JP7072721B2 - 回転電機の制御装置および駆動システム - Google Patents

回転電機の制御装置および駆動システム Download PDF

Info

Publication number
JP7072721B2
JP7072721B2 JP2021514744A JP2021514744A JP7072721B2 JP 7072721 B2 JP7072721 B2 JP 7072721B2 JP 2021514744 A JP2021514744 A JP 2021514744A JP 2021514744 A JP2021514744 A JP 2021514744A JP 7072721 B2 JP7072721 B2 JP 7072721B2
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
command value
control device
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021514744A
Other languages
English (en)
Other versions
JPWO2020213124A1 (ja
Inventor
義浩 深山
観 赤津
祐樹 酒井
大樹 土方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Shibaura Institute of Technology
Original Assignee
Mitsubishi Electric Corp
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Shibaura Institute of Technology filed Critical Mitsubishi Electric Corp
Publication of JPWO2020213124A1 publication Critical patent/JPWO2020213124A1/ja
Application granted granted Critical
Publication of JP7072721B2 publication Critical patent/JP7072721B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、回転電機の各相巻線に電圧を印加するインバータを制御することで各相巻線に通電させる電流を相巻線ごとに制御する回転電機の制御装置、およびその制御装置を備えた駆動システムに関する。
従来、回転電機に通電する電流実効値あたりの出力トルクを向上させる方法として、以下の方法が提案されている(例えば、特許文献1参照)。すなわち、回転電機の相巻線に発生する無負荷誘起電圧に含まれる高調波を指令値に付加し、マグネットトルクの高調波成分を利用する。
また、回転電機の瞬時トルクを制御する方法として、以下の方法が提案されている(例えば、特許文献2参照)。すなわち、回転電機のバックヨークの最外周に2つの磁束センサを埋め込み、その2つの磁束センサの検出信号の差分を磁極磁束検出値として、磁極磁束検出値と磁極磁束指令値とを比較することで、巻線への印加電圧を制御する。
特開2013-115901号公報 特開2007-189836号公報
ここで、特許文献1に記載の従来技術では、マグネットトルクを大きくすることができるが、リラクタンストルクを大きくすることができない。したがって、ステータコアとロータコアとの間の空隙に相当するエアギャップ部の磁束密度(以下、エアギャップ磁束密度と称す)に含まれる高調波成分を考慮した電流-トルク特性の向上を実現することができない。また、特許文献2に記載の従来技術では、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上については何ら検討されていない。
本発明は、上記のような課題を解決するためになされたものであり、回転電機において、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上の実現を図った回転電機の制御装置、およびその制御装置を備えた駆動システムを得ることを目的とする。
本発明における回転電機の制御装置は、回転電機の各相巻線に電圧を印加するインバータを制御することで各相巻線に通電させる電流を相巻線ごとに制御する制御装置であって、制御装置は、回転電機のステータコアとロータコアとの間のエアギャップ部の径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が予め定められた位相差目標値になるように、各相巻線に印加する電圧指令値を演算し、演算した電圧指令値に従って、インバータを制御する制御部を備えたものである。
本発明における駆動システムは、上述の回転電機の制御装置と、インバータと、回転電機と、回転電機のステータコアに設けられており、周方向磁束密度を検出する周方向磁束密度検出部と、を備えたものである。
本発明によれば、回転電機において、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上の実現を図った回転電機の制御装置、およびその制御装置を備えた駆動システムを得ることができる。
本発明の実施の形態1における駆動システムの構成を示すブロック図である。 図1のモータの構造を示す回転軸に沿った断面図である。 図1のモータの構造を示す回転軸に垂直な断面図である。 図1のインバータの構成を示す回路図である。 本発明の実施の形態1における制御装置の構成を示すブロック図である。 本発明の実施の形態1における制御装置がインバータを制御する一連の処理を示すフローチャートである。 本発明の実施の形態1における制御装置のハードウェア構成の一例を示す構成図である。 本発明の実施の形態2における制御装置の構成を示すブロック図である。 本発明の実施の形態3における制御装置の構成を示すブロック図である。
以下、本発明による回転電機の制御装置、およびその制御装置を備えた駆動システムを、好適な実施の形態にしたがって図面を用いて説明する。なお、図面の説明においては、同一部分または相当部分には同一符号を付し、重複する説明を省略する。
実施の形態1.
図1は、本発明の実施の形態1における駆動システム100の構成を示すブロック図である。図1に示すように、駆動システム100は、モータ1と、モータ1に設けられている周方向磁束密度検出部40と、インバータ200と、制御装置300とを備える。また、駆動システム100には、直流電源27および負荷400が接続される。
モータ1は、本発明が適用される回転電機の一例であり、8極48スロットの永久磁石モータである。モータ1は、外部の負荷400と接続される。インバータ200は、直流電力と交流電力を相互に変換する。インバータ200の直流側端子は、外部の直流電源27に接続され、インバータ200の交流側端子は、モータ1に接続される。
制御装置300は、モータ1の状態に関する情報を検出し、検出した情報に基づいてインバータ200を制御するための制御信号を生成し、生成した制御信号をインバータ200に出力することによって、モータ1の状態を制御する。
次に、モータ1の構造の一例について、図2および図3を参照しながら説明する。図2は、図1のモータ1の構造を示す回転軸に沿った断面図である。図3は、図1のモータ1の構造を示す回転軸に垂直な断面図である。なお、図3では、ティース14およびステータスロット16の各個数が48であり、永久磁石21の個数が8である場合を例示している。
図2に示すように、負荷側ブラケット3および反負荷側ブラケット4は、円筒形状のフレーム2の両側に覆って設けられる。シャフト7は、フレーム2の中心軸線上に配置され、負荷側ブラケット3および反負荷側ブラケット4によって、負荷側ベアリング5および反負荷側ベアリング6を介して回転自在に2点支持される。
ケース10は、シャフト7が挿入されて、フレーム2、負荷側ブラケット3および反負荷側ブラケット4によって構成される。ロータ8は、ケース10内に収納される。円環状のステータ9は、圧入、焼バメ等によってフレーム2の内壁面に固定され、ロータ8と空隙を介して配置される。
負荷側ベアリング5は、ベアリング押さえ11によって負荷側ブラケット3に固定される。反負荷側ベアリング6は、波ワッシャ12を介して軸線方向に自由度を持って反負荷側ブラケット4に固定される。ケース10は、負荷側ブラケット3および反負荷側ブラケット4をフレーム2に固定することで形成される。
図3に示すように、ステータ9は、ステータコア15と、波巻の形態でステータコア15に組み立てて構成される6相分の相巻線17とを備える。なお、説明の便宜上、6相分の相巻線17をそれぞれ区別する場合には、相巻線17a、相巻線17b、相巻線17c、相巻線17d、相巻線17e、相巻線17fと表記する。
ステータコア15は、両面が絶縁処理された薄板鋼板を複数枚積層して形成される。ステータコア15は、円環形状のヨーク13と、それぞれヨーク13の内周面から径方向内方に延在して互いに等間隔で周方向に配列される48個のティース14と、それぞれ周方向に隣り合うティース14の間に形成される48個のステータスロット16とを有する。
6相分の相巻線17は、巻装されるステータスロット16を1スロットずつずらしてステータコア15に装着される。6相分の相巻線17のそれぞれは、インシュレータ18で被覆された1本の導体線を6スロット毎のステータスロット16に周方向に波状に3ターン巻回して構成される。なお、図3では、各ステータスロット16に配置される相巻線17の三箇所の部位の断面が正確に示されるべきであるが、便宜上、1つに纏めて記載してある。
各相巻線17の両端には、負荷側リード23および反負荷側リード24がそれぞれ接続される。負荷側リード23および反負荷側リード24は、それぞれフレーム2に形成された引出し口25を通ってモータ1の外部に引出される。
ロータ8は、円柱形状のロータコア19と、それぞれロータコア19の外周面に互いに等間隔で周方向に配列される8個の永久磁石21とを備える。
ロータコア19には、それぞれロータコア19の軸線方向に延びて互いに等間隔で周方向に配列される8個の磁石スロット20が形成される。8個の永久磁石21は、N極とS極が周方向に沿って交互に位置するように、1個ずつ各磁石スロット20に配置される。
端板22は、ロータコア19の軸線方向の両端に固定され、磁石スロット20の両側を塞ぐ。端板22は、非磁性材料で製作されるのが望ましい。
次に、インバータ200の構成について、図4を参照しながら説明する。図4は、図1のインバータ200の構成を示す回路図である。
図4において、インバータ200は、相巻線17a~17fに個別に対応する6個のインバータサブユニット201を有する。インバータサブユニット201は、図1に示す制御装置300による制御に従ってオンとオフに切り替え可能な4個のスイッチ、すなわち、第1の正極側スイッチ26、第1の負極側スイッチ28、第2の負極側スイッチ29および第2の正極側スイッチ30を有する所謂Hブリッジ回路によって構成される。
インバータサブユニット201の負荷側リード23は、第1の正極側スイッチ26を介して直流電源27の正極端子31に電気的に接続されるとともに、第1の負極側スイッチ28を介して直流電源27の負極端子32に電気的に接続される。
インバータサブユニット201の反負荷側リード24は、第2の負極側スイッチ29を介して直流電源27の負極端子32に電気的に接続されるとともに、第2の正極側スイッチ30を介して直流電源27の正極端子31に電気的に接続される。
第1の正極側スイッチ26、第2の正極側スイッチ30、第1の負極側スイッチ28および第2の負極側スイッチ29のそれぞれは、シリコン半導体を用いた半導体スイッチによって構成される。半導体スイッチの具体例としては、絶縁ゲートバイポーラトランジスタ、MOSFET(metal-oxide-semiconductor field-effect transistor)等の電界効果トランジスタ等が挙げられる。なお、これら4個のスイッチのそれぞれは、炭化珪素、窒化ガリウム等のワイドバンドギャップ半導体などを用いた半導体スイッチによって構成されてもよい。
第1の正極側スイッチ26、第2の正極側スイッチ30、第1の負極側スイッチ28および第2の負極側スイッチ29のそれぞれと並列に還流ダイオードが挿入される。
相巻線17a~17fは、それぞれ個別に対応するHブリッジ回路に電気的に接続される。また、6個のHブリッジ回路は、それぞれ個別に対応する直流電源に電気的に接続される。直流電源27は、6個のHブリッジ回路に個別に対応して設けられる6個の直流電源によって構成される。直流電源は、例えば、バッテリによって構成される。バッテリの具体例としては、鉛バッテリ、リチウムイオンバッテリ等が挙げられる。
制御装置300による制御に従って、第1の正極側スイッチ26および第2の負極側スイッチ29がオンとなり、第1の負極側スイッチ28および第2の正極側スイッチ30がオフとなると、負荷側リード23の端部は、正極側の電位となり、反負荷側リード24の端部は、負極側の電位となる。その結果、相巻線17には、負荷側リード23から反負荷側リード24に向けて電流が流れる。
また、制御装置300による制御に従って、第1の正極側スイッチ26および第2の負極側スイッチ29がオフとなり、第1の負極側スイッチ28および第2の正極側スイッチ30がオンとなると、負荷側リード23の端部は、負極側の電位となり、反負荷側リード24の端部は、正極側の電位となる。その結果、相巻線17には、反負荷側リード24から負荷側リード23に向けて電流が流れる。
さらに、制御装置300による制御に従って、第1の正極側スイッチ26、第1の負極側スイッチ28、第2の負極側スイッチ29および第2の正極側スイッチ30のすべてがオフとなると、相巻線17が直流電源27から切り離される。その結果、相巻線17には、電流が流れない。
このように、制御装置300は、6個のHブリッジ回路のそれぞれについて、第1の正極側スイッチ26、第1の負極側スイッチ28、第2の負極側スイッチ29および第2の正極側スイッチ30の各スイッチをオンとオフに切り替え、さらに、各スイッチのオン時間およびオフ時間の比を変化させる。これにより、制御装置300は、相巻線17a~17fに通電させる電流の振幅と位相を、相巻線ごとに個別に制御することが可能となる。
次に、制御装置300の構成について、図5を参照しながら説明する。図5は、本発明の実施の形態1における制御装置300の構成を示すブロック図である。
図5に示すように、制御装置300は、電圧検出部301、電流検出部302、径方向磁束密度演算部303、周方向磁束密度演算部304、特性パラメータ演算部305、特性パラメータ指令部306、比較部307および制御部308を備える。
電圧検出部301は、各相巻線17a~17fの両端部に印加される電圧va、vb、vc、vd、veおよびvfをそれぞれ検出し、検出した6個の電圧va~vfを径方向磁束密度演算部303に出力する。
電流検出部302は、各相巻線17a~17fに通電される電流ia、ib、ic、id、ieおよびifをそれぞれ検出し、検出した6個の電流ia~ifを径方向磁束密度演算部303に出力する。
径方向磁束密度演算部303には、電圧検出部301の検出結果と、電流検出部302の検出結果と、dq変換およびdq逆変換に用いられるモータ1の磁極位置とが入力される。
径方向磁束密度演算部303に入力される磁極位置は、例えば、モータ1に取り付けられた回転位置センサ(図示せず)の出力を用いて算出される。径方向磁束密度演算部303に入力される磁極位置として、高調波磁束の重畳または誘起電圧波形を用いて算出される磁極位置推定値を用いてもよい。
径方向磁束密度演算部303は、電圧検出部301から入力される6個の電圧va~vfと、電流検出部302から入力される6個の電流ia~ifと、入力される磁極位置とに基づいて、径方向d軸磁束密度の各次高調波成分λxd3,λxd5,・・・と、径方向q軸磁束密度の各次高調波成分λxq3,λxq5,・・・を演算する。また、径方向磁束密度演算部303は、その演算結果を特性パラメータ演算部305に出力する。
なお、λxdに付された数字は高調波成分の次数を表し、例えば、λxd3は、径方向d軸磁束密度の3次高調波成分を表したものである。同様に、λxqに付された数字は高調波成分の次数を表し、例えば、λxq3は、径方向q軸磁束密度の3次高調波成分を表したものである。
ここで、径方向磁束密度演算部303によって行われる上記の演算処理について説明する。径方向磁束密度演算部303は、6個の電圧va~vfと、6個の電流ia~ifと、予め分かっている各相巻線17a~17fの抵抗Rとを用いて、λ=∫(v-R×i)dtの関係から、各相巻線17a~17fに鎖交する磁束密度λa、λb、λc、λd、λeおよびλfをそれぞれ演算する。
続いて、径方向磁束密度演算部303は、演算した6個の磁束密度λa~λfを用いて、相巻線17a~17fに個別に対応する6個のティース14の各ティースに発生する径方向の磁束密度λTxa、λTxb、λTxc、λTxd、λTxeおよびλTxfをそれぞれ演算する。
具体的には、径方向磁束密度演算部303は、隣り合う2個のステータスロット16のそれぞれに配置される2個の相巻線に鎖交する磁束密度の差から、一方の相巻線に対応するティースに発生する磁束密度を演算する。例えば、径方向磁束密度演算部303は、ステータスロット16に配置される相巻線17aに鎖交する磁束密度λaと、その相巻線17aが配置されるステータスロット16に隣り合うステータスロット16に配置される相巻線17bに鎖交する磁束密度λbとの差から、相巻線17aに対応するティース14に発生する磁束密度λTxaを演算する。磁束密度λTxb~λTxfの演算についても、磁束密度λTxaの演算と同様である。
続いて、径方向磁束密度演算部303は、磁極位置を用いて、演算した6個の磁束密度λTxa~λTxfをdq変換することによって、モータ1のエアギャップ磁束密度の径方向成分の各次高調波成分として、径方向d軸磁束密度の各次高調波成分λxd3,λxd5,・・・と、径方向q軸磁束密度の各次高調波成分λxq3,λxq5,・・・を演算する。以下、エアギャップ磁束密度の径方向成分を径方向磁束密度と称す。
このように、径方向磁束密度演算部303は、径方向磁束密度の各次高調波成分として、径方向d軸磁束密度の各次高調波成分λxd3,λxd5,・・・と、径方向q軸磁束密度の各次高調波成分λxq3,λxq5,・・・を演算する。
図5の説明に戻り、周方向磁束密度演算部304には、相巻線17a~17fに個別に対応する6個のティース14の各ティースに発生する周方向の磁束密度λTya、λTyb、λTyc、λTyd、λTyeおよびλTyfが入力される。これらの磁束密度λTya~λTyfは、モータ1のエアギャップ磁束密度の周方向成分に相当する。
周方向磁束密度演算部304に入力される磁束密度λTya~λTyfは、図1、図3および図5に示す周方向磁束密度検出部40によって検出される。周方向磁束密度検出部40は、例えば、モータ1のスロットオープン部の周方向磁束が垂直に鎖交するように取り付けられたコイルを用いて構成される。なお、磁束密度λTya~λTyfを検出する周方向磁束密度検出部40は、コイルの代わりに、ホールセンサを用いて構成されていてもよい。また、磁束密度λTya~λTyfを検出する周方向磁束密度検出部40は、TMR(Tunnel Magneto Resistance)、GMR(Giant Magneto Resistive)等を利用した他の磁束検出方法を適用した構成であってもよい。周方向磁束密度検出部40は、例えば、ステータコア15に設けられている。より具体的には、周方向磁束密度検出部40は、ステータコア15のティース14の先端部分に配置されている。周方向磁束密度検出部40は、ステータコア15の面であって、ロータコア19に対向する面に配置されていてもよい。
周方向磁束密度演算部304は、入力される6個の磁束密度λTya~λTyfをdq変換することによって、モータ1のエアギャップ磁束密度の周方向成分の各次高調波成分として、周方向d軸磁束密度の各次高調波成分λyd3,λyd5,・・・と、周方向q軸磁束密度の各次高調波成分λyq3,λyq5,・・・を演算する。周方向磁束密度演算部304は、その演算結果を特性パラメータ演算部305に出力する。以下、エアギャップ磁束密度の周方向成分を周方向磁束密度と称す。
なお、λydに付された数字は高調波成分の次数を表し、例えば、λyd3は、周方向d軸磁束密度の3次高調波成分を表したものである。同様に、λyqに付された数字は高調波成分の次数を表し、例えば、λyq3は、周方向q軸磁束密度の3次高調波成分を表したものである。
このように、周方向磁束密度演算部304は、周方向磁束密度の各次高調波成分として、周方向d軸磁束密度の各次高調波成分λyd3,λyd5,・・・と、周方向q軸磁束密度の各次高調波成分λyq3,λyq5,・・・を演算する。
特性パラメータ演算部305には、径方向磁束密度演算部303の演算結果と、周方向磁束密度演算部304の演算結果とが入力される。
特性パラメータ演算部305は、径方向d軸磁束密度の各次高調波成分λxd3,λxd5,・・・と、径方向q軸磁束密度の各次高調波成分λxq3,λxq5,・・・と、周方向d軸磁束密度の各次高調波成分λyd3,λyd5,・・・と、周方向q軸磁束密度の各次高調波成分λyq3,λyq5,・・・とを用いて、次数ごとに対応する内積を特性パラメータP3,P5,・・・として演算する。また、特性パラメータ演算部305は、その演算結果を比較部307に出力する。
なお、Pに付された数字は高調波成分の次数を表し、例えば、P3は、dq軸座標上において、(λxd3,λxq3)で示されるベクトルと、(λyd3,λyq3)で示されるベクトルの内積を表すものである。
このように、特性パラメータ演算部305は、径方向d軸磁束密度と径方向q軸磁束密度とで同じ次数同士の高調波成分からなるベクトルと、周方向d軸磁束密度と周方向q軸次数密度とで同じ次数同士の高調波成分からなるベクトルとの内積を、次数ごとに特性パラメータとして演算して出力する。
例えば、3次高調波成分に対応する特性パラメータP3は、dq軸座標上において、d軸成分がλxd3であって、q軸成分がλxq3であるベクトルと、d軸成分がλyd3であって、q軸成分がλyq3であるベクトルとの内積である。
特性パラメータ指令部306は、各次高調波成分に対応する特性パラメータP3,P5,・・・を制御するための指令値である特性パラメータ指令値P3*,P5*,・・・を比較部307に出力する。
なお、特性パラメータ指令値P3*,P5*,・・・は、以下の条件(1)および条件(2)を満たすように、予め解析、測定等を行うことによって予め設定される値である。
・条件(1):径方向磁束密度の各次高調波成分の振幅比が特定の比となって、周方向磁束密度の各次高調波成分の振幅比が特定の比となる。特定の比は、例えば、無負荷誘起電圧に含有される対応する高調波成分の次数の比と同じになるように設定される。
・条件(2):径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が予め定められた位相差目標値となる。なお、位相差目標値は、0を含む許容範囲内の値になるように適宜設計される。この許容範囲とは、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上の実現に不都合を生じさせるようなことがない範囲をいう。特に、位相差目標値が0になるように設計されることが望ましい。
このように、特性パラメータ指令部306は、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が位相差目標値となるように予め設定される特性パラメータ指令値P3*,P5*,・・・を出力する。
比較部307には、特性パラメータ指令部306の出力結果と、特性パラメータ演算部305の演算結果とが入力される。
比較部307は、特性パラメータ指令値P3*,P5*,・・・と、特性パラメータP3,P5,・・・とを用いて、次数ごとに対応する差分D3,D5,・・・を演算する。また、比較部307は、その演算結果を制御部308に出力する。
なお、Dに付された数字は高調波成分の次数を表し、例えば、D3は、特性パラメータ指令値P3*と、特性パラメータP3の差分を表すものである。
このように、比較部307は、特性パラメータ指令部306から入力される特性パラメータ指令値P3*,P5*,・・・と、特性パラメータ演算部305から入力される特性パラメータP3,P5,・・・との差分D3,D5,・・・を、次数ごとに演算する。
例えば、3次高調波成分に対応する差分D3は、特性パラメータ指令値P3*と、特性パラメータP3の差である。
制御部308には、比較部307の演算結果が入力される。制御部308は、差分D3,D5,・・・がそれぞれ、予め定められた特性パラメータ差分目標値ε3,ε5,・・・となるように、PI制御を行うことで、相巻線17a~17fに個別に対応する6個の電圧指令値va*、vb*、vc*、vd*、ve*およびvf*をそれぞれ演算する。電圧指令値va*、vb*、vc*、vd*、ve*およびvf*は、それぞれ、電圧va、vb、vc、vd、veおよびvfを制御するための指令値である。
なお、各特性パラメータ差分目標値ε3,ε5,・・・は、0を含む許容範囲内の値になるように適宜設計される。この許容範囲とは、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上の実現に不都合を生じさせるようなことがない範囲をいう。各特性パラメータ差分目標値ε3,ε5,・・・は、すべて同じ値であってもよいし、すべて同じ値でなくてもよい。特に、特性パラメータ差分目標値ε3,ε5,・・・がそれぞれ0になるように設計されることが望ましい。
制御部308は、演算した電圧指令値va*~vf*に従って、6個のHブリッジ回路のそれぞれについて、第1の正極側スイッチ26、第1の負極側スイッチ28、第2の負極側スイッチ29および第2の正極側スイッチ30の各スイッチの動作を制御する。
このように、制御部308は、比較部307から入力される次数ごとの差分D3,D5,・・・がそれぞれ特性パラメータ差分目標値ε3,ε5,・・・となるように、各相巻線17a~17fに印加する電圧指令値va*~vf*を演算し、その電圧指令値va*~vf*に従って、インバータ200を制御する。
次に、本実施の形態1における制御装置300がインバータ200を制御する一連の処理について、図6を参照しながら説明する。図6は、本発明の実施の形態1における制御装置300がインバータ200を制御する一連の処理を示すフローチャートである。なお、図6に示すフローチャートの処理は、例えば、予め設定される周期で繰り返し実行される。
ステップS1において、比較部307は、特性パラメータ指令部306から特性パラメータ指令値P3*,P5*,・・・を取得し、特性パラメータ演算部305から特性パラメータP3,P5,・・・を取得する。その後、処理がステップS2へと進む。
ステップS2において、比較部307は、ステップS1で取得された特性パラメータ指令値P3*,P5*,・・・と、ステップS1で取得された特性パラメータP3,P5,・・・とを用いて、次数ごとに対応する差分D3,D5,・・・を演算する。その後、処理がステップS3へと進む。
ステップS3において、制御部308は、ステップS2で演算された差分D3,D5,・・・が特性パラメータ差分目標値ε3,ε5,・・・となるように、PI制御を行うことで、相巻線17a~17fに個別に対応する6個の電圧指令値va*~vf*をそれぞれ演算する。その後、処理がステップS4へと進む。
ステップS4において、制御部308は、ステップS3で演算された電圧指令値va*~vf*に従って、インバータ200の各スイッチの動作を制御する。その後、処理が終了となる。
以上から分かるように、制御装置300は、モータ1のステータコア15とロータコア19との間のエアギャップ部の径方向磁束密度に含まれる高調波成分と周方向磁束密度に含まれる高調波成分とで同じ次数同士の高調波成分の位相差が位相差目標値になるように、インバータ200を制御する制御部308を備えて構成されている。したがって、モータ1において、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が位相差目標値になるようにすることができる。そのため、高調波成分のトルクが最大となるように高調波成分を制御することができ、その結果、電流-トルク特性が向上する。
電圧検出部301は、モータ1の各相巻線17a~17fに印加される電圧va~vfを検出する構成であり、径方向磁束密度演算部303は、電圧検出部301によって検出される電圧va~vfを用いて各ティースに発生する径方向の磁束密度λTxa~λTxfを演算する構成である。したがって、各ティースを通過する径方向の磁束密度を検出するための新たな部材をモータ1に追加する必要がない。結果として、モータ1の小型化に寄与する。
モータ1は、1極対に対向するティース14の個数が6個であり、これら6個のティース14によって形成される6個のステータスロット16に各相独立に制御可能な6相の相巻線17a~17fが個別に配置されている。したがって、6個のティース14のそれぞれに発生する磁束密度を任意に制御する自由度があり、その結果、すべてのティース14のトルクを最大化することができる。
電圧検出部301は、モータ1の負荷側リード23と反負荷側リード24との間にローパスフィルタを有して構成されてもよい。これにより、PWM(pulse width modulation)によって駆動されるモータ1を制御するインバータ200のスイッチングに起因する電圧変動を抑制することができる。
なお、実施の形態1では、エアギャップ部の磁束密度の径方向成分と周方向成分とで同じ次数同士の高調波成分の位相差が位相差目標値になるように制御するにあたって、磁束密度を用いる場合を例示したが、磁束密度の代わりに、磁束を用いても、同様の効果が得られる。
なお、実施の形態1では、各相巻線17を全節巻の波巻巻線の構成とする場合を例示したが、各相巻線17の構成はこれに限定されず、他の構成でも同様の効果が得られる。例えば、各相巻線17が集中巻であっても同様の効果が得られる。また、各相巻線17が短節巻であっても同様の効果が得られる。
なお、実施の形態1では、毎極毎相スロット数が1である例として、モータ1の相数が6、スロット数が48、磁極数が8である場合を示したが、これに限定されない。例えば、相数が6、スロット数が36、磁極数が6である場合であっても同様の効果が得られる。また、毎極毎相スロット数が1とは異なる数である場合、例えば、相数が6、スロット数が72、磁極数が8である場合であっても同様の効果が得られる。さらに、相数が6とは異なる数、例えば、5または7である場合であっても同様の効果が得られる。
なお、本発明が適用可能なモータ1は、IPM(Interior Permanent Magnet)モータ、SPM(Surface Permanent Magnet)モータ等の永久磁石モータに限定されない。例えば、誘導電動機、スイッチトリラクタンスモータ、シンクロナスリラクタンスモータ等の他のモータに本発明を適用した場合であっても、同様の効果を得られる。
なお、実施の形態1では、6個のインバータサブユニット201にはそれぞれ個別の直流電源が接続される場合を例示したが、同一の直流電源に対して6個のインバータサブユニット201がそれぞれ並列に接続される場合であっても、同様の効果が得られる。
以上、本実施の形態1によれば、回転電機の制御装置は、ステータコアとロータコアとの間のエアギャップ部の径方向磁束密度に含まれる高調波成分と周方向磁束密度に含まれる高調波成分とで、同じ次数同士の高調波成分の位相差が予め定められた位相差目標値になるように、各相巻線に電圧を印加するインバータを制御するように構成されている。
具体的には、回転電機の制御装置は、径方向d軸磁束密度と径方向q軸磁束密度とで同じ次数同士の高調波成分からなるベクトルと、周方向d軸磁束密度と周方向q軸磁束密度とで同じ次数同士の高調波成分からなるベクトルとの内積を、次数ごとに特性パラメータとして演算するように構成されている。また、回転電機の制御装置は、演算した次数ごとの特性パラメータと、予め設定される次数ごとの特性パラメータ指令値とが一致するように各相巻線に印加する電圧指令値を演算し、演算した電圧指令値に従ってインバータを制御するように構成されている。
これにより、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相がほぼ同相となり、その結果、回転電機において、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上の実現を図ることができる。また、径方向磁束密度と周方向磁束密度とから算出されるマクスウェル応力の周方向成分、すなわちトルクを最大化することができる。
なお、本実施の形態1における制御装置300のハードウェア構成は、例えば、図7に示す構成が挙げられる。図7は、本発明の実施の形態1における制御装置300のハードウェア構成の一例を示す構成図である。
図7に示すように、制御装置300は、ハードウェア構成として、プロセッサ500および記憶装置600を備える。上述の径方向磁束密度演算部303、周方向磁束密度演算部304、特性パラメータ演算部305、特性パラメータ指令部306、比較部307および制御部308の機能は、記憶装置600に記憶されたプログラムを実行するプロセッサ500によって実現される。上述の電圧検出部301および電流検出部302は、それぞれ、電圧センサおよび電流センサによって実現される。
記憶装置600は、ランダムアクセスメモリ等の揮発性の記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを備えて構成される。なお、記憶装置600は、不揮発性の補助記憶装置の代わりに、ハードディスク等の補助記憶装置を備えて構成されていてもよい。
プロセッサ500には、記憶装置600の不揮発性の補助記憶装置から揮発性の記憶装置を介してプログラムが入力される。プロセッサ500は、その入力されたプログラムを実行する。プロセッサ500は、演算結果等のデータを、揮発性の記憶装置に出力するか、あるいは、揮発性の記憶装置を介して不揮発性の補助記憶装置に出力して当該データを保存する。
なお、上述の径方向磁束密度演算部303、周方向磁束密度演算部304、特性パラメータ演算部305、特性パラメータ指令部306、比較部307および制御部308の機能は、システムLSI等の処理回路によって実現されてもよい。
実施の形態2.
本発明の実施の形態2では、先の実施の形態1と構成が異なる制御装置300について説明する。なお、本実施の形態2では、先の実施の形態1と同様である点の説明を省略し、先の実施の形態1と異なる点を中心に説明する。
図8は、本発明の実施の形態2における制御装置300の構成を示すブロック図である。図8に示すように、制御装置300は、磁束密度指令部309および制御部308を備える。
磁束密度指令部309には、モータ1の回転数およびトルクが入力される。モータ1の回転数は、例えば、モータ1に取り付けられた回転数センサを用いて検出される。モータ1のトルクは、例えば、モータ1に取り付けられたトルクセンサを用いて検出される。
磁束密度指令部309は、予め設定される磁束密度指令マップに従って、入力されるモータ1の回転数およびトルクに対応する磁束密度指令値を演算し、演算した磁束密度指令値を制御部308に出力する。
上記の磁束密度指令値は、径方向磁束密度の各次高調波成分を制御するための指令値と、周方向磁束密度の各次高調波成分を制御するための指令値とを含んで構成される。
上記の磁束密度指令マップは、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が位相差目標値となるように、モータ1の回転数およびトルクと、磁束密度指令値とが関連付けられたマップであり、予め解析、測定等を行うことによって設定される。
制御部308には、磁束密度指令部309から入力される磁束密度指令値に従って、PI制御を行うことで、相巻線17a~17fに個別に対応する6個の電圧指令値va*、vb*、vc*、vd*、ve*およびvf*をそれぞれ演算する。
制御部308は、演算した電圧指令値va*~vf*に従って、6個のHブリッジ回路のそれぞれについて、第1の正極側スイッチ26、第1の負極側スイッチ28、第2の負極側スイッチ29および第2の正極側スイッチ30の各スイッチの動作を制御する。
このように、制御部308は、磁束密度指令部309から入力される磁束密度指令値に従って、各相巻線17a~17fに印加する電圧指令値va*~vf*を演算し、演算した電圧指令値va*~vf*に従って、インバータ200を制御する。
このように制御装置300を構成することで、先の実施の形態1と同様に、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が位相差目標値になるようにすることができる。
以上、本実施の形態2によれば、回転電機の制御装置は、予め設定される磁束密度指令マップに従って、回転電機の回転数およびトルクに対応する磁束密度指令値を演算し、演算した磁束密度指令値に従って各相巻線に印加する電圧指令値を演算し、演算した電圧指令値に従ってインバータを制御するように構成されている。
このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。また、先の実施の形態1の制御装置300の構成に対して、本実施の形態2の制御装置300は、構成要素が少ないので、制御装置300の小型化に寄与する。
実施の形態3.
本発明の実施の形態3では、先の実施の形態1および2と構成が異なる制御装置300について説明する。なお、本実施の形態3では、先の実施の形態1および2と同様である点の説明を省略し、先の実施の形態1および2と異なる点を中心に説明する。
図9は、本発明の実施の形態3における制御装置300の構成を示すブロック図である。図9に示すように、制御装置300は、電流指令部310、電流比較部311、電流検出部302および制御部308を備える。
電流指令部310には、先の実施の形態2と同様に、モータ1の回転数およびトルクが入力される。
電流指令部310は、予め設定される電流指令マップに従って、入力されるモータ1の回転数およびトルクに対応する電流指令値を演算し、演算した電流指令値を電流比較部311に出力する。
上記の電流指令値は、各相巻線17a~17fに通電される電流ia~ifをそれぞれ制御するための指令値ia*、ib*、ic*、id*、ie*およびif*を含んで構成される。
上記の電流指令マップは、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が位相差目標値となるように、モータ1の回転数およびトルクと、電流指令値とが関連付けられたマップであり、予め解析、測定等を行うことによって設定される。
電流比較部311は、電流指令部310から入力される6個の電流指令値ia*~if*と、電流検出部302によって検出される6個の電流ia~ifとの差分を相ごとに演算し、その演算結果を制御部308に出力する。
制御部308は、電流比較部311から入力される6個の差分がそれぞれ、予め定められた電流差分目標値となるように、PI制御を行うことで、相巻線17a~17fに個別に対応する6個の電圧指令値va*、vb*、vc*、vd*、ve*およびvf*をそれぞれ演算する。
なお、各電流差分目標値は、0を含む許容範囲内の値になるように適宜設計される。この許容範囲とは、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の向上の実現に不都合を生じさせるようなことがない範囲をいう。各電流差分目標値は、すべて同じ値であってもよいし、すべて同じ値でなくてもよい。特に、電流差分目標値がそれぞれ0になるように設計されることが望ましい。
制御部308は、演算した電圧指令値va*~vf*に従って、6個のHブリッジ回路のそれぞれについて、第1の正極側スイッチ26、第1の負極側スイッチ28、第2の負極側スイッチ29および第2の正極側スイッチ30の各スイッチの動作を制御する。
このように、制御部308は、電流比較部311から入力される相ごとの差分がそれぞれ電流差分目標値となるように、各相巻線17a~17fに印加する電圧指令値を演算し、演算した電圧指令値に従って、インバータ200を制御する。
このように制御装置300を構成することで、先の実施の形態1および2と同様に、径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が位相差目標値になるようにすることができる。
以上、本実施の形態3によれば、回転電機の制御装置は、予め設定される電流指令マップに従って、回転電機の回転数およびトルクに対応する電流指令値を演算し、その電流指令値と、各相巻線に通電される電流とが相ごとに一致するように各相巻線に印加する電圧指令値を演算し、演算した電圧指令値に従ってインバータを制御するように構成されている。
このように構成した場合であっても、先の実施の形態1と同様の効果が得られる。また、エアギャップ磁束密度に含まれる高調波成分を考慮した電流-トルク特性の最大化が電流フィードバック制御によって行われる。そのため、一般に多く使用される電流フィードバック制御の駆動システムに対して実施の形態3の構成を適用することができる。
1 モータ、2 フレーム、3 負荷側ブラケット、4 反負荷側ブラケット、5 負荷側ベアリング、6 反負荷側ベアリング、7 シャフト、8 ロータ、9 ステータ、10 ケース、11 ベアリング押さえ、12 波ワッシャ、13 ヨーク、14 ティース、15 ステータコア、16 ステータスロット、17,17a~17f 相巻線、18 インシュレータ、19 ロータコア、20 磁石スロット、21 永久磁石、22 端板、23 負荷側リード、24 反負荷側リード、25 引出し口、26 第1の正極側スイッチ、27 直流電源、28 第1の負極側スイッチ、29 第2の負極側スイッチ、30 第2の正極側スイッチ、31 正極端子、32 負極端子、40 周方向磁束密度検出部、100 駆動システム、200 インバータ、201 インバータサブユニット、300 制御装置、301 電圧検出部、302 電流検出部、303 径方向磁束密度演算部、304 周方向磁束密度演算部、305 特性パラメータ演算部、306 特性パラメータ指令部、307 比較部、308 制御部、309 磁束密度指令部、310 電流指令部、311 電流比較部、400 負荷、500 プロセッサ、600 記憶装置。

Claims (8)

  1. 回転電機の各相巻線に電圧を印加するインバータを制御することで前記各相巻線に通電させる電流を相巻線ごとに制御する制御装置であって、
    前記制御装置は、
    前記回転電機のステータコアとロータコアとの間のエアギャップ部の径方向磁束密度と周方向磁束密度とで同じ次数同士の高調波成分の位相差が予め定められた位相差目標値になるように、前記各相巻線に印加する電圧指令値を演算し、演算した前記電圧指令値に従って、前記インバータを制御する制御部を備えた
    回転電機の制御装置。
  2. 前記制御装置は、
    前記径方向磁束密度の各次高調波成分として、径方向d軸磁束密度の各次高調波成分と、径方向q軸磁束密度の各次高調波成分を演算する径方向磁束密度演算部と、
    前記周方向磁束密度の各次高調波成分として、周方向d軸磁束密度の各次高調波成分と、周方向q軸磁束密度の各次高調波成分を演算する周方向磁束密度演算部と、
    前記径方向d軸磁束密度と前記径方向q軸磁束密度とで同じ次数同士の高調波成分からなるベクトルと、前記周方向d軸磁束密度と前記周方向q軸磁束密度とで同じ次数同士の高調波成分からなるベクトルとの内積を、前記次数ごとに特性パラメータとして演算して出力する特性パラメータ演算部と、
    前記径方向磁束密度と前記周方向磁束密度とで同じ次数同士の高調波成分の位相差が前記位相差目標値となるように予め設定される特性パラメータ指令値を出力する特性パラメータ指令部と、
    前記特性パラメータ指令部から入力される前記特性パラメータ指令値と、前記特性パラメータ演算部から入力される前記特性パラメータとの差分を前記次数ごとに演算し、演算した前記次数ごとの差分を出力する比較部と、
    をさらに備え、
    前記制御部は、
    前記比較部から入力される前記次数ごとの差分がそれぞれ、予め定められた特性パラメータ差分目標値となるように、前記電圧指令値を演算し、演算した前記電圧指令値に従って、前記インバータを制御する
    請求項1に記載の回転電機の制御装置。
  3. 前記径方向磁束密度と前記周方向磁束密度とで同じ次数同士の高調波成分の位相差が前記位相差目標値となるように、前記回転電機の回転数およびトルクと磁束密度指令値とが関連付けられた磁束密度指令マップが予め設定され、
    前記磁束密度指令値は、前記径方向磁束密度の各次高調波成分を制御するための指令値と、前記周方向磁束密度の各次高調波成分を制御するための指令値とを含んで構成され、
    前記制御装置は、
    前記磁束密度指令マップに従って、入力される前記回転数および前記トルクに対応する前記磁束密度指令値を演算し、演算した前記磁束密度指令値を出力する磁束密度指令部をさらに備え、
    前記制御部は、
    前記磁束密度指令部から入力される前記磁束密度指令値に従って、前記電圧指令値を演算し、演算した前記電圧指令値に従って、前記インバータを制御する
    請求項1に記載の回転電機の制御装置。
  4. 前記径方向磁束密度と前記周方向磁束密度とで同じ次数同士の高調波成分の位相差が前記位相差目標値となるように、前記回転電機の回転数およびトルクと電流指令値とが関連付けられた電流指令マップが予め設定され、
    前記電流指令値は、前記各相巻線に通電される電流をそれぞれ制御するための指令値を含んで構成され、
    前記制御装置は、
    前記電流指令マップに従って、入力される前記回転数および前記トルクに対応する前記電流指令値を演算し、演算した前記電流指令値を出力する電流指令部と、
    前記電流指令部から入力される前記電流指令値と、前記各相巻線に通電される電流との差分を相ごとに演算し、演算した前記相ごとの差分を出力する電流比較部と、
    をさらに備え、
    前記制御部は、
    前記電流比較部から入力される前記相ごとの差分がそれぞれ、予め定められた電流差分目標値となるように、前記電圧指令値を演算し、演算した前記電圧指令値に従って、前記インバータを制御する
    請求項1に記載の回転電機の制御装置。
  5. 前記位相差目標値は、0である
    請求項1または請求項3に記載の回転電機の制御装置。
  6. 前記位相差目標値は、0であり、
    前記特性パラメータ差分目標値は、0である
    請求項2に記載の回転電機の制御装置。
  7. 前記位相差目標値は、0であり、
    前記電流差分目標値は、0である
    請求項4に記載の回転電機の制御装置。
  8. 請求項1から請求項7のいずれか1項に記載の回転電機の制御装置と、
    前記インバータと、
    前記回転電機と、
    前記回転電機の前記ステータコアに設けられており、前記周方向磁束密度を検出する周方向磁束密度検出部と、
    を備えた駆動システム。
JP2021514744A 2019-04-18 2019-04-18 回転電機の制御装置および駆動システム Active JP7072721B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016630 WO2020213124A1 (ja) 2019-04-18 2019-04-18 回転電機の制御装置および駆動システム

Publications (2)

Publication Number Publication Date
JPWO2020213124A1 JPWO2020213124A1 (ja) 2021-11-04
JP7072721B2 true JP7072721B2 (ja) 2022-05-20

Family

ID=72837164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021514744A Active JP7072721B2 (ja) 2019-04-18 2019-04-18 回転電機の制御装置および駆動システム

Country Status (5)

Country Link
US (1) US11811340B2 (ja)
JP (1) JP7072721B2 (ja)
CN (1) CN113678366B (ja)
DE (1) DE112019007219T5 (ja)
WO (1) WO2020213124A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3926352A1 (en) * 2020-06-15 2021-12-22 Siemens Gamesa Renewable Energy A/S Measuring core losses in segments of electrical machines
US20230060549A1 (en) * 2021-08-30 2023-03-02 Abb Schweiz Ag Tapped winding method for extended constant horsepower speed range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123516A1 (ja) 2016-12-27 2018-07-05 日本電産株式会社 モータ制御装置、モータシステム、モータ制御方法、および集積回路装置
JP2018117398A (ja) 2017-01-16 2018-07-26 梨木 政行 モータとその制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525849A (en) * 1992-02-14 1996-06-11 Seiko Epson Corporation Superconducting bearing
JPH1155986A (ja) * 1997-08-05 1999-02-26 Hitachi Ltd 永久磁石回転電機の制御装置
JP4899485B2 (ja) 2006-01-13 2012-03-21 日産自動車株式会社 モータ駆動制御装置
CN102361433A (zh) * 2011-10-24 2012-02-22 乔鸣忠 一种谐波电压注入的多相感应电机直接转矩控制方法
JP5790447B2 (ja) 2011-11-28 2015-10-07 株式会社デンソー 回転力発生装置
JP6002449B2 (ja) * 2012-05-31 2016-10-05 株式会社日立製作所 永久磁石回転電機、エレベーター巻上機
JP2014007851A (ja) * 2012-06-25 2014-01-16 Nissan Motor Co Ltd 電動機の制御装置及び電動機の制御方法
JP6064207B2 (ja) * 2012-12-17 2017-01-25 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
DE102017101866B4 (de) * 2016-02-01 2022-06-02 Denso Corporation Steuerungsgerät für eine rotierende elektrische Maschine
JP6776841B2 (ja) * 2016-11-21 2020-10-28 株式会社豊田中央研究所 回転電機制御システム及びその調整方法
JP6914150B2 (ja) * 2017-09-07 2021-08-04 株式会社ミツバ ブラシレスモータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123516A1 (ja) 2016-12-27 2018-07-05 日本電産株式会社 モータ制御装置、モータシステム、モータ制御方法、および集積回路装置
JP2018117398A (ja) 2017-01-16 2018-07-26 梨木 政行 モータとその制御装置

Also Published As

Publication number Publication date
DE112019007219T5 (de) 2021-12-30
JPWO2020213124A1 (ja) 2021-11-04
CN113678366A (zh) 2021-11-19
US20220209697A1 (en) 2022-06-30
WO2020213124A1 (ja) 2020-10-22
US11811340B2 (en) 2023-11-07
CN113678366B (zh) 2024-03-05

Similar Documents

Publication Publication Date Title
JP5955472B2 (ja) 多群多相駆動システムおよび回転電機の駆動方法
US20130334937A1 (en) Rotary electric machine driving system
CN111247736B (zh) 防止电机中的永磁体消磁的***和方法
WO2012110879A2 (en) Rotary electric machine driving system
Kulkarni et al. Mathematical modeling and simulation of permanent magnet synchronous machine
JP2014513911A (ja) 電気機器を制御する方法及び装置
JP7072721B2 (ja) 回転電機の制御装置および駆動システム
JP2012205326A (ja) 回転電機システム
Wang et al. Parallel hybrid excitation machines and their control schemes for DC generation system
JP6958478B2 (ja) 回転電機
JP2015006103A (ja) 回転電機
JP2018139478A (ja) モータ制御装置
JP6504850B2 (ja) 制御装置、これを用いた回転電機、および当該制御装置と当該回転電機とを備えた駆動システム
US20190319567A1 (en) Brushless, Self-Excited Synchronous Field-Winding Machine
Srivastava et al. Pm Enhanced Sensing Of Internal Emf Variation-A Tool To Study PMBLDC/AC Motors
US11323056B2 (en) Controller for AC rotary electric machine
JP6335523B2 (ja) 回転電機
Jang et al. Design of a variable-flux permanent magnet synchronous motor for adjustable speed operation
Han et al. Single-electrical-port control of cascaded brushless doubly-fed induction drive for EV/HEV applications
JPH08242600A (ja) ハイブリッド励磁形永久磁石電動機の電流制御装置
JP2018098866A (ja) 同期電動機制御装置
Pothi Control of Hybrid-excited Permanent Magnet Machines
JP2015142392A (ja) 回転電機
Sakamoto et al. Larger Torque Production Method for Multi-Phase MATRIX Motor Using Online Air-Gap Flux Density Control
CN114384296A (zh) 电流检测装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220510

R150 Certificate of patent or registration of utility model

Ref document number: 7072721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150