JP7071945B2 - Vehicle control system - Google Patents

Vehicle control system Download PDF

Info

Publication number
JP7071945B2
JP7071945B2 JP2019102414A JP2019102414A JP7071945B2 JP 7071945 B2 JP7071945 B2 JP 7071945B2 JP 2019102414 A JP2019102414 A JP 2019102414A JP 2019102414 A JP2019102414 A JP 2019102414A JP 7071945 B2 JP7071945 B2 JP 7071945B2
Authority
JP
Japan
Prior art keywords
plate clutch
vehicle
wheel
wheels
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019102414A
Other languages
Japanese (ja)
Other versions
JP2020196298A (en
Inventor
好久 濱中
淳 木村
正幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IJTT Co Ltd
Original Assignee
IJTT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IJTT Co Ltd filed Critical IJTT Co Ltd
Priority to JP2019102414A priority Critical patent/JP7071945B2/en
Priority to PCT/JP2020/007763 priority patent/WO2020240953A1/en
Priority to AU2020285746A priority patent/AU2020285746A1/en
Publication of JP2020196298A publication Critical patent/JP2020196298A/en
Priority to ZA2021/10893A priority patent/ZA202110893B/en
Application granted granted Critical
Publication of JP7071945B2 publication Critical patent/JP7071945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

本発明は、車両の制御システムに関するものである。 The present invention relates to a vehicle control system.

車両の制御システムとしては、全輪駆動と後輪駆動とを切り替えると共に、後輪側に伝達される駆動力の一部を前輪側に可変分配する多板クラッチを有するトランスファーと、多板クラッチの締結力を制御する制御装置と、を備えたものが知られている。 As a vehicle control system, a transfer having a multi-plate clutch that switches between all-wheel drive and rear-wheel drive and variably distributes a part of the driving force transmitted to the rear wheel side to the front wheel side, and a multi-plate clutch. A control device for controlling a fastening force is known.

一般的に、制御装置は、前後輪の速度差に応じて多板クラッチの締結力を制御するように構成される。 Generally, the control device is configured to control the fastening force of the multi-plate clutch according to the speed difference between the front and rear wheels.

再公表WO2008/096438号公報Republished WO2008 / 096438 Gazette

しかしながら、上記の制御システムでは、低μ路での車両走行中に、例えば、前輪のみが先に低μ路から高μ路に進入した際に、前輪に伝達される駆動トルクが急激に増加して、前輪の車軸等の駆動系部品に負荷(ショックトルク)が発生する虞がある。 However, in the above control system, when the vehicle is traveling on a low μ road, for example, when only the front wheels first enter the high μ road from the low μ road, the drive torque transmitted to the front wheels increases sharply. Therefore, there is a risk that a load (shock torque) will be generated on the drive system parts such as the axles of the front wheels.

そこで、本発明の目的は、上記課題を解決し、前輪の駆動系部品に発生するショックトルクを抑制できる車両の制御システムを提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a vehicle control system capable of suppressing a shock torque generated in a drive train component of a front wheel.

本発明の一の態様によれば、前輪及び後輪を駆動する全輪駆動と後輪駆動とを切り替えると共に、後輪側に伝達される駆動力の一部を前輪側に可変分配する多板クラッチを有するトランスファーと、前後輪の速度差に応じて前記多板クラッチの締結力を制御する制御装置と、を備え、前記制御装置は、車両走行中に、前記前輪の角加速度が所定の閾値以下になったとき、前記多板クラッチの締結力の増加を抑制するように前記多板クラッチを制御することを特徴とする車両の制御システムが提供される。 According to one aspect of the present invention, a multi-plate that switches between all-wheel drive and rear wheel drive for driving the front and rear wheels and variably distributes a part of the driving force transmitted to the rear wheels to the front wheels. The control device includes a transfer having a clutch and a control device that controls the fastening force of the multi-plate clutch according to the speed difference between the front and rear wheels. Provided is a vehicle control system characterized in that the multi-plate clutch is controlled so as to suppress an increase in the engaging force of the multi-plate clutch when the following occurs.

好ましくは、前記制御装置は、車両走行中に、前記前輪の角加速度が前記閾値以下になったとき、前記多板クラッチの締結力をゼロにするように前記多板クラッチを制御する。 Preferably, the control device controls the multi-plate clutch so that the engaging force of the multi-plate clutch becomes zero when the angular acceleration of the front wheels becomes equal to or less than the threshold value while the vehicle is running.

好ましくは、前記閾値は、負の値に設定される。 Preferably, the threshold is set to a negative value.

本発明に係る車両の制御システムによれば、前輪の駆動系部品に発生するショックトルクを抑制できる。 According to the vehicle control system according to the present invention, the shock torque generated in the drive train components of the front wheels can be suppressed.

低μ路走行中の車両の左側面図である。It is a left side view of a vehicle traveling on a low μ road. 低μ路から高μ路に進入したときの車両の左側面図である。It is a left side view of a vehicle when entering a high μ road from a low μ road. 車両の制御システムの全体構成図である。It is an overall block diagram of a vehicle control system. トランスファーの断面図である。It is sectional drawing of the transfer. 図4のA-A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of FIG. 制御装置の制御状況の一例を示すタイムチャートであり、(a)は前後輪の回転速度、(b)は前後輪の速度差、(c)は多板クラッチの締結力、(d)は前輪に伝達される駆動トルクを表す。It is a time chart showing an example of the control status of the control device, (a) is the rotation speed of the front and rear wheels, (b) is the speed difference between the front and rear wheels, (c) is the fastening force of the multi-plate clutch, and (d) is the front wheel. Represents the drive torque transmitted to. 制御装置の制御状況の一例を示すタイムチャートであり、(a)は図6のVII部の拡大図であり、(b)は(a)に示した前輪の回転速度に対応する角加速度を表す。It is a time chart showing an example of the control state of the control device, (a) is an enlarged view of the VII part of FIG. 6, and (b) shows the angular acceleration corresponding to the rotation speed of the front wheel shown in (a). ..

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。なお、後述する実施形態における各方向は、本実施の形態に係る車両の各方向に一致する。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings. It should be noted that each direction in the embodiment described later corresponds to each direction of the vehicle according to the present embodiment.

図1及び図2に示すように、車両1には、キャブオーバ型トラックが用いられる。但し、車両1は、キャブオーバ型トラック以外の車両であっても良い。符号2は、車両1の前輪を示し、符号3は、車両1の後輪を示す。また、符号RLowは、前後輪2,3との摩擦係数(μ)が低い低μ路を示し、符号RHiは、前後輪2,3との摩擦係数が高い高μ路を示す。 As shown in FIGS. 1 and 2, a cab-over type truck is used for the vehicle 1. However, the vehicle 1 may be a vehicle other than a cab-over type truck. Reference numeral 2 indicates a front wheel of the vehicle 1, and reference numeral 3 indicates a rear wheel of the vehicle 1. Further, the reference numeral R Low indicates a low μ path having a low coefficient of friction (μ) with the front and rear wheels 2 and 3, and the reference numeral R Hi indicates a high μ path having a high friction coefficient (μ) with the front and rear wheels 2 and 3.

図3に示すように、車両1は、FR車(フロントエンジン・リアドライブ車)ベースの4WD車(四輪駆動車)またはAWD車(全輪駆動車)である。車両前部に搭載されたエンジンEからの回転駆動力は、トランスミッションT/M及びトランスファー10(後述)を介して、プロペラシャフト4に伝達される。プロペラシャフト4に伝達された回転駆動力は、デフケース5内に収容されるデファレンシャルギア(図示せず)を介して、後輪3に伝達される。また、トランスミッションT/Mからの回転駆動力は、トランスファー10を介して、前輪駆動用のデファレンシャルギアの入力軸6に選択的に伝達される。 As shown in FIG. 3, the vehicle 1 is a 4WD vehicle (four-wheel drive vehicle) or an AWD vehicle (all-wheel drive vehicle) based on an FR vehicle (front engine / rear drive vehicle). The rotational driving force from the engine E mounted on the front portion of the vehicle is transmitted to the propeller shaft 4 via the transmission T / M and the transfer 10 (described later). The rotational driving force transmitted to the propeller shaft 4 is transmitted to the rear wheels 3 via a differential gear (not shown) housed in the differential case 5. Further, the rotational driving force from the transmission T / M is selectively transmitted to the input shaft 6 of the differential gear for driving the front wheels via the transfer 10.

前輪2及び後輪3には、それぞれの回転速度(単位時間当たりの回転数)を検出するための車輪速センサSが設けられる。車輪速センサSには、既存のアンチロック・ブレーキ・システム(ABS)の車輪速センサが用いられる。但し、車輪速センサSは、ABSの車輪速センサに限定されなくて良い。 The front wheels 2 and the rear wheels 3 are provided with wheel speed sensors S for detecting their respective rotation speeds (rotational speeds per unit time). As the wheel speed sensor S, the wheel speed sensor of the existing anti-lock braking system (ABS) is used. However, the wheel speed sensor S does not have to be limited to the ABS wheel speed sensor.

車両1の制御システム100は、多板クラッチ11を有するトランスファー10と、多板クラッチ11の締結力を制御する制御装置としての電子制御ユニット(ECU)50と、を備える。 The control system 100 of the vehicle 1 includes a transfer 10 having a multi-plate clutch 11 and an electronic control unit (ECU) 50 as a control device for controlling the fastening force of the multi-plate clutch 11.

多板クラッチ11は、前輪2及び後輪3を駆動する全輪駆動と、後輪3のみを駆動する後輪駆動とを切り替えると共に、後輪3側に伝達される駆動力の一部を前輪2側に可変分配するように構成される。 The multi-plate clutch 11 switches between all-wheel drive that drives the front wheels 2 and the rear wheels 3 and rear wheel drive that drives only the rear wheels 3, and a part of the driving force transmitted to the rear wheels 3 side is used for the front wheels. It is configured to be variablely distributed to two sides.

本実施形態では、前輪2側と後輪3側との駆動力分配比は、全輪駆動時に前輪2側に駆動力を最大に分配したときに、前輪2側と後輪3側の駆動力が同じ大きさになるように設定される(前輪側:後輪側=5:5)。また、後輪駆動のときには、前輪2側の駆動力がゼロ(前輪側:後輪側=0:10)になるように設定される。但し、駆動力分配比は、任意であって良く、例えば、全輪駆動時に前輪2側に駆動力を最大に分配したときに、前輪2側よりも後輪3側の駆動力が大きくなるように設定されても良い(例えば、前輪側:後輪側=4:6)。 In the present embodiment, the driving force distribution ratio between the front wheel 2 side and the rear wheel 3 side is the driving force on the front wheel 2 side and the rear wheel 3 side when the driving force is maximally distributed to the front wheel 2 side during all-wheel drive. Are set to be the same size (front wheel side: rear wheel side = 5: 5). Further, in the case of rear wheel drive, the driving force on the front wheel 2 side is set to be zero (front wheel side: rear wheel side = 0:10). However, the driving force distribution ratio may be arbitrary. For example, when the driving force is distributed to the front wheels 2 side to the maximum during all-wheel drive, the driving force on the rear wheel 3 side is larger than that on the front wheel 2 side. It may be set to (for example, front wheel side: rear wheel side = 4: 6).

図4に示すように、トランスファー10は、トランスミッションT/Mに設けられるハウジング12と、ハウジング12内に回転自在に設けられる第1シャフト13と、第1シャフト13に設けられる内側回転部材14と、を備える。また、トランスファー10は、第1シャフト13に回転自在に設けられる第1スプロケット15と、第1スプロケット15に設けられる外側回転部材16と、内側回転部材14を外側回転部材16に隣接可能に接続する多板クラッチ11と、多板クラッチ11を駆動させるアクチュエータ17と、を備える。また、トランスファー10は、ハウジング12内に回転自在に設けられる第2シャフト18と、第2シャフト18に設けられる第2スプロケット19と、第1スプロケット15及び第2スプロケット19に掛け回されるチェーン20と、を更に備える。 As shown in FIG. 4, the transfer 10 includes a housing 12 provided in the transmission T / M, a first shaft 13 rotatably provided in the housing 12, and an inner rotating member 14 provided in the first shaft 13. To prepare for. Further, the transfer 10 connects the first sprocket 15 rotatably provided on the first shaft 13, the outer rotating member 16 provided on the first sprocket 15, and the inner rotating member 14 so as to be adjacent to the outer rotating member 16. A multi-plate clutch 11 and an actuator 17 for driving the multi-plate clutch 11 are provided. Further, the transfer 10 has a second shaft 18 rotatably provided in the housing 12, a second sprocket 19 provided on the second shaft 18, and a chain 20 hung around the first sprocket 15 and the second sprocket 19. And further prepare.

第1シャフト13の前端部は、トランスミッションT/Mの出力軸(図示せず)に接続される。また、第1シャフト13の後端部は、プロペラシャフト4(図3を参照)に接続される。一方、第2シャフト18の前端部は、前輪駆動用のデファレンシャルギアの入力軸6(図3を参照)に接続される。 The front end of the first shaft 13 is connected to the output shaft (not shown) of the transmission T / M. Further, the rear end portion of the first shaft 13 is connected to the propeller shaft 4 (see FIG. 3). On the other hand, the front end portion of the second shaft 18 is connected to the input shaft 6 (see FIG. 3) of the differential gear for driving the front wheels.

アクチュエータ17は、ハウジング12に固定されたカム機構21と、カム機構21を駆動する駆動装置22と、カム機構21と多板クラッチ11の間に介在される押圧部材23と、を備える。 The actuator 17 includes a cam mechanism 21 fixed to the housing 12, a drive device 22 for driving the cam mechanism 21, and a pressing member 23 interposed between the cam mechanism 21 and the multi-plate clutch 11.

図4及び図5に示すように、カム機構21は、第1シャフト13の中心軸Cを中心として回動するセクターギア(扇型歯車)24を有する。カム機構21は、セクターギア24による回動を軸方向の運動に変えて、押圧部材23を前後方向に移動させるように構成される。 As shown in FIGS. 4 and 5, the cam mechanism 21 has a sector gear (fan-shaped gear) 24 that rotates about the central axis C of the first shaft 13. The cam mechanism 21 is configured to move the pressing member 23 in the front-rear direction by changing the rotation by the sector gear 24 into an axial movement.

駆動装置22は、エンコーダ付きのDCモータで構成される。駆動装置22の駆動軸22aには、ウォームギア25が設けられる。ウォームギア25は、カム機構21のセクターギア24に噛合される。すなわち、駆動装置22は、駆動軸22aの回転角度(位相)を変化させることで、セクターギア24を回動させる。これにより、カム機構21を介して押圧部材23が前後方向に移動されることで、多板クラッチ11の締結力が増減される。 The drive device 22 is composed of a DC motor with an encoder. A worm gear 25 is provided on the drive shaft 22a of the drive device 22. The worm gear 25 is meshed with the sector gear 24 of the cam mechanism 21. That is, the drive device 22 rotates the sector gear 24 by changing the rotation angle (phase) of the drive shaft 22a. As a result, the pressing member 23 is moved in the front-rear direction via the cam mechanism 21, and the fastening force of the multi-plate clutch 11 is increased or decreased.

なお、アクチュエータ17は、任意の種類であって良く、例えば、駆動装置22として、エンコーダ無しのDCモータ、サーボモータ、ステッピングモータ、油圧モータ、電磁石が用いられても良い。 The actuator 17 may be of any type, and for example, a DC motor without an encoder, a servo motor, a stepping motor, a hydraulic motor, or an electromagnet may be used as the drive device 22.

ECU50は、CPU、ROM、RAM、記憶装置および入出力ポート等を備える。ECU50には、駆動装置22及び車輪速センサSが電気的に接続されている。なお、図示しないが、ECU50には、車両1の速度を検出するための車速センサ、アクセル開度を検出するためのアクセル開度センサ、エンジン回転数を検出するためのエンジン回転センサ等の各種センサ類が電気的に接続される。 The ECU 50 includes a CPU, ROM, RAM, a storage device, an input / output port, and the like. The drive device 22 and the wheel speed sensor S are electrically connected to the ECU 50. Although not shown, the ECU 50 includes various sensors such as a vehicle speed sensor for detecting the speed of the vehicle 1, an accelerator opening sensor for detecting the accelerator opening, and an engine rotation sensor for detecting the engine rotation speed. Kinds are electrically connected.

ECU50は、駆動装置22の駆動軸22aの回転角度(位相)を制御することで、アクチュエータ17を通じて多板クラッチ11の締結力を制御する。 The ECU 50 controls the fastening force of the multi-plate clutch 11 through the actuator 17 by controlling the rotation angle (phase) of the drive shaft 22a of the drive device 22.

詳細は後述するが、本実施形態のECU50は、前後輪2,3(図1を参照)の速度差に応じて多板クラッチ11の締結力を制御する。また、ECU50は、車両走行中に、前輪2の角加速度が所定の閾値以下になったとき、多板クラッチ11の締結力の増加を抑制するように、具体的にはゼロにするように多板クラッチ11を制御する。閾値は、前輪2が低μ路RLowから高μ路RHiに進入したとき(図2を参照)に発生する角加速度の負の値に設定される。 Although details will be described later, the ECU 50 of the present embodiment controls the engaging force of the multi-plate clutch 11 according to the speed difference between the front and rear wheels 2 and 3 (see FIG. 1). Further, the ECU 50 is set to zero so as to suppress an increase in the engaging force of the multi-plate clutch 11 when the angular acceleration of the front wheel 2 becomes equal to or less than a predetermined threshold value while the vehicle is running. The plate clutch 11 is controlled. The threshold value is set to a negative value of the angular acceleration generated when the front wheel 2 enters the high μ road R Hi from the low μ road R Low (see FIG. 2).

ECU50の詳しい制御内容について、図6及び図7に基づいて説明する。図6及び図7は、ECU50の制御状況の一例を示すタイムチャートである。 The detailed control contents of the ECU 50 will be described with reference to FIGS. 6 and 7. 6 and 7 are time charts showing an example of the control status of the ECU 50.

図6(a)は、前後輪2,3の回転速度n(rpm)を表し、図6(b)は、前後輪2,3の速度差Δn(rpm)を表し、図6(c)は、多板クラッチ11の締結力F(N)を表し、図6(d)は、前輪2に伝達される駆動トルクT(N・m)を表す。なお、図6(a)中、実線nFは、前輪2の回転速度を表し、点線nLは、後輪3の回転速度を表す。 6 (a) shows the rotation speed n (rpm) of the front and rear wheels 2 and 3, FIG. 6 (b) shows the speed difference Δn (rpm) of the front and rear wheels 2 and 3, and FIG. 6 (c) shows. , Represents the fastening force F (N) of the multi-plate clutch 11, and FIG. 6D represents the drive torque T (Nm) transmitted to the front wheel 2. In FIG. 6A, the solid line n F represents the rotation speed of the front wheel 2, and the dotted line n L represents the rotation speed of the rear wheel 3.

一方、図7(a)は、図6(a)のVII部に示した前輪2の回転速度nFの拡大図であり、図7(b)は、図7(a)に示した前輪2の回転速度nFに対応する角加速度αを表す。 On the other hand, FIG. 7A is an enlarged view of the rotation speed n F of the front wheel 2 shown in the VII portion of FIG. 6A, and FIG. 7B is the front wheel 2 shown in FIG. 7A. Represents the angular acceleration α corresponding to the rotation speed n F of.

また、これら図中において、時刻t1は、前輪2が低μ路RLowから高μ路RHiに進入した時点(図2を参照)を表す。また、時刻t1よりも前の期間は、前輪2が低μ路RLowから高μ路RHiに進入する前の低μ路走行中の期間(図1を参照)を表す。また、時刻t1よりも後の期間は、前輪2が高μ路RHiに進入した後、後輪3が高μ路RHiに進入する前の期間を表す。 Further, in these figures, the time t1 represents the time point when the front wheel 2 enters the high μ road R Hi from the low μ road R Low (see FIG. 2). Further, the period before the time t1 represents the period during the low μ road traveling before the front wheel 2 enters the high μ road R Hi from the low μ road R Low (see FIG. 1). Further, the period after the time t1 represents the period after the front wheel 2 enters the high μ road R Hi and before the rear wheel 3 enters the high μ road R Hi .

図6(a)及び図6(b)に示すように、ECU50は、車両1の走行中、車輪速センサSから送信された前輪2の回転速度nF及び後輪3の回転速度nLに基づいて、前後輪2,3の速度差Δn(Δn=nL-nF)を算出する。 As shown in FIGS. 6A and 6B, the ECU 50 determines the rotation speed n F of the front wheels 2 and the rotation speed n L of the rear wheels 3 transmitted from the wheel speed sensor S while the vehicle 1 is traveling. Based on this, the speed difference Δn (Δn = n L − n F ) between the front and rear wheels 2 and 3 is calculated.

また、ECU50は、算出した前後輪2,3の速度差Δnに応じて多板クラッチ11の締結力Fを制御する。本実施形態では、ECU50は、前後輪2,3の速度差Δnが大きいほど、多板クラッチ11の締結力Fが大きくなるように多板クラッチ11を制御する。 Further, the ECU 50 controls the engaging force F of the multi-plate clutch 11 according to the calculated speed difference Δn between the front and rear wheels 2 and 3. In the present embodiment, the ECU 50 controls the multi-plate clutch 11 so that the larger the speed difference Δn between the front and rear wheels 2 and 3, the larger the engagement force F of the multi-plate clutch 11.

また、図7(a)及び図7(b)に示すように、本実施形態のECU50は、車両1の走行中、前輪2の回転速度nFに基づいて、前輪2の角加速度αを算出する。前輪2の角加速度αは、前輪2の回転速度nFの微分値として算出される。 Further, as shown in FIGS. 7A and 7B, the ECU 50 of the present embodiment calculates the angular acceleration α of the front wheel 2 based on the rotation speed n F of the front wheel 2 while the vehicle 1 is traveling. do. The angular acceleration α of the front wheel 2 is calculated as a differential value of the rotation speed n F of the front wheel 2.

さて、図示例における時刻t1よりも前の低μ路走行中は、前後輪2,3が低μ路RLowで滑って、多板クラッチ11が締結(ON)される。ECU50は、前後輪2,3の速度差Δnがゼロになるように多板クラッチ11の締結力Fを制御して、全輪駆動により低μ路RLowを走行させる。 By the way, during the low μ road traveling before the time t1 in the illustrated example, the front and rear wheels 2 and 3 slip on the low μ road R Low , and the multi-plate clutch 11 is engaged (ON). The ECU 50 controls the fastening force F of the multi-plate clutch 11 so that the speed difference Δn between the front and rear wheels 2 and 3 becomes zero, and drives the low μ road R Low by all-wheel drive.

一方、時刻t1において、前輪2が低μ路RLowから高μ路RHiに進入した時は、低μ路RLowで滑って空転された前輪2が高μ路RHiで急激にグリップし、前輪2の回転速度NFが急激に低下する。これにより、前後輪2,3の速度差Δnが増加すると共に、前輪2の角加速度αが負の閾値αT以下に低下する。 On the other hand, at time t1, when the front wheel 2 entered the high μ road R Hi from the low μ road R Low , the front wheel 2 that slipped on the low μ road R Low and slipped and slipped sharply gripped on the high μ road R Hi . , The rotation speed NF of the front wheel 2 drops sharply. As a result, the speed difference Δn between the front and rear wheels 2 and 3 increases, and the angular acceleration α of the front wheels 2 decreases below the negative threshold value α T.

このとき、ECU50は、前輪2が高μ路RHiに進入したと判断して、速度差Δnによる多板クラッチ11の制御を中断すると共に、多板クラッチ11の締結力Fをゼロにする制御を実行する。これにより、全輪駆動から後輪駆動に切り替わる。 At this time, the ECU 50 determines that the front wheel 2 has entered the high μ road R Hi , interrupts the control of the multi-plate clutch 11 due to the speed difference Δn, and controls the engagement force F of the multi-plate clutch 11 to be zero. To execute. As a result, all-wheel drive is switched to rear-wheel drive.

なお、図示例における時刻t1よりも後の期間では、後輪3がまだ低μ路RLowから高μ路RHiに進入していないので、後輪3の回転速度NLは殆ど低下しない。よって、ECU50は、多板クラッチ11の締結力Fをゼロにする制御を継続し、後輪駆動により車両1を走行させる。 In the period after the time t1 in the illustrated example, since the rear wheel 3 has not yet entered the high μ road R Hi from the low μ road R Low , the rotation speed NL of the rear wheel 3 hardly decreases. Therefore, the ECU 50 continues the control to make the fastening force F of the multi-plate clutch 11 zero, and drives the vehicle 1 by the rear wheel drive.

ところで、一般的なECUでは、図6(c)に一点鎖線F’で示すように、全輪駆動による低μ路走行中、前輪2のみが先に低μ路RLowから高μ路RHiに進入したときでも、依然として、速度差Δnによる多板クラッチ11の制御が継続される。 By the way, in a general ECU, as shown by the alternate long and short dash line F'in FIG . The control of the multi-plate clutch 11 by the speed difference Δn is still continued even when the vehicle enters.

しかしながら、この制御では、図6(d)の一点鎖線T’で示すように、前輪2への駆動トルクT’が急激に増加する可能性がある。その結果、前輪2の車軸やドライブシャフト等の駆動系部品にイナーシャによる負荷(ショックトルク)が発生する虞がある。 However, in this control, as shown by the alternate long and short dash line T'in FIG. 6 (d), the drive torque T'to the front wheel 2 may increase sharply. As a result, there is a possibility that a load (shock torque) due to inertia will be generated on the drive system parts such as the axle and the drive shaft of the front wheel 2.

一般的に、このショックトルクに対しては、例えば、駆動系部品の疲労強度を高くする対策がとられる。しかし、車幅や車高の関係上、駆動系部品の疲労強度を高くできない場合がある。 Generally, measures are taken against this shock torque to increase the fatigue strength of drive train components, for example. However, due to the width and height of the vehicle, it may not be possible to increase the fatigue strength of drivetrain components.

また、その他の対策としては、全輪駆動のときに前輪側に最大に分配される駆動力が小さくなるように(例えば、前輪側:後輪側=2:8)、駆動力分配比を設定する手法が考えられる。しかし、この手法では、全輪駆動時の車両の走破性が低下するという問題がある。 As another measure, the driving force distribution ratio is set so that the maximum driving force distributed to the front wheel side during all-wheel drive is small (for example, front wheel side: rear wheel side = 2: 8). A method to do is conceivable. However, this method has a problem that the running performance of the vehicle when all-wheel drive is reduced.

これに対して、本実施形態では、図7に示すように、前輪2が低μ路RLowから高μ路RHiに進入したことを、前輪2の角加速度αにより検知して、多板クラッチ11の締結力Fをゼロに制御する。これにより、全輪駆動から後輪駆動に瞬時に切り替えることができ、前輪2への駆動トルクTをなくすことができる。 On the other hand, in the present embodiment, as shown in FIG. 7, it is detected by the angular acceleration α of the front wheel 2 that the front wheel 2 has entered the high μ road R Hi from the low μ road R Low , and the multi-plate The engagement force F of the clutch 11 is controlled to zero. As a result, it is possible to instantly switch from all-wheel drive to rear-wheel drive, and it is possible to eliminate the drive torque T to the front wheels 2.

よって、本実施形態であれば、前輪2への駆動トルクTが急激に増加するのを抑えて、前輪2の車軸等の駆動系部品に発生するショックトルクを抑制できる。 Therefore, in the present embodiment, it is possible to suppress the sudden increase in the drive torque T to the front wheel 2 and suppress the shock torque generated in the drive system parts such as the axle of the front wheel 2.

また、本実施形態によれば、前輪2の車軸等の駆動系部品の疲労強度を高くしなくても、部品の疲労を抑制できる。そのため、車幅や車高の関係上、駆動系部品の疲労強度を高くできない場合に、特に有利である。 Further, according to the present embodiment, fatigue of parts can be suppressed without increasing the fatigue strength of drive system parts such as axles of front wheels 2. Therefore, it is particularly advantageous when the fatigue strength of drive train components cannot be increased due to the vehicle width and vehicle height.

また、本実施形態によれば、全輪駆動のときに前輪2側に最大に分配される駆動力が小さくなるように、駆動力分配比を設定(例えば、前輪側:後輪側=2:8)しなくても、駆動系部品のショックトルクを抑制できる。そのため、前輪2側の駆動力分配比を高く(例えば、前輪側:後輪側=5:5)設定して、全輪駆動による車両1の走破性を向上できる。 Further, according to the present embodiment, the driving force distribution ratio is set so that the driving force distributed to the front wheels 2 side at the maximum during all-wheel drive is small (for example, front wheel side: rear wheel side = 2: 8) The shock torque of the drive system parts can be suppressed without doing so. Therefore, the driving force distribution ratio on the front wheel 2 side can be set high (for example, front wheel side: rear wheel side = 5: 5) to improve the running performance of the vehicle 1 by all-wheel drive.

他方、上述した基本実施形態は、以下のような変形例またはその組合せとすることができる。下記の説明においては、上記の実施形態と同一の構成要素に同じ符号を用い、それらの詳細な説明は省略する。 On the other hand, the above-mentioned basic embodiment can be a modification or a combination thereof as follows. In the following description, the same components as those in the above embodiment will be used with the same reference numerals, and detailed description thereof will be omitted.

(第1変形例)
図示しないが、ECU50は、車両走行中、前輪2の角加速度αが閾値αT以下になったとき、多板クラッチ11の締結力の増加を抑制できれば、締結力Fがゼロよりも大きな値になるように制御しても良い。
(First modification)
Although not shown, the ECU 50 makes the fastening force F larger than zero if the increase in the fastening force of the multi-plate clutch 11 can be suppressed when the angular acceleration α of the front wheel 2 becomes equal to or less than the threshold value α T while the vehicle is running. It may be controlled so as to be.

(第2変形例)
ECU50は、前輪2の回転速度に基づいて前輪2の角加速度を算出せずに、ABS等に搭載された角加速度センサから前輪2の角加速度を取得しても良い。
(Second modification)
The ECU 50 may acquire the angular acceleration of the front wheel 2 from the angular acceleration sensor mounted on the ABS or the like without calculating the angular acceleration of the front wheel 2 based on the rotation speed of the front wheel 2.

(第3変形例)
第3変形例では、ECU50は、前輪2及び後輪3のブレーキが作動しているとき、或いは、後輪3の角加速度が所定の閾値以下のときは、前輪2の角加速度が閾値以下になったときでも、多板クラッチ11の締結力を減少する制御を実行しない。第3変形例によれば、ブレーキの作動により前輪2の角加速度が減少した場合に、前輪2が低μ路RLowから高μ路RHiに進入したと誤認するのを防止できる。
(Third modification example)
In the third modification, when the brakes of the front wheels 2 and the rear wheels 3 are operating, or when the angular acceleration of the rear wheels 3 is equal to or less than a predetermined threshold value, the angular acceleration of the front wheels 2 becomes equal to or less than the threshold value. Even when it becomes, the control for reducing the fastening force of the multi-plate clutch 11 is not executed. According to the third modification, when the angular acceleration of the front wheel 2 is reduced by the operation of the brake, it is possible to prevent the front wheel 2 from being mistakenly recognized as having entered the high μ road R Hi from the low μ road R Low .

1 車両
2 前輪
3 後輪
10 トランスファー
11 多板クラッチ
50 ECU(制御装置)
100 制御システム
F 多板クラッチの締結力
α 前輪の角加速度
αT 閾値
1 Vehicle 2 Front wheels 3 Rear wheels 10 Transfer 11 Multi-plate clutch 50 ECU (control unit)
100 Control system F Multi-plate clutch engagement force α Front wheel angular acceleration α T Threshold

Claims (2)

前輪及び後輪を駆動する全輪駆動と後輪駆動とを切り替えると共に、後輪側に伝達される駆動力の一部を前輪側に可変分配する多板クラッチを有するトランスファーと、
前後輪の速度差に応じて前記多板クラッチの締結力を制御する制御装置と、を備え、
前記制御装置は、全輪駆動での車両走行中に、前記前輪の回転速度が低下し、これにより速度差が増加し、かつ、前記前輪の角加速度が所定の負の閾値以下になったとき、前記多板クラッチの締結力の増加を抑制するように前記多板クラッチを制御する
ことを特徴とする車両の制御システム。
A transfer with a multi-plate clutch that switches between all-wheel drive and rear-wheel drive that drives the front and rear wheels, and variably distributes part of the driving force transmitted to the rear wheels to the front wheels.
It is equipped with a control device that controls the fastening force of the multi-plate clutch according to the speed difference between the front and rear wheels.
In the control device, when the rotational speed of the front wheels decreases while the vehicle is driven by all wheels, the speed difference increases, and the angular acceleration of the front wheels becomes equal to or less than a predetermined negative threshold value. , A vehicle control system comprising controlling the multi-plate clutch so as to suppress an increase in the fastening force of the multi-plate clutch.
前記制御装置は、車両走行中に、前記前輪の角加速度が前記閾値以下になったとき、前記多板クラッチの締結力をゼロにするように前記多板クラッチを制御する
請求項1記載の車両の制御システム。
The vehicle according to claim 1, wherein the control device controls the multi-plate clutch so that the engaging force of the multi-plate clutch becomes zero when the angular acceleration of the front wheels becomes equal to or less than the threshold value while the vehicle is running. Control system.
JP2019102414A 2019-05-31 2019-05-31 Vehicle control system Active JP7071945B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019102414A JP7071945B2 (en) 2019-05-31 2019-05-31 Vehicle control system
PCT/JP2020/007763 WO2020240953A1 (en) 2019-05-31 2020-02-26 Control system for vehicle
AU2020285746A AU2020285746A1 (en) 2019-05-31 2020-02-26 Control system for vehicle
ZA2021/10893A ZA202110893B (en) 2019-05-31 2021-12-23 Control system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019102414A JP7071945B2 (en) 2019-05-31 2019-05-31 Vehicle control system

Publications (2)

Publication Number Publication Date
JP2020196298A JP2020196298A (en) 2020-12-10
JP7071945B2 true JP7071945B2 (en) 2022-05-19

Family

ID=73553725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019102414A Active JP7071945B2 (en) 2019-05-31 2019-05-31 Vehicle control system

Country Status (4)

Country Link
JP (1) JP7071945B2 (en)
AU (1) AU2020285746A1 (en)
WO (1) WO2020240953A1 (en)
ZA (1) ZA202110893B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117377604A (en) * 2021-06-23 2024-01-09 舍弗勒技术股份两合公司 Impact torque control method and device for hybrid electric vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856924A (en) * 1981-09-29 1983-04-04 Fuji Heavy Ind Ltd Drive change-over controller from two to four wheel
JPS61275031A (en) * 1985-05-07 1986-12-05 Nissan Motor Co Ltd Drive selection controller for four-wheel drive car
JPH03295445A (en) * 1990-04-13 1991-12-26 Fuji Heavy Ind Ltd Method for calculating maximum road surface friction coefficient

Also Published As

Publication number Publication date
AU2020285746A1 (en) 2021-12-02
WO2020240953A1 (en) 2020-12-03
JP2020196298A (en) 2020-12-10
ZA202110893B (en) 2023-10-25

Similar Documents

Publication Publication Date Title
KR100590400B1 (en) Power transmission device for 4-wheel drive vehicle
JP4294286B2 (en) Vehicle differential limiting control device
JP4263448B2 (en) Vehicle differential limiting control device
JP7071945B2 (en) Vehicle control system
JP2019090498A (en) Four-wheel-drive-vehicular control apparatus
JP5700001B2 (en) Control device for vehicle drive device
JPH08121571A (en) Torque distribution control device of vehicle
JP7164044B2 (en) Driving force distribution method and driving force distribution device for front/rear wheel drive vehicle
JP2020192962A (en) Four-wheel drive car
JP4924002B2 (en) Driving force distribution device
JP2003516266A (en) Vehicle structure with differential lock
JP3686626B2 (en) Control device for electric motor for vehicle
JP2012057639A (en) Control device of differential limiting mechanism
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JP5640581B2 (en) Control device for differential limiting mechanism
JPH0439065Y2 (en)
EP2591934A1 (en) Device for controlling torque distribution to left and right wheels on a vehicle
JP2630609B2 (en) Control method of driving force distribution and rear wheel steering angle of four-wheel drive, four-wheel steering vehicle
JP3451695B2 (en) Driving force distribution control system for front and rear wheels and left and right wheels
JP2943931B2 (en) Vehicle drive torque control device
JP4661450B2 (en) Vehicle drive torque control device
JP4368271B2 (en) Vehicle travel control device
JP2679070B2 (en) Vehicle differential limiting control device
JP3327964B2 (en) Automotive differential limiter
JP2848107B2 (en) Vehicle differential limiting control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211004

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220323

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7071945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150