JP7071609B2 - 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ - Google Patents

3dキャパシタ、及び光活性基板を作製するキャパシタアレイ Download PDF

Info

Publication number
JP7071609B2
JP7071609B2 JP2018544793A JP2018544793A JP7071609B2 JP 7071609 B2 JP7071609 B2 JP 7071609B2 JP 2018544793 A JP2018544793 A JP 2018544793A JP 2018544793 A JP2018544793 A JP 2018544793A JP 7071609 B2 JP7071609 B2 JP 7071609B2
Authority
JP
Japan
Prior art keywords
glass
ceramic
substrate
capacitive device
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018544793A
Other languages
English (en)
Other versions
JP2019512169A (ja
Inventor
ジェブ エイチ フレミング
ジェフ バリントン
カイル マクウェシー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3D Glass Solutions
Original Assignee
3D Glass Solutions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3D Glass Solutions filed Critical 3D Glass Solutions
Publication of JP2019512169A publication Critical patent/JP2019512169A/ja
Priority to JP2022003207A priority Critical patent/JP7237390B2/ja
Application granted granted Critical
Publication of JP7071609B2 publication Critical patent/JP7071609B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/129Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0002Apparatus or processes for manufacturing printed circuits for manufacturing artworks for printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Glass Compositions (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Micromachines (AREA)

Description

本発明は、感光性ガラス内セラミック基板中に三次元キャパシタ構造を創成すること(creating)、特に、電子、マイクロ波、及びラジオ周波数に関するフィルタ、サージ保護装置(surge protectors)、及び貯蔵装置を目的として、他の受動部品と共にキャパシタを製造することに関する。
集積電子素子といったいくつかのマイクロマシニング(micromachining)及びマイクロファブリケーションプロセス(microfabrication processes)を目的として、他の素子システム又はサブシステムと共に、感光性ガラス構造が提案されている。従来のガラスのシリコンマイクロファブリケーションは、高価及び低収量であり、さらに射出モデリング又はエンボス加工プロセスによって不整合な形状を生成する。シリコンマイクロファブリケーション処理は、高価な基礎装備、各々に100万ドルを超える費用が一般的にかかる、フォトリソグラフィ、及び反応性イオンエッチング又はイオンビームミリング器具に依拠し、さらに数百万から数十億の費用がかかる超清浄で高生産なシリコンファブリケーション設備を必要とする。射出成形及びエンボス加工は、より安価な三次元形状の生成方法であるが、転写において欠陥が生じるか、又は確率的な硬化プロセスに起因する差異が存在する。
本発明は、費用効率の高いガラスセラミック三次元キャパシタ構造又は三次元キャパシタアレイデバイスを創成する。本発明において、ガラスセラミック基板は、垂直平面及び水平平面の両方を、個別に、又は同時に加工するステップを通してそのような構造を形成し、二次元又は三次元容量性デバイス(capacitive device)を形成する能力を示した。
本発明は、ビア又はポストを有する感光性ガラス基板を調製するステップ、さらに導電層(通常は金属)、誘電体材料、及び最上層導電層(通常は金属)を、1又は2以上被覆、又は充填するステップによって、二次元又は三次元キャパシタデバイスを1又は2以上有する基板を作製する方法を含む。
シリカ、酸化リチウム、酸化アルミニウム、及び酸化セリウムを少なくとも含む感光性ガラスセラミック複合基板を調製するステップ、感光性ガラス基板中に、二次元又は三次元キャパシタデバイスを1又は2以上含むデザインレイアウトをマスキングするステップ、感光性ガラス基板の少なくとも一部分を活性エネルギー源に露光するステップ、感光性ガラス基板を、そのガラス転移温度を上回る、少なくとも10分間の加熱相にさらすステップ、感光性ガラス基板を冷却し、露光されたガラスの少なくとも一部を結晶性材料へ転換して結晶性ガラス基板を形成するステップ、並びに結晶性ガラス基板をエッチング溶液でエッチングし、その後容量性デバイスの製造に使用される傾斜チャネル(angled channels)又は貫通孔を1又は2以上形成するステップによって作製する方法、並びに調製されるデバイス。
本発明は、第1の結晶性ガラス基板であって、第1の結晶性ガラス基板中の1又は2以上の電気伝導路、及び1又は2以上の電気伝導路に塗布される金属被覆を含み、第1の結晶性ガラス基板が、シリカ、酸化リチウム、酸化アルミニウム、及び酸化セリウムを少なくとも含む、第1の結晶性ガラス基板、第2の結晶性ガラス基板であって、第2の結晶性ガラス基板中の1又は2以上の第2の電気伝導路、及び1又は2以上の第2の電気伝導路に塗布される第2の金属被覆を含み、第2の結晶性ガラス基板が、シリカ、酸化リチウム、酸化アルミニウム、及び酸化セリウムを少なくとも含む、第2の結晶性ガラス基板、第1の結晶性ガラス基板と第2の結晶性ガラス基板の間に位置する誘電体材料の層、並びに第1の結晶性ガラス基板と第2の結晶性ガラス基板を接続する1又は2以上のビア、ポスト、チャネル、又はそれらの組合せを含む、ガラスセラミック容量性デバイスを提供する。第1の末端は、第1の結晶性ガラス基板に接続されてもよく、第2の末端は、第2の結晶性ガラス基板に接続されてもよい。ガラスセラミック容量性デバイスが、電圧貯蔵装置として機能してもよい。金属被覆、第2の金属被覆、又はその両方が、Au、Ag、Pt、Cu、W、TiW、TiN、TaN、WN、Al、又はそれらの混合物及び合金であってもよい。誘電体層が、Ta、Al、又はAlを含むがそれに限定されない他の気相誘電体であってもよい。
本発明は、シリカ、酸化リチウム、酸化アルミニウム、及び酸化セリウムを少なくとも含む感光性ガラスセラミック基板を用意するステップ、感光性ガラスセラミック基板上のデザインレイアウトをマスキングするステップであって、デザインレイアウトが、1又は2以上の電気伝導路を形成する1又は2以上の構造を含む、ステップ、感光性ガラスセラミック基板の少なくとも一部分を活性エネルギー源に露光するステップ、感光性ガラスセラミック基板を、そのガラス転移温度を上回る、少なくとも10分間の加熱相まで加熱するステップ、感光性ガラスセラミック基板を冷却し、露光されたガラスの少なくとも一部を結晶性材料へ転換して結晶性ガラス基板を形成するステップ、結晶性ガラス基板をエッチング溶液でエッチングし、1又は2以上のエッチングされた三次元構造を結晶性ガラス基板中に形成するステップ、エッチングされた三次元構造に隣接する結晶性ガラス基板の一部分をセラミック相へ変換する任意のステップ、結晶性ガラス基板を希釈ガラスエッチング液でリンスし、ガラス領域に高表面積のテクスチャ(texture)を形成するステップ、ビア又はポストチャネルを第1の金属で被覆し、底部電極を形成するステップ、構造の少なくとも一部分を誘電体媒体で被覆するステップ、ビア又はポストチャネルを第2の金属で被覆し、上部電極を形成するステップ、上部及び誘電体媒体の少なくとも一部分を除去し、電気接点又は独立デバイスを提供するステップ、並びに第1の金属、第2の金属、又はその両方を、表面又は埋設接点を介して回路に接続するステップを含む、感光性ガラスセラミックの中又は上に創成される容量性デバイスを製作する方法を提供する。
第1の金属、第2の金属、又はその両方の被覆が、原子層堆積(ALD,atomic layer deposition)を用いる。ガラスセラミック容量性デバイスが、電圧貯蔵装置として機能する。第1の金属、第2の金属、又はその両方が、Au、Ag、Pt、Cu、W、TiW、TiN、TaN、WN、Al、又はそれらの混合物及び合金を含む。誘電体層が、Ta、Al、又は他の気相誘電体であってもよい。
本発明のさらなる利益及び利点は、添付の図面を参照し、例として与えられる以下のさまざまな実施形態の記載から、より明らかになる。
直径が65um、中心間のピッチが72umの貫通孔ビアを示す図である。 1mm厚の基板中のブラインドビアであって、ビア深さが440μm、頂部の直径が41μm、底部の直径が19μmのブラインドビアである。 APEX(登録商標)ガラス中/上の、表面積が広く、アスペクト比が大きいデバイスの平面図である。 APEX(登録商標)ガラス中/上の、充填貫通孔ビアの側面図である。 ADLキャパシタ構造を有するブラインドビアの分解図を示すカラーの図である。
本発明のさまざまな実施形態の製作及び使用が以下に詳細に検討されるが、本発明は、幅広いさまざまな具体的状況で具現化され得る、応用可能な多くの発明概念を提供すると理解されるべきである。本明細書で検討される具体的な実施形態は、本発明をなす及び使用する特定の方法の例示に過ぎず、発明の範囲を定めるものではない。
本発明を容易に理解するために、多くの用語を以下に定義する。本明細書において定義される用語は、本発明に関する分野の当業者が通常理解する意味を有する。「a」、「an」及び「the」といった用語は、単数の実体のみを意味することを意図せず、説明のために使用され得る具体例の一般的な分類を含む。本明細書における専門用語は、本発明の具体的な実施形態を説明するために使用されるが、それらの用法は、特許請求の範囲において概説される場合を除き、発明の範囲を定めない。
これらの需要に応えるため、本発明者らは、半導体、RF電子装置、マイクロ波電子装置、及び光学イメージングのための、新規の実装及び基板材料として、ガラスセラミック(APEX(登録商標))ガラスセラミック)を開発した。APEX(登録商標)ガラスセラミックは、第1世代半導体装置を使用し、簡単な3段階のプロセスで加工され、最終材料は、ガラス、セラミックの何れかに構成することができるか、又はガラス及びセラミックの両方の領域を含有することができる。APEX(登録商標)ガラスセラミックは、高密度のビアが容易に作製される、マイクロ流体能を示す、マイクロレンズ又はマイクロレンズアレイ、より硬質な実装体のための高いヤング率、ハロゲンを用いない製造、及び安価な製造が挙げられる、既存の材料に対するいくつかの利益を有する。フォトエッチング可能なガラスは、各種のマイクロシステム構成要素の作製に関し、いくつかの長所を有する。微細構造は、従来の半導体加工装置を使用し、これらのガラスを用いて比較的安価に生産されている。一般的に、ガラスは、高い温度安定性、良好な機械及び電気特性を有し、プラスチック及び多くの金属よりも良好な耐化学性を有する。我々の知る限り、唯一の市販のフォトエッチング可能なガラスは、Schott Corporation社が製作し、Invenios Inc.社のみによって米国に輸入されるFOTURAN(登録商標)である。FOTURAN(登録商標)は、微量な銀イオンに加えて微量な他の元素を含有するリチウムアルミニウムケイ酸塩ガラス、具体的には75~85重量%の酸化ケイ素(SiO)、7~11重量%の酸化リチウム(LiO)、3~6重量%の酸化アルミニウム(Al2O)、1~2重量%の酸化ナトリウム(NaO)、0.2~0.5重量%の三酸化アンチモン(Sb)又は酸化ヒ素(AsO3)、0.05~0.15重量%の酸化銀(AgO)、及び0.01~0.04重量%の酸化セリウム(CeO)を含む。本明細書で使用される場合、「APEX(登録商標)ガラスセラミック」、「APEX(登録商標)ガラス」又は単なる「APEX(登録商標)」という用語は、本発明のガラスセラミック組成物の一実施形態を表すために用いられる。
酸化セリウムは、酸化セリウムの吸収バンド範囲内のUV光に露光されると増感剤として作用し、光子を吸収し、電子を失って、例えば
[化1]
Ce3+ + Ag+ = Ce4+ + Ag0
のように、隣接する酸化銀を還元して銀原子を形成させる。
焼成プロセスにおいて、銀原子は、合体して銀ナノクラスターとなり、周囲のガラスの結晶化のための核生成部位を誘導する。マスクを通してUV光に露光される場合、ガラスの露光された領域のみが、続く熱処理において結晶化する。
この熱処理は、ガラス転換温度付近の(例えば、FOTURAN(登録商標)に関しては空気中で465℃より高い)温度で行う必要がある。結晶相は、未露光のガラス質非晶質領域よりも、フッ化水素酸(HF)といったエッチング液に対する溶解度が高い。特に、FOTURAN(登録商標)の結晶領域は、非晶質領域よりも約20倍速く10%HF中でエッチングされ、露光された領域が除去された際に、約20:1の壁面斜面比(wall slopes ratios)の微細構造を可能とする。
一般的に、性能、均一性、他者の利便性、及び有効性の問題に悩まされる微細構造形成において、ガラスセラミック材料の収める成功は限られている。過去のガラスセラミック材料で得られるエッチングアスペクト比は、およそ15:1であるのに対し、APEX(登録商標)ガラスの平均エッチングアスペクト比は、50:1を超える。これにより使用者は、より小さく、より深いフィーチャ(features)の創成が可能となる。さらに、我々の製造方法は、90%を超える製品収量を可能とする(伝来のガラスの収量は50%前後である)。最後に、伝来のガラスセラミックにおいては、ガラスのおよそ30%のみがセラミック状態へ変換するのに対し、APEX(商標)ガラスセラミックを用いる場合、この変換率は70%前後である。
APEX(登録商標)ガラス組成物は、その性能の向上に関し、3つの主要な機構を与える:(1)より多量の銀により、粒界でより速くエッチングされる、より小さいセラミック結晶の形成がもたらされる、(2)シリカ含有量(HF酸によりエッチングされる主要成分)の低減により、未露光材料の不要なエッチングが低減される、並びに(3)アルカリ金属及び酸化ホウ素のより高い総重量パーセントにより、格段に均一なガラスが製造時に生じる。
ガラスのセラミック化は、およそ20J/cmの310nmの光でガラス基板全体を露光することによって成し遂げられる。セラミック内部にガラス区域を創成しようとする場合、使用者は、ガラスをガラスのまま残すべき箇所を除き、全ての材料を露光する。一実施形態において、本発明は、異なる直径のさまざまな同心円を含有する石英/クロムマスクを提供する。
本発明は、電子、マイクロ波、及びラジオ周波数用途のガラスセラミック構造の中又は上の誘導デバイスを作製する方法を含む。ガラスセラミック基板は、60~76重量%のシリカ、KOとNaOの組合せが6重量%~16重量%となる少なくとも3重量%のKO、0.003~1重量%の、AgO、及びAuOからなる群から選択される少なくとも1つの酸化物、0.003~2重量%のCuO、BO3とAlの組合せが13重量%を超えない0.75重量%~7重量%のB及び6~7重量%のAl、8~15重量%のLiO、並びに0.001~0.1重量%のCeOを含むがそれらに限定されない、広範な組成変動を有する感光性ガラス基板であってもよい。この組成物、及び他の多様な組成物は、一般的にAPEX(登録商標)ガラスと称される。
露光部分は、ガラス基板をガラス転換温度付近の温度まで加熱することによって結晶性材料へ転換され得る。ガラス基板をフッ化水素酸といったエッチング液でエッチングする場合、ガラスを広域スペクトル中間紫外線(broad spectrum mid-ultraviolet flood lamp)(約308~312nm)フラッドランプで露光する際の、未露光部分に対する露光部分の異方性エッチング比は、少なくとも30:1であり、少なくとも30:1のアスペクト比を有する成形ガラス構造(shaped glass structure)が生じ、誘導構造が創成される。露光用のマスクは、誘導構造/デバイスを創成するために、連続するグレースケール(grey scale)の露光をもたらして湾曲構造を形成する、ハーフトーンマスクであり得る。フラッド露光(flood exposure)と共にデジタルマスクを使用することもでき、デジタルマスクは、誘導構造/デバイスの創成をもたらすために使用され得る。次いで、露光されたガラスは、通常2段階のプロセスで焼成される。銀イオンを銀ナノ粒子へ合体させることを目的として、420℃~520℃の間の温度範囲で10分~2時間の間加熱し、520℃~620℃の間の温度範囲で10分~2時間の間加熱し、銀ナノ粒子周囲に酸化リチウムを形成させる。ガラスプレートは、次いでエッチングされる。ガラス基板は、通常5体積%~10体積%のHF溶液からなるエッチング液でエッチングされ、露光部分の未露光部分に対するエッチング比は、広域スペクトル中間紫外線フラッドライトで露光する場合、少なくとも30:1であり、レーザーで露光する場合、30:1を超え、異方性エッチング比が少なくとも30:1の成形ガラス構造が生じる。
本発明は、ガラスセラミック基板の複数のビア又はポスト中に創成される誘導構造を含み、そのようなプロセスは、二次元又は三次元キャパシタデバイスを1又は2以上少なくとも含有する感光性ガラス構造を使用する。容量性デバイスは、ビアが貫通孔又はブラインドビアである、1つのビア、又は一連のビア、原子層堆積(ALD)法を用いる底部電極、誘電体、及び上部電極の堆積によって形成される。ビアは、希釈HFといったエッチング液を用いて追加の低濃度リンスをさらに受けてもよい。希釈HFは、ビアのセラミック壁面に模様を形成するか、又はテクスチャを付与する。セラミック壁面へのテクスチャの付与は、デバイスの電気容量を直接増大させる構造の表面積を著しく増大させる。
容量性デバイスは、ガラスに良好に付着する導電層、誘電体層、上部導電層、及び最終バリア層からなる。APEX(登録商標)ガラスの次元構造(dimensional structure)は、2ミクロン未満のTiN層、又は他の電極材料層で被覆され、その後に2ミクロン以下のTa、Al、又はAlを含むがそれに限定されない他の気相誘電体の誘電体層が続く。TMA及びOを用いる380℃のAl-サイクル時間:3.5s。次いでAl層は、酸素環境中で5分間300℃に加熱され、誘電体層は完全に酸化される。次いで、2ミクロン未満のTiN上部電極をALDによって堆積させる。誘電体中の空間電荷の形成を防ぐため、上部及び底部電極は、同一の材料から構築される必要がある。仕事関数差の大きさに依存し、空間電荷は、誘電体層を破壊することなく外部電圧によって除去可能なものより大きくなり得、キャパシタが有用でなくなる。仕事関数の問題の解決は、電極と誘電体の間に抵抗接点を設置することによって達成され得る。電気容量を増大させるために、追加の金属層及び絶縁体層を追加してもよい。
好ましい実施形態。好ましい構造は、ビア又はポストを希釈HF洗浄し、底部電極には高度にテクスチャが付与された表面積で被覆されたTiWメタライゼーション(metallization)を、誘電体には五酸化タンタルを、及び上部電極にはTiWメタライゼーションを創成するキャパシタ構造を創成することである。TiW底部電極は、2段階のADLプロセスを必要とする。第1段階は、300℃~400℃の基板温度において、約1.8sのサイクル時間で1.67Å/サイクルのTiCl速度を使用してTiを堆積させることである。第2段階は、パージ前に基板の表面上に混在するSi-H及びW-Fを使用してタングステン(W)を堆積させることである。Wの直線的な成長速度は、ALDサイクルの間、各反応物の割合が均等であることを必要とする。タングステンについての典型的なALD成長は、3.5sのサイクル時間、177℃~325℃の間の基板温度で、6Åサイクルである。両金属の堆積の達成に必要な基板温度でALDサイクルをWからTiへ入れ替えることで、TiW層の形成がもたらされる。プロセスは、TiW構造が20Åに達するまで繰り返される。次に、水素原子の存在下でTaCl前駆体を使用し、ALDによってTaが形成される。タンタル膜は、1.8sのALDサイクル時間、25~400℃の基板温度で堆積される。各ALDサイクルの後、基板が400℃である間に、タンタル膜は、30秒間Oにさらされる。これにより、金属タンタル膜は、Taへ変換される。デバイスは、底部電極と同様にしてTiWからなる上部電極を付与することによって完成する。ALD法のまさにこの性質により、高密度コンフォーマル被膜(conformal coatings)が可能となる。
キャパシタ構造の仕上げは、キャパシタの両接点への電気的接続が可能となるよう、底部電極に至るまでのエッチングを必要とする。これは、構造を標準的なポジ型フォトレジストで被覆することによって成し遂げられる。キャパシタ構造の長方形上部部品を用いてフォトレジストを露光する。次いで、キャパシタ上のフォトレジストを現像、及び除去し、上部TiWフォトレジスト電極を露出させる。TiW電極は、Tegal 804プラズマエッチングシステムを使用し、SF/Heプラズマでエッチングされる。このエッチング速度は、200Wの進行波電力で200Å/分である。このエッチングは、Ta層に優先的に行われ、Ta層を有効なエッチング停止層とする。Ta、プラズマエッチングは、300Wの進行波電力、1200Å/分のエッチング速度でAr/Cl(10%/90%)混合物を使用する。Ar/Clプラズマは、TiW底部電極を攻撃/エッチングしない。これにより、キャパシタ用の上部及び底部電極は、多くの標準的な厚膜及び薄膜プロセスによって、回路の他の部分に接続可能となる。
第2の実施形態は、容量性構造用のベース基板として、片面又は両面上にテクスチャが付与された高表面積を創成してガラスセラミックを部分的又は完全に除去する、希釈HF溶液でエッチングされたセラミック相を有し得る、貫通孔ビアを使用する。第3の実施形態は、高表面積容量性構造を創成する、希釈HFでエッチングされたセラミック相を有し得る、APEX(登録商標)ガラス基板の片面又は両面上のポストを使用する。
本発明及びその利点を詳細に説明したが、添付の特許請求の範囲により定義される本発明の趣旨及び範囲から逸脱することなく、本明細書においてさまざまな変更、置換、及び代替が可能であると理解されるべきである。さらに、本出願の範囲は、本明細書に説明されるプロセス、機械、製造された物、組成物、手段、方法、及びステップの特定の実施形態に限定されることを意図するものではない。本発明の開示から当業者が容易に理解するように、現在存在するか又は後に開発される、本明細書に説明される、対応する実施形態と実質的に同じ機能を果たすか又は実質的に同じ結果を達成するプロセス、機械、製造された物、組成物、手段、方法、又はステップが、本発明に従って利用されてもよい。したがって、添付の特許請求の範囲は、そのようなプロセス、機械、製造された物、組成物、手段、方法、又はステップをそれらの範囲内に含むよう意図される。

Claims (6)

  1. 感光性ガラスセラミック基板内にエッチングされた三次元構造内に創成されるガラスセラミック容量性デバイスであって、前記ガラスセラミック容量性デバイス中の電気容量を増大させる増大した表面積を有する、形成された1又は2以上のビア又はポストチャネルを備え、前記エッチングされた三次元構造の異方性エッチング比が、少なくとも30:1である、前記ガラスセラミック容量性デバイス。
  2. 感光性ガラスセラミック基板内にエッチングされた三次元構造内に創成されるガラスセラミック容量性デバイスを創成する方法であって、前記ガラスセラミック容量性デバイスが、前記ガラスセラミック容量性デバイス中の電気容量を増大させる増大した表面積を有する、形成された1又は2以上のビア又はポストチャネルを備え、前記エッチングされた三次元構造の異方性エッチング比が、少なくとも30:1であり、
    シリカ、酸化リチウム、酸化アルミニウム、及び酸化セリウムを少なくとも含む感光性ガラスセラミック基板を調製するステップ、
    1又は2以上の電気伝導路を前記感光性ガラスセラミック基板上に形成する1又は2以上の構造を含むデザインレイアウトをマスキングするステップ、
    前記感光性ガラスセラミック基板の少なくとも一部分を活性エネルギー源に露光するステップ、
    前記感光性ガラスセラミック基板を、そのガラス転移温度を上回る、少なくとも10分間の加熱相にさらすステップ、
    前記感光性ガラスセラミック基板を冷却し、露光されたガラスの少なくとも一部を結晶性材料へ転換して結晶性ガラス基板を形成するステップ、
    前記結晶性ガラス基板をエッチング溶液でエッチングし、前記1又は2以上のエッチングされた三次元構造を前記結晶性ガラス基板中に形成するステップであって、前記1又は2以上のエッチングされた三次元構造の一部分が、異方性エッチング比が少なくとも30:1であるビア又はポストチャネルであるステップ、
    前記エッチングされた三次元構造の前記ビア又はポストチャネルに隣接する前記結晶性ガラス基板を、セラミック相へ変換するステップ、
    前記ビア又はポストチャネルに隣接するセラミック相の表面を希釈ガラスエッチング液でリンスし、前記セラミック相の前記表面積を増大させて前記ガラスセラミック容量性デバイスの電気容量を増大させるステップ、
    原子層堆積(ALD)を用いて、前記ビア又はポストチャネルを底部電極用金属で被覆するステップ、
    原子層堆積(ALD)を用いて、前記構造の全部又は一部を誘電体媒体で被覆するステップ、
    原子層堆積(ALD)を用いて、前記ビア又はポストチャネルを上部電極用金属で被覆するステップ、並びに
    前記上部電極及び前記誘電体媒体の少なくとも一部分を除去し、前記容量性デバイスと回路との間の電気的接続を成す電気接点を提供するステップ、から構成され、
    前記底部電極用金属、前記上部電極用金属、又はその両方が、前記容量性デバイスの表面又は前記容量性デバイス中に埋設された電気接点を介して回路に接続される、前記方法。
  3. 感光性ガラスセラミック基板内にエッチングされた三次元構造内に創成されるガラスセラミック容量性デバイスを作製する方法であって、前記ガラスセラミック容量性デバイスが、前記ガラスセラミック容量性デバイス中の電気容量を増大させる増大した表面積を有する、形成された1又は2以上のビア又はポストチャネルを備え、前記エッチングされた三次元構造の異方性エッチング比が、少なくとも30:1であり、
    シリカ、酸化リチウム、酸化アルミニウム、及び酸化セリウムを少なくとも含む感光性ガラスセラミック基板を用意するステップ、
    前記感光性ガラスセラミック基板上のデザインレイアウトをマスキングするステップであって、前記デザインレイアウトが、1又は2以上の電気伝導路を形成する1又は2以上の構造を含む、ステップ、
    前記感光性ガラスセラミック基板の少なくとも一部分を活性エネルギー源に露光するステップ、
    前記感光性ガラスセラミック基板を、そのガラス転移温度を上回る、少なくとも10分間の加熱相まで加熱するステップ、
    前記感光性ガラスセラミック基板を冷却し、露光されたガラスの少なくとも一部を結晶性材料へ転換して結晶性ガラス基板を形成するステップ、
    前記結晶性ガラス基板をエッチング溶液でエッチングし、1又は2以上のエッチングされた三次元構造を前記結晶性ガラス基板中に形成するステップであって、前記1又は2以上のエッチングされた三次元構造の一部分が、異方性エッチング比が少なくとも30:1であるビア又はポストチャネルであるステップ、
    前記エッチングされた三次元構造の前記ビア又はポストチャネルに隣接する前記結晶性ガラス基板の一部分をセラミック相へ変換するステップ、
    前記ビア又はポストチャネルに隣接するセラミック相の表面を希釈ガラスエッチング液でリンスし、前記セラミック相の前記表面積を増大させて前記ガラスセラミック容量性デバイスの電気容量を増大させるステップ、
    前記ビア又はポストチャネルを第1の金属で被覆し、底部電極を形成するステップ、
    前記構造の少なくとも一部分を誘電体媒体で被覆するステップ、
    前記ビア又はポストチャネルを第2の金属で被覆し、上部電極を形成するステップ、
    前記上部電極及び前記誘電体媒体の少なくとも一部分を除去し、前記ガラスセラミック容量性デバイスと回路との間の電気的接続を成す電気接点を提供するステップ、並びに
    前記第1の金属、前記第2の金属、又はその両方を、前記ガラスセラミック容量性デバイスの表面又は前記ガラスセラミック容量性デバイス中に埋設された電気接点を介して回路に接続するステップ
    を含む、前記方法。
  4. 第1の金属、第2の金属、又はその両方の被覆が、原子層堆積(ALD)を用いる、請求項に記載の方法。
  5. 第1の金属、第2の金属、又はその両方が、Au、Ag、Pt、Cu、W、TiW、TiN、TaN、WN、Al、又はそれらの混合物及び合金を含む、請求項に記載の方法。
  6. 誘電体媒体が、Ta、Al、又は気相誘電体を含む、請求項に記載の方法。
JP2018544793A 2016-02-25 2017-02-24 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ Active JP7071609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022003207A JP7237390B2 (ja) 2016-02-25 2022-01-12 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662299641P 2016-02-25 2016-02-25
US62/299,641 2016-02-25
PCT/US2017/019483 WO2017147511A1 (en) 2016-02-25 2017-02-24 3d capacitor and capacitor array fabricating photoactive substrates

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2020159288A Division JP7129104B2 (ja) 2016-02-25 2020-09-24 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ
JP2022003207A Division JP7237390B2 (ja) 2016-02-25 2022-01-12 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ

Publications (2)

Publication Number Publication Date
JP2019512169A JP2019512169A (ja) 2019-05-09
JP7071609B2 true JP7071609B2 (ja) 2022-05-19

Family

ID=59686662

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018544793A Active JP7071609B2 (ja) 2016-02-25 2017-02-24 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ
JP2020159288A Active JP7129104B2 (ja) 2016-02-25 2020-09-24 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ
JP2022003207A Active JP7237390B2 (ja) 2016-02-25 2022-01-12 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2020159288A Active JP7129104B2 (ja) 2016-02-25 2020-09-24 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ
JP2022003207A Active JP7237390B2 (ja) 2016-02-25 2022-01-12 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ

Country Status (7)

Country Link
US (1) US11264167B2 (ja)
EP (1) EP3420571A4 (ja)
JP (3) JP7071609B2 (ja)
KR (3) KR20200010598A (ja)
AU (1) AU2017223993B2 (ja)
CA (1) CA3015525C (ja)
WO (1) WO2017147511A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3920200A1 (en) 2014-05-05 2021-12-08 3D Glass Solutions, Inc. 2d and 3d inductors antenna and transformers fabricating photoactive substrates
US10070533B2 (en) 2015-09-30 2018-09-04 3D Glass Solutions, Inc. Photo-definable glass with integrated electronics and ground plane
WO2017147511A1 (en) 2016-02-25 2017-08-31 3D Glass Solutions, Inc. 3d capacitor and capacitor array fabricating photoactive substrates
WO2017177171A1 (en) 2016-04-08 2017-10-12 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
JP7150342B2 (ja) 2017-04-28 2022-10-11 スリーディー グラス ソリューションズ,インク Rfサーキュレータ
EP3649733A1 (en) 2017-07-07 2020-05-13 3D Glass Solutions, Inc. 2d and 3d rf lumped element devices for rf system in a package photoactive glass substrates
WO2019118761A1 (en) 2017-12-15 2019-06-20 3D Glass Solutions, Inc. Coupled transmission line resonate rf filter
WO2019136024A1 (en) 2018-01-04 2019-07-11 3D Glass Solutions, Inc. Impedance matching conductive structure for high efficiency rf circuits
CN108390065A (zh) * 2018-01-25 2018-08-10 湖北师范大学 一种在锂离子电极材料表面包覆氧化铈的方法
US11076489B2 (en) 2018-04-10 2021-07-27 3D Glass Solutions, Inc. RF integrated power condition capacitor
KR102475010B1 (ko) 2018-05-29 2022-12-07 3디 글래스 솔루션즈 인코포레이티드 저 삽입 손실 rf 전송 라인
EP3637448A4 (en) * 2018-08-21 2020-10-07 Shenzhen Weitongbo Technology Co., Ltd. CAPACITOR AND MANUFACTURING METHOD FOR IT
AU2019344542B2 (en) 2018-09-17 2022-02-24 3D Glass Solutions, Inc. High efficiency compact slotted antenna with a ground plane
WO2020139951A1 (en) 2018-12-28 2020-07-02 3D Glass Solutions, Inc. Heterogenous integration for rf, microwave and mm wave systems in photoactive glass substrates
WO2020139955A1 (en) 2018-12-28 2020-07-02 3D Glass Solutions, Inc. Annular capacitor rf, microwave and mm wave systems
EP3948954B1 (en) * 2019-04-18 2023-06-14 3D Glass Solutions, Inc. High efficiency die dicing and release
KR20220142535A (ko) * 2020-03-11 2022-10-21 3디 글래스 솔루션즈 인코포레이티드 초고표면적 집적 커패시터
EP4121988A4 (en) 2020-04-17 2023-08-30 3D Glass Solutions, Inc. BROADBAND INDUCTOR
EP4352766A1 (en) * 2021-06-04 2024-04-17 3D Glass Solutions, Inc. Ceramic phase capacitors for rf system in photoactive glass substrates
WO2022265783A1 (en) * 2021-06-15 2022-12-22 3D Glass Solutions, Inc. Radio frequency (rf) integrated power-conditioning capacitor
WO2023034600A1 (en) * 2021-09-03 2023-03-09 3D Glass Solutions, Inc. Power amplifier system in a package
WO2023146729A1 (en) * 2022-01-26 2023-08-03 3D Glass Solutions, Inc. 3d capacitor and capacitor array fabricating photoactive substrates
US20230275004A1 (en) * 2022-02-28 2023-08-31 Qualcomm Incorporated Capacitor embedded 3d resonator for broadband filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165025A (ja) 2004-12-02 2006-06-22 Nec Electronics Corp 半導体装置およびそれを用いた半導体モジュール、ならびに半導体装置の製造方法
JP2014505354A (ja) 2010-12-09 2014-02-27 テッセラ,インコーポレイテッド 高密度3次元集積コンデンサ

Family Cites Families (231)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2515941A (en) 1946-09-09 1950-07-18 Corning Glass Works Photosensitive opal glass
NL71886C (ja) 1946-09-09
BE513836A (ja) 1951-08-30
US2628160A (en) 1951-08-30 1953-02-10 Corning Glass Works Sculpturing glass
US2971853A (en) 1953-03-05 1961-02-14 Corning Glass Works Ceramic body and method of making it
JPS5321827B2 (ja) 1973-02-12 1978-07-05
US3993401A (en) 1975-02-10 1976-11-23 Minnesota Mining And Manufacturing Company Retroreflective material including geometric fresnel zone plates
US3985531A (en) 1975-03-19 1976-10-12 Corning Glass Works Spontaneously-formed fluormica glass-ceramics
US4029605A (en) 1975-12-08 1977-06-14 Hercules Incorporated Metallizing compositions
US4131516A (en) 1977-07-21 1978-12-26 International Business Machines Corporation Method of making metal filled via holes in ceramic circuit boards
US4413061A (en) 1978-02-06 1983-11-01 International Business Machines Corporation Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper
JPS56155587A (en) 1980-05-02 1981-12-01 Fujitsu Ltd Printed circuit board
JPS57200042A (en) 1981-06-02 1982-12-08 Hoya Corp Exposure method for chemically machinable photosensitive glass
US4537612A (en) 1982-04-01 1985-08-27 Corning Glass Works Colored photochromic glasses and method
US4647940A (en) 1982-09-27 1987-03-03 Rogers Corporation Parallel plate waveguide antenna
US5078771A (en) 1989-02-07 1992-01-07 Canyon Materials, Inc. Method of making high energy beam sensitive glasses
US4514053A (en) 1983-08-04 1985-04-30 Corning Glass Works Integral photosensitive optical device and method
JPS61149905A (ja) 1984-12-25 1986-07-08 Fujitsu Ltd 光合分波器
JPS61231529A (ja) 1985-04-08 1986-10-15 Agency Of Ind Science & Technol 光制御型光スイツチ装置
JPS62202840A (ja) 1986-03-03 1987-09-07 Toshiba Corp 感光性ガラスの加工方法
US4692015A (en) 1986-03-14 1987-09-08 Xerox Corporation Short focal lens array with multi-magnification properties
JPS63128699A (ja) * 1986-11-19 1988-06-01 株式会社日立製作所 感光性ガラス−セラミツク多層配線基板
US4788165A (en) 1987-10-07 1988-11-29 Corning Glass Works Copper-exuding, boroaluminosilicate glasses
CA1320507C (en) 1987-10-07 1993-07-20 Elizabeth A. Boylan Thermal writing on glass or glass-ceramic substrates and copper-exuding glasses
US4942076A (en) 1988-11-03 1990-07-17 Micro Substrates, Inc. Ceramic substrate with metal filled via holes for hybrid microcircuits and method of making the same
JP2737292B2 (ja) 1989-09-01 1998-04-08 富士通株式会社 銅ペースト及びそれを用いたメタライズ方法
US5147740A (en) 1990-08-09 1992-09-15 Rockwell International Corporation Structure and process for fabricating conductive patterns having sub-half micron dimensions
US5215610A (en) 1991-04-04 1993-06-01 International Business Machines Corporation Method for fabricating superconductor packages
BE1004844A7 (fr) 1991-04-12 1993-02-09 Laude Lucien Diego Methodes de metallisation de surfaces a l'aide de poudres metalliques.
US5212120A (en) 1991-06-10 1993-05-18 Corning Incorporated Photosensitive glass
US5395498A (en) 1991-11-06 1995-03-07 Gombinsky; Moshe Method for separating biological macromolecules and means therfor
JPH05139787A (ja) 1991-11-19 1993-06-08 Seikosha Co Ltd 感光性ガラスの加工方法
US5374291A (en) 1991-12-10 1994-12-20 Director-General Of Agency Of Industrial Science And Technology Method of processing photosensitive glass
US5371466A (en) 1992-07-29 1994-12-06 The Regents Of The University Of California MRI RF ground breaker assembly
US6258497B1 (en) 1992-07-29 2001-07-10 International Business Machines Corporation Precise endpoint detection for etching processes
US6017681A (en) 1992-11-09 2000-01-25 Fujitsu Limited Method of coupling optical parts and method of forming a mirror
GB2290171B (en) 1994-06-03 1998-01-21 Plessey Semiconductors Ltd Inductor chip device
JPH0826767A (ja) 1994-07-13 1996-01-30 Nippon Glass Kk ソーダ石灰シリカ系感光性ガラス及びその製造方法
JPH08179155A (ja) 1994-12-26 1996-07-12 Ricoh Co Ltd レンズと光ファイバとの結合方法及びレンズ基板の作成方法
JP3438383B2 (ja) 1995-03-03 2003-08-18 ソニー株式会社 研磨方法およびこれに用いる研磨装置
WO1996028538A1 (en) 1995-03-10 1996-09-19 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
US5919607A (en) 1995-10-26 1999-07-06 Brown University Research Foundation Photo-encoded selective etching for glass based microtechnology applications
US5733370A (en) 1996-01-16 1998-03-31 Seagate Technology, Inc. Method of manufacturing a bicrystal cluster magnetic recording medium
JPH107435A (ja) 1996-06-26 1998-01-13 Ngk Spark Plug Co Ltd ガラスセラミック配線基板およびその製造方法
WO1998013850A1 (fr) 1996-09-26 1998-04-02 Asahi Glass Company Ltd. Plaque de protection d'ecran a plasma et son procede de fabrication
US6562523B1 (en) 1996-10-31 2003-05-13 Canyon Materials, Inc. Direct write all-glass photomask blanks
JPH10199728A (ja) 1997-01-07 1998-07-31 Murata Mfg Co Ltd 薄膜型コイル部品及びその製造方法
US5850623A (en) 1997-03-14 1998-12-15 Eastman Chemical Company Method for standardizing raman spectrometers to obtain stable and transferable calibrations
WO1998049698A2 (en) * 1997-04-25 1998-11-05 Koninklijke Philips Electronics N.V. Method of manufacturing an enveloped multilayer capacitor and an envelope multilayer capacitor
US5998224A (en) 1997-05-16 1999-12-07 Abbott Laboratories Magnetically assisted binding assays utilizing a magnetically responsive reagent
US6287965B1 (en) * 1997-07-28 2001-09-11 Samsung Electronics Co, Ltd. Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor
JPH11176815A (ja) 1997-12-15 1999-07-02 Ricoh Co Ltd ドライエッチングの終点判定方法およびドライエッチング装置
US6598291B2 (en) 1998-03-20 2003-07-29 Viasystems, Inc. Via connector and method of making same
US6115521A (en) 1998-05-07 2000-09-05 Trw Inc. Fiber/waveguide-mirror-lens alignment device
US6686824B1 (en) 1998-05-29 2004-02-03 Nissha Printing Co., Ltd. Toroidal printed coil
US6171886B1 (en) 1998-06-30 2001-01-09 Eastman Kodak Company Method of making integrated hybrid silicon-based micro-actuator devices
JP2000199827A (ja) 1998-10-27 2000-07-18 Sony Corp 光導波装置およびその製造方法
US6136210A (en) 1998-11-02 2000-10-24 Xerox Corporation Photoetching of acoustic lenses for acoustic ink printing
JP2000228615A (ja) 1999-02-05 2000-08-15 Tokin Corp Lcバンドパスフィルタ
US6942978B1 (en) 1999-03-03 2005-09-13 The Board Of Trustees Of The University Of Arkansas Transmembrane serine protease overexpressed in ovarian carcinoma and uses thereof
US6511793B1 (en) 1999-03-24 2003-01-28 Lg Electronics Inc. Method of manufacturing microstructure using photosensitive glass substrate
US6485690B1 (en) 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
JP3756041B2 (ja) 1999-05-27 2006-03-15 Hoya株式会社 多層プリント配線板の製造方法
FR2795745B1 (fr) 1999-06-30 2001-08-03 Saint Gobain Vitrage Procede de depot d'une couche a base de tungstene et/ou de molybdene sur un substrat verrier, ceramique ou vitroceramique, et substrat ainsi revetu
JP2001033664A (ja) 1999-07-21 2001-02-09 Hitachi Cable Ltd 光ファイバブロック
US6278352B1 (en) 1999-07-26 2001-08-21 Taiwan Semiconductor Manufacturing Company High efficiency thin film inductor
US7179638B2 (en) 1999-07-30 2007-02-20 Large Scale Biology Corporation Microarrays and their manufacture by slicing
US6538775B1 (en) 1999-09-16 2003-03-25 Reveo, Inc. Holographically-formed polymer dispersed liquid crystals with multiple gratings
US6403286B1 (en) 1999-11-04 2002-06-11 Corning Incorporated High aspect ratio patterning of glass film
JP2001206735A (ja) 2000-01-25 2001-07-31 Central Glass Co Ltd めっき方法
US6579817B2 (en) 2000-04-26 2003-06-17 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same
US6329702B1 (en) 2000-07-06 2001-12-11 Tyco Electronics Corporation High frequency carrier
US6495411B1 (en) * 2000-07-13 2002-12-17 Promos Technology Inc. Technique to improve deep trench capacitance by increasing surface thereof
US6510264B2 (en) 2000-07-31 2003-01-21 Corning Incorporated Bulk internal bragg gratings and optical devices
US7829348B2 (en) 2000-09-22 2010-11-09 Iowa State University Research Foundation, Inc. Raman-active reagents and the use thereof
CA2425476C (en) 2000-10-10 2011-02-01 Biotrove, Inc. Apparatus for assay, synthesis and storage, and methods of manufacture, use, and manipulation thereof
US7033821B2 (en) 2000-11-08 2006-04-25 Surface Logix, Inc. Device for monitoring cell motility in real-time
KR100392956B1 (ko) 2000-12-30 2003-07-28 엘지전자 주식회사 플라즈마 디스플레이 패널의 격벽 제조방법
US6932933B2 (en) 2001-03-30 2005-08-23 The Aerospace Corporation Ultraviolet method of embedding structures in photocerams
US6824974B2 (en) 2001-06-11 2004-11-30 Genorx, Inc. Electronic detection of biological molecules using thin layers
WO2003001889A2 (en) 2001-06-29 2003-01-09 Meso Scale Technologies, Llc. Assay plates reader systems and methods for luminescence test measurements
US20040246692A1 (en) 2001-07-12 2004-12-09 Toshiya Satoh Electronic circuit component
US6843902B1 (en) 2001-07-20 2005-01-18 The Regents Of The University Of California Methods for fabricating metal nanowires
US20030025227A1 (en) 2001-08-02 2003-02-06 Zograph, Llc Reproduction of relief patterns
EP1469903A2 (en) 2001-09-28 2004-10-27 BioValve Technologies, Inc. Microneedle with membrane
KR100814806B1 (ko) 2001-10-15 2008-03-19 삼성에스디아이 주식회사 스페이서 제조 방법 및 이 스페이서를 갖는 평판 표시 소자
US20040171076A1 (en) 2001-12-20 2004-09-02 Dejneka Matthew J. Detectable micro to nano sized structures, methods of manufacture and use
US7064103B2 (en) 2002-01-04 2006-06-20 Becton, Dickinson And Company Binding protein as biosensors
US6867089B2 (en) * 2002-01-28 2005-03-15 Nanya Technology Corporation Method of forming a bottle-shaped trench in a semiconductor substrate
US7470518B2 (en) 2002-02-12 2008-12-30 Cellectricon Ab Systems and method for rapidly changing the solution environment around sensors
US20030156819A1 (en) 2002-02-15 2003-08-21 Mark Pruss Optical waveguide
JP2005520202A (ja) 2002-03-14 2005-07-07 コーニング インコーポレイテッド ファイバーアレイおよびファイバーアレイ作製方法
JP2005524084A (ja) 2002-04-30 2005-08-11 ユニバーシティ オブ メリーランド,ボルチモア 蛍光検出法
JP2003329877A (ja) 2002-05-14 2003-11-19 Nippon Sheet Glass Co Ltd 光モジュール
US6580054B1 (en) 2002-06-10 2003-06-17 New Wave Research Scribing sapphire substrates with a solid state UV laser
JP2004047891A (ja) * 2002-07-15 2004-02-12 Murata Mfg Co Ltd 電子部品の製造方法
EP1546696B1 (en) 2002-09-11 2012-02-29 Synamem Corporation Membrane-based assays
US6875544B1 (en) 2002-10-03 2005-04-05 Sandia Corporation Method for the fabrication of three-dimensional microstructures by deep X-ray lithography
US20040184705A1 (en) 2003-01-08 2004-09-23 Mikihiro Shimada Optical waveguide component and method of manufacturing the same
US6783920B2 (en) 2003-01-15 2004-08-31 The Aerospace Corporation Photosensitive glass variable laser exposure patterning method
DE10304606B3 (de) 2003-02-05 2004-06-03 Magnet-Physik Dr. Steingroever Gmbh Transformator zur Erzeugung hoher elektrischer Ströme
US7601491B2 (en) 2003-02-06 2009-10-13 Becton, Dickinson And Company Pretreatment method for extraction of nucleic acid from biological samples and kits therefor
US7142086B2 (en) 2003-02-11 2006-11-28 Oplink Communications, Inc. Ultra broadband inductor assembly
US7150569B2 (en) 2003-02-24 2006-12-19 Nor Spark Plug Co., Ltd. Optical device mounted substrate assembly
TWI238513B (en) 2003-03-04 2005-08-21 Rohm & Haas Elect Mat Coaxial waveguide microstructures and methods of formation thereof
US20040198582A1 (en) 2003-04-01 2004-10-07 Borrelli Nicholas F. Optical elements and methods of making optical elements
US6909137B2 (en) 2003-04-07 2005-06-21 International Business Machines Corporation Method of creating deep trench capacitor using a P+ metal electrode
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US7335972B2 (en) 2003-11-13 2008-02-26 Sandia Corporation Heterogeneously integrated microsystem-on-a-chip
US20050170670A1 (en) 2003-11-17 2005-08-04 King William P. Patterning of sacrificial materials
US7316063B2 (en) 2004-01-12 2008-01-08 Micron Technology, Inc. Methods of fabricating substrates including at least one conductive via
JP4153442B2 (ja) 2004-02-02 2008-09-24 シャープ株式会社 光モジュールの製造方法
EP1738378A4 (en) 2004-03-18 2010-05-05 Nanosys Inc NANOFIBRE SURFACE BASED CAPACITORS
JP4394999B2 (ja) 2004-04-12 2010-01-06 大日本印刷株式会社 受動素子内蔵配線基板およびその製造方法
CN1262500C (zh) 2004-04-16 2006-07-05 武汉理工大学 制备纳米孔微晶玻璃/玻璃载体材料的方法
US7176152B2 (en) 2004-06-09 2007-02-13 Ferro Corporation Lead-free and cadmium-free conductive copper thick film pastes
DE102004059252A1 (de) 2004-06-09 2006-01-19 Schott Ag Aufbau diffraktiver Optiken durch strukturierte Glasbeschichtung
JP4622359B2 (ja) 2004-07-22 2011-02-02 コニカミノルタホールディングス株式会社 インクジェットヘッドの製造方法
US7132054B1 (en) 2004-09-08 2006-11-07 Sandia Corporation Method to fabricate hollow microneedle arrays
US20060147344A1 (en) 2004-09-30 2006-07-06 The University Of Cincinnati Fully packed capillary electrophoretic separation microchips with self-assembled silica colloidal particles in microchannels and their preparation methods
JP4843611B2 (ja) 2004-10-01 2011-12-21 デ,ロシェモント,エル.,ピエール セラミックアンテナモジュール及びその製造方法
JP2006179564A (ja) 2004-12-21 2006-07-06 Nec Corp 半導体接続基板、半導体装置、半導体デバイス及び半導体基板並びに半導体接続基板の製造方法
DE102005003594B4 (de) 2004-12-31 2016-02-18 Schott Ag Verfahren zur Herstellung eines optischen Bauteils, verfahrensgemäß hergestelltes Bauteil sowie derartige Bauteile umfassende Einrichtung
US7714688B2 (en) 2005-01-20 2010-05-11 Avx Corporation High Q planar inductors and IPD applications
KR100682919B1 (ko) 2005-01-20 2007-02-15 삼성전자주식회사 미세 금속 박막 패턴 형성 방법, 이를 채용한 생체물질고정용 기판 및 바이오칩
JP2006236516A (ja) 2005-02-28 2006-09-07 Hitachi Ltd 光へッド、光情報再生装置及びその製造方法
CN101160733B (zh) 2005-04-18 2011-10-05 株式会社村田制作所 高频模块
US7355704B2 (en) 2005-06-13 2008-04-08 Solaris Nanosciences, Inc. Chemical and biological sensing using metallic particles in amplifying and absorbing media
JP2006352750A (ja) 2005-06-20 2006-12-28 Denso Corp アンテナコイル、それを用いた共振アンテナ及びカード型無線機
DE102005039323B4 (de) 2005-08-19 2009-09-03 Infineon Technologies Ag Leitbahnanordnung sowie zugehöriges Herstellungsverfahren
US7410763B2 (en) 2005-09-01 2008-08-12 Intel Corporation Multiplex data collection and analysis in bioanalyte detection
TW200721064A (en) 2005-11-29 2007-06-01 Novatek Microelectronics Corp Timing controller chip
US8003408B2 (en) 2005-12-29 2011-08-23 Intel Corporation Modification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS)
GB2434913A (en) 2006-02-02 2007-08-08 Xsil Technology Ltd Support for wafer singulation
US7812416B2 (en) 2006-05-22 2010-10-12 Cardiomems, Inc. Methods and apparatus having an integrated circuit attached to fused silica
JP2007318002A (ja) 2006-05-29 2007-12-06 Matsushita Electric Ind Co Ltd 固体撮像装置及びその製造方法
US8192795B2 (en) 2006-06-28 2012-06-05 Northwestern University Etching and hole arrays
US7990679B2 (en) 2006-07-14 2011-08-02 Dais Analytic Corporation Nanoparticle ultracapacitor
US8061017B2 (en) 2006-08-28 2011-11-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Methods of making coil transducers
US7847669B2 (en) 2006-12-06 2010-12-07 Georgia Tech Research Corporation Micro-electromechanical switched tunable inductor
US7556440B2 (en) 2006-12-22 2009-07-07 Lightwire Inc. Dual-lensed unitary optical receiver assembly
KR100849791B1 (ko) 2007-03-12 2008-07-31 삼성전기주식회사 캐패시터 내장형 인쇄회로기판
JP2008225339A (ja) 2007-03-15 2008-09-25 Hitachi Cable Ltd 光学系接続構造、光学部材及び光伝送モジュール
WO2008119080A1 (en) 2007-03-28 2008-10-02 Life Bioscience Inc. Compositions and methods to fabricate a photoactive substrate suitable for shaped glass structures
JP4458296B2 (ja) 2007-03-30 2010-04-28 Tdk株式会社 誘電体共振器、誘電体フィルタ及びその特性調整方法
US8143431B2 (en) 2007-06-05 2012-03-27 Air Products And Chemicals, Inc. Low temperature thermal conductive inks
WO2008154931A1 (en) 2007-06-18 2008-12-24 Danmarks Tekniske Universitet (Technical University Of Denmark) Adsorbent beads suitable for use in separation of biological molecules
TW200905703A (en) 2007-07-27 2009-02-01 Delta Electronics Inc Magnetic device and manufacturing method thereof
US8492315B2 (en) 2007-08-28 2013-07-23 Life Bioscience, Inc. Method of providing a pattern of biological-binding areas for biological testing
WO2009062011A1 (en) 2007-11-07 2009-05-14 Masachusetts Institute Of Technology Method of forming a locally periodic 3d structure with larger-scale variation in periodic properties and applications thereof
JP5133047B2 (ja) 2007-12-28 2013-01-30 太陽誘電株式会社 電子部品の製造方法
US7792823B2 (en) 2008-01-15 2010-09-07 International Business Machines Corporation Maintained symbol table only index
WO2009111583A1 (en) 2008-03-04 2009-09-11 The Regents Of The University Of California Microlens arrays for enhanced light concentration
WO2009113168A1 (ja) 2008-03-12 2009-09-17 大日本印刷株式会社 三次元加工用加飾シート
WO2009126649A2 (en) 2008-04-07 2009-10-15 Life Bioscience, Inc. Method of providing particles having biological-binding areas for biological applications
US7948342B2 (en) 2008-07-24 2011-05-24 Cutt-A-Watt Enterprises, Llc Electromotive rectification system
US20100022416A1 (en) 2008-07-25 2010-01-28 Life Bioscience, Inc. Assay plates, methods and systems having one or more etched features
KR101031134B1 (ko) 2008-09-11 2011-04-27 주식회사 동부하이텍 반도체 소자의 컨택 및 그 제조 방법
JP5263528B2 (ja) * 2009-02-03 2013-08-14 日本電気株式会社 キャパシタ構造体及びその製造方法
US20100237462A1 (en) 2009-03-18 2010-09-23 Benjamin Beker Package Level Tuning Techniques for Propagation Channels of High-Speed Signals
EP2417427A4 (en) 2009-04-03 2012-08-08 Res Triangle Inst OPTICAL MEMS SCANNING DEVICE WITH SUPPORT ARM AND SYSTEM AND METHOD THEREFOR
KR100941691B1 (ko) 2009-04-10 2010-02-12 (주)제이스 감광성 유리 기판, 이의 제조 방법 및 반도체 프로브 칩
US7989248B2 (en) 2009-07-02 2011-08-02 Advanced Microfab, LLC Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures
CN102762573B (zh) 2009-07-24 2015-09-16 阿马曾提斯公司 用于在神经退行性障碍中保护脑部健康的化合物、组合物和方法
TWI410380B (zh) 2009-11-11 2013-10-01 Ind Tech Res Inst 光敏玻璃微結構之製造方法及用以製造該微結構之系統
US8479375B2 (en) 2010-01-13 2013-07-09 The Aerospace Corporation Method of making an embedded electromagnetic device
DE112011100505T5 (de) 2010-02-10 2013-03-28 Life Bioscience, Inc. Verfahren zur herstellung eines fotoaktiven substrats, das zur mikrofertigung geeignet ist
US20110217657A1 (en) 2010-02-10 2011-09-08 Life Bioscience, Inc. Methods to fabricate a photoactive substrate suitable for microfabrication
CN102947931A (zh) 2010-03-03 2013-02-27 佐治亚技术研究公司 无机中介片上的贯通封装过孔(tpv)结构及其加工方法
US8411459B2 (en) 2010-06-10 2013-04-02 Taiwan Semiconductor Manufacturing Company, Ltd Interposer-on-glass package structures
US9564320B2 (en) 2010-06-18 2017-02-07 Soraa, Inc. Large area nitride crystal and method for making it
US8492818B2 (en) 2010-09-14 2013-07-23 International Business Machines Corporation High capacitance trench capacitor
JP5644340B2 (ja) * 2010-10-04 2014-12-24 株式会社デンソー キャパシタ構造体およびその製造方法
WO2012075267A1 (en) 2010-12-03 2012-06-07 E. I. Du Pont De Nemours And Company Inks and processes for preparing copper indium gallium sulfide/selenide coatings and films
US8835217B2 (en) 2010-12-22 2014-09-16 Intel Corporation Device packaging with substrates having embedded lines and metal defined pads
JP2012194455A (ja) 2011-03-17 2012-10-11 Enplas Corp レンズアレイ
KR101167691B1 (ko) * 2011-08-09 2012-07-20 주식회사 비티엔아이티솔루션스 감광성 유리 기판을 구비한 적층형 캐패시터, 이의 제조방법 및 이의 용도
US9287614B2 (en) 2011-08-31 2016-03-15 The Regents Of The University Of Michigan Micromachined millimeter-wave frequency scanning array
JP2013062473A (ja) 2011-09-15 2013-04-04 Toppan Printing Co Ltd 配線基板およびその製造方法
JP5541425B2 (ja) 2012-01-16 2014-07-09 株式会社村田製作所 Rf信号用遮断装置
US9293269B2 (en) 2012-02-08 2016-03-22 Dais Analytic Corporation Ultracapacitor tolerating electric field of sufficient strength
JP6011958B2 (ja) 2012-03-28 2016-10-25 株式会社エンプラス 光レセプタクルおよびこれを備えた光モジュール
JP2013217989A (ja) 2012-04-04 2013-10-24 Hitachi Chemical Co Ltd 光ファイバコネクタ
US8896521B2 (en) 2012-04-24 2014-11-25 Qualcomm Mems Technologies, Inc. Metal-insulator-metal capacitors on glass substrates
US20130308906A1 (en) 2012-05-21 2013-11-21 LaXense, Inc. System and method for dense coupling between optical devices and an optical fiber array
US8815638B2 (en) 2012-06-19 2014-08-26 E I Du Pont De Nemours And Company Method of manufacturing thick-film electrode
US20140035935A1 (en) 2012-08-03 2014-02-06 Qualcomm Mems Technologies, Inc. Passives via bar
US10115671B2 (en) 2012-08-03 2018-10-30 Snaptrack, Inc. Incorporation of passives and fine pitch through via for package on package
WO2014028022A1 (en) 2012-08-16 2014-02-20 Hewlett-Packard Development Company, L.P. Diagonal openings in photodefinable glass
US9755305B2 (en) 2012-08-16 2017-09-05 Ethertronics, Inc. Active antenna adapted for impedance matching and band switching using a shared component
US8872349B2 (en) 2012-09-11 2014-10-28 Intel Corporation Bridge interconnect with air gap in package assembly
WO2014043267A1 (en) 2012-09-12 2014-03-20 Life Bioscience, Inc. Methods of fabricating photoactive substrates suitable for electromagnetic transmission and filtering applications
US20140104284A1 (en) 2012-10-16 2014-04-17 Qualcomm Mems Technologies, Inc. Through substrate via inductors
EP3603956A1 (en) 2012-10-19 2020-02-05 Rutgers, The State University of New Jersey Graphene-reinforced polymer matrix composite by an in situ exfoliation method
US20140144681A1 (en) 2012-11-27 2014-05-29 Qualcomm Mems Technologies, Inc. Adhesive metal nitride on glass and related methods
US9035457B2 (en) 2012-11-29 2015-05-19 United Microelectronics Corp. Substrate with integrated passive devices and method of manufacturing the same
TWI565989B (zh) 2012-12-14 2017-01-11 鴻海精密工業股份有限公司 光纖連接器
US20140247269A1 (en) 2013-03-04 2014-09-04 Qualcomm Mems Technologies, Inc. High density, low loss 3-d through-glass inductor with magnetic core
US20140272688A1 (en) 2013-03-15 2014-09-18 Photronics, Inc. Grayscale lithography of photo definable glass
JP6015567B2 (ja) 2013-06-12 2016-10-26 株式会社デンソー 貫通型コンデンサ
US20150079738A1 (en) 2013-06-18 2015-03-19 Stephen P. Barlow Method for producing trench high electron mobility devices
US9093975B2 (en) 2013-08-19 2015-07-28 Harris Corporation Microelectromechanical systems comprising differential inductors and methods for making the same
US9449753B2 (en) 2013-08-30 2016-09-20 Qualcomm Incorporated Varying thickness inductor
JPWO2015033826A1 (ja) 2013-09-04 2017-03-02 Hoya株式会社 ケイ酸塩セラミックス、板状基板および板状基板の製造方法
KR20160036666A (ko) 2013-09-27 2016-04-04 인텔 코포레이션 수동 부품용 중첩체 기판을 구비한 다이 패키지
SG11201602499TA (en) 2013-10-07 2016-04-28 Koninkl Philips Nv Precision batch production method for manufacturing ferrite rods
CN105849607B (zh) 2013-12-19 2019-10-15 3M创新有限公司 多模光学连接器
KR20150074872A (ko) * 2013-12-24 2015-07-02 전자부품연구원 인터포저 기판 및 그의 제조 방법
KR101519760B1 (ko) 2013-12-27 2015-05-12 전자부품연구원 금속 배선의 형성 방법 및 이에 의해 제조된 금속 배선 기판
US20150201495A1 (en) 2014-01-14 2015-07-16 Qualcomm Incorporated Stacked conductive interconnect inductor
WO2015112903A1 (en) 2014-01-24 2015-07-30 3D Glass Solutions, Inc Methods of fabricating photoactive substrates for micro-lenses and arrays
EP3920200A1 (en) 2014-05-05 2021-12-08 3D Glass Solutions, Inc. 2d and 3d inductors antenna and transformers fabricating photoactive substrates
KR102233579B1 (ko) 2014-08-12 2021-03-30 삼성전자주식회사 극자외선 리소그래피용 펠리클
US10201901B2 (en) 2015-01-29 2019-02-12 Canon Kabushiki Kaisha Robot apparatus, method for controlling robot, program, and recording medium
US9647306B2 (en) 2015-03-04 2017-05-09 Skyworks Solutions, Inc. RF filter comprising N coaxial resonators arranged in a specified interdigitation pattern
US20160265974A1 (en) 2015-03-09 2016-09-15 Corning Incorporated Glass waveguide spectrophotometer
US9385083B1 (en) 2015-05-22 2016-07-05 Hrl Laboratories, Llc Wafer-level die to package and die to die interconnects suspended over integrated heat sinks
US9853624B2 (en) 2015-06-26 2017-12-26 Qorvo Us, Inc. SAW resonator with resonant cavities
US9712131B2 (en) 2015-09-15 2017-07-18 Karl L. Thorup High isolation power combiner/splitter and coupler
US10070533B2 (en) 2015-09-30 2018-09-04 3D Glass Solutions, Inc. Photo-definable glass with integrated electronics and ground plane
KR20180097179A (ko) 2016-01-21 2018-08-30 어플라이드 머티어리얼스, 인코포레이티드 실리콘 관통 비아들의 도금의 프로세스 및 케미스트리
CA3013205C (en) 2016-01-31 2021-07-27 3D Glass Solutions, Inc. Multi-layer photo definable glass with integrated devices
WO2017147511A1 (en) 2016-02-25 2017-08-31 3D Glass Solutions, Inc. 3d capacitor and capacitor array fabricating photoactive substrates
US9819991B1 (en) 2016-02-29 2017-11-14 Amazon Technologies, Inc. Adaptive impedance matching interface
WO2017177171A1 (en) 2016-04-08 2017-10-12 3D Glass Solutions, Inc. Methods of fabricating photosensitive substrates suitable for optical coupler
US9635757B1 (en) 2016-08-11 2017-04-25 Unimicron Technology Corp. Circuit board and manufacturing method thereof
EP3327806B1 (en) 2016-11-24 2021-07-21 Murata Integrated Passive Solutions Integrated electronic component suitable for broadband biasing
US10367243B2 (en) 2017-05-02 2019-07-30 Bae Systems Information And Electronic Systems Integration Inc. Miniature LTCC coupled stripline resonator filters for digital receivers
JP7083600B2 (ja) 2017-05-25 2022-06-13 凸版印刷株式会社 キャパシタ内蔵ガラス回路基板及びその製造方法
JP2019106429A (ja) 2017-12-11 2019-06-27 凸版印刷株式会社 ガラス配線基板、その製造方法及び半導体装置
CN210668058U (zh) 2019-12-09 2020-06-02 梅州市成就电子科技有限公司 一种宽频锥形电感

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165025A (ja) 2004-12-02 2006-06-22 Nec Electronics Corp 半導体装置およびそれを用いた半導体モジュール、ならびに半導体装置の製造方法
JP2014505354A (ja) 2010-12-09 2014-02-27 テッセラ,インコーポレイテッド 高密度3次元集積コンデンサ

Also Published As

Publication number Publication date
KR20180134868A (ko) 2018-12-19
EP3420571A4 (en) 2020-03-25
KR20200010598A (ko) 2020-01-30
CA3015525C (en) 2022-04-26
KR20210145301A (ko) 2021-12-01
KR102479144B1 (ko) 2022-12-20
JP2022058587A (ja) 2022-04-12
US20190074136A1 (en) 2019-03-07
EP3420571A1 (en) 2019-01-02
WO2017147511A1 (en) 2017-08-31
JP7237390B2 (ja) 2023-03-13
US11264167B2 (en) 2022-03-01
AU2017223993A1 (en) 2018-09-13
JP2021013024A (ja) 2021-02-04
AU2017223993B2 (en) 2019-07-04
JP2019512169A (ja) 2019-05-09
CA3015525A1 (en) 2017-08-31
JP7129104B2 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
JP7071609B2 (ja) 3dキャパシタ、及び光活性基板を作製するキャパシタアレイ
US11929199B2 (en) 2D and 3D inductors fabricating photoactive substrates
US10201091B2 (en) Photo-definable glass with integrated electronics and ground plane
JP7245547B2 (ja) Rf集積電力調整コンデンサ
AU2018383659B2 (en) Coupled transmission line resonate RF filter
US20220157524A1 (en) 3D Capacitor and Capacitor Array Fabricating Photoactive Substrates
CA3168516C (en) Ultra high surface area integrated capacitor
WO2023146729A1 (en) 3d capacitor and capacitor array fabricating photoactive substrates
CA3051140A1 (en) Rf integrated power condition capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200924

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200924

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201005

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210324

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210329

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210423

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210510

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210726

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220214

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220322

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7071609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150