JP7076619B2 - Plant-derived lactic acid bacteria fermented hydrogen water and its manufacturing method - Google Patents

Plant-derived lactic acid bacteria fermented hydrogen water and its manufacturing method Download PDF

Info

Publication number
JP7076619B2
JP7076619B2 JP2021133707A JP2021133707A JP7076619B2 JP 7076619 B2 JP7076619 B2 JP 7076619B2 JP 2021133707 A JP2021133707 A JP 2021133707A JP 2021133707 A JP2021133707 A JP 2021133707A JP 7076619 B2 JP7076619 B2 JP 7076619B2
Authority
JP
Japan
Prior art keywords
lactic acid
fermentation
kelp
acid bacteria
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021133707A
Other languages
Japanese (ja)
Other versions
JP2022036049A (en
Inventor
修三 小野寺
Original Assignee
小野寺 久子
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小野寺 久子 filed Critical 小野寺 久子
Publication of JP2022036049A publication Critical patent/JP2022036049A/en
Application granted granted Critical
Publication of JP7076619B2 publication Critical patent/JP7076619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

この発明は、植物性乳酸菌発酵水素水及びその製法にかかり、特にヨウ素を含有したものに関する。
なお本願においては、小文字のlを使用したときの紛らわしさを避けるため、容量の単位である、リットルをL、ミリリットルをmLと表記する。また、以下の説明において、植物性乳酸菌発酵水素水を単に水素水と省略して表現することがある。
The present invention relates to fermented hydrogen water of plant-derived lactic acid bacteria and a method for producing the same, and particularly relates to those containing iodine.
In the present application, in order to avoid confusion when lowercase l is used, liter, which is a unit of volume, is referred to as L, and milliliter is referred to as mL. Further, in the following description, the fermented hydrogen water of plant-derived lactic acid bacteria may be simply abbreviated as hydrogen water.

植物性乳酸菌発酵水素水とは、糖分と塩を加えた水に玄米を浸漬し、糖分を栄養源にして玄米に共生する自然の乳酸菌を増殖させて乳酸発酵すること(以下、この発酵形式を、玄米浸漬発酵という)により、比較的大量の乳酸菌と乳酸及び微量の水素を含むようになった植物性乳酸菌飲料である。
このような水素を含む飲料水は水素水とも称される。また、この水素水が還元側(酸化還元電位がマイナス(-)側)にあるものは、還元水素水と称される。
Fermented hydrogen water with plant-derived lactic acid bacteria is the fermentation of brown rice by immersing brown rice in water containing sugar and salt, and using sugar as a nutrient source to grow natural lactic acid bacteria that coexist with brown rice. It is a vegetable lactic acid bacterium beverage that contains a relatively large amount of lactic acid bacteria, lactic acid and a trace amount of hydrogen by (called brown rice immersion fermentation).
Drinking water containing such hydrogen is also referred to as hydrogen water. Further, when this hydrogen water is on the reduction side (oxidation-reduction potential is on the minus (-) side), it is called reduced hydrogen water.

なお、水素を発生させる方式は複数あり、例えば、本願発明のような乳酸発酵により水素を発生する発酵式と、外部より水素ガスを液中へ注入して混合する注入式がある。
このうち、注入式は注入時に水素が最大となり、その後は拡散するだけとなる。これに対して、発酵式は飲用するまで継続して水素を発生することができる。
There are a plurality of methods for generating hydrogen. For example, there are a fermentation method for generating hydrogen by lactic acid fermentation as in the present invention and an injection method in which hydrogen gas is injected into a liquid from the outside and mixed.
Of these, in the injection type, hydrogen becomes the maximum at the time of injection, and then only diffuses. On the other hand, the fermentation method can continuously generate hydrogen until it is drunk.

上記の米浸漬発酵による植物性乳酸菌発酵水素水は公知であり、糖分等が添加された水へ玄米を浸漬するだけで、乳酸菌の栄養源として玄米を糖化処理することなく、容易に製造できる。しかも玄米に生息する自然の乳酸菌を利用するので、特別な乳酸菌を購入する等の必要がない。 The above-mentioned fermented hydrogen water of plant-derived lactic acid bacteria by rice immersion fermentation is known, and can be easily produced by simply immersing brown rice in water to which sugar or the like is added, without saccharifying brown rice as a nutrient source for lactic acid bacteria. Moreover, since natural lactic acid bacteria that inhabit brown rice are used, there is no need to purchase special lactic acid bacteria.

この水素水を飲用すると、液中の水素が体内で抗酸化作用をして健康増進に役立つものとされている。しかも、この水素は発酵式のため飲用されるまで継続して発生し、水素量の減少を抑制できる。
この水素水中の乳酸菌は、過酷な環境下での耐性が強く、飲用すると腸内まで生きて届き易いとされる植物性乳酸菌である。腸内に入ると水素を発生し、この水素が活性酸素を還元し、腸内フローラを改善される。しかも、水中に添加された糖類を栄養源とする乳酸菌は大量に増殖できるので、腸内に届く乳酸菌の量が多くなり、腸内フローラの改善により大きく貢献できる。
When this hydrogen water is drunk, the hydrogen in the liquid has an antioxidant effect in the body and is said to be useful for health promotion. Moreover, since this hydrogen is a fermentation type, it is continuously generated until it is drunk, and the decrease in the amount of hydrogen can be suppressed.
This lactic acid bacterium in hydrogen water is a plant-derived lactic acid bacterium that is highly resistant to harsh environments and is said to easily reach the intestines when swallowed. When it enters the intestine, it generates hydrogen, which reduces active oxygen and improves the intestinal flora. Moreover, since lactic acid bacteria using sugars added to water as a nutrient source can grow in large quantities, the amount of lactic acid bacteria that reach the intestine increases, which can greatly contribute to the improvement of the intestinal flora.

乳酸菌飲料の製造における従来の製法は、原料となる玄米と糖類及び塩を水に入れ、この玄米を浸漬した状態の液体(以下、発酵液という)を所定温度に維持し、所定日数で玄米に共生する植物性乳酸菌を増殖させながら乳酸発酵させるようになっている。
乳酸発酵により、乳酸と微量の水素が発生する。この水素は還元体であり発酵液中に溶存して酸化還元電位を下げる。したがって、溶存水素の変化は酸化還元電位の変化と相関があり、乳酸発酵の状況を把握する指標になる。
The conventional manufacturing method in the production of lactic acid bacteria beverages is to put brown rice, sugar and salt as raw materials in water, maintain the liquid in which the brown rice is immersed (hereinafter referred to as fermented liquid) at a predetermined temperature, and turn it into brown rice in a predetermined number of days. Lactic acid fermentation is carried out while growing symbiotic plant-derived lactic acid bacteria.
Lactic acid fermentation produces lactic acid and trace amounts of hydrogen. This hydrogen is a reducing substance and dissolves in the fermentation broth to lower the redox potential. Therefore, the change in dissolved hydrogen correlates with the change in redox potential, and is an index for grasping the state of lactic acid fermentation.

また、乳酸発酵が進むと乳酸濃度が増加することにより発酵液のPHが低下するので、PHによっても発酵の状況を把握できる。
例えば、乳酸発酵により産生した乳酸が所望量になるときの酸化還元電位及びPHを発酵完了の判断基準値とすれば、乳酸発酵する発酵液の酸化還元電位及びPHを定期的に測定し、それぞれが判断基準値になったとき、産生された乳酸が所望量になったと判断できる。
In addition, as the lactic acid fermentation progresses, the pH of the fermented liquid decreases as the lactic acid concentration increases, so the state of fermentation can be grasped from the PH as well.
For example, if the oxidation-reduction potential and PH when the amount of lactic acid produced by lactic acid fermentation reaches a desired amount are set as the criteria for determining the completion of fermentation, the oxidation-reduction potential and PH of the fermentation broth to be fermented with lactic acid are periodically measured and respectively. When is the judgment standard value, it can be judged that the amount of lactic acid produced has reached a desired amount.

なお、玄米を原料とする植物性乳酸菌飲料の製法は種々知られており、例えば、特許文献1~3がある。これらはいずれも、玄米等の糖質を糖化処理してから、玄米とは別に用意した乳酸菌を添加して乳酸発酵するものである。本願発明のように、玄米は共生する乳酸菌を利用するのみであり、玄米等の糖化処理を不要とするものではない。 Various methods for producing a plant-derived lactic acid bacteria beverage using brown rice as a raw material are known, and for example, Patent Documents 1 to 3 are available. In all of these, sugars such as brown rice are saccharified and then lactic acid fermentation is performed by adding lactic acid bacteria prepared separately from brown rice. As in the invention of the present application, brown rice only utilizes lactic acid bacteria that coexist, and does not require saccharification treatment of brown rice or the like.

なお、特許文献1には、玄米の糖化液等に乳酸菌を作用させて玄米液を作成し、これを主成分として飲料水を作ることが記載されている。
特許文献2には、米を糖化した甘酒、もしくは糖分を添加した米に、特定の乳酸菌を加えて発酵させることが記載されている。
特許文献3には、多糖類、野菜・果物及び海藻とを、乳酸菌と酵母を共棲発酵して発酵エキスを作り、これを主成分とする抗酸化飲料とすることが記載されている。
In addition, Patent Document 1 describes that a lactic acid bacterium is allowed to act on a saccharified solution of brown rice to prepare a brown rice solution, and drinking water is prepared using this as a main component.
Patent Document 2 describes that amazake made by saccharifying rice or rice to which sugar is added is fermented by adding a specific lactic acid bacterium.
Patent Document 3 describes that polysaccharides, vegetables / fruits and seaweed are co-fermented with lactic acid bacteria and yeast to produce a fermented extract, which is used as a main component as an antioxidant beverage.

特許文献1:特開昭62-36169号公報
特許文献2:特開2010-142214号公報
特許文献3:特開2013-133423号公報
Patent Document 1: Japanese Patent Application Laid-Open No. 62-36169 Patent Document 2: Japanese Patent Application Laid-Open No. 2010-142214 Patent Document 3: Japanese Patent Application Laid-Open No. 2013-133423

ところで、上記植物性乳酸菌発酵水素水は、抗酸化剤としての水素と腸内フローラを改善する植物性乳酸菌を主成分とする単純なものである。したがって、他の高機能成分、例えば、殺菌作用のあるヨウ素や、腸内フローラの活性化やその他人体に対する有用な働きをする水溶性食物繊維を追加できればより高機能な水素水とすることができる。また、食味をより向上させたり、乳酸発酵の速度を速くできればなお好ましいものになる。 By the way, the above-mentioned fermented hydrogen water of plant-derived lactic acid bacteria is a simple one containing hydrogen as an antioxidant and plant-derived lactic acid bacteria that improve the intestinal flora as main components. Therefore, if other highly functional components such as iodine having a bactericidal action and water-soluble dietary fiber having an activation of the intestinal flora and other useful functions for the human body can be added, hydrogen water with higher functionality can be obtained. .. Further, it is more preferable if the taste can be further improved and the rate of lactic acid fermentation can be increased.

なかでもヨウ素は、推奨量が130μg/日、摂取上限が3mg/日とされている、健康維持に必須の成分であり、昆布等の海藻類から容易に摂取できる。
しかし、この成分量を単純に発酵式の水素水へ混入させると、水素水の機能を損なってしまうおそれが強い。なお、ヨウ素の3mgを摂取規準量ということにする。
Among them, iodine is an essential component for maintaining health, with a recommended amount of 130 μg / day and an upper limit of intake of 3 mg / day, and can be easily ingested from seaweeds such as kelp.
However, if the amount of this component is simply mixed with the fermented hydrogen water, there is a strong possibility that the function of the hydrogen water will be impaired. In addition, 3 mg of iodine is referred to as an intake standard amount.

すなわち、ヨウ素には強い殺菌作用があるため、これを水素水へ加えると、液中で発酵増殖する生菌である乳酸菌が滅菌されてしまい、腸内フローラを改善する乳酸菌飲料としては不適切な少ない乳酸菌数になってしまうからである。この種の発酵乳酸菌飲料に必要な乳酸菌数は、一般に、10の7~10乗オーダー程度の個数/mL程度とされていることが多いが、このような菌数を確保して発酵することが難しい。 That is, since iodine has a strong bactericidal action, when it is added to hydrogen water, lactic acid bacteria, which are viable bacteria that ferment and proliferate in the liquid, are sterilized, which is inappropriate as a lactic acid bacteria beverage that improves the intestinal flora. This is because the number of lactic acid bacteria is small. The number of lactic acid bacteria required for this type of fermented lactic acid bacteria beverage is generally about 10 to the 7th to 10th power order / mL, but it is possible to secure such a number of bacteria for fermentation. difficult.

特に、米浸漬発酵では、乳酸菌の栄養源として玄米は関係なく、液中に添加された糖分を栄養源とするので、この発酵中にヨウ素を同時に添加すると、ヨウ素は液中に分散する発酵中の乳酸菌に対して殺菌する機会が多くなり、増殖する乳酸菌数に対するヨウ素の影響が顕著になる。例えば、必要とするヨウ素を乳酸発酵と同時に全量添加すると、良好な乳酸発酵が阻害されることになる。
したがって、乳酸菌と共存できるヨウ素の添加が必要になる。
In particular, in rice immersion fermentation, brown rice is not related to the nutrient source of lactic acid bacteria, and the sugar added in the liquid is used as the nutrient source. Therefore, if iodine is added at the same time during this fermentation, iodine is dispersed in the liquid. There are more opportunities to sterilize the lactic acid bacteria inside, and the effect of iodine on the number of growing lactic acid bacteria becomes remarkable. For example, if the required iodine is added in full at the same time as lactic acid fermentation, good lactic acid fermentation will be hindered.
Therefore, it is necessary to add iodine that can coexist with lactic acid bacteria.

なお、上記特許文献3には、多糖類と、野菜・果物と、海藻とを、乳酸菌と酵母とで共棲発酵する記載がある。しかし、海藻による乳酸菌の滅菌並びにこの滅菌による乳酸菌数の減少抑制については何の記載も示唆もない。
そこで、本願発明は、乳酸菌発酵飲料において、乳酸菌数をあまり減少させず、この種の乳酸菌飲料として要求される程度の菌数(10個/mL以上;所定規準数という)を維持しつつ、ヨウ素を摂取基準量内程度の所定量含有させることを目的とする。また、ヨウ素を簡単な方法で添加することも目的とする。
The above-mentioned Patent Document 3 describes that polysaccharides, vegetables / fruits, and seaweeds are co-fermented with lactic acid bacteria and yeast. However, there is no description or suggestion regarding the sterility of lactic acid bacteria by seaweed and the suppression of the decrease in the number of lactic acid bacteria by this sterility.
Therefore, according to the present invention, the number of lactic acid bacteria is not significantly reduced in the fermented lactic acid bacteria beverage, and the number of bacteria ( 106 cells / mL or more; referred to as a predetermined standard number) required for this type of lactic acid bacteria beverage is maintained. The purpose is to contain a predetermined amount of iodine within the intake standard amount. It is also an object to add iodine by a simple method.

上記課題を解決するため本願発明に係る植物性乳酸菌発酵水素水は、玄米由来の植物性乳酸菌と、乳酸及び水素とを含み、さらに昆布の溶出成分を含むとともに、
玄米及び昆布の固形原料成分が除去されて液中に存在しない水素水の製品状態にて、
昆布由来の、ヨウ素と、水溶性食物繊維等の水溶性成分とを含むとともに、
乳酸菌数が所定基準数である10 個/mL以上であることを特徴とする。
In order to solve the above problems, the fermented hydrogen water of plant-derived lactic acid bacteria according to the present invention contains plant-derived lactic acid bacteria derived from brown rice, lactic acid and hydrogen, and further contains an elution component of kelp.
In the product state of hydrogen water in which the solid raw material components of brown rice and kelp have been removed and are not present in the liquid.
It contains iodine derived from kelp and water-soluble components such as water-soluble dietary fiber, and
It is characterized in that the number of lactic acid bacteria is 106 cells / mL or more, which is a predetermined standard number.

玄米由来の植物性乳酸菌としては、公知のものが種々あるが、本願発明において特に主要なものとして、ラクトバチルスゼアエ(lactobacillus zeae)、ラクトバチルスカセイ(lactobacillus casei)、ラクトバチルスパラカセイ(lactobacillus paracasei)、ラクトバチルスラムノスス(lactobacillus rhamnosus )等がある。 There are various known plant-derived lactic acid bacteria derived from brown rice, but the main ones in the present invention are lactobacillus zeae, lactobacillus casei, and lactobacillus paracasei. ), Lactobacillus rhamnosus, etc.

昆布由来の水溶性物質とは、昆布のダシをとるときに生じるぬるぬるとした物質であり、多量の水溶性食物繊維と、グルタミンソーダ等のアミノ酸を含むものである。本願発明における昆布由来の水溶性物質は、水溶性食物繊維と少なくともグルタミンソーダを含有することにより判断する。また、本願発明における昆布由来のヨウ素は、これら昆布由来の水溶性物質とヨウ素が共存することにより判断する。 The water-soluble substance derived from kelp is a slimy substance produced when the kelp soup stock is removed, and contains a large amount of water-soluble dietary fiber and amino acids such as glutamine soda. The water-soluble substance derived from kelp in the present invention is determined by containing water-soluble dietary fiber and at least glutamine soda. Further, iodine derived from kelp in the present invention is determined by the coexistence of water-soluble substances derived from kelp and iodine.

また、上記植物性乳酸菌発酵水素水の製法は、玄米を、塩と糖類を含む水中へ浸漬し、玄米由来の自然の植物性乳酸菌により乳酸発酵させて、発酵液を乳酸菌、乳酸及び水素を含む乳酸菌発酵水素水にする植物性乳酸菌発酵水素水の製法において、
玄米、塩、糖類及び固形昆布を水中へ浸漬し、
PHが所定の判断値になるまで乳酸発酵させる前発酵をすることにより、発酵液中へヨウ素と水溶性食物繊維を溶出させるとともに、
前発酵終了目標のPH到達時にて、前記昆布等の固形原料を除去して前発酵を終了してから、さらに追加発酵させるための後発酵をすることを特徴とする。
固形昆布は板昆布又は刻み昆布とすることができる。
Further, in the above-mentioned method for producing fermented hydrogen water of plant-derived lactic acid bacteria, brown rice is immersed in water containing salt and sugar and fermented with natural plant-derived lactic acid bacteria derived from brown rice, and the fermented liquid contains lactic acid bacteria, lactic acid and hydrogen. In the manufacturing method of plant-derived lactic acid bacteria fermented hydrogen water to make lactic acid bacteria fermented hydrogen water,
Soak brown rice, salt, sugar and solid kelp in water and
By performing pre-fermentation by lactic acid fermentation until the pH reaches a predetermined judgment value, iodine and water-soluble dietary fiber are eluted into the fermented liquid and at the same time.
When the pH of the pre-fermentation end target is reached, the solid raw material such as kelp is removed to complete the pre-fermentation, and then the post-fermentation for further additional fermentation is performed.
The solid kelp can be plate kelp or chopped kelp .

昆布は、水溶性食物繊維等の水溶性物質があり、この水溶性物質に含まれる旨み成分により、乳酸菌飲料の食味を向上させ、酸っぱい味をまろやかな味にして、食味を改善することができる。 Kelp has a water-soluble substance such as water-soluble dietary fiber, and the umami component contained in this water-soluble substance can improve the taste of lactic acid bacteria beverages, make the sour taste mellow, and improve the taste. ..

さらに、水溶性食物繊維は、水素水の製造における乳酸菌の栄養源になるとともに、消化器管内に入ると、プレバイオティクスとなる。また、他の健康促進に貢献する機能もあるので乳酸菌飲料の高機能化に貢献する。
そのうえ、昆布に含まれるヨウ素が溶出することにより、ヨウ素に富む飲料になる。
In addition, water-soluble dietary fiber serves as a nutrient source for lactic acid bacteria in the production of hydrogen water, and when it enters the gastrointestinal tract, it becomes prebiotics. In addition, it also has other functions that contribute to health promotion, which contributes to higher functionality of lactic acid bacteria beverages.
Moreover, the elution of iodine contained in kelp makes the beverage rich in iodine.

固形昆布は、発酵液中において、表面の水溶性食物繊維がぬるぬるになって、徐々にかつ長時間にわたって溶け出す。したがって、乳酸菌の増殖及び発酵期間中において、沈殿堆積等することなく、適時にかつ長時間にわたって表面に溶出した水溶性成分に対して乳酸菌の接触を可能とする。 In the fermented liquid, the water-soluble dietary fiber on the surface of the solid kelp becomes slimy and gradually dissolves over a long period of time. Therefore, during the growth and fermentation period of lactic acid bacteria, it is possible to bring the lactic acid bacteria into contact with the water-soluble component eluted on the surface in a timely and long-term manner without precipitation.

なお、固形とは粉状や粒状を除く意味で用いたものである。粉状や粒状は数mm以下の大きさであるが、固形はこれよりも大きい(例えば、少なくとも一部に1cm以上の長い部分を有する)。粉状や粒状の昆布は水中における溶解速度が極めて早いため、短時間で全量が溶けて一度に大量のヨウ素を発生する。この液中に生じた大量のヨウ素により、発酵初期における急速増殖中の乳酸菌を大量に殺菌し、発酵効率を下げ、乳酸菌の増殖を必要数以下に抑制してしまうおそれがある。 The term "solid" is used to mean excluding powder and granules. Powders and granules are a few mm or less in size, while solids are larger (eg, have at least a portion longer than 1 cm). Since powdery or granular kelp has an extremely high dissolution rate in water, the entire amount dissolves in a short time and a large amount of iodine is generated at one time. The large amount of iodine generated in this liquid may sterilize a large amount of rapidly growing lactic acid bacteria in the early stage of fermentation, reduce the fermentation efficiency, and suppress the growth of lactic acid bacteria to a required number or less.

固形昆布は、板昆布又は刻み昆布(短冊状に刻んだ昆布)とすることができる。板昆布と刻み昆布の相違は、刻み昆布の刻み幅(長方形の短冊形状における短辺側に相当する)が数mm~数cmとなっていることである。 The solid kelp can be plate kelp or chopped kelp (kelp chopped into strips). The difference between kelp and chopped kelp is that the chopped width of chopped kelp (corresponding to the short side in the rectangular strip shape) is several mm to several cm.

固形昆布を板昆布又は刻み昆布を使用することにより、乳酸菌の増殖及び発酵に合わせて、発酵液中にヨウ素、旨み成分(アミノ酸)並びに水溶性食物繊維等の水溶性成分を徐々に溶出させる。このため溶出するヨウ素の量は少量ずつ時間を掛けて溶け出し、ヨウ素の殺菌作用による乳酸菌の減少を抑制しつつ、液中へヨウ素を所定量添加できる。 By using solid kelp as plate kelp or chopped kelp, water-soluble components such as iodine, taste component (amino acid) and water-soluble dietary fiber are gradually eluted into the fermentation broth in accordance with the growth and fermentation of lactic acid bacteria. Therefore, the amount of iodine to be eluted dissolves little by little over time, and a predetermined amount of iodine can be added to the liquid while suppressing the decrease of lactic acid bacteria due to the bactericidal action of iodine.

さらに、上記方法により製造された植物性乳酸菌飲料は、効率的に製造でき、かつプレバイオティクスを提供するものとして高機能化できる。 Further, the plant-derived lactic acid bacteria beverage produced by the above method can be efficiently produced and can be highly functional as a prebiotic provider.

玄米由来の自然の植物性乳酸菌により乳酸発酵してなる植物性乳酸菌飲料は、昆布の溶出成分を含み、玄米及び昆布の固形原料成分が除去されて液中に存在しない水素水の製品状態にて、昆布由来の、ヨウ素と、水溶性食物繊維等の水溶性成分とを含むとともに、
乳酸菌数が所定基準数である10 個/mL以上になっている。
したがって、昆布由来のヨウ素入り水素水を得ることができる。
しかも、この水素水は、成分として、ヨウ素を含有するにもかかわらず、所定規準数以上の乳酸菌を確保できる。
このため、乳酸菌飲料としての必要な乳酸菌数を確保したまま、ヨウ素や水溶性食物繊維により高機能化でき、旨み成分によって食味を良好にできる。
The vegetable lactic acid beverage, which is lactic acid fermented by natural vegetable lactic acid bacteria derived from brown rice, contains the elution component of kelp, and the solid raw material component of brown rice and kelp is removed, and it is in the product state of hydrogen water that does not exist in the liquid. , Containing iodine derived from kelp and water-soluble components such as water-soluble dietary fiber,
The number of lactic acid bacteria is 106 cells / mL or more, which is the predetermined standard number.
Therefore, hydrogen water containing iodine derived from kelp can be obtained.
Moreover, although this hydrogen water contains iodine as a component, it is possible to secure a predetermined number or more of lactic acid bacteria.
Therefore, while maintaining the necessary number of lactic acid bacteria as a lactic acid bacteria beverage, it is possible to enhance the functionality by using iodine or water-soluble dietary fiber, and to improve the taste by using the umami component.

また、植物性乳酸菌飲料の製法は、玄米、塩、糖類及び固形昆布を水中へ浸漬し、PHが所定の判断値になるまで乳酸発酵させる前発酵をすることにより、発酵液中へヨウ素と水溶性食物繊維を溶出させるとともに、
前発酵終了目標のPH到達時にて、前記昆布等の固形原料を除去して前発酵を終了してから、さらに追加発酵させるための後発酵をする。
前発酵にて、固形昆布を使用することにより、乳酸菌の増殖及び発酵に合わせて、発酵液中にヨウ素、旨み成分(アミノ酸)並びに水溶性食物繊維等の水溶性成分を徐々に溶出させる。
特に、ヨウ素が少量ずつ時間を掛けて溶け出すため、同時に増殖・発酵している乳酸菌に対する接触を少なくし、乳酸菌数の減少を抑制できる。
また、後発酵では昆布が除去されているためヨウ素の供給が終了されるので、新規供給されるヨウ素の影響を避けて発酵できる。
したがって、所定規準量の乳酸菌数を確保しつつ摂取基準内のヨウ素を添加できる。しかもヨウ素は、乳酸菌に影響の少ない速度で溶出するので、発酵中の添加量を容易にコントロールでき、昆布を一度に添加できることになり、作業を簡単にする。
In addition, the method for producing vegetable lactic acid bacteria beverages is to immerse brown rice, salt, sugar and solid kelp in water and perform pre-fermentation by lactic acid fermentation until the PH reaches a predetermined judgment value, thereby adding iodine and water to the fermented liquid. As well as elution of sex dietary fiber
When the pH of the pre-fermentation end target is reached, the solid raw materials such as kelp are removed to complete the pre-fermentation, and then post-fermentation for further additional fermentation is performed.
By using solid kelp in the pre-fermentation , water-soluble components such as iodine, taste component (amino acid) and water-soluble dietary fiber are gradually eluted into the fermentation broth in accordance with the growth and fermentation of lactic acid bacteria.
In particular, since iodine dissolves little by little over time, contact with lactic acid bacteria that are growing and fermenting at the same time can be reduced, and a decrease in the number of lactic acid bacteria can be suppressed.
In addition, since the kelp is removed in the post-fermentation, the supply of iodine is terminated, so that the fermentation can be performed while avoiding the influence of the newly supplied iodine.
Therefore, iodine within the intake standard can be added while ensuring a predetermined standard amount of lactic acid bacteria. Moreover, since iodine elutes at a rate that does not affect lactic acid bacteria, the amount added during fermentation can be easily controlled, and kelp can be added all at once, which simplifies the work.

しかも、昆布の水溶性成分による乳酸発酵が促進されるので、発酵に要する時間が短縮され、発酵が効率化する。特に、発酵による水素が多くなるため、酸化還元電位の最低値を下げ、その後の戻りにより酸化還元電位が酸化側へ上昇するまでの期間を長くし、還元状態をより長く維持できる。 Moreover, since lactic acid fermentation by the water-soluble component of kelp is promoted, the time required for fermentation is shortened and fermentation becomes more efficient. In particular, since the amount of hydrogen produced by fermentation increases, the minimum value of the redox potential can be lowered, and the period until the redox potential rises to the oxidation side due to the subsequent return can be lengthened, and the reduced state can be maintained for a longer period of time.

また、液中に溶出した昆布の水溶性食物繊維をはじめとする水溶成分が、腸内におけるプレバイオティクスとなるとともに、健康増進に貢献して高機能化する。 In addition, water-soluble components such as the water-soluble dietary fiber of kelp eluted in the liquid become prebiotics in the intestine and contribute to health promotion and enhance functionality.

発酵液中の酸化還元電位の経時的変化を示すグラフGraph showing changes over time in redox potential in fermented liquid 発酵液中のPHの経時的変化を示すグラフGraph showing changes in PH in fermented liquid over time

以下、実施の形態を説明する。
水1Lに対して、玄米30~90g、塩2~10g、砂糖20~60gを加え、さらに固形昆布2~20gを加えた発酵液とし、これを温度、20℃~40℃、好ましくは35℃程度に維持し、発酵液を適宜撹拌しつつ5~7日程度発酵する。
この発酵液は、半日もしく1日毎に、酸化還元電位及びPHを測定して発酵状態を監視する。監視目標とする酸化還元電位の判断基準値を、-100~-200mV、PHの判断基準値を3.2とする。双方が判断基準値になったとき、発酵を完了する。
Hereinafter, embodiments will be described.
To 1 L of water, 30 to 90 g of brown rice, 2 to 10 g of salt, 20 to 60 g of sugar were added, and 2 to 20 g of solid kelp was further added to prepare a fermentation broth. Ferment for about 5 to 7 days with appropriate stirring of the fermented liquid.
This fermentation broth measures the redox potential and PH every half day or every day to monitor the fermentation state. The judgment reference value of the redox potential as the monitoring target is -100 to -200 mV, and the judgment reference value of PH is 3.2. Fermentation is completed when both sides reach the reference value.

製造完了時に水素水の酸化還元電位が-100~-200mVの目標ゾーン内にあれば、発酵を終了させることが必要な時期であり、還元水素水になっていることを示す。
PH3.2は一般に乳酸発酵の限界を示し、PH3.2程度になると乳酸発酵が停止される。また、高濃度の乳酸によって乳酸菌を滅菌する増殖阻害現象も生じるとされている。
If the redox potential of hydrogen water is within the target zone of -100 to -200 mV at the time of completion of production, it means that it is necessary to end the fermentation and the hydrogen water is reduced.
PH3.2 generally indicates the limit of lactic acid fermentation, and when it reaches about PH3.2, lactic acid fermentation is stopped. In addition, it is said that a growth inhibition phenomenon that sterilizes lactic acid bacteria by a high concentration of lactic acid also occurs.

玄米は、産地及び銘柄を問わない。なお発芽玄米は発酵効率が良く特に好ましい。発芽玄米にすると、発酵完了までの時間を略半減できる。使用量は
60g/L程度が好ましい。但し、これより多くても、また少なくても構わない。
玄米に由来する植物性乳酸菌は、種々存在するが、耐高温特性のあるラクトバチルスゼアエ(lactobacillus zeae)を含むことが特に望ましい。
Brown rice can be produced regardless of origin and brand. Germinated brown rice has good fermentation efficiency and is particularly preferable. With germinated brown rice, the time to complete fermentation can be reduced by almost half. The amount used is preferably about 60 g / L. However, it may be more or less than this.
There are various plant-derived lactic acid bacteria derived from brown rice, but it is particularly desirable to include lactobacillus zeae, which has high temperature resistance.

糖類は、乳酸菌の栄養源となる、ブドウ糖等の単糖類やショ糖(砂糖)等の二糖類が用いられる。ショ糖は、精製された上白糖などを含む砂糖である。砂糖のうち、ミネラル等の有用成分が多い黒糖が特に好ましい。 As the saccharide, monosaccharides such as glucose and disaccharides such as sucrose (sugar), which are nutrient sources for lactic acid bacteria, are used. Sucrose is sugar containing refined white sugar and the like. Of the sugars, brown sugar, which has a large amount of useful components such as minerals, is particularly preferable.

使用量は20~60g/L程度とし、30~40g/L程度が好ましい。
60gより多くすると、発酵完了時にも消費し切れずに甘みが残り、この甘みが消えるまで余計な発酵時間を要することになった。
一方、20g/Lよりも少ないと、発酵が著しく遅延することになった。
The amount used is about 20 to 60 g / L, preferably about 30 to 40 g / L.
If the amount is more than 60 g, the sweetness remains without being consumed even when the fermentation is completed, and it takes an extra fermentation time until the sweetness disappears.
On the other hand, if it was less than 20 g / L, fermentation was significantly delayed.

糖類は多いほど発酵を促進できる。しかし、また、完成された植物性乳酸菌飲料中に高濃度の糖分が残存すると、消費者から健康志向の点で敬遠されることになった。
したがって、糖類を必要以上に多くせずに効率よく発酵させることも望まれており、30g/L程度が最も好ましい。
The more sugars there are, the faster the fermentation can be. However, if a high concentration of sugar remains in the finished vegetable lactic acid bacteria beverage, consumers will avoid it in terms of health consciousness.
Therefore, it is also desired to ferment efficiently without increasing the amount of sugar more than necessary, and about 30 g / L is the most preferable.

塩は、精製塩でなく、粗塩や岩塩などの天然塩のようなミネラル分の豊富のものが好ましい。使用量は2~10g/L程度が可能である。塩は、主として腐敗防止を目的とするため、雑菌の少ない深層水では使用量を2g程度にすることができ、減塩に貢献できる。 The salt is not a refined salt but preferably one rich in minerals such as natural salt such as crude salt and rock salt. The amount used can be about 2 to 10 g / L. Since salt is mainly intended to prevent putrefaction, the amount of salt used can be reduced to about 2 g in deep sea water with few germs, which can contribute to salt reduction.

水は、塩素殺菌されない自然水(湧水や井戸水等)が好ましく、特にミネラル豊富で雑菌の少ない深層水が好ましい。 The water is preferably natural water that is not chlorinated (spring water, well water, etc.), and particularly preferably deep water that is rich in minerals and has few germs.

昆布は、利尻昆布、真昆布、日高昆布、長昆布、羅臼昆布、細目昆布、厚葉昆布、がごめ昆布、ねこあし昆布等いずれの名称のものも可能である。水中にて水溶性成分を溶出させるために乾燥昆布であることが必要である。 The kelp can be any name such as Rishiri kelp, Shin kelp, Hidaka kelp, Naga kelp, Rausu kelp, Fine kelp, Atsushi kelp, Gagome kelp, Nekoashi kelp and so on. It is necessary to use dried kelp in order to elute the water-soluble component in water.

使用形態は固形であり、板昆布又は刻み昆布のいずれも使用できる。
板昆布又は刻み昆布とすれば、発酵液中において、表面の水溶性食物繊維がぬるぬるになって、徐々にかつ長時間にわたって溶け出すよう、ヨウ素の溶出時間を長引かせるように調節できる。
The form of use is solid, and either plate kelp or chopped kelp can be used.
In the case of plate kelp or chopped kelp, the water-soluble dietary fiber on the surface becomes slimy in the fermented liquor and can be adjusted to prolong the elution time of iodine so that it gradually dissolves over a long period of time.

また、昆布は、水に入れるとぬるぬるになって溶け出す水溶性食物繊維等の水溶性物質がある。この水溶性物質にはダシとして重用されるものがあり、その旨み成分(グルタミン酸)が溶出することにより、乳酸菌飲料の食味を向上させ、酸っぱい味をまろやかな味にして、食味を改善することができる。 In addition, kelp has a water-soluble substance such as water-soluble dietary fiber that becomes slimy and dissolves when put in water. Some of these water-soluble substances are heavily used as soup stock, and by elution of the umami component (glutamic acid), it is possible to improve the taste of lactic acid bacteria beverages, make the sour taste mellow, and improve the taste. can.

さらに、上記ぬるぬる成分をなす水溶性食物繊維は、主としてアルギン酸とフコダインからなり、乳酸菌の栄養源になるとともに、消化器管内に入ると、プレバイオティクスとなる。そのうえ、血圧やコレステロールの抑制等に役立つ健康増進機能を有する物質としても知られているので、乳酸菌飲料の高機能化に貢献する。 Furthermore, the water-soluble dietary fiber that forms the slimy component is mainly composed of alginic acid and fucoidan, which serves as a nutrient source for lactic acid bacteria and becomes prebiotics when it enters the digestive tract. In addition, it is also known as a substance having a health-promoting function that is useful for suppressing blood pressure and cholesterol, and thus contributes to higher functionality of lactic acid bacteria beverages.

したがって、乳酸菌の増殖及び発酵に合わせて、発酵液中に植物性の水溶性食物繊維等の水溶性成分を徐々に溶出させ、沈殿堆積等することなく、適時にかつ長時間にわたって表面に溶出した水溶性成分に対して乳酸菌の接触を可能とし、増殖及び発酵を促進することができる。昆布は乳酸発酵の促進物質である。 Therefore, along with the growth and fermentation of lactic acid bacteria, water-soluble components such as vegetable-derived water-soluble dietary fiber were gradually eluted in the fermentation broth, and eluted on the surface in a timely and long-term manner without precipitation. It enables contact of lactic acid bacteria with water-soluble components and promotes growth and fermentation. Kelp is a substance that promotes lactic acid fermentation.

昆布の使用量は、2~20g/L程度とする。2gより少ないと、あまりダシとしての効果が得られない。また20gより多いと昆布の味が強くなりすぎて食味を損なうことになり、使用に適さない。さらに膨潤軟化した昆布が液中一杯となり、扱いが難しくなることもある。
The amount of kelp used should be about 2 to 20 g / L. If it is less than 2 g, the effect as a dashi stock cannot be obtained so much. If the amount is more than 20 g, the taste of kelp becomes too strong and the taste is impaired, which is not suitable for use. Furthermore, the swollen and softened kelp fills the liquid and may be difficult to handle.

なお、昆布は食味を改善し、多く過ぎても食味を損なうので、その使用量はダシとして通常使用される量を考慮すべきである。この意味では、2~6g程度が妥当な使用量となる。以下の実施例はこの範囲の量(2・4・6g)に限定したものである。 It should be noted that kelp improves the taste, and even if it is too much, it impairs the taste, so the amount normally used as a dashi stock should be taken into consideration. In this sense, about 2 to 6 g is a reasonable amount to be used. The following examples are limited to this range of amounts (2,4.6 g).

昆布には比較的大量のヨウ素が含まれており、昆布を水に浸漬することにより、水溶性食物繊維等とともにヨウ素も溶出する。その結果、水素水は高機能成分のヨウ素に富む飲料となる。ヨウ素は顕著な殺菌作用等を示す、必須ミネラルである。 The kelp contains a relatively large amount of iodine, and by immersing the kelp in water, iodine is eluted together with water-soluble dietary fiber and the like. As a result, hydrogen water becomes a beverage rich in iodine, which is a highly functional component. Iodine is an essential mineral that exhibits remarkable bactericidal action.

昆布中の含有量は、昆布の種類や産地等により様々であるが、日本食品標準成分表によれば、真昆布は、2mg/g含有されるとなっている。本願発明ではこれに則り、昆布2・4・6gには、それぞれ4・8・12mgのヨウ素が含有されているものとする。
全量が溶出されたと仮定したときの水素水100mL(l回分の量)には、それぞれ、400・800・1200μgのヨウ素が含有されることになる。
The content in kelp varies depending on the type of kelp, the place of production, etc., but according to the Standard Tables of Food Composition in Japan, true kelp is contained at 2 mg / g. In the present invention, according to this, it is assumed that 2,4.6 g of kelp contains 4,8,12 mg of iodine, respectively.
Assuming that the entire amount is eluted, 100 mL of hydrogen water (amount for one dose) will contain 400, 800, and 1200 μg of iodine, respectively.

なお、各種の昆布を使用するに当たり、実際のヨウ素含有量が、上記2mg/gより過大もしくは過小の場合、使用時に上記2mg/gの含有量となるように、使用する昆布の重量を調整する。 When using various types of kelp, if the actual iodine content is more or less than the above 2 mg / g, the weight of the kelp to be used is adjusted so that the content is the above 2 mg / g at the time of use. ..

ヨウ素は生菌である乳酸菌も滅菌する。したがって、ヨウ素を少量ずつ時間を掛けて徐々に溶出させ、乳酸菌の減少を抑制する。この溶出のコントロールは、固形昆布とすることにより実現する。最も溶出速度を下げるには、所定大きさにカットした板昆布を使用する。刻み昆布にすれば、溶出速度が上がる。なお、刻み昆布におけるヨウ素の溶出速度は、刻み方によっても影響され、細かく刻めば早くなる。したがって、刻み方は乳酸発酵の程度に応じて適宜定める。 Iodine also sterilizes lactic acid bacteria, which are live bacteria. Therefore, iodine is gradually eluted little by little over time to suppress the decrease of lactic acid bacteria. This elution control is realized by using solid kelp. To reduce the elution rate most, use kelp cut to a predetermined size. If you use chopped kelp, the elution rate will increase. The elution rate of iodine in chopped kelp is also affected by the chopping method, and the finer chopping, the faster the elution rate. Therefore, the chopping method is appropriately determined according to the degree of lactic acid fermentation.

この発酵を図1及び図2により説明する。各図は比較例(詳細後述)と各実施例別の酸化還元電位の変化及びPHの変化を一緒に示すグラフである。比較例は本願発明の従来例(昆布を使用しない例)に相当する。実施例1~3に相当するものは昆布量が異なるものである。図1は発酵液中の酸化還元電位の経時的な変化を示すグラフであり、縦軸に酸化還元電位(mV)、横軸に経過日数をとってある。図2は発酵液中のPHの経時的な変化を示すグラフであり、縦軸にPH、横軸に経過日数をとってある。
なお、比較例における酸化還元電位の判断基準値を0~-100mVとする。
This fermentation will be described with reference to FIGS. 1 and 2. Each figure is a graph showing the change of the redox potential and the change of PH for each comparative example (detailed later) and each example together. The comparative example corresponds to the conventional example of the present invention (an example in which kelp is not used). The ones corresponding to Examples 1 to 3 have different amounts of kelp. FIG. 1 is a graph showing changes in the redox potential in the fermentation broth over time, with the redox potential (mV) on the vertical axis and the number of days elapsed on the horizontal axis. FIG. 2 is a graph showing changes in PH in the fermentation broth over time, with PH on the vertical axis and the number of days elapsed on the horizontal axis.
The reference value for determining the redox potential in the comparative example is 0 to -100 mV.

図1に示すように、酸化還元電位は、1日目で最低値まで急降下し、その後、徐々に右肩上がりで上昇する。昆布なしの比較例では5日目に目標ゾーンへ入る。7日目近傍には判断基準値上限の0mV近傍となり、その後は+側(酸化側)になる。したがって、7日目には発酵を完了する必要がある。
As shown in FIG. 1, the redox potential drops sharply to the lowest value on the first day, and then gradually rises to the right. In the comparative example without kelp, the target zone is entered on the 5th day. Near the 7th day, it becomes near 0 mV, which is the upper limit of the judgment reference value, and after that , it becomes the + side (oxidation side). Therefore, it is necessary to complete the fermentation on the 7th day.

昆布を添加した各実施例はいずれも、7日目になってもまだ比較例の判断基準値ゾーンへ入っていない。ただし、実施例の判断基準値(-100~-200mV)のゾーンへは入っている。すなわち、発酵完了を7日目もしくはそれより前で判断する場合には、判断基準値を比較例よりも低い値(-100~-200mV)に設定する必要がある。これにより発酵完了を酸化還元電位のグラフより判断できることになる。 Each of the examples to which kelp was added has not yet entered the criterion value zone of the comparative example even on the 7th day. However, it is in the zone of the judgment reference value (-100 to -200 mV) of the embodiment. That is, when the completion of fermentation is judged on the 7th day or earlier, it is necessary to set the judgment reference value to a value lower than that of the comparative example (-100 to -200 mV). This makes it possible to judge the completion of fermentation from the graph of redox potential.

このグラフより判ることは、昆布を添加すると、発酵の1日目に発生する最低値が比較例より大きく下がる現象が発生し、その後も発酵液の酸化還元電位が比較例より下がり、発酵液がより還元側に維持されていることである。
この原因は、昆布の添加により乳酸発酵が促進され、水素がより多く発生したためと考えられる。したがって、昆布を添加すると乳酸発酵が促進されることになる。
As can be seen from this graph, when kelp is added, a phenomenon occurs in which the minimum value generated on the first day of fermentation is significantly lower than in the comparative example, and after that, the redox potential of the fermentation broth is lower than in the comparative example, and the fermentation broth is produced. It is maintained on the more reducing side.
The reason for this is thought to be that the addition of kelp promoted lactic acid fermentation and generated more hydrogen. Therefore, the addition of kelp promotes lactic acid fermentation.

しかも実施例では、最低値が低いので、ここから比較例のグラフと同様の傾きで酸化還元電位が上昇したとしても、比較例の判断基準値へ達するまでにはより長い日数を要することになる。したがて、還元状態を比較例よりも長い期間維持することが可能になる。
このため、比較例の判断基準値を発酵完了の基準とすれば、より長く発酵をさせることができる。また製品の出荷の基準とすれば、出荷までに余裕を持たせることができる。
Moreover, since the minimum value is low in the examples, even if the redox potential rises from here with the same slope as the graph of the comparative example, it will take a longer number of days to reach the judgment reference value of the comparative example. .. Therefore, it becomes possible to maintain the reduced state for a longer period than in the comparative example.
Therefore, if the judgment reference value of the comparative example is used as the criterion for completing fermentation, fermentation can be carried out for a longer period of time. In addition, if it is used as a standard for shipping products, it is possible to allow a margin before shipping.

なお、酸化還元電位が最低値から経時的に上昇する現象は、主として、溶存水素量の拡散による減少と、発酵速度の緩慢化(水素発生量の低下)により生じるものと考えられる。
水素水中の溶存水素は極めて拡散しやすく、時間とともに容器外へ速やかに放散し、溶存水素量を減少させる。
The phenomenon that the redox potential rises from the lowest value over time is considered to be mainly caused by a decrease in the amount of dissolved hydrogen due to diffusion and a slowdown in the fermentation rate (decrease in the amount of hydrogen generated).
Dissolved hydrogen in hydrogen water is extremely easy to diffuse and quickly dissipates out of the container over time, reducing the amount of dissolved hydrogen.

また、乳酸発酵は、1日目の爆発的な発酵である第1段階と、その後、ゆっくり発酵する第2段階とからなる。第1段階は急速に発酵して比較的多くの水素を発生するとともに、水素の拡散がほとんど無い。酸化還元電位の最低値はこの段階で生じる。
第2段階は、溶存水素の拡散と、緩慢な発酵による少量の水素の補充とが同時に生じ、酸化還元電位は徐々に大きくなる。
Lactic acid fermentation consists of a first stage, which is an explosive fermentation on the first day, and a second stage, which is a slow fermentation thereafter. In the first stage, it ferments rapidly to generate a relatively large amount of hydrogen, and there is almost no diffusion of hydrogen. The lowest redox potential occurs at this stage.
In the second stage, diffusion of dissolved hydrogen and supplementation of a small amount of hydrogen by slow fermentation occur at the same time, and the redox potential gradually increases.

この昆布による発酵の促進は、水溶性食物繊維等からなる乳酸菌の栄養源となる水溶性成分の供給によって生じたものと考えられる。
ただし、各実施例間では相違があり、昆布を最小の2g添加した実施例1が最も大きい酸化還元電位を示し、次いで昆布を最大の6g添加した実施例3が実施例1よりも若干低い酸化還元電位を示している。実施例3のグラフは実施例1に対して酸化還元電位の低い側へ若干ずれた状態でほぼ平行している。
It is considered that the promotion of fermentation by this kelp was caused by the supply of a water-soluble component which is a nutrient source for lactic acid bacteria composed of water-soluble dietary fiber and the like.
However, there are differences between the examples, in Example 1 to which the minimum 2 g of kelp was added showed the largest redox potential, and then Example 3 to which the maximum 6 g of kelp was added showed slightly lower oxidation than Example 1. It shows the reduction potential. The graph of Example 3 is substantially parallel to Example 1 in a state of being slightly shifted to the lower side of the redox potential.

昆布の添加量が中間の4gである実施例2の酸化還元電位が最も低くなっている。最低値もこの順になっている(実施例1の最低値:-485mV>実施例3の最低値:-486mV>実施例2の最低値:-503mV)。
これは、ヨウ素の殺菌作用によるものと考えられる。すなわち、ヨウ素が最も少ない実施例1が、ヨウ素の影響を最も小さくし乳酸発酵を最も速くしたと考えられる。但し、昆布量が最小であるから、発酵量は少なく、それだけ最低値を含む酸化還元電位が高くなる。
ヨウ素量が最も多い実施例3は、昆布の量が最も多いので最も大きく発酵促進されるべきであるが、ヨウ素量も最大となり、その影響も大きくなるから、促進作用と阻害作用が相殺され、実施例1と同程度でかつ若干酸化還元電位が低い程度になっているものと考えられる。
The redox potential of Example 2 in which the amount of kelp added is 4 g in the middle is the lowest. The minimum values are also in this order (minimum value of Example 1: -485 mV> minimum value of Example 3: -486 mV> minimum value of Example 2: -503 mV).
This is considered to be due to the bactericidal action of iodine. That is, it is considered that Example 1 having the least amount of iodine minimized the influence of iodine and made the lactic acid fermentation the fastest. However, since the amount of kelp is the minimum, the amount of fermentation is small, and the redox potential including the minimum value is increased accordingly.
In Example 3 having the largest amount of iodine, fermentation should be promoted most because the amount of kelp is the largest. It is considered that the oxidation-reduction potential is about the same as that of Example 1 and slightly lower.

昆布量が中間の実施例2は、これらの中間であり、発酵促進作用と阻害作用が最もバランスしているものと判断される。また、後から図2について説明するが、実施例2はこれらの内でPHが最も高くなっている。したがって、乳酸の低PHによる乳酸菌の発酵阻害も少なくなる。
なお、最低値が低いと、それだけ酸化還元電位の上昇(戻り)の量も少なくなる。
Example 2 in which the amount of kelp is in the middle is in the middle of these, and it is judged that the fermentation promoting action and the inhibiting action are most balanced. Further, although FIG. 2 will be described later, in Example 2, PH is the highest among these. Therefore, the inhibition of fermentation of lactic acid bacteria due to the low pH of lactic acid is also reduced.
The lower the minimum value, the smaller the amount of increase (return) in the redox potential.

図2に示すように、PHは発酵開始直後より、乳酸の産生増加に応じて低下し、比較例では5日目で判断基準値に近いPH3.3になる。その後はさらに緩やかに低下し、7日目で目標のPH3.2になり、ここでほぼ一定になる。
しかし、比較例では5日目に酸化還元電位が-100mVを越えて目標ゾーンへ入る。
したがって、7日目もしくは5日目で発酵完了と判断する。ただし、5日目では発酵がまだ完全に終了せず、水素水中には未消費の糖分等が比較的大量に存在し、健康上の配慮等から要求がある低糖質の飲料にできない。

As shown in FIG. 2, the pH decreases immediately after the start of fermentation as the production of lactic acid increases, and in the comparative example, the pH reaches 3.3, which is close to the judgment reference value on the 5th day. After that, it gradually declines to reach the target PH of 3.2 on the 7th day, where it becomes almost constant.
However, in the comparative example, the redox potential exceeds -100 mV and enters the target zone on the 5th day.
Therefore, it is determined that fermentation is completed on the 7th or 5th day. However, on the 5th day, fermentation is not completely completed, and a relatively large amount of unconsumed sugar and the like are present in the hydrogen water, so that it is not possible to make a low-carbohydrate beverage that is required due to health considerations.

一方、昆布を添加する本願発明では、PH3.2への到達が早まる。そこで、発酵を、PH3.2近傍になるまでの前発酵と、それ以降の後発酵に分ける。
前発酵終了時に玄米等の固形原料を分離除去し、液体だけを後発酵で追加発酵し、残存する糖分の消費等により、乳酸菌数の上昇と成分の適正化や食味の向上等を図る。
なお、後発酵においても乳酸はあまり減少しないため、PHは3.2程度に収束して維持される。
On the other hand, in the present invention in which kelp is added, the arrival at PH 3.2 is accelerated. Therefore, fermentation is divided into pre-fermentation until it reaches the vicinity of PH 3.2 and post-fermentation after that.
At the end of pre-fermentation, solid raw materials such as brown rice are separated and removed, and only the liquid is additionally fermented by post-fermentation, and the number of lactic acid bacteria is increased, the components are optimized, and the taste is improved by consuming the remaining sugar.
Since lactic acid does not decrease so much even in post-fermentation, PH converges to about 3.2 and is maintained.

各実施例のPHは、比較例よりも低くなっている。このグラフから判ることは、昆布を添加するとPHが下がるので、やはり乳酸発酵が促進され、乳酸も多くなっていることである。
特に、昆布を添加しない比較例では、PH3.2になるのが、日目であるのに対して、昆布を添加した実施例では4.5日目の前後でPH3.2に到達している。これは、PHで判断する場合、発酵の完了を1日以上早く判断することができることを意味し、発酵期間の短縮を可能にすることを示している。また、前発酵終了時に玄米及び昆布等の固形原料を除去するので、この時点でヨウ素の供給は終了し、後発酵は新規供給されるヨウ素の影響を避けて発酵できる。
The PH of each example is lower than that of the comparative example. What can be seen from this graph is that the addition of kelp lowers the pH, which also promotes lactic acid fermentation and increases the amount of lactic acid.
In particular, in the comparative example in which kelp was not added, PH 3.2 was reached on the 7th day, whereas in the example in which kelp was added, PH 3.2 was reached around 4.5 days. There is. This means that when judging by PH, the completion of fermentation can be judged one day or more earlier, and it is possible to shorten the fermentation period. Further, since the solid raw materials such as brown rice and kelp are removed at the end of the pre-fermentation, the supply of iodine is terminated at this point, and the post-fermentation can be fermented while avoiding the influence of the newly supplied iodine.

この昆布による発酵の促進は、水溶性食物繊維等からなる乳酸菌の栄養源となる水溶性成分の供給によって生じたものと考えられる。
ただし、各実施例間では相違があり、昆布を最小の2g添加した実施例1が最もPHを低くし、次いで昆布を最大の6g添加した実施例3となり、昆布の添加量が中間の4gである実施例2のPHが最も大きくなっている。
It is considered that the promotion of fermentation by this kelp was caused by the supply of a water-soluble component which is a nutrient source for lactic acid bacteria composed of water-soluble dietary fiber and the like.
However, there are differences between the examples, and Example 1 in which the minimum amount of 2 g of kelp is added has the lowest PH, followed by Example 3 in which the maximum amount of 6 g of kelp is added, and the amount of kelp added is 4 g in the middle. The PH of a certain Example 2 is the largest.

これは、ヨウ素の殺菌作用によるものと考えられる。すなわち、ヨウ素が最も少ない実施例1が、ヨウ素の影響を最も小さくし乳酸発酵を最も速くしたと考えられる。
ヨウ素量が最も多い実施例3は、昆布の量が最も多いので最も大きく発酵促進されるべき物と考えられるが、ヨウ素量も最大となり、その影響も大きくなるから、促進作用と阻害作用が相殺され、実施例1と同程度でかつ若干PHが大きくなっているものと考えられる。
This is considered to be due to the bactericidal action of iodine. That is, it is considered that Example 1 having the least amount of iodine minimized the influence of iodine and made the lactic acid fermentation the fastest.
In Example 3 where the amount of iodine is the largest, the amount of kelp is the largest, so it is considered that the fermentation should be promoted the most. Therefore, it is considered that the pH is about the same as that of Example 1 and the PH is slightly larger.

昆布量が中間の実施例2は、これらの中間であり、ヨウ素による阻害作用の方が若干大きくなった結果、実施例1及び3よりも若干PHを大きくしているものと考えられる。
すなわち、実施例2が昆布量の割に、発酵促進作用とヨウ素による阻害作用とが最もバランスしているものと判断され、この観点からは実施例2が最も有利となる。
It is considered that Example 2 in which the amount of kelp is in the middle is in the middle of these, and as a result of the inhibitory action by iodine being slightly larger, the PH is slightly larger than in Examples 1 and 3.
That is, it is judged that Example 2 has the best balance between the fermentation promoting action and the iodine-inhibiting action for the amount of kelp, and from this viewpoint, Example 2 is the most advantageous.

なお、比較例ではPHのグラフから確実に発酵完了を判断できるのは、判断基準値内となる7日目となる。しかし、日目では、酸化還元電位が判断基準値ゾーンから出てしまうので、判断時点として遅すぎる。
In the comparative example, it is on the 7th day, which is within the judgment standard value, that the fermentation completion can be reliably judged from the pH graph. However, on the 7th day, the redox potential is out of the judgment reference value zone, so it is too late as a judgment time.

そこで、酸化還元電位が判断基準値ゾーン内となり、PHがほぼ判断基準値内となった5日目から、これら数値の毎測定時に手動で甘みをチェックする。このチェックにおいて甘みをほぼ感じなくなった時点で発酵完了と判断する。
このため、官能チェックで発酵完了の判断が正確になる反面、早めに甘みのチェックを開始して継続しなければならないので、手間がかかることになった。
Therefore, from the 5th day when the redox potential is within the judgment reference value zone and the PH is almost within the judgment reference value, the sweetness is manually checked at each measurement of these values. When the sweetness is almost no longer felt in this check, it is judged that the fermentation is completed.
For this reason, while the sensory check makes it possible to accurately judge the completion of fermentation, the sweetness check must be started and continued as soon as possible, which is troublesome.

なお、乳酸菌飲料である水素水の味として、一般にPH3.2ではかなり酸っぱく、できれば酸味がほどよいPH3.4程度で発酵完了することが好ましい。一方、判断基準値のPH3.2はほとんどの雑菌が死滅する酸度である。したがってPH3.2を判断基準値とすることは衛生上からも好ましい。 As for the taste of hydrogen water, which is a lactic acid bacteria beverage, it is generally preferable that the fermentation is completed at a pH of about 3.4, which is considerably sour at PH 3.2 and preferably has a moderate acidity. On the other hand, the criterion value of PH 3.2 is the acidity at which most germs are killed. Therefore, it is preferable from the viewpoint of hygiene to use PH 3.2 as the judgment reference value.

このようにして得られた水素水は、玄米由来の自然の植物性乳酸菌により乳酸発酵してなる植物性乳酸菌飲料が得られる。しかも、昆布を添加することにより、人体内における殺菌作用等をなす有用物質であるヨウ素を含有し、抗酸化作用を有する水素と、腸内フローラを改善する乳酸菌と、水溶性食物繊維からなるプレバイオティクスを含む高機能飲料となる。そのうえ、昆布により、発酵を促進し、旨み成分で食味を向上させることができる。
なお、実施例2により得られた水素水は、乳酸菌数が3.5×10 個/mLであった。また、ヨウ素を600μg/100g含有していた。
The hydrogen water thus obtained is lactic acid fermented by natural plant-derived lactic acid bacteria derived from brown rice to obtain a vegetable-derived lactic acid bacteria beverage. Moreover, by adding kelp, it contains iodine, which is a useful substance that has a bactericidal action in the human body, hydrogen that has an antioxidant action, lactic acid bacteria that improve the intestinal flora, and a prebiotic consisting of water-soluble dietary fiber. It is a high-performance beverage containing biotics. In addition, kelp can promote fermentation and improve the taste with umami ingredients.
The hydrogen water obtained in Example 2 had a lactic acid bacterium count of 3.5 × 106 cells / mL. It also contained 600 μg / 100 g of iodine.

また、乳酸菌の発酵に際して、固形昆布を添加することにより、ヨウ素の溶出を少量ずつ時間を掛けたゆっくりしたものとし、乳酸菌の増殖に対する悪影響を抑制した。このため、十分量のヨウ素を含有するにもかかわらず、乳酸菌数を若干量減らすだけで、水素水として要求される十分量を確保することができた。 In addition, by adding solid kelp during fermentation of lactic acid bacteria, the elution of iodine was slowed down little by little over time, and the adverse effect on the growth of lactic acid bacteria was suppressed. Therefore, even though it contains a sufficient amount of iodine, it was possible to secure a sufficient amount required for hydrogen water only by slightly reducing the number of lactic acid bacteria.

すなわち、昆布なしの従来法である比較例の場合、乳酸菌数が、3.8×10 個 /mLであったところ、ヨウ素を添加したにもかかわらず、これより1桁少ないだけの上記乳酸菌数を得ることができ、高機能化できた。
しかも、この方法によれば、昆布を発酵促進剤として利用できるので、発酵を促進して、発酵期間を短縮でき、発酵作業を効率化できる。さらに、酸化還元電位の最低値をより低く下げることができるので、酸化還元電位の戻りによって酸化側へ至るまでの期間を長くすることができる。したがって、製品をより長く還元側に維持することができ、製品出荷までの自由度を大きくすることができる。
That is, in the case of the comparative example which is the conventional method without kelp, the number of lactic acid bacteria was 3.8 × 10 7 cells / mL, but the above-mentioned lactic acid bacteria were only an order of magnitude less than this despite the addition of iodine. I was able to get the number and improve the functionality.
Moreover, according to this method, since kelp can be used as a fermentation accelerator, fermentation can be promoted, the fermentation period can be shortened, and the fermentation work can be made more efficient. Further, since the minimum value of the redox potential can be lowered, the period until the redox potential returns to the oxidation side can be lengthened. Therefore, the product can be maintained on the reducing side for a longer period of time, and the degree of freedom until the product is shipped can be increased.

比較例:昆布を添加しないもの
発芽玄米60g、塩3g、黒糖30gを深層水1Lに加えた発酵液とし、これを温度を35℃に維持して発酵する。
発酵開始後は、約半日程度毎に酸化還元電位とPHを定期測定する。
酸化還元電位は、酸化還元電位計として「YK-23RP-ADV」(株式会社佐藤商事、ORPセンサー:「SOTA-ORP」;同社製)を使用する。
Comparative example: A fermented liquid obtained by adding 60 g of germinated brown rice, 3 g of salt, and 30 g of brown sugar to 1 L of deep water without adding kelp, and fermenting the mixture at a temperature of 35 ° C.
After the start of fermentation, the redox potential and PH are measured regularly about every half a day.
For the redox potential, "YK-23RP-ADV" (Sato Shoji Co., Ltd., ORP sensor: "SOTA-ORP"; manufactured by the same company) is used as the redox potential meter.

比較例の発酵
酸化還元電位は1日目で最低値(-368mV)を示し、5日目に-100mVを越え、その後も上昇を継続する(図1)。また、PHは日目でほぼ目標のPH3.2になり、その後はほぼ一定となる(図2)。
PHが目標に近くなった5日目より甘みのチェックを開始し、甘みが消えた6.5日目に発酵完了と判断する。
また、乳酸菌数は、MRS寒天平板嫌気培養法により測定する。
The fermentation redox potential of the comparative example showed the lowest value (-368 mV) on the first day, exceeded -100 mV on the fifth day, and continued to increase thereafter (Fig. 1). In addition, the PH reaches the target PH of 3.2 on the 7th day, and then becomes almost constant (Fig. 2).
The sweetness check is started on the 5th day when the PH is close to the target, and it is judged that the fermentation is completed on the 6.5th day when the sweetness disappears.
The number of lactic acid bacteria is measured by the MRS agar plate anaerobic culture method.

比較例に昆布を添加した実施例1~3を作成する。なお、実施例1~3は昆布の量を変化させただけのものである。昆布の量は標準的な昆布ダシの使用量を考慮して、2~6gとした。また、各実施例とも、昆布を除く発酵液の調整、発酵方法、酸化還元電位及びPHの測定は比較例と同じである。 Examples 1 to 3 in which kelp is added to the comparative example are prepared. In Examples 1 to 3, only the amount of kelp was changed. The amount of kelp was set to 2 to 6 g in consideration of the amount of standard kelp soup stock used. Further, in each example, the preparation of the fermentation broth excluding kelp, the fermentation method, the measurement of the redox potential and the pH are the same as those in the comparative example.

実施例1:刻み昆布2gを上記比較例の発酵液に添加する。
刻み昆布は、たて5cm×よこ2cm× 厚さ0.5mm程度の板昆布を、2~3mm幅で短冊状に裁断したものである。
この刻み昆布を液中へ分散投入し、前発酵中は浸漬させたままとし、後発酵前に除去する。
前発酵が終了すると、発酵液中より玄米や昆布等の固体物質を除去し、さらに後発酵として発酵を継続する。酸化還元電位が判断基準値となるか甘みチェックにより発酵完了と判断したとき発酵を終了させる。その後、必要により、乳酸菌数やヨウ素量など、成分について測定する。ヨウ素の測定は、ガスクロマトグラフィーによる。
Example 1: 2 g of chopped kelp is added to the fermented liquid of the above comparative example.
The chopped kelp is made by cutting a plate kelp with a length of 5 cm, a width of 2 cm, and a thickness of about 0.5 mm into strips with a width of 2 to 3 mm.
This chopped kelp is dispersed and poured into the liquid, left immersed during the pre-fermentation, and removed before the post-fermentation.
When the pre-fermentation is completed, solid substances such as brown rice and kelp are removed from the fermentation broth, and fermentation is continued as post-fermentation. Fermentation is terminated when it is judged by the sweetness check that the fermentation is completed to see if the redox potential becomes the judgment reference value. Then, if necessary, the components such as the number of lactic acid bacteria and the amount of iodine are measured. Iodine is measured by gas chromatography.

実施例1にて刻み昆布を4gに変更したものである。 The chopped kelp was changed to 4 g in Example 1.

実施例1にて刻み昆布を6gに変更したものである。 The chopped kelp was changed to 6 g in Example 1.

Claims (5)

玄米由来の自然の植物性乳酸菌と、乳酸及び水素とを含む乳酸菌発酵水素水において、
昆布の溶出成分を含み、
玄米及び昆布の固形原料成分が除去されて液中に存在しない水素水の製品状態にて、
昆布由来の、ヨウ素と、水溶性食物繊維等の水溶性成分とを含むとともに、
乳酸菌数が所定基準数である10 個/mL以上であることを特徴とする植物性乳酸菌発酵水素水。
In natural plant-derived lactic acid bacteria derived from brown rice and lactic acid bacteria fermented hydrogen water containing lactic acid and hydrogen,
Contains the elution component of kelp
In the product state of hydrogen water in which the solid raw material components of brown rice and kelp have been removed and are not present in the liquid.
It contains iodine derived from kelp and water-soluble components such as water-soluble dietary fiber, and
A plant-derived lactic acid bacterium fermented hydrogen water characterized in that the number of lactic acid bacteria is 106 cells / mL or more, which is a predetermined standard number.
請求項1において、乳酸菌を3.5×10個/mL、ヨウ素を600μ g /100g含有することを特徴とする植物性乳酸菌発酵水素水。 The plant-derived lactic acid bacterium fermented hydrogen water according to claim 1, which contains 3.5 × 10 6 lactic acid bacteria / mL and 600 μg / 100 g of iodine. 玄米を塩と糖類を含む水中へ浸漬し、玄米由来の自然の植物性乳酸菌により乳酸発酵させて、発酵液を乳酸菌、乳酸及び水素を含む乳酸菌発酵水素水にする植物性乳酸菌発酵水素水の製法において、
玄米、塩、糖類及び固形昆布を水中へ浸漬し、
PHが所定の判断値になるまで乳酸発酵させる前発酵をすることにより、発酵液中へヨウ素と水溶性食物繊維を溶出させるとともに、
前発酵終了目標のPH到達時にて、前記昆布等の固形原料を除去して前発酵を終了してから、さらに追加発酵させるための後発酵をする、
ことを特徴とする植物性乳酸菌発酵水素水の製法。
A method for producing vegetable lactic acid bacteria fermented hydrogen water by immersing brown rice in water containing salt and sugar and fermenting it with natural vegetable lactic acid bacteria derived from brown rice to make the fermented liquid into lactic acid bacteria fermented hydrogen water containing lactic acid bacteria, lactic acid and hydrogen. In
Soak brown rice, salt, sugar and solid kelp in water and
By performing pre-fermentation by lactic acid fermentation until the pH reaches a predetermined judgment value, iodine and water-soluble dietary fiber are eluted into the fermented liquid and at the same time.
When the pH of the pre-fermentation end target is reached, the solid raw materials such as kelp are removed to complete the pre-fermentation, and then the post-fermentation for further additional fermentation is performed.
A method for producing fermented hydrogen water of plant-derived lactic acid bacteria.
請求項3において、前発酵をPH3.2で終了させ、
後発酵を酸化還元電位が-100~-200mVのゾーン内で終了させ、
乳酸菌数を、10個/ mL 以上含有させた、
ことを特徴とする植物性乳酸菌発酵水素水の製法。
In claim 3, the pre-fermentation is terminated at PH 3.2.
Post-fermentation is terminated within a zone with a redox potential of -100 to -200 mV.
The number of lactic acid bacteria was 106 cells / mL or more.
A method for producing fermented hydrogen water of plant-derived lactic acid bacteria.
請求項3において、前記固形昆布は板昆布又は刻み昆布であり、
使用量を、2~20g/L とした
ことを特徴とする植物性乳酸菌発酵水素水の製法。
In claim 3, the solid kelp is a plate kelp or chopped kelp.
A method for producing fermented hydrogen water of plant-derived lactic acid bacteria, characterized in that the amount used is 2 to 20 g / L.
JP2021133707A 2020-08-20 2021-08-18 Plant-derived lactic acid bacteria fermented hydrogen water and its manufacturing method Active JP7076619B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020139664 2020-08-20
JP2020139664 2020-08-20

Publications (2)

Publication Number Publication Date
JP2022036049A JP2022036049A (en) 2022-03-04
JP7076619B2 true JP7076619B2 (en) 2022-05-27

Family

ID=80443808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021133707A Active JP7076619B2 (en) 2020-08-20 2021-08-18 Plant-derived lactic acid bacteria fermented hydrogen water and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7076619B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751732B (en) * 2023-07-11 2024-05-24 内蒙古农业大学 Culture method for increasing number of living cells of cheese bacillus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133423A (en) 2011-12-27 2013-07-08 Tropical Plant Resources Institute Inc Antioxidant and antioxidant beverage

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101281839B1 (en) * 2010-12-31 2013-07-03 김현주 Manufacturing method of yokurt drink using rice

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133423A (en) 2011-12-27 2013-07-08 Tropical Plant Resources Institute Inc Antioxidant and antioxidant beverage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
自家製乳酸菌でお漬物,こんぶネット [オンライン],2016年09月28日,[検索日 2021年10月13日], インターネット<URL: https://kombu.or.jp/recipe/2321>
食品と開発,1993年,Vol. 28, No. 3,pp. 36-39

Also Published As

Publication number Publication date
JP2022036049A (en) 2022-03-04

Similar Documents

Publication Publication Date Title
CN101518320B (en) Preparation method of long shelf life fermented pickled vegetable
KR100701254B1 (en) Fermented Food of Lactic acid bacteria containing Salicornia herbacea extract
CN102187997A (en) Pickled oyster mushrooms and preparation method thereof
CN105029600A (en) Apple enzyme beverage production method
CN103039927A (en) Biologically fermented black purslane food and preparation method thereof
KR20090130733A (en) Method for producing lotus vinegar
CN1295986C (en) Method for producing lactic fungus fermented nutritional jerky and dried meat
CN112980646B (en) Kefir source composite probiotic fermented pear juice and oat viable bacteria vinegar drink and preparation method thereof
JP7076619B2 (en) Plant-derived lactic acid bacteria fermented hydrogen water and its manufacturing method
KR101792919B1 (en) Method for manufacturing Aronia melanocarpa fortified with higher GABA content using Lactic acid bacteria
CN104351887A (en) Mulberry tea fungus
CN102038178A (en) Production method of low-nitrite auricularia polytricha flavor food
CN105795404A (en) Rapid preparation method of preservative-free industrialized pickled vegetable with long shelf life
CN108041388A (en) A kind of processing technology of non-alcoholic fermented grape beverage
Ghosh et al. Engineered biofilm: Innovative nextgen strategy for quality enhancement of fermented foods
CN105454423A (en) Banana-flavored fermentation type milk containing beverage and production method thereof
JP2003116486A (en) Food composition having inhibitory action on postprandial elevation of blood glucose
Moraru et al. Probiotic vegetable juices
CN107259540A (en) Noni fruit drought ferment
JP2011036161A (en) Fermented garlic containing ornithine
JP2008228732A (en) Beverage
CN103897975B (en) After front liquid, admittedly water the preparation technology of pouring formula Fig Vinegar
CN104273611A (en) Tomato tea fungus beverage
CN107312673A (en) A kind of preparation method of selenium rich strawberry wine
KR101513014B1 (en) Obtained from Kimchi Lactobacillus plantarum K-1 using Functional food radish kimchi prepared using the method of functional

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7076619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150