JP7074998B2 - エチレン/テトラフルオロエチレン共重合体 - Google Patents

エチレン/テトラフルオロエチレン共重合体 Download PDF

Info

Publication number
JP7074998B2
JP7074998B2 JP2017217774A JP2017217774A JP7074998B2 JP 7074998 B2 JP7074998 B2 JP 7074998B2 JP 2017217774 A JP2017217774 A JP 2017217774A JP 2017217774 A JP2017217774 A JP 2017217774A JP 7074998 B2 JP7074998 B2 JP 7074998B2
Authority
JP
Japan
Prior art keywords
polymerization
ethylene
group
peak intensity
autoclave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217774A
Other languages
English (en)
Other versions
JP2019089875A (ja
Inventor
遼一 矢野
達也 舩岡
岳史 関口
一暢 内田
裕子 岩松
隆宏 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2017217774A priority Critical patent/JP7074998B2/ja
Publication of JP2019089875A publication Critical patent/JP2019089875A/ja
Application granted granted Critical
Publication of JP7074998B2 publication Critical patent/JP7074998B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

本発明は、エチレン/テトラフルオロエチレン共重合体に関する。
エチレン/テトラフルオロエチレン共重合体〔ETFE〕は、耐熱性、耐候性、電気絶縁性、非粘着性等に優れており、更に、フッ素樹脂の中でも成形性及び機械的強度にも優れるため、溶融成形方法により加工することによって、被覆電線、チューブ、シート、フィルム等の広範囲の成形品に利用されており、種々の検討がなされている。
例えば、特許文献1には、耐熱性及び耐ストレスクラック性に優れた成形体を、生産性よく製造することを目的として、特定の単量体組成比を有するETFEと、特定量の酸化銅とを含有する含フッ素共重合体組成物が記載されている。
特許文献2には、耐熱性に優れ、かつ高温での耐ひび割れ性を改良することを目的として、エチレンから誘導された繰り返し単位、テトラフルオロエチレンから誘導された繰り返し単位及び特定のフルオロビニル化合物から誘導された繰り返し単位を含んで成るエチレン-テトラフルオロエチレン系共重合体が記載されている。
また、特許文献3には、成形時に揮発分による発泡を生じない共重合体を提供することを目的として、パーオキシジカーボネートを重合開始剤とする重合により生成したテトラフルオロエチレン系共重合体を重合後にアンモニアまたは弱酸のアンモニウム塩と接触させるテトラフルオロエチレン系共重合体の安定化方法も記載されている。
特許第5958467号公報 特公平3-20405号公報 特公平7-33444号公報
しかしながら、特許文献1に記載された含フッ素共重合体組成物は、酸化銅のような受酸剤の分散均一性に課題があり、得られる成形品の耐熱性、機械的強度の品質安定面で改善の余地があった。特許文献2に記載されたエチレン-テトラフルオロエチレン系共重合体は、高温で溶融成形しようとすると成形機内でのゲル化及び熱分解を抑制できず、良好な成形品を得ることが困難であった。また、特許文献3に記載された方法で安定化しても、高温時に着色が発生する等の点で改善の余地があった。
本発明は、上記現状に鑑み、熱安定性に優れ、着色を低減できるエチレン/テトラフルオロエチレン共重合体を提供することを目的とする。
本発明者らは、上記課題を解決するための手段を鋭意検討した結果、熱分解開始温度とイエローインデックス値が特定の条件を満たすことによって、極めて熱安定性に優れ、かつ着色をも低減できるETFEとなることを見出し、本発明を完成するに至った。
すなわち、本発明は、熱分解開始温度が370℃以上であり、かつ、イエローインデックス値が-40以下であり、232℃で168時間加熱後のイエローインデックス変化度が100以下であることを特徴とするエチレン/テトラフルオロエチレン共重合体である。
本発明のエチレン/テトラフルオロエチレン共重合体は、フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たすことが好ましい。
PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60 (2)
PI:-CFH基に由来する振動のピーク強度
PI:-CFCHCOF基に由来する振動のピーク強度
PI:-COF基に由来する振動のピーク強度
PI:-COOH基に由来する振動のピーク強度
PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
PI:-COOCH基に由来する振動のピーク強度
PI:-CONH基に由来する振動のピーク強度
PI:-CHOH基に由来する振動のピーク強度
本発明のエチレン/テトラフルオロエチレン共重合体は、エチレンに基づく重合単位(a)、及び、テトラフルオロエチレンに基づく重合単位(b)を有し、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が50~10/50~90であることが好ましい。
本発明のエチレン/テトラフルオロエチレン共重合体は、エチレンに基づく重合単位(a)、テトラフルオロエチレンに基づく重合単位(b)及びエチレン及びテトラフルオロエチレンと共重合可能な単量体に基づく重合単位(c)を含むことが好ましい。
上記重合単位(c)は、下記一般式(A1):
CH=CXY (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位であることが好ましい。
本発明のエチレン/テトラフルオロエチレン共重合体は、297℃でのメルトフローレートが0.1~60.0g/10分であることが好ましい。
本発明はまた、上記エチレン/テトラフルオロエチレン共重合体を成形して得られることを特徴とする成形品でもある。
本発明の成形品は、フィルム又はシートであることが好ましい。
本発明は更に、芯線と、上記エチレン/テトラフルオロエチレン共重合体からなる被覆材とを有することを特徴とする電線でもある。
本発明のエチレン/テトラフルオロエチレン共重合体は、上記構成を有することによって、熱安定性に優れ、着色を低減できる。
以下、本発明を具体的に説明する。
本発明のエチレン/テトラフルオロエチレン(以下「TFE」とも記載する)共重合体(以下「ETFE」とも記載する)は、熱分解開始温度が370℃以上である。より好ましくは、375℃であり、更に好ましくは、380℃以上である。
上記熱分解開始温度は、示差熱・熱重量測定装置を用いて、空気雰囲気下で10℃/分で昇温し、フルオロポリマーの質量が1質量%減少するときの温度である。
本発明のETFEは、イエローインデックス値が-40以下であり、232℃で168時間加熱後のイエローインデックス変化度が100以下である。上記変化度は、70以下であることがより好ましい。
上記イエローインデックスは、ASTM-D1925に準じて測定する。イエローインデックスの測定は、例えば、300℃、3.0MPaGの条件でプレス成型した厚さ1.5mmのフィルムを用いて実施することができる。
本発明のETFEは、上記熱分解開始温度とイエローインデックス及びその変化度の両方を満足することによって、極めて熱安定性に優れ、かつ、着色を低減できるものである。
本発明のETFEは、下記式(1)を満たすことが好ましい。
75≦tanδ(60)/tanδ(5)×100≦225 (1)
tanδ(5):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から5分後の損失正接
tanδ(60):空気雰囲気下の320℃における動的粘弾性測定において、測定開始から60分後の損失正接
上記tanδ(5)及びtanδ(60)は、加熱炉を有する回転式レオメータを用いて、空気雰囲気下で測定温度320℃におけるETFEの溶融開始時から5分後と60分後の損失正接tanδを測定したものである。回転式レオメータの条件は、平行円盤の直径25mm、測定ギャップ1.0mm、周波数1rad/s、測定歪3%である。
上記溶融開始時は、測定温度雰囲気下の加熱炉の中にETFEを入れた時の時間である。
上記空気雰囲気とは、例えば、通常の空気(酸素濃度は約20体積%)雰囲気である。
本発明のETFEは、熱安定性及び着色の観点から、80≦tanδ(60)/tanδ(5)×100≦200を満たすことが好ましく、90≦tanδ(60)/tanδ(5)×100≦180を満たすことがより好ましく、100≦tanδ(60)/tanδ(5)×100≦160を満たすことがより好ましい。
本発明のETFEは、主鎖末端に-CFH基を有することが好ましい。主鎖末端に-CFH基を有すること、および、式(1)を満足することの相乗作用により、極めて優れた耐熱性の共重合体となる。
本発明のETFEは、主鎖末端に-CFH基以外の末端基を有していてもよいが、フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たすことが好ましい。
PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60 (2)
PI:-CFH基に由来する振動のピーク強度
PI:-CFCHCOF基に由来する振動のピーク強度
PI:-COF基に由来する振動のピーク強度
PI:-COOH基に由来する振動のピーク強度
PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
PI:-COOCH基に由来する振動のピーク強度
PI:-CONH基に由来する振動のピーク強度
PI:-CHOH基に由来する振動のピーク強度
上記ピーク強度は、ETFEを300℃、3.0MPaGの条件でプレス成型した厚さ200μmのフィルムをフーリエ変換赤外分光光度計(FT-IR)にて測定した。
各末端基に由来する振動のピークとしては、2950~3000cm-1を1.5Åに規格化したのち、下記吸収周波数のピークを採用した。
-CFH基:3010cm-1
-CFCHCOF基:1846cm-1
-COF基:1884cm-1
-COOH基:1813cm-1
-CFCOOH基の二量体と-CFCHCOOH基の単量体:1760cm-1
-COOCH基:1795cm-1
-CONH基:3438cm-1
-CHOH基:3648cm-1
-CH-基:2975cm-1
本発明のETFEは、エチレンに基づく重合単位(a)、及び、TFEに基づく重合単位(b)を有する。
ここで、エチレンに基づく重合単位(a)とは、-CHCH-で表される繰り返し単位を表し、TFEに基づく重合単位(b)とは、-CFCF-で表される繰り返し単位を表している。
本発明のETFEは、耐熱性及び機械的強度のいずれもが優れることから、エチレンに基づく重合単位(a)とTFEに基づく重合単位(b)とのモル%比(a)/(b)が50~10/50~90であることが好ましい。より耐熱性に優れることから、モル%比(a)/(b)は、45~20/55~80であることがより好ましく、45~30/55~70であることがより好ましく、44~41/56~59であることが更に好ましい。
本発明のETFEは、重合単位(a)、重合単位(b)、並びに、エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)からなるものであることが好ましい。
エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)の含有割合は、重合単位(a)及び重合単位(b)の合計に対して0~10.0モル%であることが好ましい。
上記エチレン及びTFEと共重合可能な単量体としては、末端炭素-炭素二重結合を有し、エチレン及びTFEと共重合することができる単量体であれば特に制限されない。
ここで、エチレン及びTFEと共重合可能な単量体に基づく重合単位(c)とは、当該単量体が共重合して重合体の構成の一部となった場合の、重合体中の当該単量体に由来する構造部分を表している。
上記エチレン及びTFEと共重合可能な単量体としては、フッ化ビニリデン、クロロトリフルオロエチレン、フッ化ビニル、へキサフルオロプロピレン、へキサフルオロイソブテン、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)、CF=CF-OCH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体、一般式(A1):
CH=CXY (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される(フルオロアルキル)エチレン等が挙げられる。
上記エチレン及びTFEと共重合可能な単量体としては、中でも、上記一般式(A1)で表される(フルオロアルキル)エチレンが好ましい。
すなわち、上記ETFEは、エチレンに基づく重合単位(a)、TFEに基づく重合単位(b)及び下記一般式(A1):
CH=CXY (A1)
(式中、Xは、水素原子又はフッ素原子を表す。Yは、フルオロアルキル基を表す。)で表される単量体に基づく重合単位からなるものであることもまた、本発明の好適な実施形態の1つである。
なお、上記一般式(A1)で表される単量体に基づく重合単位は、-CH-CXY-で表される繰り返し単位を表している。
上記一般式(A1)におけるYは、フルオロアルキル基を表すが、上記フルオロアルキル基は、直鎖であってもよいし、分岐鎖であってもよい。また、上記フルオロアルキル基の炭素数は、2~10であることが好ましく、2~8であることがより好ましく、2~6であることが更に好ましい。
上記一般式(A1)で表される単量体は、中でも、下記一般式(A2):
CH=CX-(CFZ (A2)
(式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)で表される単量体であることが好ましい。
上記一般式(A2)におけるnは、2~8の整数である。nは、2~6の整数であることが好ましく、2~4の整数であることがより好ましく、3であることが更に好ましい。
上記一般式(A2)で表される単量体としては、CH=CF(CFF、CH=CF(CFF、CH=CF(CFF、CH=CF(CFH、CH=CF(CFH、CH=CF(CFH、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFH、CH=CH(CFH、CH=CH(CFH等が挙げられる。
上記一般式(A2)で表される単量体としては、CH=CF(CFH、CH=CH(CFF、CH=CF(CFH、CH=CH(CFF、CH=CF(CFH、CH=CH(CFF、CH=CF(CFH、CH=CH(CFFからなる群より選択される少なくとも1種であることが好ましく、CH=CF(CFH、及び、CH=CH(CFFからなる群より選択される少なくとも1種がより好ましく、CH=CF(CFHが更に好ましい。
上記一般式(A1)又は(A2)で表される単量体に基づく重合単位の含有割合は、耐熱性をより向上させる観点から、重合単位(a)及び重合単位(b)の合計に対して0~10.0モル%であることが好ましく、0.1~8.0モル%であることがより好ましく、0.5~5.0モル%であることが更に好ましい。
本発明のETFEの好適な実施形態の一つは、熱分解開始温度が370℃以上であり、イエローインデックス値が-40以下であり、232℃で168時間加熱後のイエローインデックス変化度が70以下であり、重合単位(a)、TFEに基づく重合単位(b)及び一般式(A2)で表される単量体に基づく重合単位からなり、重合単位(a)と重合単位(b)とのモル%比(a)/(b)が44~41/56~59であり、一般式(A2)で表される単量体に基づく重合単位の含有割合が重合単位(a)及び重合単位(b)の合計に対して0.1~8.0モル%である形態である。このような形態により、熱安定性に優れ、更に、着色を低減できるETFEとなる。
本明細書において、各単量体単位の含有量は、19F-NMR分析を行うことにより得られる値である。
上記ETFEは、融点は200℃以上が好ましい。融点が低すぎると、高温で使用した場合変形を引き起こすため耐熱性に劣る。融点は、200℃超であることがより好ましく、220℃以上が更に好ましく、230℃以上が特に好ましい。融点の上限は特に限定されないが、280℃であってよい。
融点は、示差走査熱量計を用い、ASTM D-4591に準拠して昇温速度10℃/分にて熱測定を行い、得られた吸熱曲線のピークの温度である。
上記ETFEは、297℃でのメルトフローレート〔MFR〕が0.1~60.0g/10分であることが好ましく、50.0g/10分以下であることがより好ましく、3.0g/10分以上であることがより好ましく、4.0g/10分以上であることが更に好ましい。
MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5Kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。
上記ETFEは、例えば、重合開始剤、好ましくは含フッ素重合開始剤を用いて、エチレンとTFEと、必要に応じてエチレン及びTFEと共重合可能な単量体と、を重合させることにより製造することができる。
上記重合としては、懸濁重合、溶液重合、乳化重合、塊状重合等を採用することができるが、特に、溶媒、重合開始剤及び連鎖移動剤を使用する水性媒体中での懸濁重合が好ましい。上記水性媒体としては水が好ましい。
上記懸濁重合においては、水性媒体に加えてフッ素系溶媒を使用することが好ましい。当該フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;CFCFHCFHCFCFCF,CFHCFCFCFCFH,CFCFCFCFCFCFCFH等のハイドロフルオロアルカン類;CHOC、CHOCCFCFCHOCHF、CFCHFCFOCH、CHFCFOCHF、(CFCHCFOCH、CFCFCHOCHCHF、CFCHFCFOCHCF等のハイドロフルオロエーテル類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類;などが挙げられ、これらの中でもパーフルオロアルカン類が好ましい。これらの含フッ素溶媒は、1種でもよく、2種以上でもよい。上記フッ素系溶媒の使用量としては、懸濁性、経済性の観点から、水性媒体に対して10~100質量%とするのが好ましい。
上記重合開始剤及び含フッ素重合開始剤としては特に限定されず、従来公知のものを使用できる。
上記重合開始剤は、重合開始時に一括して添加してもよいが、重合開始剤を重合開始から重合終了まで連続添加又は分割添加することが好ましい。
連続添加とは、重合開始から重合終了まで中断することなく連続的に添加することをいい、分割添加とは、重合開始から重合終了まで複数回に分割して逐次添加することをいう。
重合開始剤の添加量は、得られるETFEの目的に応じて適宜決定すればよいが、例えば、添加量の合計が、得られる重合体100質量部に対して0.01~20質量部であることが好ましく、0.01~10質量部であることがより好ましく、0.02~8質量部であることが更に好ましい。
上記重合では、連鎖移動剤を用いることが好ましい。連鎖移動剤としては、従来公知の連鎖移動剤を使用することができるが、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチルなどの酢酸エステル類;メタノール、エタノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素などが好ましい。すなわち、上記連鎖移動剤は、炭化水素類、芳香族類、ケトン類、アルコール類、メルカプタン類及びハロゲン化炭化水素からなる群より選択される少なくとも1種であることが好ましい。連鎖移動剤は、上記の中の1種類で用いてもよく、複数個を組み合わせて使用しても良い。
上記重合では、連鎖移動剤を重合開始時に一括して添加しても良いが、連鎖移動剤を重合開始から重合終了まで連続添加又は分割添加することが好ましい。
連鎖移動剤の添加量は、連鎖移動剤として用いる化合物の連鎖移動定数の大きさにより変わりうるが、得られるETFEの目的に応じて適宜決定できるが、例えば、添加量の合計が、重合溶媒に対して0.005~20質量%であることが好ましく、0.01~10質量%であることがより好ましく、0.01~8質量%であることが更に好ましい。
上記重合における重合温度としては、特に制限されないが、例えば、0~100℃とすることができる。また、重合圧力としては、用いる溶媒の種類や量、蒸気圧、重合温度などの他の重合条件に応じて適宜設定することができるが、通常、0~9.8MPaである。
上記重合は、重合開始剤を用い、下記式(3)を満たすことが好ましい。この条件を満たすことによって、溶融加工性に優れ、かつ耐熱性に優れるETFEを製造することができる。
log10(Mh/Mf)≦1.0 (3)
Mh:重合開始剤を投入してから1時間後のメルトフローレート値
Mf:重合により得られたエチレン/テトラフルオロエチレン共重合体のメルトフローレート値
上記Mhは、重合開始剤を投入してから1時間後のメルトフローレート値である。上記Mhは、例えば、重合開始剤を投入してから1時間後に、重合中のETFEを6g採取し、洗浄、乾燥を行って得られたETFE粉末について、上述したMFRの測定方法により得られる値である。
上記Mfは、重合により得られたエチレン/テトラフルオロエチレン共重合体のメルトフローレート値であり、上述した297℃でのメルトフローレートである。
すなわち、本発明のETFEは、重合開始剤を用いて、エチレンとTFEとを重合することにより得られ、前記重合が上記式(3)を満たすものであることが好ましい。通常、メルトフローレート値は重合の進行とともに低下していくが、重合開始剤を投入してから1時間後のメルトフローレート値、すなわち、メルトフローレート値が高い初期段階の値と、メルトフローレート値が低い重合終了後のエチレン/テトラフルオロエチレン共重合体の値との比が式(2)を満足することによって、溶融加工性に優れ、かつ耐熱性に優れるETFEを製造することができる。
上記重合は、log10(Mh/Mf)≦0.9を満たすことが好ましく、log10(Mh/Mf)≦0.8を満たすことがより好ましく、log10(Mh/Mf)≦0.7を満たすことが更に好ましい。
式(3)を満足するための方法としては、例えば、上述したように重合開始剤及び連鎖移動剤を連続又は分割添加する方法が挙げられる。
本発明のETFEは、熱安定性に優れ、着色を低減できるため、種々の成形品に適用可能である。本発明は、本発明のETFEを成形して得られる成形品でもある。
本発明の成形品を得るための成形方法は特に限定されず、例えば、射出成形、押出成形、ブロー成形、プレス成形、回転成形、静電塗装等の従来公知の成形方法を採用できる。本発明のETFEは、溶融加工性及び耐熱性に優れるため、特に、射出成形又は押出成形で得られる成形品により好適である。
本発明の成形品の形状は限定されず、例えば、シート状、フィルム状、ロッド状、パイプ状、繊維状等の種々の形状にすることができる。
上記成形品の用途としては特に限定されず、例えば、各種フィルム又はシート、袋、電線の被覆材、飲料用容器等の食器類、ケーブル、パイプ、繊維、ボトル、ガソリンタンク、その他の各種産業用成形品等が挙げられる。中でも、フィルム又はシートが好ましい。
上記フィルム又はシートとしては、太陽電池用バックシート、航空機離型フィルム、半導体離型フィルム、高耐候性シート等に好適である。
本発明の成形品は電線の被覆材として好適である。電線の被覆材としては、例えば、ロボット、電動機、発電機、変圧器等の電気機器に使用される電線の被覆材;電話、無線機、コンピュータ、データ通信機器等の通信用機器に使用される電線の被覆材;鉄道車両、自動車、航空機、船舶等で使用される電線の被覆材に使用できる。特に耐熱性が要求される用途に適用でき、上記ロボット、電動機、発電機、変圧器等の電気機器に使用する電線の被覆材として特に好適である。
本発明は、芯線と、本発明のETFEを含む被覆材とを有する電線でもある。本発明の電線は、上記被覆材を有することによって、導体の径及びETFEの被覆厚さは、適宜選定できるが、耐熱電線として使用可能であり、更に、耐熱性に優れるため、例えば、UL規格758の150℃や200℃の耐熱規格基準を満たしたり、欧州自動車電線規格LV-112のClassEの基準を満たすことも可能である。
本発明の電線としては、ケーブル、ワイヤ等が挙げられる。具体的には、同軸ケーブル、高周波用ケーブル、フラットケーブル、耐熱ケーブル等が挙げられる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
(組成)
核磁気共鳴装置AC300(Bruker-Biospin社製)を用い、測定温度をポリマーの融点+20℃として19F-NMR測定を行い、各ピークの積分値で求めた。
(融点)
示差走査熱量計RDC220(Seiko Instruments社製)を用い、ASTM D-4591に準拠して昇温速度10℃/分にて熱測定を行い、得られた吸熱曲線のピークから融点を求めた。
(MFR)
MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5Kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)をMFRとした。
(熱分解開始温度)
熱分解開始温度は、示差熱・熱重量測定装置TG/DTA6200あるいはTG/DTA7200(日立ハイテクサイエンス社製)を用いて、空気雰囲気下で10℃/分で昇温し、フルオロポリマーの質量が1質量%減少するときの温度を熱分解開始温度とした。
(tanδ)
加熱炉を有する回転式レオメータ(MCR302,Anton Peer社製)を用いて、空気雰囲気下における、測定温度320℃においてのETFEの溶融開始時から5分後及び60分後の損失正接tanδを測定し、それぞれtanδ(5)及びtanδ(60)とした。条件として、直径25mmの平行円盤を使用し、測定ギャップは1.0mm、周波数は1rad/s、測定歪は3%とした。上記溶融開始時は、測定温度雰囲気下の加熱炉の中に樹脂を入れた時の時間とした。
(揮発分)
電気炉を用い、以下の手順で揮発分(重量%)を測定した。
サンプルを精密天秤(0.1mgまで測定できるもの)を使用し、あらかじめ330℃で1時間空焼きしておいたアルミカップ(重量をAとする)に10±0.1gの範囲内になるように精秤する(全体の重量をBとする)。
測定1サンプルにつき、2個を準備する。この時、揮発分がわかっている標準サンプルも同時に計量し、レファレンスとする。これを330℃に温調しておいた電気炉に入れる。入れた時点から1時間後に、電気炉内を150℃まで冷却し、その後取り出しサンプル重量を精秤する(この重量をCとする)。
以下の式により、サンプルの330℃、1時間での重量減少を計算し、揮発分(重量%)とする。
揮発分(重量%)=[(B-C)/(B-A)]×100
(着色)
300℃、3.0MPaGの条件でプレス成型した厚さ1.5mmのフィルムを232℃で168時間加熱し、加熱前後のイエローインデックスを測色色差系ZE6000(日本電色工業株式会社製)で規格ASTM-D1925に準じて、測定した。
また、電気炉を用い、330℃で1時間の条件で焼成して着色を目視で確認した。表中の評価基準は以下の通りである。
○・・・着色なし(白色)
△・・・わずかに着色(淡黄色)
×・・・着色(茶色・褐色)
(末端基の分析)
実施例及び比較例で得られたETFEを用い、300℃、3.0MPaGの条件でプレス成型した厚さ200μmのフィルムをフーリエ変換赤外分光光度計(FT-IR)にて測定した。
各末端基に由来する振動のピークとしては、2950~3000cm-1を1.5Åに規格化したのち、下記吸収周波数のピークを採用した。
-CFH基:3010cm-1
-CFCHCOF基:1846cm-1
-COF基:1884cm-1
-COOH基:1813cm-1
-CFCOOH基の二量体と-CFCHCOOH基の単量体:1760cm-1
-COOCH基:1795cm-1
-CONH基:3438cm-1
-CHOH基:3648cm-1
-CH-基:2975cm-1
FT-IRの測定結果から、下記式によりβを求めた。
β=PI/(PI+PI+PI+PI+PI+PI+PI
PI:-CFH基に由来する振動のピーク強度
PI:-CFCHCOF基に由来する振動のピーク強度
PI:-COF基に由来する振動のピーク強度
PI:-COOH基に由来する振動のピーク強度
PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
PI:-COOCH基に由来する振動のピーク強度
PI:-CONH基に由来する振動のピーク強度
PI:-CHOH基に由来する振動のピーク強度
実施例1
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にオクタフルシクロブタン(以後「C318」と表記)878gとTFE303g、エチレン8.8g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.75g、シクロヘキサン2gを投入し、オートクレーブを28℃に加温した。次に8%のジ(ω-ヒドロパーフルオロヘキサノイル)パーオキサイド(以下「DHP」と略す)パーフルオロヘキサン溶液15.7gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=57.0/43.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量23.7gを連続して仕込んで重合を継続した。重合開始から1時間30分後、3時間後、4時間30分後に8%DHPパーフルオロヘキサン溶液7.8gを追加投入し、その後1時間30分毎に3.9g追加投入した。また、重合開始から1時間30分毎に3回シクロヘキサン1.5gを追加投入した。重合開始10時間30分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR45.7g/10分のフッ素樹脂の粉末252gをえた。
実施例2
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 878gとTFE303g、エチレン8.8g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.75g、シクロヘキサン3gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液11.7gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=58.0/42.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量25.0gを連続して仕込んで重合を継続した。重合開始から2時間後、4時間後に8%DHPパーフルオロヘキサン溶液7.8gを追加投入し、その後100分毎に1.7g追加投入した。また、重合開始から2時間毎に2回シクロヘキサン1.0g、重合開始から5時間40分後に1.0g追加投入した。重合開始9時間57分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR30.1g/10分のフッ素樹脂の粉末250gをえた。
実施例3
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 878gとTFE306g、エチレン8.8g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.75g、シクロヘキサン2.5gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液12.1gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=58.0/42.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量15.8gを連続して仕込んで重合を継続した。重合開始から2時間後に8%DHPパーフルオロヘキサン溶液12.1g、4時間後に8%DHPパーフルオロヘキサン溶液を6.8gを追加投入し、その後100分毎に1.7g追加投入した。また、重合開始から2時間後、4時間後にシクロヘキサン1.75g追加投入した。重合開始7時間45分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR43.5g/10分のフッ素樹脂の粉末252gをえた。
実施例4
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 878gとTFE284g、エチレン11.2g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)5.82g、シクロヘキサン5.0gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.8gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=56.0/44.0モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量12.0gを連続して仕込んで重合を継続した。重合開始から1時間30分毎に8%DHPパーフルオロヘキサン溶液7.8gを3回、3.9gを3回追加投入した。また、重合開始から1時間30分毎にシクロヘキサン0.5g追加投入した。重合開始9時間8分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR14.0g/10分のフッ素樹脂の粉末254gをえた。
比較例1
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1215gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 878gとTFE266g、エチレン13.7g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)5.2g、シクロヘキサン7gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.9gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=54.8/45.2モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量12.5gを連続して仕込んで重合を継続した。8%DHPパーフルオロヘキサン溶液を、重合開始から1時間30分後に7.9g、3時間後に7.8g、4時間30分後に3.9g追加投入した。重合開始8時間18分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR14.7g/10分のフッ素樹脂の粉末256gをえた。
比較例2
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1214gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 878gとTFE266g、エチレン13.5g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)5.22g、シクロヘキサン8.5gを投入し、オートクレーブを28℃に加温した。次に8%のDHPパーフルオロヘキサン溶液7.86gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、TFE/エチレン=54.7/45.3モル%の混合ガスを連続して供給し、系内圧力を1.2MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量12.5gを連続して仕込んで重合を継続した。8%DHPパーフルオロヘキサン溶液を、重合開始から1時間30分後に7.9g、3時間後に7.8g追加投入し、その後1時間30分毎に3.9g追加投入した。重合開始8時間59分後、放圧して大気圧に戻し、反応生成物を水洗、乾燥して、MFR18.5g/10分のフッ素樹脂の粉末255gをえた。
比較例3
撹拌機付きオートクレーブ(容積4.11L)に脱イオン水1280gを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 891gとTFE225g、エチレン9.4g、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)6.1g、シクロヘキサン4.1gを投入し、オートクレーブを35℃に加温した。その後にジ-n-プロピルパーオキシジカーボネート(以下「NPP」と略す)6.98gをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/エチレン=55.0/45.0モル%の混合ガスを連続して供給し、系内圧力を1.20MPaGに保った。そして、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)についても合計量6.13gを連続して仕込んで重合を継続した。重合開始4時間52分後、放圧して大気圧に戻し、溶媒と重合水を除去後、蒸留水957.1gと28%アンモニア42.9gを仕込み、撹拌回転数を30rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR16.0g/10分のフッ素樹脂粉末125gをえた。
比較例4
撹拌機付きオートクレーブ(内容積1000L)に脱イオン水416Lを投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 287kg、テトラフルオロエチレン76.1kg、エチレンを2.4kg、(パーフルオロヘキシル)エチレン1.47kg、シクロヘキサン0.83kgを投入し、オートクレーブを35℃に加温した。その後にNPP3.1kgをオートクレーブ内に投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/エチレン=57.0/43.0モル%の混合ガスを連続して供給し、系内圧力を1.20MPaGに保った。そして、(パーフルオロヘキシル)エチレンについても合計量19.1kgを連続して仕込んで重合を継続した。重合開始3.5時間後にMFR調節のためにシクロヘキサン330gを追加し、さらに重合開始11.8時間後にシクロヘキサン1.0kgを追加し、重合開始22時間後、放圧して大気圧に戻し、溶媒と重合水を除去後、脱イオン水400kgと28%アンモニア水9kgを仕込み、撹拌回転数を30rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR4.4g/10分のフッ素樹脂粉末250kgをえた。
比較例5
撹拌機付きオートクレーブ(内容積175L)に脱イオン水54.5kg投入し、オートクレーブ内を十分に真空窒素置換した。その後、オートクレーブ内を真空脱気し、真空状態となったオートクレーブ内にC318 37.6kg、テトラフルオロエチレン10.3kg、エチレンを0.31kg、パーフルオロ(1,1,5-トリハイドロ-1-ペンテン)を164.4g、シクロヘキサン205gを投入し、オートクレーブを35℃に加温した。その後にジ-セカンダリーブチルパーオキシカーボネート(以下「SBP」と略す)299.8gを投入して重合を開始した。重合開始時点のオートクレーブの内部圧力を1.2MPaGに設定し、重合の進行と共に系内の圧力が低下するので、テトラフルオロエチレン/エチレン=57.5/42.5モル%の混合ガスを連続して供給し、系内の圧力を1.20MPaGに保った。そして(パーフルオロヘキシル)エチレンについても合計量1.02kgを連続して仕込んで重合を継続した。重合開始15時間後、放圧して大気圧に戻し、溶媒と重合水を除去後、脱イオン水44.7kgと28%アンモニア水1.3kgを仕込み、撹拌回転数を150rpmで維持しながら、槽内温度80℃で5時間反応させ、冷却後、水洗、乾燥して、MFR39.0g/10分のフッ素樹脂粉末32.6kgをえた。
比較例6
脱気した撹拌機付きオートクレーブ(内容積10L)のオートクレーブにトリクロロモノフルオロエタン10kg、メタノール51g、1,1,1-トリクロロトリフルオロエタン5.1kg、テトラフルオロエチレン1.2kg、エチレン82g、(パーフルオロブチル)エチレン47gを投入し、オートクレーブを65℃に加温した。その後にt-ブチルパーオキシイソブチレート2.4gを投入して重合を開始した。
重合開始時点のオートクレーブの内部圧力を1.47MPaGに設定し、重合の進行と共に系内圧力が低下するので、テトラフルオロエチレン/エチレン=53.4/46.6モル%の混合ガスを連続して供給し、系内圧力を1.47MPaGに保った。そして、(パーフルオロブチル)エチレンについても合計量36.7gを連続して仕込みながら、11時間攪拌を継続した。冷却して重合を停止し、モノマーをパージしてポリマーの分散液をえた。この分散液を濾過、水洗、乾燥してMFR29.0g/10分のフッ素樹脂の粉末690gをえた。
Figure 0007074998000001
Figure 0007074998000002

Claims (6)

  1. 熱分解開始温度が370℃以上であり、かつ、イエローインデックス値が-40以下であり、232℃で168時間加熱後のイエローインデックス変化度が100以下であり、
    エチレンに基づく重合単位(a)、及び、テトラフルオロエチレンに基づく重合単位(b)を有し、エチレンに基づく重合単位(a)とテトラフルオロエチレンに基づく重合単位(b)とのモル%比(a)/(b)が44~41/56~59であり、
    下記一般式(A2):
    CH =CX-(CF Z (A2)
    (式中、X及びZは、同一又は異なって、水素原子又はフッ素原子を表す。nは、2~8の整数である。)
    で表される単量体に基づく重合単位(c)を有し、重合単位(c)の含有割合が重合単位(a)及び重合単位(b)の合計に対して0.1~8.0モル%であることを特徴とするエチレン/テトラフルオロエチレン共重合体。
  2. フーリエ変換赤外分光法で測定された-CFH基、-CFCHCOF基、-COF基、-COOH基、-CFCOOH基の二量体とCFCHCOOH基の単量体、-COOCH基、-CONH基及び-CHOH基に由来する振動のピーク強度が下記式(2)を満たす請求項1記載のエチレン/テトラフルオロエチレン共重合体。
    PI/(PI+PI+PI+PI+PI+PI+PI)≧0.60 (2)
    PI:-CFH基に由来する振動のピーク強度
    PI:-CFCHCOF基に由来する振動のピーク強度
    PI:-COF基に由来する振動のピーク強度
    PI:-COOH基に由来する振動のピーク強度
    PI:-CFCOOH基の二量体とCFCHCOOH基の単量体に由来する振動のピーク強度
    PI:-COOCH基に由来する振動のピーク強度
    PI:-CONH基に由来する振動のピーク強度
    PI:-CHOH基に由来する振動のピーク強度
  3. 297℃でのメルトフローレートが0.1~60.0g/10分である請求項1又は2記載のエチレン/テトラフルオロエチレン共重合体。
  4. 請求項1、2又は3記載のエチレン/テトラフルオロエチレン共重合体を成形して得られることを特徴とする成形品。
  5. フィルム又はシートである請求項記載の成形品。
  6. 芯線と、請求項1、2又は3記載のエチレン/テトラフルオロエチレン共重合体からなる被覆材とを有することを特徴とする電線。

JP2017217774A 2017-11-10 2017-11-10 エチレン/テトラフルオロエチレン共重合体 Active JP7074998B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217774A JP7074998B2 (ja) 2017-11-10 2017-11-10 エチレン/テトラフルオロエチレン共重合体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217774A JP7074998B2 (ja) 2017-11-10 2017-11-10 エチレン/テトラフルオロエチレン共重合体

Publications (2)

Publication Number Publication Date
JP2019089875A JP2019089875A (ja) 2019-06-13
JP7074998B2 true JP7074998B2 (ja) 2022-05-25

Family

ID=66835843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217774A Active JP7074998B2 (ja) 2017-11-10 2017-11-10 エチレン/テトラフルオロエチレン共重合体

Country Status (1)

Country Link
JP (1) JP7074998B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114805998B (zh) * 2022-05-13 2022-11-11 广东南缆电缆有限公司 感温变色组合物及其制备方法和在插座、插排、开关中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197411A (ja) * 1983-04-25 1984-11-09 Daikin Ind Ltd エチレン−テトラフルオロエチレンまたはクロロトリフルオロエチレン系共重合体
JPS60248710A (ja) * 1984-05-22 1985-12-09 Daikin Ind Ltd 新規エチレン/テトラフルオロエチレン系共重合体

Also Published As

Publication number Publication date
JP2019089875A (ja) 2019-06-13

Similar Documents

Publication Publication Date Title
CN111315791B (zh) 乙烯/四氟乙烯共聚物
JP5314707B2 (ja) テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体及び電線
JP5445583B2 (ja) エチレン/テトラフルオロエチレン共重合体、電線及び回転成形用フッ素樹脂粉末
WO2008047759A1 (fr) Copolymère contenant du fluor et article moulé de celui-ci
JP7074998B2 (ja) エチレン/テトラフルオロエチレン共重合体
US20230399436A1 (en) Fluorine-containing copolymer
JP2019089876A (ja) エチレン/テトラフルオロエチレン共重合体
JP7121326B1 (ja) 含フッ素共重合体
JP7364980B1 (ja) 含フッ素共重合体
JP7193766B2 (ja) 含フッ素共重合体
JP7401834B2 (ja) 含フッ素共重合体
CN116888172A (zh) 共聚物、成型体、挤出成型体、吹塑成型体、传递成型体以及被覆电线
CN116964115A (zh) 共聚物、成型体、注射成型体和被覆电线
CN116867820A (zh) 共聚物、成型体、注射成型体和被覆电线
CN117043197A (zh) 共聚物、成型体、挤出成型体、吹塑成型体、传递成型体以及被覆电线
CN116234839A (zh) 共聚物、注射成型体、被压缩构件和被覆电线
CN116867814A (zh) 共聚物、成型体、注射成型体和被覆电线
CN116897170A (zh) 共聚物、成型体、注射成型体和被覆电线
CN116888166A (zh) 共聚物、成型体、注射成型体和被覆电线
CN116867817A (zh) 共聚物、成型体、挤出成型体和传递成型体
CN116917345A (zh) 共聚物、成型体、注射成型体和被覆电线

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220311

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220318

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7074998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151