有利である。 The plurality of polymer fibers are not particularly limited as long as they can be non-uniformly aggregated to form the porous non-woven fabric, but if the polymer constituting the plurality of polymer fibers is a heat-resistant polymer, the polymer fibers are not particularly limited. It is advantageous for ensuring the thermal stability of the electrode.

具体的には、上記複数の高分子繊維を構成する高分子は、ポリエチレンテレフタレート、ポリイミド、ポリアミド、ポリスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリエーテルイミド、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸、ポリビニルピロリドン、アガロース、アルジネート、ポリビニリデンヘキサフルオロプロピレン、ポリウレタン、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン及びこれらの誘導体からなる群より選択された少なくとも一つであり得る。 Specifically, the polymers constituting the plurality of polymer fibers are polyethylene terephthalate, polyimide, polyamide, polysulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, polyetherimide, polyvinyl alcohol, polyethylene oxide, and polyacrylic. It may be at least one selected from the group consisting of acid, polyvinylpyrrolidone, agarose, alginate, polyvinylidene hexafluoropropylene, polyurethane, polypyrrole, poly3,4-ethylenedioxythiophene, polyaniline and derivatives thereof.

本発明の一実施形態によれば、多孔性不織布にカーボンナノチューブ、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド及びカーボンナノ繊維を含む群より選択された少なくとも一つをさらに含み得る。この場合、上記多孔性不織布の強度及び電子伝導度を向上させることができる。 According to one embodiment of the present invention, the porous nonwoven fabric may further comprise at least one selected from the group comprising carbon nanotubes, graphene, graphene oxide, reduced graphene oxide and carbon nanofibers. In this case, the strength and electron conductivity of the porous nonwoven fabric can be improved.

上記活物質粒子は、上述したリチウム金属系酸化物、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、硫黄(S)、これらの誘導体、及びこれらの混合物を含む群より選択された少なくとも一つであり得る。具体的には、リチウム金属系酸化物及びその誘導体は、正極活物質として知られており、これを適用した電極は正極になり得る。一方、酸化物、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、硫黄(S)及びこれらの誘導体は、負極活物質として知られており、これを適用した電極は負極になり得る。 The active material particles are at least selected from the group containing the above-mentioned lithium metal oxides, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), derivatives thereof, and mixtures thereof. Can be one. Specifically, a lithium metal-based oxide and a derivative thereof are known as a positive electrode active material, and an electrode to which this is applied can be a positive electrode. On the other hand, oxides, silicon (Si), tin (Sn), germanium (Ge), sulfur (S) and derivatives thereof are known as negative electrode active materials, and electrodes to which these are applied can be negative electrodes.

また、上記活物質粒子は、その表面が炭素系化合物でコーティングされたものであり得る。これについては一般に周知された通りであるため、詳しい説明を省略する。 Further, the surface of the active material particles may be coated with a carbon-based compound. Since this is as is generally known, detailed description thereof will be omitted.

上記活物質粒子のうちリチウム金属系酸化物は、リチウムニッケル系酸化物、リチウムコバルト系酸化物、リチウムマンガン系酸化物、リチウムチタン系酸化物、リチウムニッケルマンガン系酸化物、リチウムニッケルコバルトマンガン系酸化物、リチウムニッケルコバルトアルミニウム系酸化物、リチウムリン酸鉄系酸化物、リチウムリン酸バナジウム系酸化物、リチウムリン酸マンガン系酸化物、リチウムケイ酸マンガン系酸化物、リチウムケイ酸鉄系酸化物、及びこれらの組合せを含む群から選択された少なくとも一つであり得る。 Among the above active material particles, the lithium metal oxides are lithium nickel oxides, lithium cobalt oxides, lithium manganese oxides, lithium titanium oxides, lithium nickel manganese oxides, and lithium nickel cobalt manganese oxides. , Lithium nickel cobalt aluminum oxide, lithium iron phosphate oxide, vanadium lithium phosphate oxide, manganese lithium phosphate oxide, manganese silicate oxide, iron silicate oxide, And at least one selected from the group containing these combinations.

すなわち、コバルト、マンガン、ニッケルまたはこれらの組合せの金属と、リチウムとの複合酸化物のうち一種以上を使用することができる。その具体的な例としては、以下の化学式のうちいずれか一つで表される化合物が挙げられる。 That is, one or more of the composite oxides of cobalt, manganese, nickel or a metal of a combination thereof and lithium can be used. Specific examples thereof include compounds represented by any one of the following chemical formulas.

Li1-b(0.90≦a≦1.8、0≦b≦0.5);Li1-b2-c(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05);LiE2-b4-c(0≦b≦0.5、0≦c≦0.05);LiNi1-b-cCoα(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α≦2);LiNi1-b-cCo2-αα(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2);LiNi1-b-cCo2-α(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2);LiNi1-b-cMnα(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α≦2);LiNi1-b-cMn2-αα(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2);LiNi1-b-cMn2-α(0.90≦a≦1.8、0≦b≦0.5、0≦c≦0.05、0<α<2);LiNi(0.90≦a≦1.8、0≦b≦0.9、0≦c≦0.5、0.001≦d≦0.1);LiNiCoMn(0.90≦a≦1.8、0≦b≦0.9、0≦c≦0.5、0≦d≦0.5、0.001≦e≦0.1);LiNiG(0.90≦a≦1.8、0.001≦b≦0.1);LiCoG(0.90≦a≦1.8、0.001≦b≦0.1);LiMnG(0.90≦a≦1.8、0.001≦b≦0.1);LiMn(0.90≦a≦1.8、0.001≦b≦0.1);QO;QS;LiQS;V;LiV;LiTO;LiNiVO;Li(3-f)(PO(0≦f≦2);Li(3-f)Fe(PO(0≦f≦2);、LiFePO、LiMnPO、LiCoPO、Li(PO、LiTi12、LiMnSiO、LiFeSiOLi a A 1-b R b D 2 (0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5); Li a E 1-b R b O 2-c D c (0.90 ≤ a) ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05); LiE 2-b R b O 4-c D c (0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05) ); Li a Ni 1-b-c Co b R c D α (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α ≦ 2); Li a Ni 1- bc Co b R c O 2-α Z α (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α <2 ); Li a Ni 1-b-c Co b R c O 2-α Z 2 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α <2); Li a Ni 1-b-c Mn b R c D α (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α ≦ 2 ); Li a Ni 1-b-c Mn b R c O 2-α Z α (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <α <2); Li a Ni 1-b-c Mn b R c O 2-α Z 2 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.5, 0 ≦ c ≦ 0.05, 0 <Α <2); Li a Ni b E c G d O 2 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.5, 0.001 ≦ d ≦ 0 .1); Li a Ni b Co c Mn d G e O 2 (0.90 ≦ a ≦ 1.8, 0 ≦ b ≦ 0.9, 0 ≦ c ≦ 0.5, 0 ≦ d ≦ 0.5 , 0.001 ≤ e ≤ 0.1); Li a NiG b O 2 (0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); Li a CoG b O 2 (0.90) ≤a ≤ 1.8, 0.001 ≤ b ≤ 0.1); Li a MnG b O 2 (0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); Li a Mn 2 G b O 4 (0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1); QO 2 ; QS 2 ; LiQS 2 ; V 2 O 5 ; LiV 2 O 5 ; LiTO 2 ; LiNiVO 4 Li (3-f) J 2 (PO 4 ) 3 (0 ≦ f ≦ 2); Li (3-f) Fe 2 ( PO 4 ) 3 (0 ≦ f ≦ 2 ); LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , LiMnSiO 4 , LiFeSiO 4 .

上記の化学式において、AはNi、Co、Mnまたはこれらの組合せであり、RはAl、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、希土類元素またはこれらの組合せであり、DはO、F、S、Pまたはこれらの組合せであり、EはCo、Mnまたはこれらの組合せであり、ZはF、S、Pまたはこれらの組合せであり、GはAl、Cr、Mn、Fe、Mg、La、Ce、Sr、Vまたはこれらの組合せであり、QはTi、Mo、Mnまたはこれらの組合せであり、TはCr、V、Fe、Sc、Yまたはこれらの組合せであり、JはV、Cr、Mn、Co、Ni、Cuまたはこれらの組合せである。 In the above chemical formula, A is Ni, Co, Mn or a combination thereof, R is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, a rare earth element or a combination thereof, and D is. O, F, S, P or a combination thereof, E is Co, Mn or a combination thereof, Z is F, S, P or a combination thereof, and G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or a combination thereof, Q is Ti, Mo, Mn or a combination thereof, T is Cr, V, Fe, Sc, Y or a combination thereof, and J is a combination thereof. V, Cr, Mn, Co, Ni, Cu or a combination thereof.

さらに、上記活物質粒子のうち酸化物は、鉄系酸化物、コバルト系酸化物、スズ系酸化物、チタン系酸化物、ニッケル系酸化物、亜鉛系酸化物、マンガン系酸化物、ケイ素酸化物、バナジウム系酸化物、銅系酸化物、及びこれらの組合せを含む群より選択された少なくとも一つであり得る。 Further, among the above active material particles, the oxides are iron-based oxides, cobalt-based oxides, tin-based oxides, titanium-based oxides, nickel-based oxides, zinc-based oxides, manganese-based oxides, and silicon oxides. , Vanadium oxides, copper oxides, and at least one selected from the group comprising combinations thereof.

すなわち、Fe、Co、SnO、TiO、NiO、Mn、Si、V、Cu及びこれらの組合せを含む群より選択された少なくとも一つであり得る(0.90≦x≦2.2、0.9≦y≦6)。 That is, it was selected from the group including Fe xOy , CoxOy , SnOy , TiOy , NiO , Mn xOy , Si xOy , VxOy , Cu xOy and combinations thereof . There can be at least one (0.90 ≦ x ≦ 2.2, 0.9 ≦ y ≦ 6).

具体的には、後述する実施例では、上記活物質粒子として過剰リチウム化酸化物(OLO;Over-Lithiated Oxide、0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65)を選択した。 Specifically, in the examples described later, as the active material particles, excess lithium oxide (OLO; Over-Lithated Oxide, 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 ) was selected.

一方、上記第1伝導性物質及び第2伝導性物質は、電子伝導ネットワークを形成可能な物質であれば特に限定されず、一次元(1D)または二次元(2D)形態のカーボン、金属あるいは伝導性高分子化合物が使用され得る。 On the other hand, the first conductive substance and the second conductive substance are not particularly limited as long as they are substances capable of forming an electron conduction network, and are one-dimensional (1D) or two-dimensional (2D) forms of carbon, metal, or conduction. Sexual polymer compounds can be used.

例えば、上記第1伝導性物質及び第2伝導性物質は、それぞれ独立して、カーボンナノチューブ、銀ナノワイヤ、ニッケルナノワイヤ、金ナノワイヤ、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン、これらの誘導体及びこれらの混合物を含む群より選択された少なくとも一つであり得る。 For example, the first conductive substance and the second conductive substance are independently carbon nanotubes, silver nanowires, nickel nanowires, gold nanowires, graphene, graphene oxide, reduced graphene oxide, polypyrrole, poly3,4. -It may be at least one selected from the group containing ethylenedioxythiophene, polyaniline, derivatives thereof and mixtures thereof.

本発明の一実施形態によれば、上記第1伝導性物質及び第2伝導性物質は、それぞれ独立して、カーボンナノチューブ、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド、または、これらのうち二つ以上の混合物であり得る。また、本発明の一実施形態によれば、上記第1伝導性物質及び第2伝導性物質は、カーボンナノチューブ、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド、または、これらのうち二つ以上の混合物の外に、銀ナノワイヤ、ニッケルナノワイヤ、金ナノワイヤ、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン、これらの誘導体、または、これらの混合物をさらに含み得る。 According to one embodiment of the present invention, the first conductive substance and the second conductive substance are independently carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, or two of them. It can be the above mixture. Further, according to one embodiment of the present invention, the first conductive substance and the second conductive substance are carbon nanotubes, graphene, graphene oxide, reduced graphene oxide, or a mixture of two or more thereof. In addition to silver nanowires, nickel nanowires, gold nanowires, polypyrrole, poly3,4-ethylenedioxythiophene, polyaniline, derivatives thereof, or mixtures thereof.

上記カーボンナノチューブとしては、多重壁カーボンナノチューブ(multi-wall carbon nanotube、MWCNT)などを使用し得る。 As the carbon nanotube, a multi-walled carbon nanotube (multi-wall carbon nanotube, MWCNT) or the like can be used.

以下、上記三次元構造電極について説明する。 Hereinafter, the three-dimensional structural electrode will be described.

上記三次元構造電極は、極性を有し得る。この場合、電解質に対して優れた濡れ性(wettability)を実現することができる。 The three-dimensional structure electrodes may have polarity. In this case, excellent wettability with respect to the electrolyte can be realized.

上記三次元構造電極は、正極及び負極から選択されたいずれか一つであり得る。 The tertiary structure electrode may be any one selected from the positive electrode and the negative electrode.

上記三次元構造電極は、活物質と第1伝導性物質とを複合化して活物質複合体を製造する段階と、高分子を溶媒に溶解して高分子溶液を製造する段階と、上記活物質複合体及び第2伝導性物質を分散媒に分散させてコロイド溶液を製造する段階と、上記高分子溶液及び上記コロイド溶液を同時に紡糸して三次元構造繊維を製造する段階と、上記三次元構造繊維を圧着する段階とを含む製造方法によって製造される。 The three-dimensional structural electrode has a stage of producing an active material composite by combining an active material and a first conductive substance, a stage of dissolving a polymer in a solvent to produce a polymer solution, and the above-mentioned active material. The stage of producing a colloidal solution by dispersing the composite and the second conductive substance in a dispersion medium, the stage of simultaneously spinning the polymer solution and the colloidal solution to produce a three-dimensional structural fiber, and the above-mentioned three-dimensional structure. Manufactured by a manufacturing method that includes the steps of crimping the fibers.

このとき、上記高分子溶液及び上記コロイド溶液を同時に紡糸して三次元構造繊維を製造する段階は、複数の高分子繊維を含む多孔性不織布を形成し、上記多孔性不織布に含まれた複数の高分子繊維の間に、上記活物質粒子及び上記伝導性物質を均一に充填して気孔を形成する一連の工程を含み得る。 At this time, at the stage of simultaneously spinning the polymer solution and the colloidal solution to produce a three-dimensional structural fiber, a porous non-woven fabric containing a plurality of polymer fibers is formed, and a plurality of porous non-woven fabrics contained in the porous non-woven fabric are formed. A series of steps of uniformly filling the active material particles and the conductive material between the polymer fibers to form pores may be included.

これは、上記高分子溶液及び上記コロイド溶液の二つの溶液を同時に噴射することで、上述したように優れた特性の三次元構造電極を製造する方法である。 This is a method of manufacturing a three-dimensional structural electrode having excellent characteristics as described above by simultaneously injecting two solutions, the polymer solution and the colloidal solution.

上記一連の工程において、上記活物質粒子としては、リチウム金属系酸化物、ケイ素(Si)、スズ(Sn)、ゲルマニウム(Ge)、硫黄(S)、これらの誘導体、及びこれらの混合物を含む群より選択された少なくとも一つを使用し得る。 In the above series of steps, the active material particles include lithium metal oxides, silicon (Si), tin (Sn), germanium (Ge), sulfur (S), derivatives thereof, and mixtures thereof. At least one of the more selected can be used.

具体的には、上記活物質複合体及び第2伝導性物質を含むコロイド溶液を上記高分子溶液と同時に紡糸することで、支持体の役割をする複数の高分子繊維によって相互連結された気孔構造を形成し、上記活物質粒子と第1伝導性物質との活物質複合体及び上記第2伝導性物質による三次元密集充填構造を形成して三次元構造電極を製造する方法である。 Specifically, by spinning a colloidal solution containing the active material complex and the second conductive substance at the same time as the polymer solution, a pore structure interconnected by a plurality of polymer fibers acting as a support. Is a method for producing a three-dimensional structural electrode by forming an active material composite of the active material particles and the first conductive material and a three-dimensional densely packed structure by the second conductive material.

以下、本発明の一実施形態で提供する三次元構造電極の製造方法について詳しく説明するが、上述した説明と重なる部分は省略する。 Hereinafter, the method for manufacturing the three-dimensional structure electrode provided in one embodiment of the present invention will be described in detail, but the portion overlapping with the above description will be omitted.

まず、高分子溶液及びコロイド溶液を同時に紡糸して三次元構造繊維を製造する段階である。 First, it is a stage in which a polymer solution and a colloidal solution are simultaneously spun to produce three-dimensional structural fibers.

上記高分子溶液は、高分子を溶媒に溶解して製造し、上記高分子溶液内の高分子の含量は、高分子の種類によって適切な粘度が得られるように調節し得る。本発明の一実施形態によれば、上記高分子溶液の総重量に対し、5~30重量%、5~25重量%、より詳しくは10~20重量%であり得る。このような範囲を満足する場合、上記高分子溶液の噴射によって複数の高分子繊維が形成され、それを通じて上記多孔性不織布を形成することができる。 The polymer solution is produced by dissolving the polymer in a solvent, and the content of the polymer in the polymer solution can be adjusted so that an appropriate viscosity can be obtained depending on the type of the polymer. According to one embodiment of the present invention, it may be 5 to 30% by weight, 5 to 25% by weight, more specifically 10 to 20% by weight, based on the total weight of the polymer solution. When such a range is satisfied, a plurality of polymer fibers are formed by spraying the polymer solution, through which the porous nonwoven fabric can be formed.

また、高分子溶液内の高分子の含量がこのような範囲を満足する場合、上記高分子溶液が紡糸されるノズルの終端で固まることが抑制され、上記高分子溶液の紡糸が円滑になり、上記高分子溶液が均一に紡糸されて、ビーズ(bead)が形成されることを防止することができる。 Further, when the content of the polymer in the polymer solution satisfies such a range, it is suppressed that the polymer solution is hardened at the end of the nozzle to which the polymer solution is spun, and the spinning of the polymer solution becomes smooth. It is possible to prevent the polymer solution from being uniformly spun to form beads.

上記溶媒は、上記高分子を溶解可能なものであれば特に限定されない。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン及びこれらの組合せを含む群より選択された少なくとも一つであり得る。 The solvent is not particularly limited as long as it can dissolve the polymer. For example, it may be at least one selected from the group comprising N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and combinations thereof.

上記高分子溶液及び上記コロイド溶液を同時に紡糸可能な方法であれば特に限定されないが、デュアルエレクトロスピニング、デュアルエレクトロスプレー、デュアルスプレー、及びこれらの組合せを含む群より選択されたいずれか一つの方法であり得る。 The method is not particularly limited as long as the polymer solution and the colloidal solution can be spun at the same time, but any one method selected from the group including dual electrospinning, dual electrospray, dual spray, and combinations thereof. could be.

具体的には、デュアルエレクトロスピニング法を使用でき、上記三次元密集充填構造及び均一な気孔の形成に有利である。 Specifically, a dual electrospinning method can be used, which is advantageous for the above-mentioned three-dimensional close-packing structure and formation of uniform pores.

また、50分~24時間実施し得る。このような実施時間の範囲内で上記三次元構造電極が形成され、特に実施時間が増加するほど、上記三次元構造電極内の活物質粒子のローディング量を向上させることができる。 It can also be carried out for 50 minutes to 24 hours. The three-dimensional structure electrode is formed within such a range of the implementation time, and the loading amount of the active material particles in the three-dimensional structure electrode can be improved as the implementation time increases.

上記高分子溶液の紡糸速度は2~15μl/minであり、上記コロイド溶液の紡糸速度は30~150μl/minであり得る。このような各溶液の紡糸速度範囲をすべて満足するとき、上記三次元構造電極を形成することができる。特に、上記コロイド溶液の紡糸速度を上記の範囲内で増加させる場合、上記三次元構造電極内の活物質粒子のローディング量を向上させることができる。 The spinning rate of the polymer solution may be 2 to 15 μl / min, and the spinning rate of the colloidal solution may be 30 to 150 μl / min. The three-dimensional structural electrodes can be formed when all of the spinning speed ranges of each of these solutions are satisfied. In particular, when the spinning speed of the colloidal solution is increased within the above range, the loading amount of the active material particles in the three-dimensional structure electrode can be improved.

ただし、上記高分子溶液の紡糸速度範囲を満足しない場合、上記高分子溶液が均一に紡糸されず、ビーズが形成される問題が生じ得る。また、上記コロイド溶液の紡糸速度範囲を満足しない場合、上記コロイド溶液が均一に紡糸されず、大きい液滴状態で落ちる問題が生じ得る。そこで、それぞれの溶液の紡糸速度を上記のように限定した。 However, if the spinning speed range of the polymer solution is not satisfied, the polymer solution may not be uniformly spun and a problem may occur in which beads are formed. Further, if the spinning speed range of the colloidal solution is not satisfied, the colloidal solution may not be uniformly spun and may fall in a large droplet state. Therefore, the spinning speed of each solution was limited as described above.

また、上記活物質粒子と第1伝導性物質とを複合化して活物質複合体を製造する場合、粉砕装置を用いて活物質粒子と第1伝導性物質とを混合することで行うことができる。上記粉砕装置としてはボールミルなどを使用し得る。 Further, when the active material composite is produced by combining the active material particles and the first conductive material, the active material particles and the first conductive material can be mixed by using a pulverizer. .. As the crushing device, a ball mill or the like can be used.

上記活物質粒子と第1伝導性物質とを複合化するとき、均一な複合体を生成するため、粉砕溶媒及び分散剤が添加され得る。 When the active material particles and the first conductive material are complexed, a pulverizing solvent and a dispersant may be added in order to form a uniform complex.

上記分散剤は、ポリビニルピロリドン、ポリ3,4-エチレンジオキシチオフェン:ポリスチレンスルホネート、これらの誘導体、及びこれらの混合物を含む群より選択された少なくとも一つであり得る。 The dispersant may be at least one selected from the group comprising polyvinylpyrrolidone, poly 3,4-ethylenedioxythiophene: polystyrene sulfonates, derivatives thereof, and mixtures thereof.

上記粉砕溶媒の種類としては、水(脱イオン水など)、アルコール類などが挙げられる。 Examples of the type of the pulverizing solvent include water (deionized water and the like), alcohols and the like.

このとき、上記分散剤の含量は、活物質粒子100重量部を基準にして、0.01~20重量部、詳しくは0.1~10重量部、より詳しくは0.25~5重量部であり得る。 At this time, the content of the dispersant is 0.01 to 20 parts by weight, more specifically 0.1 to 10 parts by weight, and more specifically 0.25 to 5 parts by weight, based on 100 parts by weight of the active material particles. could be.

以下、活物質複合体及び第2伝導性物質を分散媒に分散させてコロイド溶液を製造する段階について説明する。 Hereinafter, a step of producing a colloidal solution by dispersing the active substance complex and the second conductive substance in a dispersion medium will be described.

上記活物質粒子及び第1伝導性物質を一緒に粉砕する過程で活物質複合体が形成される。すなわち、粉砕過程で活物質粒子と第1伝導性物質とを相互凝集させて最終的に活物質複合体を形成する段階と、上記形成された活物質複合体及び上記第2伝導性物質を上記分散媒に分散させて上記コロイド溶液を製造する段階とを経ることになる。 An active material complex is formed in the process of crushing the active material particles and the first conductive material together. That is, in the pulverization process, the active material particles and the first conductive substance are mutually aggregated to finally form an active material complex, and the formed active material complex and the second conductive material are described above. It goes through the steps of producing the above-mentioned colloidal solution by dispersing it in a dispersion medium.

これは、上記コロイド溶液内に上記活物質複合体を均一に分散させるためであり、上記活物質複合体粒子の平均直径を限定したことに関連する。具体的には、上記コロイドを製造する前に、μm単位の平均直径を有する活物質複合体粒子をnm単位の平均直径を有するように粉砕すれば、上記コロイド溶液内への均一な分散に有利である。 This is to uniformly disperse the active material complex in the colloidal solution, and is related to limiting the average diameter of the active material complex particles. Specifically, if the active material composite particles having an average diameter in μm units are pulverized so as to have an average diameter in nm units before producing the colloid, it is advantageous for uniform dispersion in the colloid solution. Is.

上記コロイド溶液内の活物質複合体と第2伝導性物質との重量比は、100:50、詳しくは100:30、より詳しくは100:15であり得る。 The weight ratio of the active material complex to the second conductive substance in the colloidal solution may be 100:50, more specifically 100:30, more specifically 100:15.

上記の範囲の第2伝導性物質を含むことで、電極内の電子伝導ネットワークを提供して電気化学素子の出力向上に寄与することができ、上記のように上限及び下限を限定した理由は上述した通りである。 By including the second conductive substance in the above range, it is possible to provide an electron conduction network in the electrode and contribute to the improvement of the output of the electrochemical device, and the reason why the upper limit and the lower limit are limited as described above is described above. That's right.

上記コロイド溶液は分散剤をさらに含み得、上記コロイド溶液内の分散剤の含量は、上記コロイド溶液の総重量に対し、0.001~10重量%であり得る。 The colloidal solution may further contain a dispersant, and the content of the dispersant in the colloidal solution may be 0.001 to 10% by weight based on the total weight of the colloidal solution.

上記分散剤が上記の範囲で含まれるとき、上記コロイド溶液内の活物質粒子及び伝導性物質の分散を補助し、分散剤の量が多過ぎて上記コロイド溶液の粘度を高めること、または、分散剤の量が少な過ぎて分散剤として働かないことを防止することができる。 When the dispersant is contained in the above range, it assists in the dispersion of the active material particles and the conductive substance in the colloidal solution, and the amount of the dispersant is too large to increase the viscosity of the colloidal solution, or to disperse the dispersant. It is possible to prevent the agent from acting as a dispersant because the amount of the agent is too small.

具体的には、上記分散剤は、ポリビニルピロリドン、ポリ3,4-エチレンジオキシチオフェン及びこれらの混合物を含む群より選択された少なくとも一つであり得る。 Specifically, the dispersant may be at least one selected from the group comprising polyvinylpyrrolidone, poly3,4-ethylenedioxythiophene and mixtures thereof.

また、上記分散媒は、上記活物質粒子及び上記伝導性物質を分散可能なものであれば特に限定されない。例えば、脱イオン水、イソプロピルアルコール、ブタノール、エタノール、ヘキサノール、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン及びこれらの組合せを含む群より選択されたいずれか一つであり得る。 Further, the dispersion medium is not particularly limited as long as it can disperse the active material particles and the conductive substance. For example, any one selected from the group containing deionized water, isopropyl alcohol, butanol, ethanol, hexanol, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and combinations thereof. Can be.

本発明の他の態様では、正極と、負極と、上記正極と負極との間に位置する分離膜と、上記正極、負極及び分離膜に含浸された電解質とを含み、上記正極及び上記負極の少なくとも一つが上述した三次元構造電極である電気化学素子を提供する。 In another aspect of the present invention, the positive electrode, the negative electrode, the separation film located between the positive electrode and the negative electrode, and the electrolyte impregnated in the positive electrode, the negative electrode, and the separation film are included, and the positive electrode and the negative electrode are used. Provided is an electrochemical element in which at least one is the above-mentioned three-dimensional structural electrode.

上記電気化学素子は、上述した特徴を有する三次元構造電極を含むことで、電極の重量当り容量及び体積当り容量に優れ、高エネルギー密度及び高出力特性を有する。 Since the electrochemical element includes a three-dimensional structural electrode having the above-mentioned characteristics, the electrode is excellent in capacity per weight and capacity per volume, and has high energy density and high output characteristics.

上記電気化学素子は、リチウム二次電池、スーパーキャパシタ、リチウム-硫黄電池、ナトリウムイオン電池、リチウム-空気電池、亜鉛-空気電池、アルミニウム-空気電池及びマグネシウムイオン電池を含む群から選択されたいずれか一つであり得る。 The electrochemical element is any one selected from the group including lithium secondary batteries, supercapsules, lithium-sulfur batteries, sodium ion batteries, lithium-air batteries, zinc-air batteries, aluminum-air batteries and magnesium ion batteries. Can be one.

具体的には、リチウム二次電池であり得、一実施形態を後述する。図3は、本発明の一実施形態による三次元繊維構造電極を含むリチウム二次電池モジュールの概略図である。 Specifically, it may be a lithium secondary battery, and one embodiment will be described later. FIG. 3 is a schematic view of a lithium secondary battery module including a three-dimensional fiber structure electrode according to an embodiment of the present invention.

図3を参照すれば、本発明の一実施形態によるリチウム二次電池200は、正極212、負極213、上記正極212と負極213との間に配置された分離膜210、及び、上記正極212、負極213及び分離膜210に含浸された電解質(図示せず)を含み、さらに、電池容器220、及び上記電池容器220を封じ込む封込部材240を主な構成として含む。 Referring to FIG. 3, the lithium secondary battery 200 according to the embodiment of the present invention includes a positive electrode 212, a negative electrode 213, a separation film 210 arranged between the positive electrode 212 and the negative electrode 213, and the positive electrode 212. It contains an electrolyte (not shown) impregnated in the negative electrode 213 and the separation film 210, and further includes a battery container 220 and a sealing member 240 for sealing the battery container 220 as a main configuration.

一般に、上記リチウム二次電池200は、正極活物質を含む正極212と負極活物質を含む負極213との間に分離膜210を介在させ、正極212、負極213及び分離膜210を電池容器220に収納し、リチウム二次電池用電解質を注入した後、電池容器220を密閉して分離膜210の気孔にリチウム二次電池用電解質を含浸させることで製造できる。上記電池容器220は、円筒型、角形、コイン型、パウチ型などの多様な形態であり得る。円筒型リチウム二次電池の場合は、正極212、負極213及び分離膜210を順に積層した後、スパイラル状に巻き取った状態で電池容器220に収納してリチウム二次電池を構成することができる。 Generally, in the lithium secondary battery 200, a separation film 210 is interposed between a positive electrode 212 containing a positive electrode active material and a negative electrode 213 containing a negative electrode active material, and the positive electrode 212, the negative electrode 213 and the separation film 210 are placed in a battery container 220. It can be manufactured by storing and injecting an electrolyte for a lithium secondary battery, then sealing the battery container 220 and impregnating the pores of the separation film 210 with the electrolyte for a lithium secondary battery. The battery container 220 may have various forms such as a cylindrical shape, a square shape, a coin shape, and a pouch shape. In the case of a cylindrical lithium secondary battery, a positive electrode 212, a negative electrode 213, and a separation film 210 can be laminated in this order and then stored in a battery container 220 in a spirally wound state to form a lithium secondary battery. ..

リチウム二次電池の構造及び製造方法は当分野に周知されているため、本発明が曖昧に解釈されることを避けるため、詳しい説明は省略することにする。 Since the structure and manufacturing method of the lithium secondary battery are well known in the art, detailed description thereof will be omitted in order to avoid vague interpretation of the present invention.

また、上記電解質としては、有機溶媒にリチウム塩を溶解した非水電解質、ポリマー電解質、無機固体電解質、ポリマー電解質と無機固体電解質との複合材料などが挙げられる。 Examples of the electrolyte include a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent, a polymer electrolyte, an inorganic solid electrolyte, and a composite material of a polymer electrolyte and an inorganic solid electrolyte.

非水電解質の非水性有機溶媒は、電池の電気化学的反応に関与するイオンが移動できる媒質の役割をする。非水性有機溶媒としては、カーボネート系、エステル系、エーテル系、ケトン系、アルコール系または非プロトン性溶媒が挙げられる。非水性有機溶媒は、単独でまたは一つ以上混合して使用され、一つ以上混合して使用する場合の混合比は目的とする電池の性能に応じて適切に調節することができ、このことは当業者には容易に理解されるであろう。 The non-aqueous organic solvent of the non-aqueous electrolyte acts as a medium through which the ions involved in the electrochemical reaction of the battery can move. Examples of the non-aqueous organic solvent include carbonate-based, ester-based, ether-based, ketone-based, alcohol-based or aprotic solvents. The non-aqueous organic solvent is used alone or in combination of one or more, and the mixing ratio when one or more are mixed and used can be appropriately adjusted according to the performance of the target battery. Will be easily understood by those skilled in the art.

上記リチウム塩は、非水性有機溶媒に溶解され、電池内でリチウムイオンの供給源として働いて基本的なリチウム二次電池の作動を可能にし、正極と負極との間のリチウムイオンの移動を促進する役割を果たす物質である。 The lithium salt is dissolved in a non-aqueous organic solvent and acts as a source of lithium ions in the battery to enable the operation of a basic lithium secondary battery and promote the movement of lithium ions between the positive and negative electrodes. It is a substance that plays a role in

上記リチウム塩の代表的な例としては、LiPF、LiBF、LiSbF、LiAsF、LiCSO、LiClO、LiAlO、LiAlCl、LiN(C2x+1SO)(C2y+1SO)(ここで、x及びyは自然数である)、LiCl、LiI、LiB(C(リチウムビスオキサレートボレート(lithium bis(oxalato) borate;LiBOB)またはこれらの組合せが挙げられ、これらを支持電解塩として含む。リチウム塩の濃度は0.1~2.0M範囲内で使用することが望ましい。リチウム塩の濃度が上記の範囲に含まれれば、電解質が適切な伝導度及び粘度を有するため、優れた電解質性能を発揮し、リチウムイオンが効果的に移動することができる。 Typical examples of the above lithium salts are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 SO 3 , LiClO 4 , LiAlO 2 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C). y F 2y + 1 SO 2 ) (where x and y are natural numbers), LiCl, LiI, LiB (C 2 O 4 ) 2 (lithium bis (oxalato) boronate; LiBOB) or these. Combinations are mentioned and these are included as supporting electrolytic salts. It is desirable to use the lithium salt concentration in the range of 0.1 to 2.0 M. If the lithium salt concentration is included in the above range, the electrolyte is appropriate. Due to its high conductivity and viscosity, it exhibits excellent electrolyte performance and allows lithium ions to move effectively.

以下、本発明の望ましい実施例及び実験例を説明するが、下記の実施例は本発明の望ましい一実施例に過ぎず、本発明を限定するものではない。 Hereinafter, desirable examples and experimental examples of the present invention will be described, but the following examples are merely desirable examples of the present invention and do not limit the present invention.

〔リチウム二次電池用電極の製造及びそれを含むリチウム二次電池の製作〕
[実施例1]
(高分子溶液の製造)
まず、多孔性高分子を製造するための高分子としては、ポリアクリロニトリル(PAN)を使用し、それを溶解させる溶媒としては、N,N-ジメチルホルムアミドを使用した。
[Manufacturing of electrodes for lithium secondary batteries and manufacturing of lithium secondary batteries including them]
[Example 1]
(Manufacturing of polymer solution)
First, polyacrylonitrile (PAN) was used as the polymer for producing the porous polymer, and N, N-dimethylformamide was used as the solvent for dissolving the polyacrylonitrile (PAN).

上記ポリアクリロニトリルをN,N-ジメチルホルムアミドに添加した後、溶液内のポリアクリロニトリルの含量が10重量%になるように高分子溶液を製造した。 After adding the above polyacrylonitrile to N, N-dimethylformamide, a polymer solution was prepared so that the content of polyacrylonitrile in the solution was 10% by weight.

(活物質粒子/第1伝導性物質の活物質複合体の製造)
上記活物質粒子としては、平均直径5μmの過剰リチウム化酸化物(OLO)である0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65を使用し、第1伝導性物質としては、多重壁カーボンナノチューブ(MWCNT)を使用し、粉砕溶媒としては、脱イオン水を使用した。このとき、上記第1伝導性物質は、活物質粒子100重量部に対して20重量部を使用した。
(Manufacturing of active material particles / active material complex of first conductive material)
As the active material particles, 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 which is an excess lithium oxide (OLO) having an average diameter of 5 μm is used, and the first A multi-walled carbon nanotube (MWCNT) was used as the conductive substance, and deionized water was used as the pulverizing solvent. At this time, as the first conductive substance, 20 parts by weight was used with respect to 100 parts by weight of the active material particles.

粉砕溶媒100重量部にポリビニルピロリドン1重量部を分散剤として添加し、ボールミルを用いて500rpmで1時間粉砕し、0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65粒子とMWCNTとが均一に複合化された活物質複合体を製造した。 1 part by weight of polyvinylpyrrolidone was added as a dispersant to 100 parts by weight of the pulverizing solvent, and the mixture was pulverized at 500 rpm for 1 hour using a ball mill, and 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 . An active material composite in which O2 particles and MWCNT were uniformly composited was produced.

(コロイド溶液の製造)
また、活物質粒子/第1伝導性物質の活物質複合体及び第2伝導性物質を含むコロイド溶液を製造するため、第2伝導性物質としては多重壁カーボンナノチューブ(MWCNT)を使用し、分散媒としては脱イオン水及びイソプロピルアルコールを共溶媒(co-solvant)で使用した。
(Manufacturing of colloidal solution)
Further, in order to produce a colloidal solution containing active material particles / active material complex of the first conductive material and the second conductive material, a multi-walled carbon nanotube (MWCNT) is used as the second conductive material and dispersed. As a medium, deionized water and isopropyl alcohol were used as a co-solvent.

具体的には、上記分散媒(脱イオン水:イソプロピルアルコール(重量比)=3:7)に、上記のように製造した0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65/MWCNTの活物質複合体を添加して分散させた後、溶液内の0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65/MWCNTの活物質複合体の含量が5重量%になるように活物質複合体溶液を製造した。 Specifically, in the above dispersion medium (deionized water: isopropyl alcohol (weight ratio) = 3: 7), 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn produced as described above. After adding and dispersing the active material complex of 0.65 O 2 / MWCNT, 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 / MWCNT in the solution. An active material complex solution was prepared so that the content of the active material complex was 5% by weight.

上記活物質複合体溶液に上記第2伝導性物質を活物質粒子(0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65)の重量に対して10重量%で添加し、上記活物質複合体及びカーボンナノチューブが一緒に分散されたコロイド溶液を製造した。このとき、分散剤であるポリビニルピロリドンを上記コロイド溶液に対して1重量%含有されるように添加した。 Add the second conductive substance to the active material complex solution in an amount of 10% by weight based on the weight of the active material particles (0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 ). To prepare a colloidal solution in which the above active material complex and carbon nanotubes were dispersed together. At this time, polyvinylpyrrolidone as a dispersant was added so as to be contained in an amount of 1% by weight based on the colloidal solution.

(デュアルエレクトロスピニングを通じた電極の製造)
上記高分子溶液及び上記コロイド溶液を電界紡糸装置(NanoNC社製)に導入した後、上記高分子溶液の噴射速度を5μl/min、上記コロイド溶液の噴射速度を100μl/minにして、約240分間同時に紡糸(デュアルエレクトロスピニング)し、三次元構造繊維である多孔性不織布を製造した。
(Manufacturing of electrodes through dual electrospinning)
After introducing the polymer solution and the colloid solution into an electrospinning device (manufactured by NanoNC), the injection rate of the polymer solution is set to 5 μl / min and the injection rate of the colloid solution is set to 100 μl / min for about 240 minutes. At the same time, spinning (dual electrospinning) was performed to produce a porous non-woven fabric which is a three-dimensional structural fiber.

製造された多孔性不織布を、ロールプレス(KIPAE Ent.社製)を用いて圧縮し、水溶液を用いた洗浄過程を経て分散剤であるポリビニルピロリドンを除去した。これにより、活物質複合体及び第2伝導性物質を含む電極物質の面積当り重量(ローディング量)が7mg/cmであり、厚さが約30μmである三次元構造電極を収得した。 The produced porous nonwoven fabric was compressed using a roll press (manufactured by KIPAE Ent.), And the dispersant polyvinylpyrrolidone was removed through a washing process using an aqueous solution. As a result, a three-dimensional structural electrode having an area weight (loading amount) of 7 mg / cm 2 and a thickness of about 30 μm of the electrode material containing the active material composite and the second conductive material was obtained.

(リチウム二次電池の製作)
収得した三次元構造電極を正極として適用してリチウム二次電池を製作した。
(Manufacturing of lithium secondary battery)
A lithium secondary battery was manufactured by applying the obtained three-dimensional structural electrode as a positive electrode.

具体的には、負極としてリチウム金属を使用し、分離膜としてポリエチレン(Tonen 20μm)を使用した。 Specifically, lithium metal was used as the negative electrode, and polyethylene (Tonen 20 μm) was used as the separation membrane.

有機溶媒(エチレンカーボネート(EC):ジエチルカーボネート(DEC)=1:1(v:v))にLiPFの濃度が1Mになるように溶解して非水性電解液を製造した。
上記のように製造した正極、負極及び分離膜を入れてコイン型セルを形成した後、上記非水性電解液を注入してコイン型リチウム二次電池を製造した。
A non-aqueous electrolyte solution was produced by dissolving in an organic solvent (ethylene carbonate (EC): diethyl carbonate (DEC) = 1: 1 (v: v)) so that the concentration of LiPF 6 was 1 M.
After forming a coin-shaped cell by inserting the positive electrode, the negative electrode and the separation membrane manufactured as described above, the non-aqueous electrolyte solution was injected to manufacture a coin-type lithium secondary battery.

[比較例1]
(電極の製造)
実施例1で製造された活物質複合体(0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65/MWCNT)80重量部、導電材としてカーボンブラック10重量部、バインダー高分子としてポリフッ化ビニリデン(PVdF)10重量部を、溶剤であるN-メチル-2-ピロリドン(NMP)120重量部に添加して正極混合物スラリーを製造した。
[Comparative Example 1]
(Manufacturing of electrodes)
80 parts by weight of the active material composite (0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 / MWCNT) produced in Example 1, and 10 parts by weight of carbon black as a conductive material. , 10 parts by weight of polyvinylidene fluoride (PVdF) as a binder polymer was added to 120 parts by weight of N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a positive electrode mixture slurry.

上記正極混合物スラリーを正極集電体である厚さ20μmのアルミニウム(Al)薄膜に塗布し乾燥して正極を製造した後、ロールプレスを施して活物質複合体及び導電材を含む電極物質ローディング量が約7mg/cmである電極を製造した。 The positive electrode mixture slurry is applied to a 20 μm-thick aluminum (Al) thin film, which is a positive electrode current collector, and dried to produce a positive electrode, and then roll-pressed to load an electrode material containing an active material composite and a conductive material. An electrode having a value of about 7 mg / cm 2 was produced.

(リチウム二次電池の製作)
このような電極を正極として使用した点を除き、実施例1と同じ方法でリチウム二次電池を製作した。
(Manufacturing of lithium secondary battery)
A lithium secondary battery was manufactured by the same method as in Example 1 except that such an electrode was used as a positive electrode.

[比較例2]
コロイド溶液を製造するとき、活物質粒子/第1伝導性物質の活物質複合体の代りに活物質粒子のみを使用した点を除き、実施例1と同じ方法で電極及びリチウム二次電池を製造した。
[Comparative Example 2]
When producing the colloidal solution, the electrode and the lithium secondary battery are manufactured by the same method as in Example 1 except that only the active material particles are used instead of the active material particles / the active material composite of the first conductive material. did.

[比較例3]
実施例1で製造された活物質複合体(0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65/MWCNT)の代りに0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65のみを使用した点を除き、比較例1と同じ方法で電極及びリチウム二次電池を製造した。
[Comparative Example 3]
0.33Li 2 MnO 3.0 instead of the active material composite (0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 / MWCNT) produced in Example 1. An electrode and a lithium secondary battery were manufactured by the same method as in Comparative Example 1 except that only 67LiNi 0.18 Co 0.17 Mn 0.65 O 2 was used.

〔リチウム二次電池用電極及びそれを含むリチウム二次電池の評価〕
[実験例1:実施例1で製造された活物質/第1伝導性物質の活物質複合体の観察]
走査電子顕微鏡(SEM)を用いて、純粋0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65粒子(図1のa)、0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65/MWCNT複合体(図1のb及びc)を観察した。実施例1によって製造された0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65/MWCNT複合体は、純粋0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65粒子対比10重量%のMWCNTを混合して粉砕して得られ、粉砕溶媒としてはポリビニルピロリドンが添加された脱イオン水を使用した。ポリビニルピロリドンは分散剤の役割をし、粉砕によって0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65粒子とMWCNTとが均一な複合体を形成した(図1のb)。上記分散剤を使用しない場合は、図1のcのように複合体が形成されなかった。
[Evaluation of electrodes for lithium secondary batteries and lithium secondary batteries containing them]
[Experimental Example 1: Observation of Active Material Complex of Active Material / First Conductive Material Produced in Example 1]
Using a scanning electron microscope (SEM), pure 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 particles (a in FIG. 1), 0.33Li 2 MnO 3.0 .67LiNi 0.18 Co 0.17 Mn 0.65 O 2 / MWCNT complex (b and c in FIG. 1) was observed. The 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 / MWCNT complex produced according to Example 1 is pure 0.33Li 2 MnO 3.0.67LiNi 0.18 . Co 0.17 Mn 0.65 O It was obtained by mixing and pulverizing MWCNT of 10% by weight with respect to 2 particles, and deionized water to which polyvinylpyrrolidone was added was used as the pulverizing solvent. Polyvinylpyrrolidone acts as a dispersant, and by grinding, 0.33Li 2 MnO 3.0.67LiNi 0.18 Co 0.17 Mn 0.65 O 2 particles and MWCNT form a uniform complex (Fig. 1). B). When the above dispersant was not used, the complex was not formed as shown in c in FIG.

具体的には、上記粉砕はTaemyong Scientific社製の遊星ミルを用いて500rpmで30分間行った。 Specifically, the above-mentioned pulverization was carried out at 500 rpm for 30 minutes using a planetary mill manufactured by Taemyon Scientific.

[実験例2:実施例1で製造された電極の観察]
走査電子顕微鏡(SEM)を用いて実施例1によって製造された電極の断面を観察し、その結果を図4に示した。
[Experimental Example 2: Observation of the electrode manufactured in Example 1]
The cross section of the electrode manufactured by Example 1 was observed using a scanning electron microscope (SEM), and the results are shown in FIG.

図4によれば、実施例1の場合、多孔性不織布に含まれた複数の高分子繊維の間に存在する大きい空間が活物質粒子(0.33LiMnO・0.67LiNi0.18Co0.17Mn0.65)及びカーボンナノチューブによって完璧に満たされ、上記カーボンナノチューブによって上記活物質粒子が囲まれ、均一な電子伝導ネットワークが形成されたことが見られる。 According to FIG. 4, in the case of Example 1, the large space existing between the plurality of polymer fibers contained in the porous nonwoven fabric is the active material particles (0.33Li 2 MnO 3.0.67LiNi 0.18 Co. It can be seen that it was completely filled with 0.17 Mn 0.65 O 2 ) and carbon nanotubes, and the active material particles were surrounded by the carbon nanotubes to form a uniform electron conduction network.

また、図4によれば、実施例1によって製造された電極の断面でも活物質粒子とカーボンナノチューブとが均一に混合され、電極の厚さ方向に電子伝導ネットワークを形成したことが確認できる。 Further, according to FIG. 4, it can be confirmed that the active material particles and the carbon nanotubes are uniformly mixed even in the cross section of the electrode manufactured by Example 1 to form an electron conduction network in the thickness direction of the electrode.

さらに、図5は、実施例1によって製造された電極の外観写真である。 Further, FIG. 5 is an external photograph of the electrode manufactured by Example 1.

図5によれば、別途のバインダーを使用しなかったにもかかわらず、電極を曲げた状態でも活物質粒子が脱離せず電極構造がよく維持されることが確認できる。 According to FIG. 5, it can be confirmed that the active material particles are not detached and the electrode structure is well maintained even when the electrode is bent, even though a separate binder is not used.

[実験例3:電極の表面抵抗の比較]
実施例1、比較例1、比較例2及び比較例3で製造されたそれぞれの電極の表面抵抗を比べるため、電子伝導度を測定した。
[Experimental Example 3: Comparison of surface resistance of electrodes]
In order to compare the surface resistance of each of the electrodes manufactured in Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3, the electron conductivity was measured.

具体的には、上記電子伝導度はDasol Eng社製の4探針を用いて表面抵抗を測定し、その結果を図6に示した。 Specifically, the surface resistance of the electron conductivity was measured using a 4-probe manufactured by Dasol Eng, and the results are shown in FIG.

図6によれば、0.17S/cmの電子伝導度を見せた比較例1に比べ、実施例1では7.55S/cmと約44倍増加した数値を見せた。特に、類似した電極構造を有する比較例2の電極も、実施例1より低い数値である3.25S/cmの電子伝導度を見せた。一方、比較例3に比べれば、比較例1の電極で電子伝導度が向上したことが見られるが、これは一旦活物質複合体の内部に電子伝導ネットワークが形成されれば、通常の電極構造であっても電子伝導度が向上することを裏付ける根拠となる。これを通じて、実施例1の電極では、活物質と複合化されて活物質複合体を形成する第1伝導性物質によって活物質複合体の内部にも電子伝導ネットワークが形成され、高い電子伝導度を有することが分かり、別途の集電体がなくても電極として使用でき、それを含む電池の出力特性も比較例1及び比較例2に比べて向上すると類推することができる。 According to FIG. 6, compared with Comparative Example 1 which showed an electron conductivity of 0.17 S / cm, Example 1 showed a value of 7.55 S / cm, which was about 44 times higher. In particular, the electrode of Comparative Example 2 having a similar electrode structure also showed an electron conductivity of 3.25 S / cm, which is a lower value than that of Example 1. On the other hand, as compared with Comparative Example 3, it can be seen that the electrode of Comparative Example 1 has improved electron conductivity, which is a normal electrode structure once an electron conduction network is formed inside the active material complex. Even so, it is the basis for supporting the improvement in electron conductivity. Through this, in the electrode of Example 1, an electron conduction network is also formed inside the active material complex by the first conductive material which is complexed with the active material to form the active material complex, and high electron conductivity is achieved. It can be inferred that it can be used as an electrode without a separate current collector, and that the output characteristics of the battery containing it are also improved as compared with Comparative Example 1 and Comparative Example 2.

[実験例4:電極の繰返し曲げによる抵抗変化の比較]
実施例1及び比較例1で製造された電極の繰返し曲げによる抵抗の変化を比べるため、電子伝導度を測定した。
[Experimental Example 4: Comparison of resistance changes due to repeated bending of electrodes]
In order to compare the change in resistance due to repeated bending of the electrodes manufactured in Example 1 and Comparative Example 1, the electron conductivity was measured.

具体的には、上記抵抗の変化は、UTM装置を用いて幅1cm、長さ5cmの電極を半径5mmの円を形成するように20mm/sの速度で300回繰り返して曲げながら測定し、その結果を図7に示した。図7において、Rは曲げたときの抵抗値であり、Rは完全に伸ばしたときの抵抗値である。 Specifically, the change in resistance is measured by using a UTM device to repeatedly bend an electrode having a width of 1 cm and a length of 5 cm at a speed of 20 mm / s 300 times so as to form a circle with a radius of 5 mm. The results are shown in FIG. In FIG. 7, R is the resistance value when bent, and R 0 is the resistance value when fully extended.

図7によれば、実施例1の電極は抵抗の変化がほとんどない一方、比較例1の電極は抵抗の変化が益々大きくなることが分かる。これを通じて、実施例1の均一な電子伝導ネットワークは電極を曲げたときにも相変わらず維持され、柔軟状態の電極性能も優れると類推することができる。 According to FIG. 7, it can be seen that the electrode of Example 1 has almost no change in resistance, while the electrode of Comparative Example 1 has a larger change in resistance. Through this, it can be inferred that the uniform electron conduction network of Example 1 is maintained even when the electrode is bent, and the electrode performance in the flexible state is also excellent.

[実験例5:電池性能の比較]
実施例1、比較例1、比較例2及び比較例3によって製作されたそれぞれの電池の性能を測定するため、コイン型セルの放電電流速度を0.2Cから5Cに増加させながら放電容量を観察した。
[Experimental example 5: Comparison of battery performance]
In order to measure the performance of each of the batteries manufactured by Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3, the discharge capacity is observed while increasing the discharge current rate of the coin-shaped cell from 0.2C to 5C. did.

図8に、実施例1、比較例1、比較例2及び比較例3によって製造されたリチウム二次電池に対し、電極の重量当り放電容量を観察した結果を示した。 FIG. 8 shows the results of observing the discharge capacity per weight of the electrodes with respect to the lithium secondary batteries manufactured by Example 1, Comparative Example 1, Comparative Example 2 and Comparative Example 3.

図8によれば、放電電流速度が増加するほど、実施例1のリチウム二次電池は、比較例1及び比較例2のリチウム二次電池より高い放電容量を見せた。これは、比較例1ではカーボンブラックによる電子伝導ネットワークが十分且つ均一に形成されず、さらにバインダー高分子として使われたポリフッ化ビニリデンが上記電子伝導ネットワークを妨害したためである。 According to FIG. 8, as the discharge current rate increases, the lithium secondary battery of Example 1 shows a higher discharge capacity than the lithium secondary batteries of Comparative Example 1 and Comparative Example 2. This is because the electron conduction network due to carbon black was not sufficiently and uniformly formed in Comparative Example 1, and the polyvinylidene fluoride used as the binder polymer interfered with the electron conduction network.

一方、比較例3のリチウム二次電池より比較例1のリチウム二次電池が高い放電容量を見せることから、活物質と第1伝導性物質との複合体に形成された電子伝導ネットワークが通常の電極構造でも放電率特性を向上できることが確認された。 On the other hand, since the lithium secondary battery of Comparative Example 1 shows a higher discharge capacity than the lithium secondary battery of Comparative Example 3, an electron conduction network formed in a composite of an active material and a first conductive material is normal. It was confirmed that the discharge rate characteristics can be improved even with the electrode structure.

これに対し、実施例1の電極は、比較例1と異なってバインダー高分子が存在せず、カーボンナノチューブによって均一な電子伝導ネットワークを形成するため、リチウム二次電池を駆動するとき比較例1より優れた性能を見せると評価される。また、金属集電体を使用した比較例1と異なって、実施例1は支持体として不織布繊維のみを使用し、電子伝導ネットワークを形成するためカーボンナノチューブのみを使用したため、添加物質の減少によって電極の重量当り放電容量が比較例1に比べて大きく増加したことが分かる。さらに、類似した電極構造を有する比較例2と比べれば、活物質と第1伝導性物質との複合化を通じて活物質複合体の内部にも均一な電子伝導ネットワークが形成され、電極の性能が一層向上したことが分かる。これを通じて、実施例1のリチウム二次電池は、比較例1よりも軽いのに、高出力、高容量、高エネルギー密度の特性を見せることが分かる。 On the other hand, unlike Comparative Example 1, the electrode of Example 1 does not have a binder polymer and forms a uniform electron conduction network by carbon nanotubes. Therefore, when driving a lithium secondary battery, it is compared with Comparative Example 1. It is evaluated to show excellent performance. Further, unlike Comparative Example 1 in which a metal current collector was used, in Example 1 only non-woven fabric fibers were used as a support and only carbon nanotubes were used to form an electron conduction network. It can be seen that the discharge capacity per weight of the above was significantly increased as compared with Comparative Example 1. Further, as compared with Comparative Example 2 having a similar electrode structure, a uniform electron conduction network is formed inside the active material composite through the composite of the active material and the first conductive material, and the performance of the electrode is further improved. You can see that it has improved. Through this, it can be seen that the lithium secondary battery of Example 1 is lighter than Comparative Example 1, but exhibits high output, high capacity, and high energy density characteristics.

本発明は、上述した実施形態によって限定されるものではなく、他の多様な形態にも製造され得る。本発明が属する技術分野で通常の知識を持つ者であれば、本発明の技術的思想や必須の特徴を変更することなく他の具体的な形態で実施され得ることを理解できるであろう。したがって、上述した実施形態はあらゆる面で例示的なものであって、限定的なものではないと理解せねばならない。 The present invention is not limited to the embodiments described above, and may be manufactured in various other forms. Those who have ordinary knowledge in the technical field to which the present invention belongs will understand that it can be carried out in other concrete forms without changing the technical idea or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and are not limiting.

100:三次元構造電極
110:高分子繊維
120:活物質粒子
130:第1伝導性物質
140:第2伝導性物質
200:リチウム二次電池
212:正極
213:負極
210:分離膜
220:電池容器
240:封込部材
100: Three-dimensional structural electrode 110: Polymer fiber 120: Active material particles 130: First conductive material 140: Second conductive material 200: Lithium secondary battery 212: Positive electrode 213: Negative electrode 210: Separation film 220: Battery container 240: Containing member

Claims (15)

複数の高分子繊維を含む多孔性不織布と、
前記複数の高分子繊維の間に位置し、活物質粒子及び第1伝導性物質が粉砕混合されて形成された二次粒子である活物質複合体と、
前記活物質複合体の外面に位置する第2伝導性物質とを含み、
前記複数の高分子繊維によって相互連結された気孔構造が形成され、前記相互連結された気孔構造内に前記活物質複合体及び前記第2伝導性物質が均一に充填されて三次元充填構造を形成し、
前記二次粒子の内部及び表面に前記第1伝導性物質が位置し、前記二次粒子の内部にある前記第1伝導性物質は、前記活物質粒子同士を連結及び固定させる結合剤の役割を果たし、前記二次粒子の表面に位置した前記第1伝導性物質は、隣接する前記活物質複合体の表面に位置した他の前記第1伝導性物質、及び前記第2伝導性物質と連結する、三次元構造電極であって、
前記三次元構造電極が、活物質粒子100重量部を基準にして、5~50重量部の多孔性不織布、1~50重量部の第1伝導性物質、及び0.1~20重量部の第2伝導性物質を含む、三次元構造電極
A porous non-woven fabric containing multiple polymer fibers and
An active material composite, which is a secondary particle located between the plurality of polymer fibers and formed by pulverizing and mixing active material particles and a first conductive substance,
Containing a second conductive material located on the outer surface of the active material complex,
A pore structure interconnected by the plurality of polymer fibers is formed, and the active material complex and the second conductive substance are uniformly filled in the interconnected pore structure to form a three-dimensional packed structure. death,
The first conductive substance is located inside and on the surface of the secondary particles, and the first conductive substance inside the secondary particles serves as a binder for connecting and fixing the active material particles to each other. Indeed, the first conductive substance located on the surface of the secondary particles is linked to the other first conductive substance and the second conductive substance located on the surface of the adjacent active material complex. , A three-dimensional structure electrode
The three-dimensional structural electrode is a porous non-woven material having 5 to 50 parts by weight based on 100 parts by weight of active material particles, 1 to 50 parts by weight of the first conductive substance, and 0.1 to 20 parts by weight of the first conductive material. A three-dimensional structural electrode containing a two-conducting material .
前記多孔性不織布が、前記複数の高分子繊維が三次元的に不規則且つ連続的に連結された集合体である、請求項1に記載の三次元構造電極。 The three-dimensional structural electrode according to claim 1, wherein the porous nonwoven fabric is an aggregate in which the plurality of polymer fibers are three-dimensionally irregularly and continuously connected. 前記三次元構造電極の気孔度が、5~95体積%である、請求項1または2に記載の三次元構造電極。 The three-dimensional structural electrode according to claim 1 or 2, wherein the three-dimensional structural electrode has a porosity of 5 to 95% by volume. 前記複数の高分子繊維の平均直径が、0.001~1000μmである、請求項1~請求項のうちいずれか一項に記載の三次元構造電極。 The three-dimensional structural electrode according to any one of claims 1 to 3 , wherein the plurality of polymer fibers have an average diameter of 0.001 to 1000 μm. 前記活物質粒子の平均直径が、0.001~30μmである、請求項1~請求項のうちいずれか一項に記載の三次元構造電極。 The three-dimensional structural electrode according to any one of claims 1 to 4 , wherein the active material particles have an average diameter of 0.001 to 30 μm. 前記三次元構造電極の厚さが、1~1000μmである、請求項1~請求項のうちいずれか一項に記載の三次元構造電極。 The three-dimensional structure electrode according to any one of claims 1 to 5 , wherein the thickness of the three-dimensional structure electrode is 1 to 1000 μm. 前記活物質複合体及び第2伝導性物質を含む電極物質の面積当り重量が、0.001mg/cm~1g/cmである、請求項1~請求項のうちいずれか一項に記載の三次元構造電極。 The invention according to any one of claims 1 to 6 , wherein the weight per area of the electrode material containing the active material complex and the second conductive substance is 0.001 mg / cm 2 to 1 g / cm 2 . Three-dimensional structure electrode. 前記三次元構造電極が、複数個の電極が積層された多層構造である、請求項1~請求項のうちいずれか一項に記載の三次元構造電極。 The three-dimensional structure electrode according to any one of claims 1 to 6 , wherein the three-dimensional structure electrode has a multi-layer structure in which a plurality of electrodes are laminated. 前記活物質複合体及び第2伝導性物質を含む電極物質の面積当り重量が、0.002g/cm~10g/cmである、請求項に記載の三次元構造電極。 The three-dimensional structural electrode according to claim 8 , wherein the weight per area of the electrode material containing the active material composite and the second conductive material is 0.002 g / cm 2 to 10 g / cm 2 . 前記複数の高分子繊維を構成する高分子が、ポリエチレンテレフタレート、ポリイミド、ポリアミド、ポリスルホン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリエーテルイミド、ポリビニルアルコール、ポリエチレンオキサイド、ポリアクリル酸、ポリビニルピロリドン、アガロース、アルジネート、ポリビニリデンヘキサフルオロプロピレン、ポリウレタン、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン及びこれらの誘導体からなる群より選択された少なくとも一つである、請求項1~請求項のうちいずれか一項に記載の三次元構造電極。 The polymers constituting the plurality of polymer fibers are polyethylene terephthalate, polyimide, polyamide, polysulfone, polyvinylidene fluoride, polyacrylonitrile, polyethylene, polypropylene, polyetherimide, polyvinyl alcohol, polyethylene oxide, polyacrylic acid, polyvinylpyrrolidone, and the like. Claims 1 to 9 , which are at least one selected from the group consisting of agarose, alginate, polyvinylidene hexafluoropropylene, polyurethane, polypyrrole, poly 3,4-ethylenedioxythiophene, polyaniline and derivatives thereof. The three-dimensional structural electrode according to any one of the above. 前記活物質粒子が、炭素系物質、リチウム金属系酸化物、ケイ素、スズ、ゲルマニウム、硫黄、これらの誘導体、及びこれらの混合物を含む群より選択された少なくとも一つであり、
前記リチウム金属系酸化物が、鉄系酸化物、コバルト系酸化物、スズ系酸化物、チタン系酸化物、ニッケル系酸化物、亜鉛系酸化物、マンガン系酸化物、ケイ素酸化物、バナジウム系酸化物、銅系酸化物、及びこれらの組合せを含む群より選択された少なくとも一つである、請求項1~請求項10のうちいずれか一項に記載の三次元構造電極。
The active material particles are at least one selected from the group containing carbon-based substances, lithium metal-based oxides, silicon, tin, germanium, sulfur, derivatives thereof, and mixtures thereof.
The lithium metal oxide is an iron oxide, a cobalt oxide, a tin oxide, a titanium oxide, a nickel oxide, a zinc oxide, a manganese oxide, a silicon oxide, or a vanadium oxide. The three-dimensional structural electrode according to any one of claims 1 to 10 , which is at least one selected from the group containing a substance, a copper-based oxide, and a combination thereof.
前記第1伝導性物質及び第2伝導性物質が、それぞれ独立して、カーボンナノチューブ、銀ナノワイヤ、ニッケルナノワイヤ、金ナノワイヤ、グラフェン、グラフェンオキサイド、還元されたグラフェンオキサイド、ポリピロール、ポリ3,4-エチレンジオキシチオフェン、ポリアニリン、これらの誘導体及びこれらの混合物を含む群より選択された少なくとも一つである、請求項1~請求項11のうちいずれか一項に記載の三次元構造電極。 The first conductive substance and the second conductive substance are independently carbon nanotubes, silver nanowires, nickel nanowires, gold nanowires, graphene, graphene oxide, reduced graphene oxide, polypyrrole, poly 3,4-ethylene. The three-dimensional structural electrode according to any one of claims 1 to 11 , which is at least one selected from the group containing dioxythiophene, polyaniline, derivatives thereof and mixtures thereof. 前記三次元構造電極が、正極または負極である、請求項1~請求項12のうちいずれか一項に記載の三次元構造電極。 The three-dimensional structural electrode according to any one of claims 1 to 12 , wherein the three-dimensional structural electrode is a positive electrode or a negative electrode. 正極と、負極と、前記正極と負極との間に位置する分離膜と、前記正極、負極及び分離膜に含浸された電解質とを含み、
前記正極及び前記負極の少なくとも一つは、請求項1~請求項13のうちいずれか一項に記載の三次元構造電極である電気化学素子。
It contains a positive electrode, a negative electrode, a separation film located between the positive electrode and the negative electrode, and an electrolyte impregnated in the positive electrode, the negative electrode, and the separation film.
At least one of the positive electrode and the negative electrode is an electrochemical element which is the three-dimensional structural electrode according to any one of claims 1 to 13 .
前記電気化学素子が、リチウム二次電池、スーパーキャパシタ、リチウム-硫黄電池、ナトリウムイオン電池、リチウム-空気電池、亜鉛-空気電池、アルミニウム-空気電池及びマグネシウムイオン電池を含む群から選択されたいずれか一つである、請求項14に記載の電気化学素子。 The electrochemical element is selected from the group including a lithium secondary battery, a super capacitor, a lithium-sulfur battery, a sodium ion battery, a lithium-air battery, a zinc-air battery, an aluminum-air battery and a magnesium ion battery. The electrochemical element according to claim 14 , which is one.
JP2020503724A 2017-11-08 2018-11-08 Tertiary structure electrodes and electrochemical devices containing them Active JP7080965B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2017-0148354 2017-11-08
KR20170148354 2017-11-08
PCT/KR2018/013580 WO2019093800A1 (en) 2017-11-08 2018-11-08 Three-dimensionally structured electrode and electrochemical device comprising same

Publications (2)

Publication Number Publication Date
JP2020529102A JP2020529102A (en) 2020-10-01
JP7080965B2 true JP7080965B2 (en) 2022-06-06

Family

ID=66402500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020503724A Active JP7080965B2 (en) 2017-11-08 2018-11-08 Tertiary structure electrodes and electrochemical devices containing them

Country Status (7)

Country Link
US (1) US11646426B2 (en)
EP (1) EP3651239B1 (en)
JP (1) JP7080965B2 (en)
KR (1) KR102221085B1 (en)
CN (2) CN209104268U (en)
PL (1) PL3651239T3 (en)
WO (1) WO2019093800A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209104268U (en) * 2017-11-08 2019-07-12 株式会社Lg化学 Electrode with three-dimensional structure and the electrochemical appliance comprising it
JP7107809B2 (en) * 2018-10-18 2022-07-27 トヨタ自動車株式会社 Positive electrode for secondary battery
KR102203959B1 (en) * 2019-05-24 2021-01-19 울산과학기술원 Foldable electrode architectures, its manufacturing method and flexible device comprising the same
KR102365020B1 (en) * 2019-07-25 2022-02-21 한양대학교 산학협력단 Method for Preparing Composite Materials Using Slurries Containing Reduced Graphene Oxide
JP7444561B2 (en) * 2019-08-08 2024-03-06 株式会社東芝 Aluminum electrolytic capacitor, electrical equipment, and method for manufacturing aluminum electrolytic capacitor
JP7088148B2 (en) 2019-08-30 2022-06-21 株式会社豊田中央研究所 Equipment for manufacturing active material complex and method for manufacturing active material complex
CN111129427B (en) * 2019-12-24 2022-03-18 桑德新能源技术开发有限公司 Silicon-carbon cathode and preparation method thereof
CN111041708A (en) * 2019-12-30 2020-04-21 浙江清华柔性电子技术研究院 Composite membrane, preparation method thereof and pressure sensor
CN111416124B (en) * 2020-03-27 2021-07-27 陕西科技大学 Self-standing Sn-SnS/CNTs @ C flexible film and preparation and application thereof
CN112002559B (en) * 2020-08-28 2022-01-28 西京学院 Graphite/gold/polyaniline pseudo-capacitance electrode material and preparation method and application thereof
CN114335556A (en) * 2020-09-28 2022-04-12 中国科学院苏州纳米技术与纳米仿生研究所 Solid electrode, preparation method and application thereof
CN112164803B (en) * 2020-11-03 2022-03-25 天目湖先进储能技术研究院有限公司 Three-dimensional dielectric polyacrylonitrile/nano silver-lithium composite material and preparation method thereof
EP4305689A1 (en) * 2021-03-12 2024-01-17 Lawrence Livermore National Security, LLC Inertially enhanced mass transport using porous flow-through electrodes with periodic lattice structures
EP4086980A1 (en) * 2021-05-03 2022-11-09 Napptilus Battery Labs, S.L. Hybrid nanogel electrodes and cell stacking in distributed architectures for high power electrical energy hybrid storage systems
CN114105259A (en) * 2021-12-01 2022-03-01 南京环保产业创新中心有限公司 Cu-Co-PAC particle electrode, preparation method and application thereof
CN114890478A (en) * 2022-05-13 2022-08-12 武汉科技大学 Superlattice material, preparation method thereof and application of superlattice material in modification of lithium-sulfur battery diaphragm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208147A (en) 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2010090819A (en) 2008-10-08 2010-04-22 Mitsubishi Heavy Ind Ltd Gas turbine and its operating method at stop
WO2016182100A1 (en) 2015-05-13 2016-11-17 대한민국(산림청 국립산림과학원장) Three-dimensional mesh structure form electrode for electrochemical device, method for producing same, and electrochemical device comprising same

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400866B2 (en) 2009-03-09 2014-01-29 株式会社クラレ Conductive sheet and electrode
GB0922377D0 (en) 2009-12-22 2010-02-03 Arab Gulf University The Mutant LDL receptor
KR101088073B1 (en) 2010-10-16 2011-12-01 주식회사 샤인 Battery having electrode structure with metal long fibers and method of fabricating the same
US9065136B2 (en) 2011-09-14 2015-06-23 Samsung Sdi Co., Ltd. Positive electrode for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
CN102593436A (en) * 2012-02-27 2012-07-18 清华大学 Self-supporting flexible carbon nano-tube paper composite electrode material for lithium ion battery
KR101477782B1 (en) 2013-04-11 2014-12-31 한국과학기술원 Electrode for lithum-sulphur secondary battery using composite of polymer nanofiber, aluminum thin film, carbon nanotube and sulphur, and fabricating method thereof
KR101770869B1 (en) 2013-10-31 2017-09-05 주식회사 엘지화학 Positive electrode material slurry for a lithium secondary battery comprising at least two conductive material and lithium secondary battery using the same
JP6310242B2 (en) 2013-12-03 2018-04-11 三星エスディアイ株式会社Samsung SDI Co., Ltd. A positive electrode for a secondary battery, and a secondary battery.
CN103730630A (en) * 2013-12-25 2014-04-16 北京大学深圳研究生院 Combined electrode of battery and preparation method thereof
KR101622354B1 (en) * 2014-10-14 2016-05-18 울산과학기술원 Methode of manufacturing three-dimensional porous-structured electrode, and electrochemical device having the electrode
KR101653164B1 (en) * 2014-11-25 2016-09-01 울산과학기술원 Three-dimensional porous-structured current colletor, method of manufacturing the same, electrode including the same, method of manufacturing the same electrode, and electrochemical device including the same current colletor
US10826113B2 (en) * 2015-04-13 2020-11-03 Global Graphene Group, Inc. Zinc ion-exchanging energy storage device
US10128508B2 (en) 2015-12-09 2018-11-13 Lg Chem, Ltd. Positive electrode material slurry for lithium secondary battery including at least two conductive materials and lithium secondary battery using the same
KR101728828B1 (en) * 2016-04-01 2017-04-20 울산과학기술원 Three-dimensional porous-structured electrode , and electrochemical device having the electrode
KR101915221B1 (en) * 2016-12-21 2018-11-05 이종혁 a Transparent mirror display device and a Video transmission system of cloud server using the same
CN209104268U (en) * 2017-11-08 2019-07-12 株式会社Lg化学 Electrode with three-dimensional structure and the electrochemical appliance comprising it
US20200335767A1 (en) * 2019-04-19 2020-10-22 Cornell University Non-planar electrodes, method of making same, and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208147A (en) 1999-01-11 2000-07-28 Toyota Motor Corp Lithium ion secondary battery
JP2010090819A (en) 2008-10-08 2010-04-22 Mitsubishi Heavy Ind Ltd Gas turbine and its operating method at stop
WO2016182100A1 (en) 2015-05-13 2016-11-17 대한민국(산림청 국립산림과학원장) Three-dimensional mesh structure form electrode for electrochemical device, method for producing same, and electrochemical device comprising same

Also Published As

Publication number Publication date
EP3651239A1 (en) 2020-05-13
WO2019093800A1 (en) 2019-05-16
CN209104268U (en) 2019-07-12
PL3651239T3 (en) 2023-10-02
EP3651239A4 (en) 2020-08-26
CN109755497B (en) 2022-10-25
EP3651239B1 (en) 2023-07-05
CN109755497A (en) 2019-05-14
US20210050600A1 (en) 2021-02-18
KR102221085B1 (en) 2021-02-26
KR20190052652A (en) 2019-05-16
JP2020529102A (en) 2020-10-01
US11646426B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
JP7080965B2 (en) Tertiary structure electrodes and electrochemical devices containing them
KR101653164B1 (en) Three-dimensional porous-structured current colletor, method of manufacturing the same, electrode including the same, method of manufacturing the same electrode, and electrochemical device including the same current colletor
KR101622354B1 (en) Methode of manufacturing three-dimensional porous-structured electrode, and electrochemical device having the electrode
KR101728828B1 (en) Three-dimensional porous-structured electrode , and electrochemical device having the electrode
Kang et al. Binder-free electrodes and their application for Li-ion batteries
US10686217B2 (en) Lithium-sulfur secondary battery containing gradient electrolyte
Luo et al. Graphene-roll-wrapped Prussian blue nanospheres as a high-performance binder-free cathode for sodium-ion batteries
CN107623103B (en) Lithium-sulfur battery cell electrode
JP7062153B2 (en) Tertiary structure electrodes and electrochemical devices containing them
KR101865384B1 (en) Three-dimensional porous-structured electrode, and electrochemical device having the electrode
Sharma et al. Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects
KR20140038190A (en) Composite anode active material, anode and lithium battery containing the same, and preparation method thereof
US10862107B2 (en) Composite anode active material, anode and lithium battery including the composite anode active material, and method of preparing the composite anode active material
Yang et al. Recent advances in electrospinning nanofiber materials for aqueous zinc ion batteries
KR20180072473A (en) Three-dimensional porous-structured electrode, and electrochemical device having the electrode
Jishnu et al. Electrospun Fibrous Vanadium Pentoxide Cathodes for Lithium-Ion Batteries
Pei New Porous Nanomaterials For Battery and Supercapacitor
Laishram Electrospun Cobalt Based Composites as Anodes for Lithium-Ion Batteries
JP2017016944A (en) Lithium ion secondary battery
Yan Advanced Composite Solid Electrolyte Designs Toward High-Performance All-Solid-State Li Batteries
CN113943012A (en) Ultra-long lithium fluoride nanofiber and preparation method and application thereof
Li Preparation and Integration of Composite Nanofiber Anodes in Advanced Lithium-Ion Batteries.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220525

R150 Certificate of patent or registration of utility model

Ref document number: 7080965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150