JP7069710B2 - tire - Google Patents

tire Download PDF

Info

Publication number
JP7069710B2
JP7069710B2 JP2017251293A JP2017251293A JP7069710B2 JP 7069710 B2 JP7069710 B2 JP 7069710B2 JP 2017251293 A JP2017251293 A JP 2017251293A JP 2017251293 A JP2017251293 A JP 2017251293A JP 7069710 B2 JP7069710 B2 JP 7069710B2
Authority
JP
Japan
Prior art keywords
cavity
tire
groove
sipe
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017251293A
Other languages
Japanese (ja)
Other versions
JP2019116196A (en
Inventor
哲也 阪口
幸一 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017251293A priority Critical patent/JP7069710B2/en
Publication of JP2019116196A publication Critical patent/JP2019116196A/en
Application granted granted Critical
Publication of JP7069710B2 publication Critical patent/JP7069710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、タイヤ周方向にのびる主溝によって生じる気柱共鳴音を低減しうるタイヤに関する。 The present invention relates to a tire capable of reducing the air column resonance sound generated by the main groove extending in the circumferential direction of the tire.

車外騒音の原因の一つとして、タイヤ周方向にのびる主溝から生じる気柱共鳴音が知られている。この気柱共鳴音は、走行時、トレッド部に配される前記主溝と路面とによって囲まれる管の内部空気が共鳴することで発生する。この気柱共鳴音はピークの音圧レベルが高く、又1000Hz前後の耳障りな周波数の音域を含むため、タイヤ騒音の大きな部分を占めている。 As one of the causes of noise outside the vehicle, the air column resonance sound generated from the main groove extending in the tire circumferential direction is known. This air column resonance sound is generated by the resonance of the internal air of the pipe surrounded by the main groove arranged in the tread portion and the road surface during traveling. Since this air column resonance sound has a high peak sound pressure level and includes a sound range having a jarring frequency of around 1000 Hz, it occupies a large part of tire noise.

そこで、下記の特許文献1には、気柱共鳴音を低減するために、陸部に、サイプと、このサイプ底部に設けられかつ一端が主溝に連通する幅広部である消音室とを具えた空気入りタイヤが提案されている。このタイヤでは、消音室がヘルムホルツ型の共鳴器を構成し、気柱共鳴音のエネルギを吸収して気柱共鳴音を低減している。 Therefore, in the following Patent Document 1, in order to reduce the air column resonance sound, a sipe and a muffling chamber provided at the bottom of the sipe and having one end communicating with the main groove are provided in the land portion. Pneumatic tires have been proposed. In this tire, the anechoic chamber constitutes a Helmholtz-type resonator, and absorbs the energy of the air column resonance sound to reduce the air column resonance sound.

しかし、上記提案では、消音室が小径なネック部を介することなく主溝に直接導通している。そのためエネルギの吸収効果が不充分であり、気柱共鳴音(車外騒音)の低減のために、さらなる改善が望まれる。 However, in the above proposal, the anechoic chamber is directly conducted to the main groove without passing through a small-diameter neck portion. Therefore, the energy absorption effect is insufficient, and further improvement is desired in order to reduce the air column resonance sound (outside noise).

特開2013-126842号公報Japanese Unexamined Patent Publication No. 2013-126842

本発明は、主溝に起因する気柱共鳴音をさらに減じ、車外騒音性能を向上しうるタイヤを提供することを課題としている。 An object of the present invention is to provide a tire capable of further reducing the air column resonance sound caused by the main groove and improving the noise performance outside the vehicle.

本発明は、トレッド部に、タイヤ周方向にのびる主溝と、前記主溝によって区分される複数の陸部とを具えるタイヤであって、
少なくとも1つの陸部は、
前記陸部の内部で実質的に密閉され、かつ長さ方向の両端部が前記陸部の内部で途切れる空洞部と、
前記陸部の踏み面に設けられる細溝状をなし、かつ前記空洞部と前記主溝とを連通する連通溝と、
前記空洞部から前記陸部の踏み面までのびる第1サイプとを有する消音手段を具える。
The present invention is a tire having a tread portion having a main groove extending in the circumferential direction of the tire and a plurality of land portions classified by the main groove.
At least one land area
A cavity that is substantially sealed inside the land portion and whose both ends in the length direction are interrupted inside the land portion.
A communication groove having a fine groove shape provided on the tread surface of the land portion and communicating the cavity portion with the main groove,
It is provided with a sound deadening means having a first sipe extending from the cavity to the tread surface of the land.

本発明に係る前記タイヤでは、前記消音手段は、前記空洞部の容積V(mm)と、前記連通溝の長さ方向と直角な断面積S(mm)と、前記連通溝における前記主溝から空洞部までの長さL(mm)とが下記式(1)を充足するのが好ましい。
5.0×10-5≦S/(V×L)≦3.0×10-3 ---(1)
In the tire according to the present invention, the sound deadening means has a volume V (mm 3 ) of the cavity portion, a cross-sectional area S (mm 2 ) perpendicular to the length direction of the communication groove, and the main body of the communication groove. It is preferable that the length L (mm) from the groove to the cavity satisfies the following formula (1).
5.0 × 10 -5 ≦ S / (V × L) ≦ 3.0 × 10 -3 --- (1)

本発明に係る前記タイヤでは、前記消音手段は、トレッド部が路面と接地する接地範囲内に1以上配されるのが好ましい。 In the tire according to the present invention, it is preferable that one or more of the muffling means are arranged within the ground contact range where the tread portion is in contact with the road surface.

本発明に係る前記タイヤでは、前記連通溝は、前記空洞部と接続位置Pで連結するとともに、前記空洞部の長さ方向一端から前記接続位置Pまでの距離Lbは、前記空洞部の長さLaの0.1~0.9倍であるのが好ましい。 In the tire according to the present invention, the communication groove is connected to the cavity portion at the connection position P, and the distance Lb from one end in the length direction of the cavity portion to the connection position P is the length of the cavity portion. It is preferably 0.1 to 0.9 times La.

本発明に係る前記タイヤでは、前記第1サイプは、前記踏み面と平行な水平断面においては長さ方向に沿ってジグザグ状にのび、かつ前記長さ方向線と直角な垂直断面においては深さ方向に沿ってジグザグ状にのびる三次元サイプであるのが好ましい。 In the tire according to the present invention, the first sipe extends in a zigzag shape along the length direction in a horizontal cross section parallel to the tread surface, and has a depth in a vertical cross section perpendicular to the length direction line. It is preferably a three-dimensional sipe that extends in a zigzag shape along the direction.

本発明に係る前記タイヤでは、前記三次元サイプは、前記垂直断面におけるジグザグの屈曲数nが2以上であるのが好ましい。 In the tire according to the present invention, it is preferable that the three-dimensional sipe has a zigzag bending number n of 2 or more in the vertical cross section.

本発明に係る前記タイヤでは、前記三次元サイプは、前記踏み面から空洞部までのサイプ深さHsが2mm以上であるのが好ましい。 In the tire according to the present invention, the three-dimensional sipe preferably has a sipe depth Hs from the tread surface to the cavity portion of 2 mm or more.

本発明に係る前記タイヤでは、前記三次元サイプは、前記垂直断面におけるジグザグの振幅Wsが1.5mm以上であるのが好ましい。 In the tire according to the present invention, it is preferable that the three-dimensional sipe has a zigzag amplitude Ws of 1.5 mm or more in the vertical cross section.

本発明に係る前記タイヤでは、空洞部の容積Vは、20~400mmの範囲であるのが好ましい。 In the tire according to the present invention, the volume V of the cavity is preferably in the range of 20 to 400 mm 3 .

本発明に係る前記タイヤでは、前記連通溝の断面積Sは1.5~20mmの範囲であるのが好ましい。 In the tire according to the present invention, the cross-sectional area S of the communication groove is preferably in the range of 1.5 to 20 mm 2 .

本発明に係る前記タイヤでは、前記連通溝の長さLは2~50mmの範囲であるのが好ましい。 In the tire according to the present invention, the length L of the communication groove is preferably in the range of 2 to 50 mm.

本明細書において、「サイプ」は、例えば幅0.8mm以下の切れ込み状をなし、接地時に壁面間が閉塞するものを意味する。 In the present specification, the term "sipe" means, for example, a notch having a width of 0.8 mm or less and a block between the wall surfaces when touching the ground.

前記「接地範囲」とは、正規リムにリム組みしかつ正規内圧を充填した基準状態のタイヤに正規荷重を負荷した時に、トレッド部が路面と接地する接地部分の領域範囲を意味する。 The "ground contact range" means the range of the ground contact portion where the tread portion comes into contact with the road surface when a regular load is applied to a tire in a reference state in which the rim is assembled on the regular rim and the tire is filled with the regular internal pressure.

なお前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim" 、或いはETRTOであれば "Measuring Rim"を意味する。前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE"を意味するが、乗用車用タイヤの場合には180kPaとする。前記「正規荷重」とは、前記規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "LOAD CAPACITY"である。 The "regular rim" is a rim defined for each tire in the standard system including the standard on which the tire is based. For example, JATTA is a standard rim, TRA is "Design Rim", or If it is ETRTO, it means "Measuring Rim". The "regular internal pressure" is the air pressure defined for each tire by the standard, the maximum air pressure for JATTA, the maximum value described in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" for TRA, and ETRTO. If so, it means "INFLATION PRESSURE", but in the case of passenger car tires, it is 180 kPa. The "regular load" is the load defined for each tire by the standard, and is the maximum load capacity for JATTA and the maximum value listed in the table "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" for TRA. If it is ETRTO, it is "LOAD CAPACITY".

本明細書では、特に断りがない限り、タイヤの各部の寸法等は、前記基準状態(無負荷)で特定される値とする。 In the present specification, unless otherwise specified, the dimensions and the like of each part of the tire are the values specified in the reference state (no load).

本発明は叙上の如く、少なくとも1つの陸部が、1以上の消音手段を具える。この消音手段は、陸部の内部で実質的に密閉されかつ長さ方向両端部が陸部の内部で途切れる空洞部、及び陸部の踏み面に設けられかつ前記空洞部と主溝とを連通する細溝状の連通溝を有する。この連通溝は、接地時に壁面間に隙間が確保されるが、踏み面上の開口部は路面によって閉じられる。従って、前記空洞部と連通溝とは、接地時、ヘルムホルツ型の共鳴器を構成でき、主溝による気柱共鳴音を低減しうる。しかも上記共鳴器では、空洞部が、幅狭の連通溝を介して主溝と導通する。そのため空洞部が直接主溝で開口する場合に比して、エネルギの吸収効果が増し、気柱共鳴音の消音効果を高めることができる。 In the present invention, as described above, at least one land portion is provided with one or more sound deadening means. This muffling means is provided in a cavity portion that is substantially sealed inside the land portion and both ends in the length direction are interrupted inside the land portion, and a tread surface of the land portion that communicates the cavity portion with the main groove. It has a fine groove-shaped communication groove. This communication groove secures a gap between the wall surfaces when touching the ground, but the opening on the tread surface is closed by the road surface. Therefore, the cavity and the communication groove can form a Helmholtz-type resonator when grounded, and the air column resonance sound due to the main groove can be reduced. Moreover, in the above resonator, the cavity portion conducts with the main groove through the narrow communication groove. Therefore, the energy absorption effect is increased and the muffling effect of the air column resonance sound can be enhanced as compared with the case where the cavity portion is directly opened by the main groove.

又共鳴器では、連通溝を介するため、空洞部が直接主溝に開口する場合に比して空洞部が変形し難く、陸部の剛性低下を低く抑えることができる。 Further, in the resonator, since the communication groove is used, the cavity portion is less likely to be deformed as compared with the case where the cavity portion is directly opened in the main groove, and the decrease in rigidity of the land portion can be suppressed to a low level.

又トレッドが摩耗して空洞部が表面に露出するまでの期間は、空洞部の容積が変化しない。そのため消音性能を持続することができる。又、空洞部が露出する摩耗中期以降においては、消音性能は発揮されなくなるが、この摩耗中期以降では、主溝の溝容積自体が減じて気柱共鳴音が小さくなっているため消音の必要性が低く、特に車外騒音の問題は生じない。 Further, the volume of the cavity does not change during the period until the tread is worn and the cavity is exposed on the surface. Therefore, the muffling performance can be maintained. In addition, after the middle stage of wear where the cavity is exposed, the muffling performance will not be exhibited, but after the middle stage of wear, the groove volume of the main groove itself is reduced and the air column resonance sound is reduced, so it is necessary to muffle the sound. Is low, and there is no particular problem of noise outside the vehicle.

又空洞部が露出する摩耗中期以降は、この空洞部が新たなトレッド溝として機能するため、摩耗進行に伴うウエット性能の低下を抑えることができる。 Further, after the middle stage of wear where the cavity is exposed, the cavity functions as a new tread groove, so that deterioration of wet performance due to the progress of wear can be suppressed.

本発明の一実施形態のタイヤのトレッド部の展開図である。It is a development view of the tread part of the tire of one Embodiment of this invention. 陸部の一部を示す拡大平面図である。It is an enlarged plan view which shows a part of a land part. 消音手段を概念的に示す斜視図である。It is a perspective view which shows the muffling means conceptually. (A)は消音手段を示す図2のA-A断面図、(B)三次元サイプのジグザグの屈曲数及び巾を説明する断面図である。(A) is a cross-sectional view taken along the line AA of FIG. 2 showing a sound deadening means, and (B) is a cross-sectional view illustrating the number and width of zigzags of a three-dimensional sipe. (A)、(B)は消音手段の作用を説明する概念図である。(A) and (B) are conceptual diagrams explaining the action of the muffling means. 本発明のタイヤの他の例を示すトレッド部の展開図である。It is a development view of the tread part which shows the other example of the tire of this invention.

以下、本発明の実施の形態について、詳細に説明する。図1は、本発明の一実施形態を示すタイヤ1のトレッド部2の展開図である。本例では、タイヤ1が、乗用車用の空気入りタイヤである場合が示される。しかし、例えば重荷重車用等の空気入りタイヤであっても良く、さらにはタイヤ内部に加圧空気が充填されない非空気入りタイヤ(例えばエアーレスタイヤ)等の様々なタイヤとして構成することができる。 Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a developed view of a tread portion 2 of a tire 1 showing an embodiment of the present invention. In this example, the case where the tire 1 is a pneumatic tire for a passenger car is shown. However, it may be a pneumatic tire for a heavy-duty vehicle, for example, and may be configured as various tires such as a non-pneumatic tire (for example, an airless tire) in which the inside of the tire is not filled with pressurized air. ..

図1に示すように、タイヤ1のトレッド部2は、タイヤ周方向に連続してのびる少なくとも1本の主溝3を具える。これにより、トレッド部2は複数の陸部4に区分される。 As shown in FIG. 1, the tread portion 2 of the tire 1 includes at least one main groove 3 that extends continuously in the tire circumferential direction. As a result, the tread portion 2 is divided into a plurality of land portions 4.

本例では、主溝3が、タイヤ赤道Cの両側に配されるセンタ主溝3C、3Cと、トレッド端Te側に配されるショルダー主溝3S、3Sとから構成される場合が示される。これにより、本例のトレッド部2は、センタ主溝3C、3C間のセンタ陸部4C、センタ主溝3Cとショルダー主溝3Sとの間のミドル陸部4M、及びショルダー主溝3Sとトレッド端Teとの間のショルダー陸部4Sに区分される。 In this example, the case where the main groove 3 is composed of the center main grooves 3C and 3C arranged on both sides of the tire equator C and the shoulder main grooves 3S and 3S arranged on the tread end Te side is shown. As a result, the tread portion 2 of this example has the center land portion 4C between the center main grooves 3C and 3C, the middle land portion 4M between the center main groove 3C and the shoulder main groove 3S, and the shoulder main groove 3S and the tread end. It is divided into shoulder land 4S between Te.

しかしこれに限定されるものではなく、主溝3として、例えばセンタ主溝3Cとショルダー主溝3Sとの間にミドル主溝(図示省略)が配される構造、及びセンタ主溝3Cがタイヤ赤道C上に配される構造など、種々の構造が採用しうる。 However, the present invention is not limited to this, and as the main groove 3, for example, a structure in which a middle main groove (not shown) is arranged between the center main groove 3C and the shoulder main groove 3S, and the center main groove 3C is the tire equator. Various structures such as a structure arranged on C can be adopted.

主溝3として、タイヤ周方向に直線状にのびるストレート溝、及びジグザグ状(波状を含む)にのびるジグザグ溝などが適宜採用しうる。しかし、本発明の作用効果による利点をより高く得るという観点からは、ストレート溝が好ましい。なお主溝3の溝巾W3、及び溝深さD3(図4(A)に示す)は、慣例に従って種々定めることができる。 As the main groove 3, a straight groove extending linearly in the tire circumferential direction, a zigzag groove extending in a zigzag shape (including a wavy shape), and the like can be appropriately adopted. However, a straight groove is preferable from the viewpoint of obtaining a higher advantage due to the action and effect of the present invention. The groove width W3 and the groove depth D3 (shown in FIG. 4A) of the main groove 3 can be variously determined according to the custom.

複数の陸部4のうちの少なく一つの陸部は、1以上の消音手段5を具える。本例では、ミドル陸部4M、4Mに、それぞれ1以上の消音手段5が配され、各センタ主溝3Cに起因する気柱共鳴音の低減が図られる。 At least one of the plurality of land parts 4 is equipped with one or more muffling means 5. In this example, one or more muffling means 5 are arranged in each of the middle land portions 4M and 4M, so that the air column resonance sound caused by each center main groove 3C can be reduced.

本例では、ミドル陸部4M、4M、及びセンタ陸部4Cは、タイヤ周方向に連続してのびるリブ体として形成される。このようにリブ体(陸部)によって挟まれた主溝の場合、ブロック列(陸部)よって挟まれた主溝に比して気柱共鳴音が大となる。そのため、本発明の作用効果の利点をより高く得ることができる。 In this example, the middle land portion 4M and 4M and the center land portion 4C are formed as rib bodies that extend continuously in the tire circumferential direction. In the case of the main groove sandwiched by the rib body (land portion) in this way, the air column resonance sound is louder than that of the main groove sandwiched by the block row (land portion). Therefore, the advantage of the action and effect of the present invention can be further obtained.

図2、3に示すように、消音手段5は、空洞部10と第1サイプ8と連通溝14とを具える。 As shown in FIGS. 2 and 3, the sound deadening means 5 includes a cavity 10, a first sipe 8, and a communication groove 14.

空洞部10は、ミドル陸部4Mの内部で実質的に密閉され、かつ長さ方向の両端部がミドル陸部4Mの内部で途切れる。空洞部10は、断面略一定の筒状をなし、ミドル陸部4Mの内部を通って直線状にのびる。しかし空洞部10としては、長さ方向にジグザグ状にのびても良い。 The cavity 10 is substantially sealed inside the middle land portion 4M, and both ends in the length direction are interrupted inside the middle land portion 4M. The cavity 10 has a cylindrical shape having a substantially constant cross section, and extends linearly through the inside of the middle land portion 4M. However, the cavity 10 may extend in a zigzag shape in the length direction.

本例の空洞部10は、タイヤ周方向にのびる。これにより、空洞部10に起因するミドル陸部4Mの剛性低下を抑え、ドライ走行性能を維持しながら空洞部10を形成することができる。なお前記「タイヤ周方向にのびる」には、タイヤ周方向線に対して5度以下の角度で傾斜する場合も含まれる。本例では、複数の空洞部10が、タイヤ周方向線上、特にはミドル陸部4Mの巾中心線(図示省略)上に一列に配列した場合が示される。 The cavity 10 of this example extends in the tire circumferential direction. As a result, it is possible to suppress the decrease in rigidity of the middle land portion 4M caused by the cavity portion 10 and to form the cavity portion 10 while maintaining the dry running performance. The above-mentioned "extending in the tire circumferential direction" includes a case where the tire is inclined at an angle of 5 degrees or less with respect to the tire circumferential direction line. In this example, a case where a plurality of cavity portions 10 are arranged in a row on the tire circumferential direction line, particularly on the width center line (not shown) of the middle land portion 4M is shown.

第1サイプ8は、空洞部10からミドル陸部4Mの踏み面4sまでのびる。具体的には、第1サイプ8は、踏み面4sに設けられ、空洞部10に沿って空洞部10上をのびる。従って、空洞部10は、第1サイプ8の底部に連なって形成される。 The first sipe 8 extends from the cavity 10 to the tread surface 4s of the middle land portion 4M. Specifically, the first sipe 8 is provided on the tread surface 4s and extends along the cavity 10 on the cavity 10. Therefore, the cavity 10 is formed so as to be continuous with the bottom of the first sipe 8.

この第1サイプ8は、接地時には、壁面が閉塞し、これにより、空洞部10は密閉される。即ち、空洞部10が「実質的に密閉」されるには、接地時に、壁面が閉塞して空洞部10が密閉される場合が含まれる。なお接地時に壁面間が閉塞されない溝の場合、「実質的に密閉」されるに含まれない。 When the first sipe 8 is grounded, the wall surface is closed, whereby the cavity 10 is sealed. That is, the case where the cavity 10 is "substantially sealed" includes the case where the wall surface is closed and the cavity 10 is sealed at the time of touchdown. If the groove is not closed between the walls when touching the ground, it is not included in "substantially sealed".

本例では、第1サイプ8が三次元サイプ12である場合が示される。図3に概念的に示すように、本例の三次元サイプ12は、長さ方向にのびるジグザグ部分を含む。このジグザグ部分は、踏み面4sと平行な水平断面においては長さ方向に沿ってジグザグ状(波状も含まれる)にのび、かつ長さ方向と直角な垂直断面においては深さ方向に沿ってジグザグ状(波状も含まれる)にのびる。このような三次元サイプ12は、サイプの壁面が3次元的に凹凸を繰り返す立体曲面をなす。そして接地時、互いに向き合う壁面の凹凸同士が互いに噛み合うことにより、剛性を高く維持しうる。 In this example, the case where the first sipe 8 is a three-dimensional sipe 12 is shown. As conceptually shown in FIG. 3, the three-dimensional sipe 12 of this example includes a zigzag portion extending in the length direction. This zigzag portion extends in a zigzag shape (including a wavy shape) along the length direction in the horizontal cross section parallel to the tread surface 4s, and zigzags along the depth direction in the vertical cross section perpendicular to the length direction. It extends in a shape (including wavy). In such a three-dimensional sipe 12, the wall surface of the sipe forms a three-dimensional curved surface in which unevenness is repeated three-dimensionally. When the ground is touched, the unevenness of the wall surfaces facing each other meshes with each other, so that high rigidity can be maintained.

連通溝14は、ミドル陸部4Mの踏み面4sに設けられる細溝状をなし、前記空洞部10と主溝3(本例ではセンタ主溝3C)とを連通する。連通溝14の長さ方向と直角な断面積Sは、前記空洞部10の長さ方向と直角な断面積S0よりも小である。 The communication groove 14 has a fine groove shape provided on the tread surface 4s of the middle land portion 4M, and communicates the cavity 10 with the main groove 3 (center main groove 3C in this example). The cross-sectional area S perpendicular to the length direction of the communication groove 14 is smaller than the cross-sectional area S0 perpendicular to the length direction of the cavity 10.

連通溝14は、ストレート溝であって、主溝3(本例ではセンタ主溝3C)から第1サイプ8まで略一定の溝幅を有してのびる。また連通溝14の一端はセンタ主溝3Cで開口し、かつ他端は第1サイプ8とT字状に交差している。連通溝14と第1サイプ8との交差角度αが小さすぎると、交差部で強度が低下し、ゴム欠け等が生じやすい。そのため交差角度αは、30度以上さらには40度以上が好ましい。 The communication groove 14 is a straight groove and extends from the main groove 3 (center main groove 3C in this example) to the first sipe 8 with a substantially constant groove width. Further, one end of the communication groove 14 is opened by the center main groove 3C, and the other end thereof intersects with the first sipe 8 in a T-shape. If the intersection angle α between the communication groove 14 and the first sipe 8 is too small, the strength decreases at the intersection, and rubber chipping or the like is likely to occur. Therefore, the crossing angle α is preferably 30 degrees or more, more preferably 40 degrees or more.

また連通溝14は、第1サイプ8よりも深い溝深さを有し、従って、溝底側では主溝3(本例ではセンタ主溝3C)と空洞部10とを導通する。この連通溝14は、第1サイプ8よりも幅広の細溝状をなし、接地時には溝壁面間が閉塞せず溝壁面間に隙間が確保される。連通溝14の溝巾W14は特に規制されないが、1.5mm以下、さらには1.0mm以下が好ましい。 Further, the communication groove 14 has a groove depth deeper than that of the first sipe 8, and therefore, the main groove 3 (center main groove 3C in this example) and the cavity 10 are electrically connected to each other on the groove bottom side. The communication groove 14 has a narrow groove shape wider than that of the first sipe 8, and the gap between the groove wall surfaces is not closed at the time of touchdown, and a gap is secured between the groove wall surfaces. The groove width W14 of the communication groove 14 is not particularly limited, but is preferably 1.5 mm or less, more preferably 1.0 mm or less.

このような消音手段5においては、接地時、第1サイプ8ではその壁面が閉塞し、又連通溝14では踏み面4s側の開口が路面によって閉止される。これにより、接地時、空洞部10と連通溝14とは、センタ主溝3Cでのみ開口する一端開口のヘルムホルツ型の共鳴器Hを形成しうる。 In such a sound deadening means 5, when the ground is touched, the wall surface of the first sipe 8 is closed, and the opening on the tread surface 4s side is closed by the road surface in the communication groove 14. As a result, when grounded, the cavity 10 and the communication groove 14 can form a Helmholtz-type resonator H having an opening at one end, which is open only in the center main groove 3C.

図5(A)、(B)に示すように、共鳴器Hでは、連通溝14の空気K1が質量、空洞部10の空気K2がバネの役割をして振動系を構成する。そして共鳴器Hの固有振動数fと同じ周波数の音が入射したとき、共鳴が生じ、空気K1の粘着摩擦により音のエネルギが吸収される。 As shown in FIGS. 5A and 5B, in the resonator H, the air K1 in the communication groove 14 acts as a mass and the air K2 in the cavity 10 acts as a spring to form a vibration system. Then, when a sound having the same frequency as the natural frequency f of the resonator H is incident, resonance occurs, and the energy of the sound is absorbed by the adhesive friction of the air K1.

従って、センタ主溝3Cによる気柱共鳴音のうち、低減させたい周波数に合わせて共鳴器Hの固有振動数を設定することで、気柱共鳴音のうち特に低減させたい周波数の音を減じることができ、ノイズ性能を向上しうる。 Therefore, by setting the natural frequency of the resonator H according to the frequency to be reduced among the air column resonance sounds generated by the center main groove 3C, the sound of the frequency to be particularly reduced among the air column resonance sounds can be reduced. Can improve noise performance.

このような消音手段5は、トレッド部2が路面と接地する接地範囲内に1以上配される。本例では、各ミドル陸部4Mにおいて、それぞれ消音手段5が接地範囲内に1以上配される。これにより、タイヤ転動中、各ミドル陸部4Mにおいて、接地範囲内に1以上の消音手段5が絶えず存在し、各センタ主溝3Cからの気柱共鳴音を低減しうる。 One or more such sound deadening means 5 are arranged within the ground contact range where the tread portion 2 is in contact with the road surface. In this example, in each middle land portion 4M, one or more muffling means 5 are arranged within the ground contact range. Thereby, during the tire rolling, one or more muffling means 5 are constantly present in the ground contact range in each middle land portion 4M, and the air column resonance sound from each center main groove 3C can be reduced.

ここで、共鳴器Hの固有振動数fは、次式(2)で示される。式中、cは音速(m/s)、Sは連通溝14の長さ方向と直角な断面積(mm)、Vは空洞部10の容積(mm)、Lは連通溝14の長さ(mm)、δは開口端補正である。従って、断面積S(mm)、容積V(mm)、長さL(mm)により、固有振動数fを自在に調整しうる。なお開口端補正δは微少であり、無視することもできる。
f=c/2π×√{S/(V×(L+δ))} ---(2)
Here, the natural frequency f of the resonator H is represented by the following equation (2). In the formula, c is the speed of sound (m / s), S is the cross-sectional area perpendicular to the length direction of the communication groove 14 (mm 2 ), V is the volume of the cavity 10 (mm 3 ), and L is the length of the communication groove 14. (Mm), δ is the open end correction. Therefore, the natural frequency f can be freely adjusted by the cross-sectional area S (mm 2 ), the volume V (mm 3 ), and the length L (mm). The end correction δ is insignificant and can be ignored.
f = c / 2π × √ {S / (V × (L + δ))} --- (2)

前記共鳴器Hでは、前記断面積S(mm)、容積V(mm)、長さL(mm)とが、次式(1)を充足することが好ましい。
5.0×10-5≦S/(V×L)≦3.0×10-3 ---(1)
In the resonator H, it is preferable that the cross-sectional area S (mm 2 ), the volume V (mm 3 ), and the length L (mm) satisfy the following equation (1).
5.0 × 10 -5 ≦ S / (V × L) ≦ 3.0 × 10 -3 --- (1)

この場合、共鳴器Hの固有振動数fを、おおよそ3.8×10~2.96×10Hzの範囲に設定しうる。特には、S/(V×L)を2.2×10-4~4.9×10-4の範囲とすることで、固有振動数fを、耳障りな1000Hz前後(例えば800~1200Hz)に設定することができる。 In this case, the natural frequency f of the resonator H can be set in the range of approximately 3.8 × 10 2 to 2.96 × 10 3 Hz. In particular, by setting S / (V × L) in the range of 2.2 × 10 -4 to 4.9 × 10 -4 , the natural frequency f is set to around 1000 Hz (for example, 800 to 1200 Hz), which is jarring. Can be set.

第1サイプ8の底部に空洞部10を設けることにより、従来的な構造のタイヤ加硫金型を用いて、第1サイプ8と空洞部10とを容易に形成できる。即ち、タイヤ加硫金型において、第1サイプ形成用のブレード本体の先端に、空洞部形成用の柱状体を一体に取り付けたブレードを用いることで、加硫時、第1サイプ8と空洞部10とを同時に形成できる。 By providing the cavity 10 at the bottom of the first sipe 8, the first sipe 8 and the cavity 10 can be easily formed by using a tire vulcanization die having a conventional structure. That is, in the tire vulcanization mold, by using a blade in which a columnar body for forming a cavity is integrally attached to the tip of a blade body for forming the first sipe, the first sipe 8 and the cavity are formed during vulcanization. 10 can be formed at the same time.

なお第1サイプ8と連通溝14とがT字状に交差した場合、ミドル陸部4Mの剛性が低下傾向となる。しかし本例では、第1サイプ8として三次元サイプ12を採用している。そのため、接地時、壁面の凹凸同士が三次元方向に噛み合い、ミドル陸部4Mの剛性を高く維持することができる。特に、三次元サイプ12として、壁面が平行四辺形を組み合わせた所謂ミウラ折り構造の場合、噛み合いが密かつ強固となる。そのため、空洞部10の密閉性を高めて消音性能を向上させる点で好ましい。 When the first sipe 8 and the communication groove 14 intersect in a T shape, the rigidity of the middle land portion 4M tends to decrease. However, in this example, the three-dimensional sipe 12 is adopted as the first sipe 8. Therefore, at the time of touchdown, the unevenness of the wall surface meshes with each other in the three-dimensional direction, and the rigidity of the middle land portion 4M can be maintained high. In particular, in the case of the so-called Miura fold structure in which the wall surface is a combination of parallelograms as the three-dimensional sipe 12, the meshing is tight and strong. Therefore, it is preferable in that the airtightness of the cavity 10 is improved and the sound deadening performance is improved.

図2に示すように、連通溝14が空洞部10と連結する接続位置Pから、空洞部10の長さ方向一端までの距離Lbは、空洞部10の長さLaの0.1~0.9倍であるのが好ましい。このように接続位置Pを空洞部10の端部から離すことで、ミドル陸部4Mの剛性低下を抑えることができる。又空洞部10の変形が抑えられるため、消音効果の向上にも貢献できる。このような観点から、前記距離Lbは、長さLaの0.2~0.8倍の範囲、さらには0.3~0.7倍の範囲がより好ましい。 As shown in FIG. 2, the distance Lb from the connection position P where the communication groove 14 connects to the cavity 10 to one end in the length direction of the cavity 10 is 0.1 to 0, which is the length La of the cavity 10. It is preferably 9 times. By separating the connection position P from the end of the cavity 10 in this way, it is possible to suppress a decrease in the rigidity of the middle land portion 4M. Further, since the deformation of the cavity 10 is suppressed, it can contribute to the improvement of the muffling effect. From such a viewpoint, the distance Lb is more preferably in the range of 0.2 to 0.8 times the length La, and more preferably in the range of 0.3 to 0.7 times.

又消音手段5では、トレッドが摩耗して空洞部10が表面に露出するまでの期間は、空洞部10の容積Vが変化しない。そのため、共鳴器Hの固有振動数fが変化せず、消音性能を持続することができる。又、空洞部10が露出する摩耗中期以降においては、消音性能は発揮されなくなるが、この摩耗中期以降では、主溝3の溝容積自体が減じて消音の必要性が低くなるため、特に車外騒音の問題は生じない。 Further, in the sound deadening means 5, the volume V of the cavity portion 10 does not change during the period until the tread is worn and the cavity portion 10 is exposed on the surface. Therefore, the natural frequency f of the resonator H does not change, and the muffling performance can be maintained. Further, after the middle stage of wear where the cavity 10 is exposed, the muffling performance is not exhibited, but after the middle stage of wear, the groove volume itself of the main groove 3 is reduced and the need for muffling is reduced, so that noise outside the vehicle is particularly low. The problem does not occur.

又空洞部10が露出する摩耗中期以降は、この空洞部10が新たなトレッド溝として機能するため、摩耗進行に伴うウエット性能の低下を抑えることができる。 Further, after the middle stage of wear where the cavity portion 10 is exposed, the cavity portion 10 functions as a new tread groove, so that deterioration of wet performance due to the progress of wear can be suppressed.

又図4(A)、(B)に示すように、三次元サイプ12では、前記垂直断面におけるジグザグの屈曲部Qの数(屈曲数)nが2以上、さらには3以上が好ましい。これにより、サイプの壁面同士の噛み合いにより、ミドル陸部4Mの剛性、及び空洞部10の密閉性を十分に維持しうる。屈曲数nの上限は、脱型性の観点から、5以下が好ましい。 Further, as shown in FIGS. 4 (A) and 4 (B), in the three-dimensional sipe 12, the number (number of bends) n of the zigzag bent portions Q in the vertical cross section is preferably 2 or more, more preferably 3 or more. As a result, the rigidity of the middle land portion 4M and the airtightness of the cavity portion 10 can be sufficiently maintained by the meshing of the wall surfaces of the sipes. The upper limit of the number of bends n is preferably 5 or less from the viewpoint of demoldability.

又ミドル陸部4Mの剛性維持と、空洞部10の密閉性維持とのためには、踏み面4sから空洞部10までのサイプ深さHsが2mm以上、さらには3mm以上が好ましい。なおサイプ深さHsの上限は、摩耗中期以降において空洞部10を露出させる観点から、主溝3の溝深さD3の0.35~0.65倍の範囲が好ましい。 Further, in order to maintain the rigidity of the middle land portion 4M and maintain the airtightness of the cavity portion 10, the sipe depth Hs from the tread surface 4s to the cavity portion 10 is preferably 2 mm or more, more preferably 3 mm or more. The upper limit of the sipe depth Hs is preferably in the range of 0.35 to 0.65 times the groove depth D3 of the main groove 3 from the viewpoint of exposing the cavity 10 after the middle stage of wear.

又ミドル陸部4Mの剛性維持と、空洞部10の密閉性維持とのためには、三次元サイプ12の垂直断面におけるジグザグの振幅Wsが1.5mm以上、さらには2.0mm以上が好ましい。振幅Wsの上限は、脱型性の観点から、3.0mm以下が好ましい。 Further, in order to maintain the rigidity of the middle land portion 4M and maintain the airtightness of the cavity portion 10, the zigzag amplitude Ws in the vertical cross section of the three-dimensional sipe 12 is preferably 1.5 mm or more, more preferably 2.0 mm or more. The upper limit of the amplitude Ws is preferably 3.0 mm or less from the viewpoint of demoldability.

又本例では、前記陸部4は、消音手段を有する第1の陸部(本例ではミドル陸部4M)と、消音手段5を有さない第2の陸部(本例ではセンタ陸部4Cとショルダー陸部4S)とに区分される。そしてトレッドゴムにおいて、第1の陸部のゴムの複素弾性率E1を、第2の陸部のゴムの複素弾性率E2よりも大に設定するのが好ましい。なおトレッドゴムが複数層(例えばキャップゴムとベースゴムなど)で形成される場合には、複素弾性率E1、E2は、タイヤ半径方向の最外層のゴム(例えばキャップゴム)における複素弾性率として定義される。 Further, in this example, the land portion 4 is a first land portion having a muffling means (middle land portion 4M in this example) and a second land portion having no muffling means 5 (center land portion in this example). It is divided into 4C and shoulder land 4S). In the tread rubber, it is preferable to set the complex elastic modulus E * 1 of the rubber in the first land portion to be larger than the complex elastic modulus E * 2 of the rubber in the second land portion. When the tread rubber is formed of a plurality of layers (for example, cap rubber and base rubber), the complex elastic moduli E * 1 and E * 2 are complex in the outermost layer rubber (for example, cap rubber) in the tire radial direction. Defined as elastic modulus.

これにより、共鳴器Hの大きさ、及び形成数などに影響されることなく、第1の陸部の剛性低下を抑制できる。そのためには、複素弾性率E1と複素弾性率E2との差ΔEが5.0MPa以上が好ましい。なお差ΔEの上限は、20MPa以下が好ましく、20MPaを超えると、ノイズ低減効果が減少する。 As a result, it is possible to suppress a decrease in the rigidity of the first land portion without being affected by the size of the resonator H, the number of formations, and the like. For that purpose, the difference ΔE * between the complex elastic modulus E * 1 and the complex elastic modulus E * 2 is preferably 5.0 MPa or more. The upper limit of the difference ΔE * is preferably 20 MPa or less, and when it exceeds 20 MPa, the noise reduction effect decreases.

複素弾性率Eは、JIS-K6394の規定に準じて、次に示される条件で「粘弾性スペクトロメータ」を用いて測定した値である。
・初期歪み(10%)、
・振幅(±1%)、
・周波数(10Hz)、
・変形モード(引張)、
・測定温度(70℃)。
The complex elastic modulus E * is a value measured using a “viscoelastic spectrometer” under the conditions shown below in accordance with the provisions of JIS-K6394.
・ Initial distortion (10%),
・ Amplitude (± 1%),
・ Frequency (10Hz),
・ Deformation mode (tension),
-Measurement temperature (70 ° C).

ここで、空洞部10の容積V、連通溝14の断面積S、連通溝14の長さLは、所望の固有振動数fを得るために、適宜設定される。しかし、共鳴器Hは陸部4の内部に形成する必要があるため、容積V、断面積S、長さLには制約がある。 Here, the volume V of the cavity 10, the cross-sectional area S of the communication groove 14, and the length L of the communication groove 14 are appropriately set in order to obtain a desired natural frequency f. However, since the resonator H needs to be formed inside the land portion 4, there are restrictions on the volume V, the cross-sectional area S, and the length L.

例えば空洞部10の容積Vが大きすぎると、トレッド部2の剛性低下、加硫後の脱型性に問題が生じ、また小さすぎると消音効果の低下を招く。又連通溝14の断面積Sが大きすぎると、連通溝14の空気K1が振動する際の粘着摩擦が小さくなって消音効果が減じる。逆に断面積Sが小さすぎると、共鳴器Hとして十分に機能しなくなる。又連通溝14の長さLが長すぎると剛性及び消音効果が低下し、逆に短すぎても消音効果が低下する。このような観点から、空洞部10の容積Vは、20~4000mmの範囲が好ましい。又連通溝14の断面積Sは、1.5~20mmの範囲が好ましい。又連通溝14の長さLは、2~50mmの範囲が好ましい。 For example, if the volume V of the cavity 10 is too large, the rigidity of the tread portion 2 is lowered, problems occur in the demolding property after vulcanization, and if it is too small, the sound deadening effect is lowered. Further, if the cross-sectional area S of the communication groove 14 is too large, the adhesive friction when the air K1 of the communication groove 14 vibrates becomes small, and the muffling effect is reduced. On the contrary, if the cross-sectional area S is too small, it does not function sufficiently as the resonator H. Further, if the length L of the communication groove 14 is too long, the rigidity and the muffling effect are lowered, and conversely, if the length L is too short, the muffling effect is lowered. From this point of view, the volume V of the cavity 10 is preferably in the range of 20 to 4000 mm 3 . The cross-sectional area S of the communication groove 14 is preferably in the range of 1.5 to 20 mm 2 . Further, the length L of the communication groove 14 is preferably in the range of 2 to 50 mm.

図6に、タイヤ1の他の実施例を示す。本例のタイヤ1では、各陸部4が、この陸部4を横切る横溝6により、タイヤ周方向に並ぶ複数のブロック7に区分される。そして、例えばミドル陸部4Mに配されるブロック7の少なくとも一つに、消音手段5が形成される。本例では、空洞部10及び第1サイプ8が、タイヤ周方向線に対して、例えば45~90度の角度で傾斜する。また第1サイプ8は、ミドル陸部4M(ブロック7)を横切り、その両端部は主溝3C、3Sで開口している。図1中の符号15は、サイプであり、センタ陸部4C、ミドル陸部4M、ショルダー陸部4Sに形成され、前記第1サイプ8と協働して、タイヤ1のウエット性能、及び氷上性能を向上させる。前記サイプ15として、三次元サイプ12が好適に採用しうるが、深さ方向には直線状にのびる二次元サイプ、或いはフラットサイプも採用しうる。 FIG. 6 shows another embodiment of the tire 1. In the tire 1 of this example, each land portion 4 is divided into a plurality of blocks 7 arranged in the tire circumferential direction by a transverse groove 6 crossing the land portion 4. Then, for example, the muffling means 5 is formed in at least one of the blocks 7 arranged in the middle land portion 4M. In this example, the cavity 10 and the first sipe 8 are inclined at an angle of, for example, 45 to 90 degrees with respect to the tire circumferential direction line. Further, the first sipe 8 crosses the middle land portion 4M (block 7), and both ends thereof are opened by main grooves 3C and 3S. Reference numeral 15 in FIG. 1 is a sipe, which is formed on the center land portion 4C, the middle land portion 4M, and the shoulder land portion 4S, and cooperates with the first sipe 8 to provide the wet performance and the on-ice performance of the tire 1. To improve. As the sipe 15, a three-dimensional sipe 12 can be preferably adopted, but a two-dimensional sipe extending linearly in the depth direction or a flat sipe can also be adopted.

本例では、ミドル陸部4Mに消音手段5を設けているが、これに限定されるものではなく、任意の単数或いは複数の陸部4に消音手段5を設けることができる。 In this example, the muffling means 5 is provided in the middle land portion 4M, but the present invention is not limited to this, and the muffling means 5 can be provided in any one or more land portions 4.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。 Although the particularly preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the illustrated embodiment and can be modified into various embodiments.

図1に示すトレッドパターンを有し、かつ表1に示す消音手段を具える空気入りタイヤ(215/60R16)を試作し、車外騒音性能、及びウエット性能をテストした。各タイヤとも、表1に記載以外は実質的に同仕様である。 A pneumatic tire (215 / 60R16) having the tread pattern shown in FIG. 1 and equipped with the muffling means shown in Table 1 was prototyped, and the noise performance outside the vehicle and the wet performance were tested. Each tire has substantially the same specifications except as shown in Table 1.

(1)車外騒音性能:
新品時のタイヤを以下の条件で車両の全輪に装着し、テストコース(ISO路面)を速度80km/hにてエンジンオフで走行させ、走行中心線から7.5mを隔てて、かつ路面から高さ1.2mの位置に設置したマイクロホンにより通過騒音の最大レベルdB(A)を測定した。結果は、比較例1を100とする評点で表示し、数値が大きいほど低騒音であり車外騒音性能に優れている。
リム:16×6J
内圧:230kPa
車両:乗用車(排気量1800cc、FF車)
(1) External noise performance:
Install new tires on all wheels of the vehicle under the following conditions, run the test course (ISO road surface) at a speed of 80 km / h with the engine off, and leave 7.5 m from the center line and from the road surface. The maximum level dB (A) of passing noise was measured with a microphone installed at a height of 1.2 m. The results are displayed with a score of 100 for Comparative Example 1, and the larger the value, the lower the noise and the better the outside noise performance.
Rim: 16x6J
Internal pressure: 230kPa
Vehicle: Passenger car (displacement 1800cc, FF vehicle)

(2)ウエット性能:
インサイドドラム試験機を用い、50%摩耗時のタイヤを以下の条件で走行させたときのハイドロプレーニング現象の発生速度を測定した。結果は、比較例1を100とする評点で表示し、数値が大きいほどウエット性能に優れている。
リム:16×6J
内圧:230kPa
荷重:4.8kN
水深:水深5.0mm
(2) Wet performance:
Using an inside drum tester, the rate of occurrence of the hydroplaning phenomenon was measured when the tire was run under the following conditions when the tire was worn at 50%. The results are displayed with a score of 100 for Comparative Example 1, and the larger the value, the better the wet performance.
Rim: 16x6J
Internal pressure: 230kPa
Load: 4.8kN
Water depth: Water depth 5.0 mm

Figure 0007069710000001
Figure 0007069710000001

表の如く、実施例のタイヤは、主溝に起因する気柱共鳴音を減じて車外騒音性能を向上しうるのが確認できる。又実施例のタイヤは、50%摩耗時以降においてウエット性能を向上しうるのが確認できる。 As shown in the table, it can be confirmed that the tires of the examples can improve the noise performance outside the vehicle by reducing the air column resonance sound caused by the main groove. Further, it can be confirmed that the tire of the embodiment can improve the wet performance after 50% wear.

1 タイヤ
2 トレッド部
3 主溝
4 陸部
5 消音手段
8 第1サイプ
10 空洞部
12 三次元サイプ
14 連通溝
C タイヤ赤道
1 Tire 2 Tread part 3 Main groove 4 Land part 5 Silent means 8 1st sipe 10 Cavity part 12 3D sipe 14 Communication groove C Tire equator

Claims (10)

トレッド部に、タイヤ周方向にのびる主溝と、前記主溝によって区分される複数の陸部とを具えるタイヤであって、
少なくとも1つの陸部は、
前記陸部の内部で実質的に密閉され、かつ長さ方向の両端部が前記陸部の内部で途切れる空洞部と、
前記陸部の踏み面に設けられる細溝状をなし、かつ前記空洞部と前記主溝とを連通する連通溝と、
前記空洞部から前記陸部の踏み面までのびる第1サイプと、
を有する消音手段を具えており、
前記連通溝は、前記空洞部と接続位置Pで連結し、
前記空洞部の長さ方向一端から前記接続位置Pまでの距離Lbは、前記空洞部の長さLaの0.1~0.9倍である、
タイヤ。
A tire having a main groove extending in the circumferential direction of the tire and a plurality of land parts classified by the main groove in the tread portion.
At least one land area
A cavity that is substantially sealed inside the land portion and whose both ends in the length direction are interrupted inside the land portion.
A communication groove having a fine groove shape provided on the tread surface of the land portion and communicating the cavity portion with the main groove,
The first sipe extending from the cavity to the tread of the land,
Equipped with a muffling means
The communication groove is connected to the cavity at the connection position P, and is connected to the cavity.
The distance Lb from one end in the length direction of the cavity to the connection position P is 0.1 to 0.9 times the length La of the cavity.
tire.
前記消音手段は、前記空洞部の容積V(mm)と、前記連通溝の長さ方向と直角な断面積S(mm)と、前記連通溝における前記主溝から空洞部までの長さL(mm)とが下記式(1)を充足する請求項1記載のタイヤ。
5.0×10-5≦S/(V×L)≦3.0×10-3 ---(1)
The sound deadening means has a volume V (mm 3 ) of the cavity, a cross-sectional area S (mm 2 ) perpendicular to the length direction of the communication groove, and a length from the main groove to the cavity in the communication groove. The tire according to claim 1, wherein L (mm) satisfies the following formula (1).
5.0 × 10 -5 ≦ S / (V × L) ≦ 3.0 × 10 -3 --- (1)
前記消音手段は、トレッド部が路面と接地する接地範囲内に1以上配される請求項1又は2記載のタイヤ。 The tire according to claim 1 or 2, wherein the muffling means is one or more arranged within a ground contact range where the tread portion is in contact with the road surface. 前記第1サイプは、前記踏み面と平行な水平断面においては長さ方向に沿ってジグザグ状にのび、かつ、前記長さ方向線と直角な垂直断面においては深さ方向に沿ってジグザグ状にのびる三次元サイプである請求項1~3の何れかに記載のタイヤ。 The first sipe extends in a zigzag shape along the length direction in a horizontal cross section parallel to the tread, and in a zigzag shape along a depth direction in a vertical cross section perpendicular to the length direction line. The tire according to any one of claims 1 to 3, which is a three-dimensional sipe that extends. 前記三次元サイプは、前記垂直断面におけるジグザグの屈曲数nが2以上である請求項4に記載のタイヤ。 The tire according to claim 4, wherein the three-dimensional sipe has a zigzag bending number n of 2 or more in the vertical cross section. 前記三次元サイプは、前記踏み面から空洞部までのサイプ深さHsが2mm以上である請求項4又は5に記載のタイヤ。 The tire according to claim 4 or 5, wherein the three-dimensional sipe has a sipe depth Hs from the tread surface to the cavity of 2 mm or more. 前記三次元サイプは、前記垂直断面におけるジグザグの振幅Wsが1.5mm以上である請求項4~6の何れかに記載のタイヤ。 The tire according to any one of claims 4 to 6, wherein the three-dimensional sipe has a zigzag amplitude Ws of 1.5 mm or more in the vertical cross section. 空洞部の容積Vは、20~4000mmの範囲である請求項1~7の何れかに記載のタイヤ。 The tire according to any one of claims 1 to 7, wherein the volume V of the cavity portion is in the range of 20 to 4000 mm 3 . 前記連通溝の断面積Sは1.5~20mmの範囲である請求項1~8の何れかに記載のタイヤ。 The tire according to any one of claims 1 to 8, wherein the cross-sectional area S of the communication groove is in the range of 1.5 to 20 mm 2 . 前記連通溝の長さLは2~50mmの範囲である請求項1~9の何れかに記載のタイヤ。 The tire according to any one of claims 1 to 9, wherein the length L of the communication groove is in the range of 2 to 50 mm.
JP2017251293A 2017-12-27 2017-12-27 tire Active JP7069710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017251293A JP7069710B2 (en) 2017-12-27 2017-12-27 tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017251293A JP7069710B2 (en) 2017-12-27 2017-12-27 tire

Publications (2)

Publication Number Publication Date
JP2019116196A JP2019116196A (en) 2019-07-18
JP7069710B2 true JP7069710B2 (en) 2022-05-18

Family

ID=67303898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017251293A Active JP7069710B2 (en) 2017-12-27 2017-12-27 tire

Country Status (1)

Country Link
JP (1) JP7069710B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033503B2 (en) * 2018-06-18 2022-03-10 株式会社ブリヂストン tire
JP7215900B2 (en) * 2018-12-27 2023-01-31 Toyo Tire株式会社 pneumatic tire
JP7360018B2 (en) 2019-08-05 2023-10-12 横浜ゴム株式会社 pneumatic tires
JP7368214B2 (en) 2019-12-12 2023-10-24 株式会社ブリヂストン tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001195A (en) 2006-06-21 2008-01-10 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2008155798A (en) 2006-12-25 2008-07-10 Bridgestone Corp Pneumatic tire
JP2011509213A (en) 2008-01-09 2011-03-24 ソシエテ ド テクノロジー ミシュラン Tread equipment
JP2013133084A (en) 2011-12-27 2013-07-08 Bridgestone Corp Pneumatic tire
JP2013539735A (en) 2010-10-14 2013-10-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire noise attenuator
JP2015214303A (en) 2014-05-13 2015-12-03 株式会社ブリヂストン tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008001195A (en) 2006-06-21 2008-01-10 Toyo Tire & Rubber Co Ltd Pneumatic tire
JP2008155798A (en) 2006-12-25 2008-07-10 Bridgestone Corp Pneumatic tire
JP2011509213A (en) 2008-01-09 2011-03-24 ソシエテ ド テクノロジー ミシュラン Tread equipment
JP2013539735A (en) 2010-10-14 2013-10-28 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire noise attenuator
JP2013133084A (en) 2011-12-27 2013-07-08 Bridgestone Corp Pneumatic tire
JP2015214303A (en) 2014-05-13 2015-12-03 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JP2019116196A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP7069710B2 (en) tire
JP7095280B2 (en) tire
CN105644275B (en) Pneumatic tire
JP6374826B2 (en) Pneumatic tire
JP4803318B1 (en) Pneumatic tire
JP6307139B2 (en) tire
JP5475476B2 (en) Pneumatic tire
JP4976214B2 (en) Pneumatic tire
JP2012162194A (en) Pneumatic tire
JP6374819B2 (en) Pneumatic tire
JP7027873B2 (en) tire
JP5567417B2 (en) Pneumatic tire
JPWO2008143034A1 (en) Pneumatic tire
JP5030753B2 (en) Pneumatic tire
JP4939979B2 (en) Pneumatic tire
JP2014162387A (en) Pneumatic tire
JP2015071347A (en) Pneumatic tire
JP5193549B2 (en) Pneumatic tire
JP2008155798A (en) Pneumatic tire
CN107867126B (en) Tyre for vehicle wheels
JP7069709B2 (en) tire
JP5103042B2 (en) Pneumatic tire
JP6002182B2 (en) Pneumatic tire
JP2013233821A (en) Pneumatic tire
JP6446112B2 (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150