JP7068773B2 - Water treatment agent, water treatment method and water treatment equipment - Google Patents

Water treatment agent, water treatment method and water treatment equipment Download PDF

Info

Publication number
JP7068773B2
JP7068773B2 JP2017051044A JP2017051044A JP7068773B2 JP 7068773 B2 JP7068773 B2 JP 7068773B2 JP 2017051044 A JP2017051044 A JP 2017051044A JP 2017051044 A JP2017051044 A JP 2017051044A JP 7068773 B2 JP7068773 B2 JP 7068773B2
Authority
JP
Japan
Prior art keywords
water
water treatment
salt
treated
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017051044A
Other languages
Japanese (ja)
Other versions
JP2018153729A (en
JP2018153729A5 (en
Inventor
則夫 槙田
利幸 安永
弘明 仲田
康輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2017051044A priority Critical patent/JP7068773B2/en
Publication of JP2018153729A publication Critical patent/JP2018153729A/en
Publication of JP2018153729A5 publication Critical patent/JP2018153729A5/ja
Application granted granted Critical
Publication of JP7068773B2 publication Critical patent/JP7068773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

本発明は、水処理剤及びそれを用いた水処理方法及び水処理装置に関するものであり、より詳しくは水処理剤を使用した場合に起こるろ過閉塞を防止することができ、水処理剤を使用する凝集沈殿工程において優れた凝集処理効果を得ることができる水処理剤と、それを用いた浄水処理方法及び浄水処理装置に関するものである。 The present invention relates to a water treatment agent, a water treatment method using the water treatment agent, and a water treatment apparatus, and more specifically, it is possible to prevent filtration blockage that occurs when the water treatment agent is used, and the water treatment agent is used. The present invention relates to a water treatment agent capable of obtaining an excellent coagulation treatment effect in the coagulation sedimentation step, a water treatment method using the water treatment agent, and a water treatment apparatus.

従来より、浄水処理においては、懸濁物質を含有する被処理水(以下「原水」ともいう)に硫酸バンドやポリ塩化アルミニウム(PAC)等の無機凝集剤を注入し、懸濁物質を取り込んだ凝集フロックを形成させ、この凝集フロックを沈降分離させることによって、懸濁物質を除去していた。 Conventionally, in water purification treatment, an inorganic flocculant such as a sulfate band or polyaluminum chloride (PAC) is injected into the water to be treated (hereinafter also referred to as “raw water”) containing a suspended solid to take in the suspended solid. Suspended solids were removed by forming aggregated flocs and precipitating and separating the aggregated flocs.

しかしながら、近年、湖沼や河川の富栄養化が進み藻類が増殖するようになった。これらの藻類は凝集性が悪く、砂ろ過処理にも悪影響を与える。増殖した藻類を凝集させるには多量の無機凝集剤を必要とし、無機凝集剤を多量に注入することにより処理水が酸性になるため、アルカリ剤の添加が必要になる。また無機凝集剤に由来する汚泥の発生量も増加し、この汚泥の処理に費用が増大する問題も生じている。 However, in recent years, eutrophication of lakes and rivers has progressed, and algae have begun to grow. These algae have poor cohesiveness and adversely affect the sand filtration process. A large amount of inorganic flocculant is required to aggregate the grown algae, and the treated water becomes acidic by injecting a large amount of the inorganic flocculant, so that it is necessary to add an alkaline agent. In addition, the amount of sludge generated from the inorganic flocculant has also increased, and there is a problem that the cost for treating this sludge increases.

浄水処理において無機凝集剤による凝集フロックの沈降性を改良するために、アニオン系高分子凝集剤を併用することが検討されているが、次のような問題点が指摘されている。即ち、浄水処理において注入された高分子凝集剤は、生成フロックとともに固液分離され大部分は取り除かれるが、一部が微細フロックとともに処理水側に残存する。この残存した高分子凝集剤が後工程の砂ろ過池のろ過砂に吸着したり、ろ過砂層上部で二次凝集することで、ろ過閉塞を起こしてしまう恐れがある。 In order to improve the sedimentation property of aggregated flocs by inorganic flocculants in water purification treatment, it has been studied to use anionic polymer flocculants in combination, but the following problems have been pointed out. That is, the polymer flocculant injected in the water purification treatment is solid-liquid separated together with the generated flocs and most of them are removed, but a part remains on the treated water side together with the fine flocs. This residual polymer flocculant may be adsorbed on the filtered sand of the sand filter pond in the subsequent process, or may be secondarily aggregated on the upper part of the filtered sand layer, resulting in filtration blockage.

高分子凝集剤による閉塞を防止する手段としては、凝集薬封鎖剤を注入する方法、フロック形成槽内の流動電流を測定し、測定した流動電流に基づいて凝集剤の余剰量あるいは不足量を求め、凝集剤の注入量を制御する方法等がある。 As a means for preventing blockage due to the polymer flocculant, a method of injecting a coagulant sequestering agent, a flow current in the floc forming tank is measured, and a surplus or a shortage amount of the flocculant is determined based on the measured flow current. , There is a method of controlling the injection amount of the flocculant.

特開2003-340208号公報Japanese Patent Application Laid-Open No. 2003-340208 特開2007-61718号公報Japanese Unexamined Patent Publication No. 2007-61718

しかしながら、上記方法にも以下のような問題点がある。凝集薬封鎖剤を注入する方法は、処理コストの上昇を招く恐れがある。フロック形成槽内の流動電流を測定し、測定した流動電流に基づいて、凝集剤の注入量を制御する方法では、懸濁物質と凝集剤が過不足なく反応し、電気的に中性になるように凝集剤量をコントロールすることを目的としているが、浄水処理においては、電気的に中和となる点が必ずしも良好な処理結果が得られるわけではなく、特許文献1公報には処理水濁度やろ過への影響については何ら示唆されていない。 However, the above method also has the following problems. The method of injecting a flocculant sequestering agent may lead to an increase in processing cost. In the method of measuring the flow current in the floc forming tank and controlling the injection amount of the flocculant based on the measured flow current, the suspended substance and the flocculant react in just proportion and become electrically neutral. Although the purpose is to control the amount of flocculant as described above, in the water purification treatment, it is not always possible to obtain good treatment results in that it is electrically neutralized, and Patent Document 1 discloses treated water turbidity. No indication is made of the degree or effect on filtration.

そこで、本発明者らは上述の問題点に鑑み、高分子凝集剤について種々検討した結果、特定の高分子凝集剤を使用した場合に低濁度時においても優れた濁度除去効果が得られ、かつ高分子凝集剤を使用した場合に起り得るろ過閉塞の問題を解消し、安定的な浄水処理が可能であることを見出し、本発明を完成するに至った。 Therefore, as a result of various studies on polymer flocculants in view of the above-mentioned problems, the present inventors have obtained an excellent turbidity removing effect even at low turbidity when a specific polymer flocculant is used. In addition, it has been found that the problem of filtration blockage that may occur when a polymer flocculant is used is solved and stable water purification treatment is possible, and the present invention has been completed.

上記課題を解決するために、本発明は以下の構成とすることができる。 In order to solve the above problems, the present invention can have the following configuration.

(1)本発明の水処理剤は高分子凝集剤としてポリカルボン酸系重合体を含有するものであって、水処理剤全体で次の特性(a)~(c)を全て充足する。(a)1mol/L塩化ナトリウム溶液に溶解した場合の0.1質量%塩粘度が2mPa・s~5mPa・s、(b)25g/L塩化ナトリウム溶液に溶解した場合の0.1質量%溶液粘度が6mPa・s以下、(c)アニオン当量が4.5meq/g以上。 (1) The water treatment agent of the present invention contains a polycarboxylic acid-based polymer as a polymer flocculant, and the entire water treatment agent satisfies all of the following characteristics (a) to (c). (A) 0.1% by mass salt viscosity when dissolved in 1 mol / L sodium chloride solution is 2 mPa · s to 5 mPa · s, (b) 0.1% by mass solution when dissolved in 25 g / L sodium chloride solution The viscosity is 6 mPa · s or less, and (c) the anion equivalent is 4.5 meq / g or more.

(2)ポリカルボン酸系重合体は特に限定されないが、ポリ(メタ)アクリル酸又はその塩を含むことが好ましく、より好ましくはポリ(メタ)アクリル酸又はその塩を主成分とし、特に好ましくはポリ(メタ)アクリル酸とポリ(メタ)アクリル酸塩のいずれか一方又は両方からなるものを用いる。 (2) The polycarboxylic acid-based polymer is not particularly limited, but preferably contains poly (meth) acrylic acid or a salt thereof, more preferably poly (meth) acrylic acid or a salt thereof as a main component, and particularly preferably. Use one consisting of one or both of poly (meth) acrylic acid and poly (meth) acrylate.

(3)本発明は水処理剤に限定されず、水処理方法にも関するものであって、例えば、被処理水に無機凝集剤を注入した後、上記水処理剤を注入する工程を有する水処理方法である。 (3) The present invention is not limited to the water treatment agent, but also relates to a water treatment method. For example, water having a step of injecting the inorganic flocculant into the water to be treated and then injecting the water treatment agent. It is a processing method.

(4)好ましくは、無機凝集剤を被処理水1L当たり10mg~200mg注入し、水処理剤を被処理水1L当たり0.05mg~20mg注入する。 (4) Preferably, 10 mg to 200 mg of the inorganic flocculant is injected per 1 L of the water to be treated, and 0.05 mg to 20 mg of the water treatment agent is injected per 1 L of the water to be treated.

(6)より好ましい水処理方法では、水処理剤の注入により成長したフロックを、当該水処理剤を注入する前の前記被処理水に返送する。 (6) In a more preferable water treatment method, the flocs grown by injecting the water treatment agent are returned to the water to be treated before injecting the water treatment agent.

(7)本発明は更に水処理装置にも関するものであって、この水処理装置は、凝集混和部と、薬剤供給手段と、フロック形成部と、沈殿部と、ろ過部とを有する。凝集混和部には被処理水を導入し、無機凝集剤用の薬剤供給手段は凝集混和部に無機凝集剤を注入し、フロック形成部には無機凝集剤が注入された被処理水が導入され、沈殿部ではフロック形成部で形成されたフロックが沈降分離し、ろ過部には沈澱部から上澄水が導入される。そして、水処理剤用の薬剤供給手段は、凝集混和部、フロック形成部、凝集混和部とフロック形成部の間のいずれか一カ所以上で水処理剤を被処理水に注入する。なお、凝集混和部の前段に供給源から被処理水を導入するための着水部を有するものであってもよい。 (7) The present invention further relates to a water treatment device, which has a coagulation-mixing section, a drug supply means, a floc forming section, a settling section, and a filtration section. Water to be treated is introduced into the coagulation-mixed portion, an inorganic coagulant is injected into the coagulation-mixed portion as a drug supply means for the inorganic flocculant, and water to be treated in which the inorganic flocculant is injected is introduced into the floc forming portion. In the settling section, the flocs formed in the floc forming section are settled and separated, and the supernatant water is introduced from the settling section into the filtering section. Then, the chemical supply means for the water treatment agent injects the water treatment agent into the water to be treated at any one or more of the agglomerate admixture portion, the flock forming portion, and the agglomeration admixture portion and the flock forming portion. It should be noted that the water landing portion for introducing the water to be treated from the supply source may be provided in front of the coagulation / mixing portion.

(8)好ましい水処理装置では、無機凝集剤用の薬剤供給手段は、無機凝集剤を被処理水1リットル当たり10~mg200mg注入するよう設定され、水処理剤用の薬剤供給手段は、当該水処理剤を被処理水1リットル当たり0.05mg~20mg注入するよう設定される。 (8) In a preferable water treatment apparatus, the chemical supply means for the inorganic flocculant is set to inject 200 mg of the inorganic flocculant per liter of the water to be treated, and the chemical supply means for the water treatment agent is the water. The treatment agent is set to be injected at 0.05 mg to 20 mg per liter of water to be treated.

(9)より好ましい水処理装置は返送手段を有し、その返送手段が、水処理剤を注入後の被処理水と、当該被処理水から分離したフロック(粗大フロック、沈降分離フロック)の一方又は両方を、水処理剤の注入箇所よりも上流側の返送場所に返送する。返送場所は1か所でも複数箇所でもよいが、水処理剤の注入箇所が複数箇所に及ぶ場合は、最も上流側の水処理剤注入箇所と同じ箇所か、それよりも更に上流側、例えば着水部を返送場所とすることが好ましい。 (9) A more preferable water treatment apparatus has a return means, and the return means is one of the water to be treated after injecting the water treatment agent and the flocs (coarse flocs, sedimentation separation flocs) separated from the water to be treated. Or both are returned to the return location upstream of the water treatment agent injection site. The return location may be one or more, but if the water treatment agent is injected at multiple locations, it may be returned at the same location as the most upstream water treatment agent injection location, or further upstream, for example, arrival. It is preferable to use the water part as the return place.

本発明によれば、浄水処理装置の連続運転可能時間が長くなる上、濁度の低い浄水が得られる。 According to the present invention, the continuous operation time of the water purification apparatus becomes long, and purified water having low turbidity can be obtained.

本発明による水処理方法のフロー図である。It is a flow chart of the water treatment method by this invention. 本発明の浄水処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the water purification treatment apparatus of this invention. 実施例で用いた設備を説明する図である。It is a figure explaining the equipment used in an Example. 本発明の浄水処理装置を高速凝集沈澱装置とした場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where the water purification apparatus of this invention is a high-speed coagulation sedimentation apparatus. 本発明の浄水処理装置を超高速凝集沈澱装置とした場合の一例を示す模式図である。It is a schematic diagram which shows an example of the case where the water purification apparatus of this invention is an ultra-high-speed coagulation sedimentation apparatus.

以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。 Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific specific example.

図1は浄水処理の一例を示すフロー図であり、被処理水に無機凝集剤を添加して凝集フロックを形成した後、本発明の水処理剤を添加して凝集フロックを成長させる。被処理水は最終的にろ過され、処理水となる。先ず、無機凝集剤と、本発明の水処理剤について以下に説明する。 FIG. 1 is a flow chart showing an example of water purification treatment, in which an inorganic flocculant is added to the water to be treated to form aggregated flocs, and then the water treatment agent of the present invention is added to grow the aggregated flocs. The water to be treated is finally filtered to become treated water. First, the inorganic flocculant and the water treatment agent of the present invention will be described below.

[無機凝集剤]
本発明に用いる無機凝集剤は特に限定されず、浄水処理に通常使用される無機凝集剤を使用することができる。具体的には、鉄系凝集剤とアルミニウム系凝集剤のいずれか一方又は両方を使用可能であり、より具体的には、硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれらの混合物からなる群より選択されるいずれか1種以上を用いることができる。
[Inorganic flocculant]
The inorganic flocculant used in the present invention is not particularly limited, and an inorganic flocculant usually used for water purification treatment can be used. Specifically, either one or both of the iron-based flocculant and the aluminum-based flocculant can be used, and more specifically, a sulfuric acid band, polyaluminum chloride (PAC), aluminum chloride, and polyferrous sulfate. Any one or more selected from the group consisting of (polyiron), ferric chloride and mixtures thereof can be used.

[水処理剤(高分子凝集剤)]
本発明の水処理剤はポリカルボン酸系重合体を含むものであって、好ましくはポリカルボン酸系重合体を主成分(50質量%)とするが、ポリカルボン酸系重合体の含有量は70質量%以上が好ましく、より好ましくは90質量%以上であり、実質的にポリカルボン酸系重合体からなる水処理剤が最も好ましい。
[Water treatment agent (polymer flocculant)]
The water treatment agent of the present invention contains a polycarboxylic acid-based polymer, preferably containing a polycarboxylic acid-based polymer as a main component (50% by mass), but the content of the polycarboxylic acid-based polymer is 70% by mass or more is preferable, more preferably 90% by mass or more, and a water treatment agent substantially composed of a polycarboxylic acid-based polymer is most preferable.

ポリカルボン酸系重合体は、天然物、合成品のいずれも用いることができる。例えば、合成品の場合は、カルボン酸とカルボン酸塩の少なくとも一方を用いて生成した重合体の他、カルボン酸又はその塩以外の他のモノマーで重合体を生成後、その重合体の少なくとも一部を加水分解などの化学変性でカルボキシル化したものも含む。 As the polycarboxylic acid-based polymer, either a natural product or a synthetic product can be used. For example, in the case of a synthetic product, in addition to a polymer produced using at least one of a carboxylic acid and a carboxylate, at least one of the polymers after forming a polymer with a monomer other than the carboxylic acid or a salt thereof. It also includes those obtained by carboxylating the part by chemical modification such as hydrolysis.

すなわち、ポリカルボン酸系重合体は、カルボン酸とカルボン酸塩の少なくとも一方を構造単位として有する重合体であれば特に限定されず、ホモポリマーでもよいし、コポリマーでもよい。以下、カルボン酸又はその塩をカルボン酸(塩)と略記し、他の化合物についても塩を使用可能な場合は同様に略記する。 That is, the polycarboxylic acid-based polymer is not particularly limited as long as it is a polymer having at least one of a carboxylic acid and a carboxylate as a structural unit, and may be a homopolymer or a copolymer. Hereinafter, carboxylic acid or a salt thereof is abbreviated as carboxylic acid (salt), and if a salt can be used for other compounds, it is also abbreviated.

ポリカルボン酸系重合体の原料となるカルボン酸(塩)は特に限定されず、不飽和カルボン酸(塩)、飽和カルボン酸(塩)の一方又は両方を用いることができるが、例えば、(メタ)アクリル酸(塩)、マレイン酸(塩)、イタコン酸(塩)、クロトン酸(塩)、ビニル安息香酸(塩)などの不飽和カルボン酸(塩)から選択される1種以上を用いることができる。 The carboxylic acid (salt) used as a raw material for the polycarboxylic acid-based polymer is not particularly limited, and one or both of an unsaturated carboxylic acid (salt) and a saturated carboxylic acid (salt) can be used. ) Use one or more selected from unsaturated carboxylic acids (salts) such as acrylic acid (salt), maleic acid (salt), itaconic acid (salt), crotonic acid (salt), vinyl benzoic acid (salt). Can be done.

最も好ましいカルボン酸(塩)は(メタ)アクリル酸(塩)、すなわち、アクリル酸(塩)とメタクリル酸(塩)から選択される。塩としてはナトリウムやカリウム等のアルカリ金属塩の他、アンモニウム塩も用いることができるが、アルカリ金属塩、特にナトリウムが好ましい。 The most preferred carboxylic acid (salt) is selected from (meth) acrylic acid (salt), ie acrylic acid (salt) and methacrylic acid (salt). As the salt, an ammonium salt can be used in addition to an alkali metal salt such as sodium and potassium, but an alkali metal salt, particularly sodium, is preferable.

カルボン酸(塩)と、カルボン酸(塩)以外のコモノマーを共重合させてポリカルボン酸系(共)重合体を生成する場合、コモノマーの種類は特に限定されないが、例えば、ビニルスルホン酸(塩)などの1種以上のアニオン性モノマー:(メタ)アクリルアミド、(メタ)アクリレート(塩)又はこれらの誘導体から選択される1種以上のノニオン性モノマー:窒素含有(メタ)アクリレート(塩)、アミノ基含有エチレン性不飽和化合物(塩)、アミンイミド基含有化合物(塩)から選択される1種以上のカチオン性モノマーなどを用いることができる。 When a carboxylic acid (salt) and a comonomer other than the carboxylic acid (salt) are copolymerized to produce a polycarboxylic acid-based (co) polymer, the type of the comonomer is not particularly limited, but for example, vinyl sulfonic acid (salt). ) Etc.: (meth) acrylamide, (meth) acrylate (salt) or one or more nonionic monomers selected from derivatives thereof: nitrogen-containing (meth) acrylate (salt), amino One or more cationic monomers selected from a group-containing ethylenically unsaturated compound (salt) and an amineimide group-containing compound (salt) can be used.

上記のようなコモノマーは1種以上を組み合わせて使用することが可能であり、その量も特に限定されない。しかし、後述するように処理剤全体のアニオン当量を高くするためには、カチオン性モノマーの使用量はモノマー原料全体の5mol%未満にすべきであり、好ましくはカチオン性モノマーを使用しない。また、ノニオン性モノマーを用いる場合も、アニオン当量が後述する最適値になるよう、その使用量を制限する。更に、アニオン性モノマーのみを用いることもできる。 The above-mentioned comonomer can be used in combination of one or more kinds, and the amount thereof is not particularly limited. However, as will be described later, in order to increase the anion equivalent of the entire treatment agent, the amount of the cationic monomer used should be less than 5 mol% of the total amount of the monomer raw material, and preferably no cationic monomer is used. Also, when a nonionic monomer is used, the amount used is limited so that the anion equivalent becomes the optimum value described later. Furthermore, only anionic monomers can be used.

ノニオン性モノマーのうち、(メタ)アクリルアミドのように毒性があるものは、その使用量をモノマー原料全体の10mol%以下とすることが好ましく、より好ましくは5mol%以下とする。また、(メタ)アクリルアミドを使用せずにカルボン酸系重合体を製造しても、本発明の処理剤の浄水能力への影響は少ない。なお、(メタ)アクリルアミドとは、アクリルアミドとメタクリアミドの両方を含む概念である。 Among the nonionic monomers, those having toxicity such as (meth) acrylamide are preferably used in an amount of 10 mol% or less, more preferably 5 mol% or less of the total amount of the monomer raw material. Further, even if a carboxylic acid-based polymer is produced without using (meth) acrylamide, the effect on the water purification capacity of the treatment agent of the present invention is small. In addition, (meth) acrylamide is a concept including both acrylamide and methamide.

上記のようにモノマーを重合させた合成品とは別に、または合成品と共に天然物(抽出物、化学変性品を含む)を用いる場合も、その種類は特に限定されない。天然物由来のポリカルボン酸系重合体としては、例えば、アルギン酸(塩)、カルボキシメチルセルロース(塩)、ポリグルタミン酸(塩)、ペクチン(塩)などから1種以上を選択することができる。 The type is not particularly limited when a natural product (including an extract and a chemically modified product) is used separately from the synthetic product obtained by polymerizing the monomer as described above or together with the synthetic product. As the polycarboxylic acid-based polymer derived from a natural product, for example, one or more can be selected from alginic acid (salt), carboxymethyl cellulose (salt), polyglutamic acid (salt), pectin (salt) and the like.

このように、ポリカルボン酸系重合体としては、合成品、天然物、コポリマー、ホモポリマー、化学変性品など多様な種類を1種以上選択して使用することができるが、安全性を考慮すると、食品添加物としても使用できるポリカルボン酸系重合体、具体的には、ポリ(メタ)アクリル酸(塩)、アルギン酸(塩)、カルボキシメチルセルロース(塩)、ポリグルタミン酸(塩)からなる群より1種以上が選択される。 As described above, as the polycarboxylic acid-based polymer, one or more of various types such as synthetic products, natural products, copolymers, homopolymers, and chemically modified products can be selected and used, but in consideration of safety. , Polycarboxylic acid-based polymers that can also be used as food additives, specifically from the group consisting of poly (meth) acrylic acid (salt), alginic acid (salt), carboxymethyl cellulose (salt), polyglutamic acid (salt). One or more are selected.

これらの中でも、凝集性能が高いポリ(メタ)アクリル酸(塩)が最も好ましく、ポリ(メタ)アクリル酸(塩)と1種以上の他の好適なポリカルボン酸系重合体を組み合わせて使用することもできるが、ポリ(メタ)アクリル酸(塩)がポリカルボン酸系共重合体全体に占める割合を50質量%以上とすることが好ましく、より好ましくは75質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%以上であり、実質的にポリ(メタ)アクリル酸(塩)のみをポリカルボン酸系共重合体として使用することもできる。 Among these, poly (meth) acrylic acid (salt) having high aggregation performance is most preferable, and poly (meth) acrylic acid (salt) is used in combination with one or more other suitable polycarboxylic acid-based polymers. Although it is possible, the ratio of the poly (meth) acrylic acid (salt) to the total polycarboxylic acid-based copolymer is preferably 50% by mass or more, more preferably 75% by mass or more, still more preferably 80% by mass. % Or more, particularly preferably 90% by mass or more, and substantially only poly (meth) acrylic acid (salt) can be used as the polycarboxylic acid-based copolymer.

ポリ(メタ)アクリル酸(塩)は特に限定されず、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸アンモニウムからなる群より選択されるいずれか1種以上を用いることが可能であるが、特に好ましくはポリアクリル酸ナトリウムである。 The poly (meth) acrylic acid (salt) is not particularly limited, and for example, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, polymethacrylic acid, sodium polymethacrylate, potassium polymethacrylate, and the like. It is possible to use any one or more selected from the group consisting of polyammonium methacrylate, but sodium polyacrylate is particularly preferable.

上記のようなポリカルボン酸系重合体以外の水処理剤成分は特に限定されず、1種以上の他の高分子凝集剤、1種以上の添加剤を添加することも可能である。他の高分子凝集剤の具体例は、ポリ(メタ)アクリルアミド、アミン縮合系、DADMAC(ポリジアリルジメチルアンモニウムクロリド)、メラミン酸コロイド、スルホン酸系、ポリ(メタ)アクリルエステル系、ジシアンジアミド系などがある。しかし、より好ましくは、ポリカルボン酸系重合体以外の高分子凝集剤は使用しない。 The water treatment agent component other than the polycarboxylic acid-based polymer as described above is not particularly limited, and one or more other polymer flocculants and one or more additives can be added. Specific examples of other polymer flocculants include poly (meth) acrylamide, amine condensation type, DADMAC (polydiallyldimethylammonium chloride), melamine colloid, sulfonic acid type, poly (meth) acrylic ester type, and dicyandiamide type. be. However, more preferably, no polymer flocculant other than the polycarboxylic acid polymer is used.

このように、本発明の水処理剤は、ポリカルボン酸系重合体を必須として含むのであれば、1種または2種以上のポリカルボン酸系重合体のみからなる場合、ポリカルボン酸系重合体以外の物質(他の高分子凝集剤、添加剤など)をも含む場合などが考えられるが、いずれの場合も水処理剤全体では、0.1質量%塩粘度が2mPa・s~5mPa・s、0.1質量%溶液粘度が6mPa・s以下、かつ、アニオン当量が4.5meq/g以上になるように、ポリカルボン酸系重合体の種類及び量、並びにポリカルボン酸系重合体以外の物質の種類及び量を調整する。 As described above, if the water treatment agent of the present invention contains a polycarboxylic acid-based polymer as an essential component, the polycarboxylic acid-based polymer may be composed of only one or more polycarboxylic acid-based polymers. It is conceivable that substances other than the above (other polymer flocculants, additives, etc.) may be contained, but in either case, the 0.1% by mass salt viscosity of the entire water treatment agent is 2 mPa · s to 5 mPa · s. , The type and amount of the polycarboxylic acid-based polymer, and other than the polycarboxylic acid-based polymer so that the 0.1% by mass solution viscosity is 6 mPa · s or less and the anion equivalent is 4.5 meq / g or more. Adjust the type and amount of substance.

ここで、0.1質量%塩粘度とは、塩化ナトリウム1mol(約58.44g)を、1Lの水に溶解した塩化ナトリウム水溶液(1mol/L)に、水処理剤をその固形分濃度が0.1質量%になるよう溶解して試料を作成し、この試料をB型粘度計にて25℃の条件で測定した値であり、単位はmPa・sである。 Here, the 0.1% by mass salt viscosity means that 1 mol (about 58.44 g) of sodium chloride is dissolved in 1 L of water in an aqueous sodium chloride solution (1 mol / L), and the solid content concentration of the water treatment agent is 0. A sample was prepared by dissolving the sample so as to have a concentration of 1% by mass, and this sample was measured with a B-type viscosity meter under the condition of 25 ° C., and the unit is mPa · s.

上記の0.1質量%塩粘度は凝集フロックの凝集性の指標となるもので、0.1質量%塩粘度が2mPa・s未満では、凝集フロックがさほど大きくならず沈降性の改善が望めない。他方、0.1質量%塩粘度が5mPa・sを超えると水処理剤の拡散性が低下するので、フロック形成槽で十分に拡散させるためには撹拌速度を上げる必要があり、この攪拌速度の上昇がフロック破壊の原因になる。 The above 0.1% by mass salt viscosity is an index of the cohesiveness of aggregated flocs, and if the 0.1% by mass salt viscosity is less than 2 mPa · s, the aggregated flocs do not become so large and improvement in sedimentation cannot be expected. .. On the other hand, if the 0.1% by mass salt viscosity exceeds 5 mPa · s, the diffusivity of the water treatment agent decreases, so it is necessary to increase the stirring speed in order to sufficiently diffuse in the floc forming tank. The rise causes the floc to be destroyed.

アニオン当量は以下の測定法で求めることができる値であって、単位はmeq/gである。水処理剤1g(固形分)を水1Lに溶解した水溶液(1g/L)を調整し、N/200メチルグリコールキトサン溶液を5ml添加し、攪拌後、トルイジンブルー指示薬を2~3滴添加し、PVSK溶液(N/400ポリビニル硫酸カリウム溶液)で滴定し、変色して10秒以上保持する時点を終点とする。同上の操作で試料を添加せずにブランク試験を行い、下記式によりアニオン当量Avを算出する。 The anion equivalent is a value that can be obtained by the following measurement method, and the unit is meq / g. An aqueous solution (1 g / L) in which 1 g (solid content) of a water treatment agent is dissolved in 1 L of water is prepared, 5 ml of an N / 200 methyl glycol chitosan solution is added, and after stirring, 2 to 3 drops of a toluidine blue indicator are added. The end point is the point of titration with a PVSK solution (N / 400 potassium polyvinyl sulfate solution), discoloration, and holding for 10 seconds or longer. Perform the blank test without adding the sample by the same operation, and calculate the anion equivalent Av by the following formula.

アニオン当量(Av)[meq/g] =
(ブランクの滴定量[ml]-サンプルの滴定量[ml])×1/2×PVSK溶液の力価
Anion equivalent (Av) [meq / g] =
(Blank titration [ml] -Sample titration [ml]) x 1/2 x PVSK solution titer

なお、アニオン性の高分子重合体は負にコロイド荷電しており、コロイド当量値にマイナスの符号を付したコロイド荷電量として表記する方法も用いられてはいるが、ここでは、非負数のアニオン当量として表記する。すなわち、アニオン当量が大きいほど高(強)アニオンであり、アニオン当量が小さいほど低(弱)アニオン、すなわちノニオン性に近づくことになる(例:アニオン当量0~0.7はノニオン性)。 The anionic polymer polymer is negatively colloidally charged, and a method of expressing the colloidal equivalent value as a colloidal charge amount with a negative sign is also used, but here, a non-negative number of anions is used. Notated as an equivalent. That is, the larger the anion equivalent, the higher (strong) anion, and the smaller the anion equivalent, the lower (weak) anion, that is, the closer to nonionic (eg, anion equivalents 0 to 0.7 are nonionic).

本発明の水処理剤はアニオン当量が4.5以上であり、好ましいアニオン当量は4.5~11.0であり、特に好ましいアニオン当量は9.0以上である。アニオン当量がこの範囲を超えると凝集フロックが大きく成長せず処理水の濁度が高くなる傾向となる。 The water treatment agent of the present invention has an anion equivalent of 4.5 or more, a preferable anion equivalent of 4.5 to 11.0, and a particularly preferable anion equivalent of 9.0 or more. If the anion equivalent exceeds this range, the aggregated flocs do not grow significantly and the turbidity of the treated water tends to increase.

0.1質量%溶液粘度とは、塩化ナトリウムの量を1molから25gに変更して塩化ナトリウム水溶液(25g/L)を調整した以外は、上記0.1質量%塩粘度と同じ方法で測定した粘度であり、単位はmPa・sである。 The 0.1% by mass solution viscosity was measured by the same method as the above 0.1% by mass salt viscosity except that the amount of sodium chloride was changed from 1 mol to 25 g to adjust the sodium chloride aqueous solution (25 g / L). It is a viscosity, and the unit is mPa · s.

前述の0.1質量%塩粘度やアニオン当量は、従来より高分子凝集剤の凝集性能の評価に利用される場合があったが、これらの指標は浄水処理工程におけるろ過装置(ろ過池)のろ過抵抗との関連で論じられることはなかった。本願発明者らが鋭意検討した結果、高分子凝集剤が使用されたときのろ過抵抗への影響度は、25g/Lの塩化ナトリウムで測定した0.1質量%溶液粘度で評価することが最適であることを見出した。 The above-mentioned 0.1% by mass salt viscosity and anion equivalent have been used in the past to evaluate the aggregation performance of polymer flocculants, but these indicators are used in the filtration device (filtration pond) in the water purification process. It was not discussed in relation to filtration resistance. As a result of diligent studies by the inventors of the present application, it is optimal to evaluate the degree of influence on the filtration resistance when the polymer flocculant is used by the 0.1% by mass solution viscosity measured with 25 g / L sodium chloride. I found that.

この0.1質量%溶液粘度は、凝集沈殿砂ろ過法などにより浄水処理を行う際の砂ろ過池のろ過抵抗の指標となるものである。一般に、ろ過開始から時間の経過により砂ろ過池のろ抗(ろ過抵抗)が上昇するが、0.1質量%溶液粘度が6mPa・s以下の水処理剤を使用した場合には、このろ抗の上昇率が水処理剤を使用しない場合と同程度ですむ。これに対し、水処理剤の0.1質量%溶液粘度が6mPa・sを超えると、砂ろ過池のろ抗上昇率が速くなり、ろ過障害を招く要因となる。 This 0.1% by mass solution viscosity is an index of the filtration resistance of the sand filtration pond when the water purification treatment is performed by the coagulation sedimentation sand filtration method or the like. Generally, the filter resistance (filtration resistance) of the sand filter pond increases with the passage of time from the start of filtration, but when a water treatment agent with a 0.1% by mass solution viscosity of 6 mPa · s or less is used, this filter resistance. The rate of increase is about the same as when no water treatment agent is used. On the other hand, when the viscosity of the 0.1% by mass solution of the water treatment agent exceeds 6 mPa · s, the rate of increase in the filter resistance of the sand filter pond becomes high, which causes a filtration failure.

このように、本発明では、水処理剤の0.1質量%塩粘度及びアニオン当量を好適範囲にすることでフロック形成性を向上し、かつ、水処理剤の0.1質量%溶液粘度を好適範囲とすることでろ過障害の抑制をも可能にする。 As described above, in the present invention, the floc forming property is improved by setting the 0.1% by mass salt viscosity and the anion equivalent of the water treatment agent in a suitable range, and the 0.1% by mass solution viscosity of the water treatment agent is adjusted. By setting it in a suitable range, it is possible to suppress filtration problems.

次に、水処理剤が用いられる浄水処理装置と、水処理剤を用いた浄水処理方法について具体的に説明する。 Next, a water purification apparatus using a water treatment agent and a water purification method using the water treatment agent will be specifically described.

[浄水処理装置]
本発明が適用できる浄水処理設備(浄水処理装置)は特に限定されず、実用化されている通常の設備を全て採用することが可能であり、例えば横流式沈殿設備を有する浄水施設、高速凝集沈殿装置を有する浄水設備が挙げられる。
[Water purification equipment]
The water purification equipment (water purification equipment) to which the present invention can be applied is not particularly limited, and all ordinary equipment that has been put into practical use can be adopted. A water purification facility having a device can be mentioned.

高速凝集沈殿装置としてはスラリー循環型(図4に一例を示す)、スラッジ・ブランケット型いずれも適用可能である。また、マイクロサンドのような、通常の凝集フロックよりも比重が大きい沈降促進剤を併用する超高速凝集沈殿装置(図5に一例を示す)の適用も可能である。ただし、いずれの場合も、本発明の水処理剤は、ろ過装置(ろ過池)を有する浄水処理装置に特に適している。 As the high-speed coagulation sedimentation device, both a slurry circulation type (an example is shown in FIG. 4) and a sludge / blanket type can be applied. It is also possible to apply an ultrafast coagulation-sedimenting device (an example shown in FIG. 5) in which a sedimentation accelerator having a higher specific gravity than that of a normal coagulation floc, such as microsand, is used in combination. However, in any case, the water treatment agent of the present invention is particularly suitable for a water purification device having a filtration device (filtration pond).

以下に、横流式沈殿設備を有する浄水施設を例として具体的に説明する。図2は浄水処理装置の一例を示しており、この浄水処理装置15は、被処理水1を導入する着水井(着水部)16と、懸濁物を凝集する凝集処理手段20と、凝集フロックを分離除去する固液分離手段30と、分離したフロックの汚泥を濃縮・脱水する汚泥処理手段40と、薬剤(無機凝集剤12、水処理剤13、塩素剤14)を供給する薬剤供給手段50とを有し、固液分離手段30内に、または、固液分離手段30とは別にろ過池32などのろ過装置を設置する。次に、各手段20、30、40、50の具体的構造を説明する。 Hereinafter, a water purification facility having a cross-flow settling facility will be specifically described as an example. FIG. 2 shows an example of a water purification treatment apparatus, in which the water purification treatment apparatus 15 includes a water landing well (water landing portion) 16 for introducing the water to be treated 1, a coagulation treatment means 20 for aggregating suspensions, and agglomeration. A solid-liquid separation means 30 for separating and removing flocs, a sludge treatment means 40 for concentrating and dehydrating the separated floc sludge, and a drug supply means for supplying chemicals (inorganic flocculant 12, water treatment agent 13, chlorine agent 14). A filtration device such as a filtration pond 32 is installed in the solid-liquid separation means 30 or separately from the solid-liquid separation means 30. Next, the specific structures of the means 20, 30, 40, and 50 will be described.

凝集処理手段20は、凝集混和池(凝集混和部)21とフロック形成池(フロック形成部)22とを有している。凝集混和池21とフロック形成池22は1台ずつ設置してもよいし、いずれか一方又は両方を複数台設置してもよい。これらの池21、22を複数台設置する場合は、同じ種類の池21、22を直列又は並列、より好ましくは直列に接続し、被処理水が複数の池を通過して、次の処理工程に送られるように設計する。 The coagulation treatment means 20 has a coagulation mixing pond (aggregation mixing portion) 21 and a floc forming pond (flock forming portion) 22. The coagulation mixing pond 21 and the floc forming pond 22 may be installed one by one, or one or both of them may be installed in a plurality of units. When a plurality of these ponds 21 and 22 are installed, the ponds 21 and 22 of the same type are connected in series or in parallel, more preferably in series, and the water to be treated passes through the plurality of ponds to perform the next treatment step. Designed to be sent to.

凝集混和池21は着水井16の下流側に設置され、導入された被処理水1には薬剤供給手段50から無機凝集剤12が直接又は間接的に注入される。 The coagulation mixing pond 21 is installed on the downstream side of the landing well 16, and the inorganic coagulant 12 is directly or indirectly injected into the introduced water 1 to be treated from the drug supply means 50.

例えば、無機凝集剤の薬剤供給手段50は、1台又は複数台の凝集混和池21と、凝集混和池21よりも上流側の装置(着水井16、配管)のうち、いずれか1台以上に接続されており、無機凝集剤は、被処理水とは別に凝集混和池21に直接注入されるか、被処理水と一緒に上流側の装置から凝集混和池21に間接的に注入される。 For example, the agent supply means 50 for the inorganic coagulant may be one or more of one or a plurality of coagulation mixing ponds 21 and devices (water landing well 16, piping) upstream of the coagulation mixing pond 21. The inorganic coagulant is connected and is directly injected into the coagulation-mixed pond 21 separately from the water to be treated, or is indirectly injected into the coagulation-mixed pond 21 from the device on the upstream side together with the water to be treated.

凝集混和池21には、攪拌翼、攪拌ポンプなどの攪拌手段が設置されている。この攪拌手段は、所定の撹拌エネルギーを付与する撹拌速度(回転数)が設定され、無機凝集剤が注入された被処理水を急速撹拌する。撹拌エネルギーの指標は特に限定されないが、その一例はG値(単位時間単位体積あたりの仕事量Pから被処理水の粘性係数μを除した値の平方根、日本水道協会水道施設設計指針2000、P188より)である。 A stirring means such as a stirring blade and a stirring pump is installed in the coagulation mixing pond 21. In this stirring means, a stirring speed (rotational speed) for applying a predetermined stirring energy is set, and the water to be treated in which the inorganic flocculant is injected is rapidly stirred. The index of agitation energy is not particularly limited, but one example is the G value (square root of the value obtained by subtracting the viscosity coefficient μ of the water to be treated from the work amount P per unit time unit volume, Japan Water Works Association Water Supply Facility Design Guideline 2000, P188. Than).

急速撹拌の結果、被処理水中の濁質が凝集して微細フロック(マイクロフロック)として成長し、微細フロックを含む被処理水1が下流側に設置されたフロック形成池22に導入される。 As a result of rapid stirring, the turbidity in the water to be treated aggregates and grows as fine flocs (micro flocs), and the water to be treated 1 containing the fine flocs is introduced into the floc forming pond 22 installed on the downstream side.

このフロックの凝集状態は、目視で観察するほか、浄水処理装置15に測定手段70を設けてもよい。いずれの場合も、観察(測定)したフロック成長度を、本発明の水処理剤を注入するタイミングの判断に利用可能である。 In addition to visually observing the aggregated state of the flocs, the water purification apparatus 15 may be provided with a measuring means 70. In either case, the observed (measured) flock growth rate can be used to determine the timing of injecting the water treatment agent of the present invention.

上記水処理剤用の薬剤供給手段50は、無機凝集剤12の導入部位よりも下流側、すなわち、凝集混和池21と、フロック形成池22と、凝集混和池21とフロック形成池22との間の装置(配管等)のいずれか1台以上に接続されており、水処理剤は、被処理水1とは別にフロック形成池22に直接注入されるか、あるいは被処理水1と一緒に上流側の装置からフロック形成池22に間接的に注入される。 The chemical supply means 50 for the water treatment agent is located downstream from the introduction site of the inorganic flocculant 12, that is, between the coagulation mixing pond 21, the floc forming pond 22, and the coagulation mixing pond 21 and the floc forming pond 22. The water treatment agent is directly injected into the floc forming pond 22 separately from the water to be treated 1, or is upstream together with the water to be treated 1. It is indirectly injected into the floc forming pond 22 from the device on the side.

凝集混和池21と同様に、フロック形成池22には、攪拌羽、攪拌ポンプなどの攪拌手段が設置されている。この撹拌手段は、凝集混和池21の撹拌手段よりも低攪拌エネルギー(例えば、G値10秒-1~80秒-1)を付与するように撹拌速度が設定され、上述の水処理剤が注入された被処理水を緩速撹拌し、微細フロックを粗大化させる。 Similar to the coagulation mixing pond 21, the floc forming pond 22 is provided with stirring means such as a stirring blade and a stirring pump. The stirring means is set to a stirring speed so as to give a lower stirring energy (for example, G value 10 seconds -1 to 80 seconds -1 ) than the stirring means of the coagulation mixing pond 21, and the above-mentioned water treatment agent is injected. The treated water to be treated is stirred slowly to coarsen the fine flocs.

固液分離手段30は、沈殿池(沈殿部)31とろ過池(ろ過部)32の何れか一方あるいは両方を有している。粗大フロック分離のためには、フロック形成池22とろ過池32との間には沈殿手段(沈殿池31)を設置することが好ましい。 The solid-liquid separating means 30 has one or both of a settling basin (sedimentation section) 31 and a filtration pond (filtration section) 32. For coarse floc separation, it is preferable to install a settling means (sedimentation pond 31) between the floc forming pond 22 and the filtration pond 32.

沈殿池31の構造は特に限定されないが、一般的にその内部には、傾斜板又は傾斜管が設けられており、フロック形成池22からの被処理水は、この沈殿池31で粗大フロックを主に含む沈殿物(汚泥)と、粗大フロックが分離された液相とに分離される。 The structure of the settling basin 31 is not particularly limited, but generally, an inclined plate or an inclined pipe is provided inside the settling basin 31, and the water to be treated from the floc forming pond 22 is mainly coarse flocs in the settling basin 31. The precipitate (sludge) contained in the above is separated into the liquid phase from which the coarse flocs are separated.

この分離の後又は分離の前に、粗大フロックの一部又は全部を水処理剤の注入箇所よりも上流側へ返送することも可能である。具体的には、フロック形成池22と、沈殿池31と、それらの間の配管のうち1以上にフロック返送手段60を接続し、分離した凝集沈殿汚泥3と粗大フロックのいずれか一方又は両方を含む被処理水を、凝集混和池21と、それよりも上流側の装置(着水井16、配管)のうち、いずれか一ヶ所以上の返送場所に返送してもよい。最も好ましい返送場所は着水井16である。このフロック返送手段60は特に限定されないが、一般にフロックを返送する返送管を有し、必要であれば送水ポンプ、切替バルブ、貯蔵タンク等の他の部材をも有する。 It is also possible to return some or all of the coarse flocs upstream of the water treatment site injection site after or prior to this separation. Specifically, the floc return means 60 is connected to one or more of the floc forming pond 22, the settling pond 31, and the piping between them, and one or both of the separated coagulated sludge 3 and the coarse flocs are connected. The water to be treated may be returned to one or more of the coagulation mixing basin 21 and the equipment (water landing well 16, piping) on the upstream side of the coagulation mixing basin 21. The most preferred return location is the landing well 16. The flock return means 60 is not particularly limited, but generally has a return pipe for returning the flock, and if necessary, has other members such as a water pump, a switching valve, and a storage tank.

他方、粗大フロックを分離後の液相(沈殿上澄水)は、沈殿池31からろ過池32に送られ、ろ過池32を通過する間に過剰な高分子凝集剤や残留フロック等の残留汚染物質が除去され、更に、消毒剤として塩素剤14が薬剤供給手段50を介して添加され処理水2となる。この処理水2は浄水として使用される。ろ過池32はろ過材を有しており、例えばろ過材は粒状、繊維状、又は膜状であって、その種類や形状は特に限定されない。 On the other hand, the liquid phase (precipitated supernatant water) after separating the coarse flocs is sent from the sedimentation pond 31 to the filtration pond 32, and while passing through the filtration pond 32, excess polymer flocculants and residual contaminants such as residual flocs are left over. Is removed, and further, a chlorine agent 14 is added as a disinfectant via the agent supply means 50 to become the treated water 2. This treated water 2 is used as purified water. The filter pond 32 has a filter material, for example, the filter material is granular, fibrous, or film-like, and the type and shape thereof are not particularly limited.

好ましいろ過材は粒子状であって、例えば、ろ過砂(珪砂)(有効径0.35~1.0mm、均等係数1.7以下、比重2.57~2.67)、アンスラサイト(有効径0.7~4.0mm、均等係数1.4以下、比重1.4~1.6)、ガーネット(有効径約0.3mm、均等係数1.5以下、比重3.8~4.1)、マンガン砂(有効径0.35~0.60mm、均等係数1.5以下、比重2.58~2.65)、セラミック(有効径0.3~2.0mm、比重1.0~1.2)のうち、1種以上を用いることができるが、上水道用途の場合は、珪砂とアンスラサイトのいずれか一方又は両方を含むものが最も好ましく、これらのろ過材に他のろ過材を更に組み合わせることも可能である。ろ過材は単層又は多層構造とし、これらろ過材とフィルターとを組み合わせることも可能である。 Preferred filter media are particulate, for example, filtered sand (quartz sand) (effective diameter 0.35 to 1.0 mm, uniformity coefficient 1.7 or less, specific gravity 2.57 to 2.67), anthracite (effective diameter). 0.7 to 4.0 mm, uniformity coefficient 1.4 or less, specific gravity 1.4 to 1.6), garnet (effective diameter about 0.3 mm, uniformity coefficient 1.5 or less, specific gravity 3.8 to 4.1) , Manganese sand (effective diameter 0.35 to 0.60 mm, uniformity coefficient 1.5 or less, specific gravity 2.58 to 2.65), ceramic (effective diameter 0.3 to 2.0 mm, specific gravity 1.0 to 1. Of 2), one or more can be used, but for water supply applications, those containing either one or both of silica sand and anthracite are most preferable, and these filtering materials are further combined with other filtering materials. It is also possible. The filter material has a single-layer or multi-layer structure, and it is also possible to combine these filter materials with a filter.

汚泥処理手段40は、排水池41、排泥池42、濃縮池43および脱水装置44を有しており、凝集処理手段20や固液分離手段30から排出される汚泥、排水などを処理する。例えば、ろ過池32には沈殿上澄水に残留する微細な凝集フロックや過剰な高分子凝集剤のような残留汚染物質が捕捉されるため、定期的にろ材を洗浄する必要がある。この洗浄で発生するろ過洗浄排水4は、排水池41に導入され、排水池上澄水5と汚泥スラリー6に沈降分離され、排水池上澄水5は着水井16へ、汚泥スラリー6は排泥池42へ移送される。なお、ろ過洗浄排水4は着水井16に移送してそのまま再利用することもできる。 The sludge treatment means 40 has a drainage pond 41, a sludge pond 42, a concentration pond 43, and a dehydration device 44, and treats sludge, wastewater, and the like discharged from the coagulation treatment means 20 and the solid-liquid separation means 30. For example, the filter medium 32 needs to be cleaned regularly because residual contaminants such as fine aggregate flocs and excess polymer flocculants remaining in the sediment supernatant are trapped in the filter reservoir 32. The filtered cleaning drainage 4 generated by this cleaning is introduced into the drainage pond 41 and settled and separated into the drainage pond supernatant water 5 and the sludge slurry 6, the drainage pond supernatant water 5 goes to the landing well 16, and the sludge slurry 6 goes to the sludge reservoir 42. Be transferred. The filtered cleaning wastewater 4 can be transferred to the landing well 16 and reused as it is.

排泥池42は排水池41の下流側に設置されており、排水池41から汚泥スラリー6が、沈殿池31から凝集沈殿汚泥3が導入される。排泥池42には撹拌翼のような混合装置が設置されており、導入された汚泥スラリー6および凝集沈殿汚泥3は均質に混合され、浄水汚泥7として濃縮池43に移送される。 The sludge pond 42 is installed on the downstream side of the drainage pond 41, and the sludge slurry 6 is introduced from the drainage pond 41 and the coagulated sludge 3 is introduced from the settling pond 31. A mixing device such as a stirring blade is installed in the sludge pond 42, and the introduced sludge slurry 6 and the coagulated sediment sludge 3 are uniformly mixed and transferred to the concentrated pond 43 as purified water sludge 7.

浄水汚泥7は濃縮池43でさらに濃縮されて濃縮池上澄水8と濃縮汚泥9に沈降分離される。濃縮汚泥9は濃縮池43の下流側に設置された汚泥脱水装置44に移送され、脱水離脱水10と脱水ケーキ11に分離され、脱水ケーキ11は場外に搬出される。一方、濃縮池上澄水8と脱水離脱水10は着水井16に返送して再利用することもできる。 The purified water sludge 7 is further concentrated in the concentrated pond 43 and settled and separated into the concentrated pond supernatant water 8 and the concentrated sludge 9. The concentrated sludge 9 is transferred to a sludge dewatering device 44 installed on the downstream side of the concentrating pond 43, separated into the dewatered dewatering water 10 and the dewatered cake 11, and the dewatered cake 11 is carried out of the site. On the other hand, the concentrated pond clear water 8 and the dehydrated withdrawal water 10 can be returned to the landing well 16 and reused.

浄水処理装置15は上記構成に限定されず、他の装置も適宜組み合わせて使用することも可能であり、例えば、ろ過池32の上流側あるいは下流側に、オゾン接触池と粒状活性炭吸着池の組合せによる吸着設備を設置してもよい。 The water purification device 15 is not limited to the above configuration, and other devices can be used in combination as appropriate. For example, a combination of an ozone contact pond and a granular activated carbon adsorption pond on the upstream side or the downstream side of the filtration pond 32. You may install the adsorption equipment by.

横流式沈殿設備以外の浄水処理装置として、図4に一例を示したスラリー循環型の高速凝集沈殿装置80では、不図示の薬剤供給手段により水処理剤と無機凝集剤のような薬品類が供給され、薬品類を含む母液と被処理水1(原水)とを第1反応室81で撹拌手段87を用いて撹拌混合し、混合液を第2反応室82を経て分離室85へ導く。フロックが分離した上澄水は分離室85の上部から引き出され、フロックは循環流に誘導されて下降し、第1反応室81へ戻る。 As a water purification device other than the cross-flow type settling facility, in the slurry circulation type high-speed coagulation-sedimentation device 80 shown as an example in FIG. 4, chemicals such as a water treatment agent and an inorganic coagulant are supplied by a drug supply means (not shown). Then, the mother sol containing chemicals and the water to be treated 1 (raw water) are stirred and mixed in the first reaction chamber 81 using the stirring means 87, and the mixed liquid is guided to the separation chamber 85 via the second reaction chamber 82. The supernatant water from which the flocs have separated is drawn from the upper part of the separation chamber 85, and the flocs are guided by the circulation flow to descend and return to the first reaction chamber 81.

この装置80では、水処理剤は無機凝集剤の後であれば、第1、第2反応室81、82又はその他装置のいずれに添加してもよいが、無機凝集剤の注入箇所又はその下流側が凝集混和部となり、水処理剤の注入箇所又はその下流側がフロック形成部となり、分離室85が沈殿部となる。ろ過部は、この設備80の内部又は外部に設置可能であり、分離室85の上澄水はろ過部を通過した後に処理水となる。 In this device 80, the water treatment agent may be added to any of the first and second reaction chambers 81, 82 or other devices as long as it is after the inorganic coagulant, but the injection site of the inorganic coagulant or its downstream thereof. The side becomes the coagulation / mixing part, the water treatment agent injection part or the downstream side thereof becomes the floc forming part, and the separation chamber 85 becomes the settling part. The filtration unit can be installed inside or outside the equipment 80, and the supernatant water in the separation chamber 85 becomes treated water after passing through the filtration unit.

他方、図5に一例を示した超高速凝集沈殿装置90では、被処理水1は急速撹拌槽91(凝集混和部)に導入され、薬剤供給手段により供給された無機凝集剤と攪拌混合され、注入撹拌槽92で薬剤供給手段により供給された水処理剤、およびマイクロサンドなどの沈降促進剤と攪拌混合され、フロック形成槽93(フロック形成部)で粗大フロックが形成され、沈殿槽94(沈殿部)で粗大フロックが分離した後、上澄水はこの装置90の内部又は外部のろ過部でろ過され、処理水となる。 On the other hand, in the ultra-high-speed coagulation / sedimentation apparatus 90 shown as an example in FIG. 5, the water to be treated 1 is introduced into the rapid stirring tank 91 (coagulation / mixing portion), and is stirred and mixed with the inorganic coagulant supplied by the drug supply means. The water treatment agent supplied by the drug supply means in the injection stirring tank 92 and the precipitation accelerator such as microsand are stirred and mixed, and coarse flocs are formed in the floc forming tank 93 (flock forming portion), and the settling tank 94 (precipitation) is formed. After the coarse flocs are separated in the section), the supernatant water is filtered by the filtration section inside or outside the device 90 to become treated water.

いずれの態様でも、ろ過部(ろ過池32)は浄水処理装置15、80、90の下流側に位置しており、下流側に吸着設備などの最終処理装置を設置した場合を除き、このろ過部を通過した水が最終的に処理水2(浄水)となるが、前述のように、従来の水処理剤(高分子凝集剤)を使用した浄水処理技術では、ろ過材の閉塞障害によるろ抗上昇の問題があった。本発明の水処理剤13、浄水処理装置15、80、90並びに浄水処理方法ではこの問題が劇的に改善された。 In any aspect, the filtration unit (filtration pond 32) is located on the downstream side of the water purification devices 15, 80, 90, and this filtration unit is not provided when a final treatment device such as an adsorption facility is installed on the downstream side. The water that has passed through the water is finally treated as treated water 2 (purified water). There was a rising problem. The water treatment agent 13, the water purification equipment 15, 80, 90 and the water treatment method of the present invention have dramatically improved this problem.

次に、図2の浄水処理装置15を用いた場合の、本発明の浄水処理方法を具体的に説明する。 Next, the water purification method of the present invention when the water purification apparatus 15 of FIG. 2 is used will be specifically described.

[浄水処理方法]
本発明で処理する被処理水1は特に限定されず、工場排水、家庭排水、海水などの処理も可能ではあるが、特に適しているのは河川水、湖沼水、貯水地水、雨水、伏流水、地下水、井水である。これらの被処理水1(原水)を水源から直接、または着水井16や図示していない生物処理設備のような前処理部を介して凝集混和池21に供給する。
[Water purification method]
The treated water 1 to be treated in the present invention is not particularly limited, and it is possible to treat factory effluent, domestic effluent, seawater, etc., but particularly suitable are river water, lake water, reservoir water, rainwater, and groundwater. Water, groundwater, well water. These treated water 1 (raw water) are supplied to the coagulation mixing pond 21 directly from the water source or through a pretreatment section such as a landing well 16 or a biological treatment facility (not shown).

必要であれば被処理水1の水質をジャーテストなどで予め調べ、水質に合わせて無機凝集剤12の注入量を予め設定しておき、被処理水1リットルあたり5~200mg、好ましくは10~200mg、より好ましくは10~100mgの添加量で無機凝集剤12を注入する。なお、上記添加量は、無機凝集剤が硫酸アルミニウムや塩化第二鉄の場合は固形分の質量であり、無機凝集剤がPAC(酸化アルミニウムAl換算10質量%のポリ塩化アルミニウム溶液)の場合は、その液体質量である。無機凝集剤12が注入された被処理水1を急速撹拌し、被処理水1中の濁質分を凝集させる。 If necessary, the water quality of the water to be treated 1 is checked in advance by a jar test or the like, the injection amount of the inorganic flocculant 12 is set in advance according to the water quality, and 5 to 200 mg, preferably 10 to 10 to 1 liter of the water to be treated. The inorganic flocculant 12 is injected in an addition amount of 200 mg, more preferably 10 to 100 mg. The amount added is the mass of the solid content when the inorganic flocculant is aluminum sulfate or ferric chloride, and the inorganic flocculant is PAC (aluminum oxide Al2O3 equivalent 10 % by mass polyaluminum chloride solution). In the case of, it is the liquid mass. The water to be treated 1 in which the inorganic flocculant 12 is injected is rapidly stirred to aggregate the turbidity in the water to be treated 1.

本発明の水処理剤を注入する時期(タイミング)を決定するため、微細フロックの成長度を定期的又は連続して測定する。フロック成長度は、測定手段70により機械的に、あるいは作業者が目視(肉眼、顕微鏡)により測定可能であり、また、フロック成長度としては、フロック径、被処理水濁度など多様な指標を採用することが可能であるが、好ましくはフロック径を測定する。 In order to determine the timing (timing) of injecting the water treatment agent of the present invention, the degree of growth of fine flocs is measured periodically or continuously. The flock growth degree can be measured mechanically by the measuring means 70 or visually (naked eye, microscope) by the operator, and the flock growth degree can be measured by various indexes such as the flock diameter and the water turbidity to be treated. Although it can be adopted, it is preferable to measure the floc diameter.

一般に、作業者が肉眼で認識可能なフロック径(直径)が0.1mm以上と言われており、フロック径(好ましくは平均粒径)が0.1mm以上、好ましくは1mm~2mmの範囲にある時点を注入可能のタイミングと判断し、水処理剤13の注入を開始する。 Generally, it is said that the flock diameter (diameter) recognizable by the operator is 0.1 mm or more, and the flock diameter (preferably the average particle size) is 0.1 mm or more, preferably in the range of 1 mm to 2 mm. The time point is determined to be the timing at which injection is possible, and the injection of the water treatment agent 13 is started.

水処理剤13の注入量は、原水の水質により適宜変更可能ではあるが、好ましくは、無機凝集剤注入後の被処理水1リットル当たり0.05mg~20mg(固形分)の範囲内で設定する。 The injection amount of the water treatment agent 13 can be appropriately changed depending on the water quality of the raw water, but is preferably set within the range of 0.05 mg to 20 mg (solid content) per liter of the water to be treated after the injection of the inorganic flocculant. ..

この水処理剤13が注入された被処理水1を緩速攪拌してフロックを成長させ、その一部又は全部を沈殿池31で固液分離し、分離された液相がろ過池32を通る間に、微小な残留フロックのような残留汚染物質が捕捉除去される。 The water 1 to be treated into which the water treatment agent 13 has been injected is slowly stirred to grow flocs, and a part or all of the flocs are solid-liquid separated in the settling pond 31, and the separated liquid phase passes through the filtration pond 32. In the meantime, residual contaminants such as tiny residual flocs are captured and removed.

この残留フロックの表面には水処理剤13が付着している。アクリルアミド系高分子凝集剤(非カルボン酸系)のような従来の高分子凝集剤のみを水処理剤として用いた場合は、ろ過閉塞によりろ過池32のろ抗が急激に上昇することがあった。本発明の水処理剤13で処理した場合には、このろ過閉塞が起こり難く、仮にろ過閉塞が起こっても通常の逆洗処理により容易に回復させることができる。 The water treatment agent 13 adheres to the surface of the residual flocs. When only a conventional polymer flocculant such as an acrylamide-based polymer flocculant (non-carboxylic acid-based) is used as a water treatment agent, the filter resistance of the filter pond 32 may increase sharply due to filtration blockage. .. When treated with the water treatment agent 13 of the present invention, this filtration blockage is unlikely to occur, and even if the filtration blockage occurs, it can be easily recovered by a normal backwashing treatment.

なお、ろ過閉塞は、高分子凝集剤の種類だけではなく、他の要因でも起こりうる。例えば、原水の濁度が低く、フロックの核となる濁質分が少なすぎる場合は、フロックが十分に成長されないため、フロック成長に寄与できない残留高分子凝集剤が増加する。このような場合は、高分子凝集剤を無機凝集剤と併用しても濁度低減の効果が見られない上、残留高分子凝集剤や遊離フロックの増加によりろ過閉塞が起こりやすくなる。 It should be noted that the filtration blockage can occur not only by the type of the polymer flocculant but also by other factors. For example, if the turbidity of the raw water is low and the turbidity content that becomes the core of the flocs is too small, the flocs are not sufficiently grown, and the residual polymer flocculants that cannot contribute to the flocs growth increase. In such a case, even if the polymer flocculant is used in combination with the inorganic flocculant, the effect of reducing the turbidity is not seen, and the increase in the residual polymer flocculant and the free flocs tends to cause filtration blockage.

従って、本発明の他の実施形態では、上記水処理剤13の使用に加え、フロック返送手段60を使用して、フロック形成池22と、沈殿池31と、その他装置(フロック形成池22と沈殿池31の間の装置、配管など)のいずれか一ヶ所以上から、フロックを上流側の装置へ返送することが好ましい。なお、返送するフロックとは、沈降分離フロック18の他、粗大フロック17を含む被処理水(すなわち、水処理剤注入後の被処理水)をも含む概念である。 Therefore, in another embodiment of the present invention, in addition to the use of the water treatment agent 13, the floc return means 60 is used to set the floc forming pond 22, the settling pond 31, and other devices (flock forming pond 22 and settling). It is preferable to return the flocs to the upstream device from any one or more of the devices (devices, pipes, etc.) between the ponds 31. The flocs to be returned are a concept including not only the sedimentation separated flocs 18 but also the water to be treated containing the coarse flocs 17 (that is, the water to be treated after injecting the water treatment agent).

具体的には、原水の濁度、無機凝集剤注入後のフロック成長度、前記の水処理剤注入後のフロック成長度のうち、いずれか一つ以上を測定し、測定値が予め設定した値に達しないときは、測定値に応じた量のフロック17、18を上流側に返送し、無機凝集剤12注入前の被処理水と混合する。 Specifically, one or more of the turbidity of raw water, the flock growth degree after injecting the inorganic coagulant, and the flock growth degree after injecting the water treatment agent is measured, and the measured value is a preset value. When the amount does not reach the limit, the amount of flocs 17 and 18 corresponding to the measured values is returned to the upstream side and mixed with the water to be treated before injecting the inorganic coagulant 12.

フロックの返送場所は、水処理剤の注入箇所より上流側、すなわち、凝集混和池21またはそれよりも上流側の装置(着水井16、配管)であれば特に限定されず、これら返送場所のうち、1又は2箇所以上に返送することが可能であるが、測定値に応じて返送場所の切り替えも可能であり、具体的には、原水濁度が低い場合は、凝集混和池21よりも上流側で被処理水(原水)に返送する。 The flock return location is not particularly limited as long as it is a device (water landing well 16, piping) upstream of the water treatment agent injection location, that is, the coagulation mixing pond 21 or upstream thereof, and among these return locations. It is possible to return to one or more places, but it is also possible to switch the return place according to the measured value. Specifically, if the raw water turbidity is low, it is upstream from the coagulation mixing pond 21. Return to the water to be treated (raw water) on the side.

返送されたフロック17、18には、表面に水処理剤13が付着し、それ自体が凝集能力を有するので、フロックを返送しない場合と比較して、フロック相互が衝突してより粗大なフロックを形成する。その結果、フロックの粗大化により固液分離が促進され、凝集フロックによるろ過池32の詰まりが防止される上、水処理剤13の注入量を低減することもできる。 Since the water treatment agent 13 adheres to the surface of the returned flocs 17 and 18, and the flocs themselves have a coagulating ability, the flocs collide with each other and produce coarser flocs as compared with the case where the flocs are not returned. Form. As a result, solid-liquid separation is promoted by coarsening the flocs, clogging of the filter pond 32 due to aggregated flocs is prevented, and the injection amount of the water treatment agent 13 can be reduced.

返送するフロック17、18は特に限定されないが、濃縮池43で完全に沈殿・濃縮された沈殿フロックの返送は避けることが好ましい。完全に沈殿・濃縮した沈殿フロックでは返送の際に目的濁質濃度に調整することが困難で、かえって無機凝集剤や高分子凝集剤の必要量が多くなることがある。また、濃縮により、沈殿フロック表面に露出する高分子凝集剤の吸着部位(活性基)が減少し、フロック形成能力が極端に低下してしまう。 The flocs 17 and 18 to be returned are not particularly limited, but it is preferable to avoid returning the settled flocs completely settled and concentrated in the concentration pond 43. It is difficult to adjust the desired turbidity concentration at the time of return with a completely precipitated / concentrated precipitated floc, and on the contrary, the required amount of an inorganic flocculant or a polymer flocculant may increase. Further, due to the concentration, the adsorption sites (active groups) of the polymer flocculant exposed on the surface of the precipitated floc are reduced, and the floc forming ability is extremely reduced.

フロック17、18を返送する場合、1種以上の添加剤、例えば、カオリンのような粘土鉱物粒子や微細砂を一緒に返送してもよく、これら添加剤によりフロックがより強固でかつ重量を有するものになるので、除濁効果がより発揮される。 When returning flocs 17 and 18, one or more additives such as clay mineral particles such as kaolin and fine sand may be returned together, and these additives make the flocs stronger and heavier. As it becomes a thing, the turbidity effect is more exerted.

これら添加剤を返送フロックと混合する場所は特に限定されないが、フロックを返送する経路の途中、例えば、フロック返送手段60の返送管が好ましく、より好ましくは、フロックを被処理水と混合する直前(着水井16や凝集混和池21に到達する直前の配管)が好ましい。また、返送管ではなく、着水井16、凝集混和池21や配管に返送する地点に、別途、粘土質無機微粒子や微細砂を注入する手段を設けることも可能である。 The place where these additives are mixed with the return flocs is not particularly limited, but in the middle of the route for returning the flocs, for example, the return pipe of the flocs return means 60 is preferable, and more preferably immediately before the flocs are mixed with the water to be treated ( (Piping immediately before reaching the landing well 16 or the coagulation mixing pond 21) is preferable. Further, it is also possible to separately provide a means for injecting clay inorganic fine particles or fine sand into the landing well 16, the coagulation mixing pond 21, or the point where the sand is returned to the pipe instead of the return pipe.

なお、フロックの返送や、前記の水処理剤添加は、いずれの工程でも工程開始の判断にはフロック成長度の測定結果を利用するが、その測定方法は特に限定されない。 In any of the steps of returning the flocs and adding the water treatment agent, the measurement result of the floc growth degree is used to determine the start of the process, but the measuring method is not particularly limited.

例えば、作業者が肉眼でフロックを観察し、水処理剤13の注入開始を判断する場合、目視でフロックが確認でき(すなわちフロック径0.1mm以上)、かつ、確認できる最大フロックの径が2mm以下の場合を、水処理剤13の注入開始のタイミングとする。濁度を作業者が目視で測定する場合は、比色管等を用いることができる(視覚濁度)。 For example, when the operator observes the flocs with the naked eye and determines the start of injection of the water treatment agent 13, the flocs can be visually confirmed (that is, the flocs diameter is 0.1 mm or more), and the maximum flock diameter that can be confirmed is 2 mm. The following cases are set as the timing for starting the injection of the water treatment agent 13. When the operator visually measures the turbidity, a colorimetric tube or the like can be used (visual turbidity).

フロック成長度を測定手段70で機械的に測定する場合は、通常使用される測定装置を広く使用することができる。例えば、測定手段70は光学センサーを有し、被処理水の透過率、吸光度、散乱光等の光学データを取得し、その光学データからフロック径、濁度を測定する。測定手段70で測定される濁度は、例えば、散乱光濁度、積分球濁度、又は透光度濁度であり、フロック径は、例えば吸光度変動解析法による平均粒径である。 When the flock growth degree is mechanically measured by the measuring means 70, a commonly used measuring device can be widely used. For example, the measuring means 70 has an optical sensor, acquires optical data such as transmittance, absorbance, and scattered light of the water to be treated, and measures the floc diameter and turbidity from the optical data. The turbidity measured by the measuring means 70 is, for example, scattered light turbidity, integral sphere turbidity, or translucency turbidity, and the floc diameter is, for example, the average particle size by an absorbance fluctuation analysis method.

なお、本発明の浄水処理装置15及び処理方法は、上記以外のいかなる変更も可能であり、例えば、pH調整剤、凝集補助剤、殺菌剤等の通常浄水処理に使用される添加剤や、他の水処理剤(高分子凝集剤、無機凝集剤)を被処理水に添加可能であり、その添加のタイミングや添加手段も特に限定されるものではない。以下、実施例により本発明をより具体的に説明する。 The water purification apparatus 15 and the treatment method of the present invention can be modified in any way other than the above, and for example, additives used for normal water treatment such as pH adjusters, aggregation aids, and bactericides, and others. The water treatment agent (polymer coagulant, inorganic coagulant) can be added to the water to be treated, and the timing and means of addition thereof are not particularly limited. Hereinafter, the present invention will be described in more detail with reference to Examples.

本発明の水処理剤として6種類のポリマI~VIを用意し、比較対象として7種類の比較ポリマI~VIIを用意した。その組成を下記表1、2に記載する。 Six types of polymers I to VI were prepared as the water treatment agent of the present invention, and seven types of comparative polymers I to VII were prepared as comparison targets. The composition is shown in Tables 1 and 2 below.

Figure 0007068773000001
Figure 0007068773000001

上記表1中、成分Aはポリアクリル酸Na(ホモポリマー)を示し、成分Bはポリアクリル酸Naとアルギン酸Naとの混合物であり、成分Cはポリアクリル酸NaとカルボキシメチルセルロースNaとの混合物であり、成分Dはポリアクリル酸NaとポリアクリルアミドNaの混合物であって、成分DのポリアクリルアミドNaはそのアニオン構造単位にカルボキシル基を含むアニオン系のポリカルボン酸共重合体である(アクリルアミドとアクリル酸Naの共重合体)。 In Table 1 above, component A represents sodium polyacrylate (homopolymer), component B is a mixture of sodium polyacrylate and Na alginate, and component C is a mixture of sodium polyacrylate and Na carboxymethyl cellulose. The component D is a mixture of sodium polyacrylate and Na polyacrylamide, and the polyacrylamide Na of the component D is an anionic polycarboxylic acid copolymer containing a carboxyl group in its anionic structural unit (acrylamide and acrylic). Copolymer of Na acid).

Figure 0007068773000002
Figure 0007068773000002

上記表2の成分Dは、表1の成分Dと同様、ポリアクリル酸Naと、アニオン系のポリカルボン酸共重合体であるポリアクリルアミドNaとの混合物である。比較ポリマVI、VIIを、NaCl濃度が1mol/Lの溶液と、25g/Lの溶液にそれぞれ溶解させたところ、完全に溶解せずに不溶物が残ったため、比較ポリマVI、VIIについては0.1質量%塩粘度と0.1質量%溶液粘度が測定できなかった。 Similar to the component D in Table 1, the component D in Table 2 is a mixture of sodium polyacrylate and polyacrylamide Na, which is an anionic polycarboxylic acid copolymer. When the comparative polymers VI and VII were dissolved in a solution having a NaCl concentration of 1 mol / L and a solution having a NaCl concentration of 25 g / L, respectively, insoluble matter remained without being completely dissolved. The 1% by mass salt viscosity and the 0.1% by mass solution viscosity could not be measured.

上記ポリマI~VI及び比較ポリマI~VIIを用いて下記表3の条件で浄水試験を行った。 A water purification test was conducted using the above polymers I to VI and comparative polymers I to VII under the conditions shown in Table 3 below.

Figure 0007068773000003
Figure 0007068773000003

各試験に用いた無機凝集剤の注入量、水処理剤の種類及び注入量を、試験結果と共に下記表4に記載する。 The injection amount of the inorganic flocculant used in each test, the type and injection amount of the water treatment agent are shown in Table 4 below together with the test results.

Figure 0007068773000004
Figure 0007068773000004

以下、各実施例及び各比較例について詳細に説明する。 Hereinafter, each Example and each Comparative Example will be described in detail.

<比較例1>
図3は実験装置101を示しており、図2の装置15と対応する部材には同じ符号を付して説明を省略する。この実験装置101の原水槽に105に、濁度10度の被処理水(原水槽に袖ヶ浦市水および和光純薬株式会社製の試薬カオリンを添加して調製・適宜補充)を1L/分の速度で通水し、無機凝集剤12として上記のポリ塩化アルミニウム(以下PACと略す)を凝集混和槽(図2の凝集混和池21に相当)の第1槽に注入し、凝集混和槽21の第1槽、第2槽、第3槽それぞれでインペラ回転数200rpmの撹拌による凝集混和を行い、第3槽におけるフロック径が0.1mm以上になったことを確認してから被処理水1をフロック形成槽(図2のフロック形成池22に相当)に導入した。
<Comparative Example 1>
FIG. 3 shows the experimental device 101, and the members corresponding to the device 15 in FIG. 2 are designated by the same reference numerals and the description thereof will be omitted. 1 L / min of water to be treated with a turbidity of 10 degrees (prepared and appropriately replenished by adding Sodegaura City water and Kaolin, a reagent manufactured by Wako Pure Chemical Industries, Ltd.) to 105 in the raw water tank of this experimental device 101. Water is passed at a speed, and the above polyaluminum chloride (hereinafter abbreviated as PAC) is injected into the first tank of the coagulation mixing tank (corresponding to the coagulation mixing pond 21 in FIG. 2) as the inorganic coagulant 12, and the coagulation mixing tank 21 Aggregate and mix by stirring at an impeller rotation speed of 200 rpm in each of the first tank, the second tank, and the third tank, and after confirming that the floc diameter in the third tank is 0.1 mm or more, the water to be treated 1 is added. It was introduced into a floc forming tank (corresponding to the floc forming pond 22 in FIG. 2).

フロック形成槽22の第1槽・第2槽ではインペラ回転数60rpm、フロック形成槽22の第3槽・第4槽ではインペラ回転数40rpmで緩速撹拌してフロックを粗大化させ、フロック形成槽22の第4槽における凝集フロック径を肉眼で測定したところフロック径は1~3mmであり、粗大フロックと微小フロックが混在した状態であった。 The first and second tanks of the flock forming tank 22 have an impeller rotation speed of 60 rpm, and the third and fourth tanks of the flock forming tank 22 have an impeller rotation speed of 40 rpm. When the aggregated floc diameter in the 4th tank of 22 was measured with the naked eye, the floc diameter was 1 to 3 mm, and it was in a state where coarse flocs and micro flocs were mixed.

次に、沈殿槽(図2の沈殿池31に相当)の上昇流速が50mm/minとなるように被処理水を沈殿槽31のセンターウェル103に導入し、処理が安定した後に沈殿槽上澄水を採取し、日本電色工業社製の濁度計「WA 6000」を用いて濁度を測定したところ、濁度は2度を超えていた。なお、この比較例1では、沈殿池上澄水の濁度が高く処理が不良であったため、ろ過塔への通水は実施しなかった。 Next, the water to be treated is introduced into the center well 103 of the settling tank 31 so that the ascending flow velocity of the settling tank (corresponding to the settling pond 31 in FIG. 2) is 50 mm / min. The turbidity was measured using a turbidity meter "WA 6000" manufactured by Nippon Denshoku Kogyo Co., Ltd., and the turbidity was over 2 degrees. In Comparative Example 1, the turbidity of the clear water in the settling pond was high and the treatment was poor, so water was not passed through the filtration tower.

<比較例2>
沈殿槽31の上昇流速が10mm/分となるように被処理水をセンターウェル103に導入した以外は、比較例1と同じ条件で凝集沈殿処理を行ったところ、沈殿槽上澄水の濁度は0.1~0.5度に減少した。この沈殿上澄水を、空気・水同時洗浄および水逆洗によりろ過砂を予め清浄な状態にしたろ過塔に、通水速度LVが5m/分となるよう水量を調整して通水を行ったところ、通水開始から72時間経過後でも、ろ抗はろ過砂の洗浄の目安とされる1500mmには達しなかった。なお、比較例2は、浄水処理施設で無機凝集剤のみを使用して凝集沈殿ろ過処理が行われる場合のもっとも標準的な処理条件に該当する。
<Comparative Example 2>
When the coagulation sedimentation treatment was performed under the same conditions as in Comparative Example 1 except that the water to be treated was introduced into the center well 103 so that the ascending flow velocity of the settling tank 31 was 10 mm / min, the turbidity of the clear water in the settling tank was increased. It decreased to 0.1-0.5 degrees. The precipitated supernatant water was passed through a filtration tower in which the filtered sand was previously cleaned by simultaneous air / water washing and backwashing, with the water volume adjusted to a water flow rate of 5 m / min. However, even 72 hours after the start of water flow, the filtrate did not reach 1500 mm, which is a guideline for washing the filtered sand. In addition, Comparative Example 2 corresponds to the most standard treatment condition when the coagulation-sedimentation filtration treatment is performed using only the inorganic coagulant in the water purification facility.

<実施例1>
水処理剤として、表1のポリマIを凝集混和槽21の第3槽に1mg/L注入した以外は、比較例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径は3~5mmと比較例1および比較例2よりも粗大化し、上昇流速が50mm/分と比較例2の5倍であるにもかかわらず沈殿槽上澄水の濁度は0.1~0.5度と同等の低濁度であった。また同様に、実施例1では、ろ過継続時間が72時間経過後であってもろ抗は1500mmに達しなかった。したがって本発明のポリマIを使用すれば、無機凝集剤単独使用の凝集沈殿処理よりも沈殿槽の上昇流速を高くすることができるだけでなく、従来のアクリルアミド系高分子凝集剤併用時の問題点であったろ過障害も抑制できることが確認された。
<Example 1>
When the coagulation-sedimentation treatment was performed under the same conditions as in Comparative Example 1 except that 1 mg / L of the solima I in Table 1 was injected into the third tank of the coagulation-mixing tank 21, the fourth tank of the floc forming tank 22 was subjected to the coagulation-sedimentation treatment. The aggregated floc diameter in the tank was 3 to 5 mm, which was coarser than that of Comparative Example 1 and Comparative Example 2, and the turbidity of the clear water in the settling tank was 0 even though the ascending flow velocity was 50 mm / min, which was 5 times that of Comparative Example 2. The turbidity was as low as 1 to 0.5 degrees. Similarly, in Example 1, the filter resistance did not reach 1500 mm even after the filtration duration was 72 hours. Therefore, if the solima I of the present invention is used, not only the ascending flow velocity of the settling tank can be increased as compared with the coagulation-sedimentation treatment using the inorganic coagulant alone, but also there is a problem when the conventional acrylamide-based polymer coagulant is used in combination. It was confirmed that the existing filtration failure could be suppressed.

<実施例2>
水処理剤として、表1に記載の本発明のポリマIを凝集混和槽21の第3槽に0.4mg/L注入した以外は、実施例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径は同様に3~5mmに粗大化しており、沈殿槽上澄水の濁度も0.1~0.5度と同等であり、また、ろ過継続時間が72時間経過後であってもろ抗は1500mmに達しなかった。
<Example 2>
A coagulation-precipitation treatment was performed under the same conditions as in Example 1 except that 0.4 mg / L of the sol of the present invention shown in Table 1 was injected into the third tank of the coagulation miscibility tank 21 as a water treatment agent. The aggregated floc diameter in the 4th tank of the floc forming tank 22 is similarly coarsened to 3 to 5 mm, the turbidity of the supernatant water in the settling tank is equivalent to 0.1 to 0.5 degrees, and the filtration duration is also equal to 0.1 to 0.5 degrees. However, even after 72 hours, the filtrate did not reach 1500 mm.

<実施例3~実施例7>
水処理剤として、表1に記載の本発明のポリマII~ポリマVIを使用した以外は、実施例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径はいずれも同様に3~5mmに粗大化しており、沈殿槽上澄水の濁度もいずれも0.1~0.5度と同等であり、また同様に、いずれの場合もろ過継続時間が72時間経過後であってもろ抗は1500mmに達しなかった。
<Examples 3 to 7>
When the coagulation-precipitation treatment was performed under the same conditions as in Example 1 except that the solima II to solima VI of the present invention shown in Table 1 were used as the water treatment agent, the coagulation floc in the fourth tank of the floc forming tank 22 was performed. The diameters are similarly coarsened to 3 to 5 mm, the turbidity of the supernatant water in the settling tank is equivalent to 0.1 to 0.5 degrees, and similarly, the filtration duration is the same in each case. Even after 72 hours, the filtrate did not reach 1500 mm.

<比較例3>
水処理剤として、表2に記載の比較ポリマIを使用した以外は、実施例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径は3~5mm、沈殿槽上澄水の濁度は0.1~0.5度と実施例1と同等であったが、ろ抗が1500mmに達するまでのろ過継続時間は28時間と実施例1や比較例2より著しく短くなっており、ろ過障害が認められた。
<Comparative Example 3>
When the coagulation-precipitation treatment was performed under the same conditions as in Example 1 except that the comparative polymer I shown in Table 2 was used as the water treatment agent, the coagulation floc diameter in the fourth tank of the floc forming tank 22 was 3 to 5 mm. The turbidity of the supernatant of the settling tank was 0.1 to 0.5 degrees, which was the same as that of Example 1, but the filtration duration until the filtrate reached 1500 mm was 28 hours, which was the same as that of Example 1 and Comparative Example 2. It was significantly shorter, and filtration problems were observed.

<比較例4~比較例7>
水処理剤として、表2に記載の比較ポリマII~比較ポリマVを使用した以外は、実施例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径はいずれも3~5mm、沈殿槽上澄水の濁度はいずれも0.1~0.5度と実施例1と同等であったが、ろ抗が1500mmに達するまでのろ過継続時間はそれぞれ35、24、15、36時間と実施例1や比較例2より著しく短くなっており、ろ過障害が認められた。
<Comparative Example 4 to Comparative Example 7>
When the coagulation-precipitation treatment was performed under the same conditions as in Example 1 except that the comparative solima II to the comparative solima V shown in Table 2 were used as the water treatment agent, the coagulated floc diameter in the fourth tank of the floc forming tank 22 was performed. The turbidity of the supernatant of the settling tank was 0.1 to 0.5 degrees, which was the same as that of Example 1, but the filtration duration until the filter reached 1500 mm was 35, respectively. , 24, 15, 36 hours, which was significantly shorter than in Example 1 and Comparative Example 2, and filtration failure was observed.

<比較例8>
水処理剤として、表2に記載の比較ポリマVIを使用した以外は、実施例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径は2~3mmと比較例1よりは改善されたものの実施例1よりはフロック径が小さく、沈殿槽上澄水の濁度は2度を超えており比較例1と同様に処理不良であった。このため、ろ過塔への通水は実施しなかった。
<Comparative Example 8>
When the coagulation-precipitation treatment was performed under the same conditions as in Example 1 except that the comparative polymer VI shown in Table 2 was used as the water treatment agent, the coagulation floc diameter in the fourth tank of the floc forming tank 22 was 2 to 3 mm. Although it was improved from Comparative Example 1, the floc diameter was smaller than that of Example 1, and the turbidity of the supernatant water in the settling tank exceeded 2 degrees, and the treatment was poor as in Comparative Example 1. Therefore, water was not passed through the filtration tower.

<比較例9>
水処理剤として、表2に記載の比較ポリマVIIを使用した以外は、実施例1と同じ条件で凝集沈殿処理を行ったところ、フロック形成槽22の第4槽における凝集フロック径は2~3mmと比較例1よりは改善されたものの実施例1より小さく、沈殿槽上澄水の濁度は2度を超えており比較例1、比較例8と同様に処理不良であった。このため、ろ過塔への通水は実施しなかった。
<Comparative Example 9>
When the coagulation-precipitation treatment was performed under the same conditions as in Example 1 except that the comparative polymer VII shown in Table 2 was used as the water treatment agent, the coagulation floc diameter in the fourth tank of the floc forming tank 22 was 2 to 3 mm. Although it was improved from Comparative Example 1, it was smaller than Example 1, and the turbidity of the supernatant water in the settling tank exceeded 2 degrees, and the treatment was poor as in Comparative Examples 1 and 8. Therefore, water was not passed through the filtration tower.

上述のとおり、本発明の水処理剤13を使用すれば、無機凝集剤12を単独で使用する凝集沈殿処理よりも沈殿池31の上昇流速を高くして分離面積を小さくすることができるだけでなく、従来のアクリルアミド系高分子凝集剤併用時の問題点であったろ過障害を引き起こすリスクが画期的に軽減されることが確認された。 As described above, when the water treatment agent 13 of the present invention is used, it is possible not only to increase the ascending flow velocity of the settling basin 31 and reduce the separation area as compared with the coagulation sedimentation treatment using the inorganic coagulant 12 alone. It was confirmed that the risk of causing filtration failure, which was a problem when the conventional acrylamide-based polymer flocculant was used in combination, was dramatically reduced.

1 被処理水(原水)
2 処理水
3 凝集沈殿汚泥
4 ろ過洗浄排水
5 排水池上澄水
6 汚泥スラリー
7 浄水汚泥
8 濃縮池上澄水
9 濃縮汚泥
10 脱水離脱水
11 脱水ケーキ
12 無機凝集剤
13 水処理剤
14 塩素剤
15 浄水処理装置
16 着水井
17 粗大フロック
18 沈降分離フロック
20 凝集処理手段
21 凝集混和池
22 フロック形成池
30 固液分離手段
31 沈殿池
32 ろ過池
40 汚泥処理手段
41 排水池
42 排泥池
43 濃縮池
44 汚泥脱水装置
50 薬剤供給手段
60 フロック返送手段
70 測定手段
80 高速凝集沈殿装置
81 第1反応室
82 第2反応室
85 分離室
87 撹拌手段
90 超高速凝集沈殿装置
91 急速撹拌槽
92 注入撹拌槽
93 フロック形成槽
94 沈殿槽
1 Water to be treated (raw water)
2 Treated water 3 Coagulation sedimentation sludge 4 Filtering and cleaning drainage 5 Drainage pond supernatant water 6 Sewage slurry 7 Purified water sludge 8 Concentrated pond supernatant water 9 Concentrated sludge 10 Dewatering desorption water 11 Dewatering cake 12 Inorganic coagulant 13 Water treatment agent 14 Chlorine agent 15 Water purification equipment 16 Reservoir 17 Oversized Flock 18 Sedimentation Separation Flock 20 Coagulation Treatment Means 21 Coagulation Mixing Pond 22 Flock Formation Pond 30 Solid Liquid Separation Means 31 Sedimentation Pond 32 Filter Pond 40 Sewage Treatment Means 41 Drainage Pond 42 Sewage Pond 43 Concentration Pond 44 Sewage Dewatering Equipment 50 Drug supply means 60 Flock return means 70 Measuring means 80 High-speed coagulation sedimentation device 81 First reaction chamber 82 Second reaction chamber 85 Separation chamber 87 Stirring means 90 Ultra-high-speed coagulation sedimentation device 91 Rapid stirring tank 92 Injection stirring tank 93 Flock formation Tank 94 settling tank

Claims (6)

河川水、湖沼水、貯水地水、雨水、伏流水、地下水及び井水からなる群から選択される被処理水に無機凝集剤を注入した後、
ポリ(メタ)アクリル酸又はその塩と、
任意にアルギン酸(塩)、カルボキシメチルセルロース(塩)、ポリグルタミン酸(塩)、および、(メタ)アクリル酸(塩)と(メタ)アクリルアミド、(メタ)アクリレート(塩)またはこれらの誘導体から選択される1種以上のノニオン性モノマーとを共重合させて得られるポリカルボン酸系共重合体からなる群より選択される少なくとも1種以上と
からなるポリカルボン酸系重合体であって、前記ポリ(メタ)アクリル酸又はその塩が前記ポリカルボン酸系重合体全体に占める割合が50質量%以上であるポリカルボン酸系重合体を含有するとともに、1mol/L塩化ナトリウム溶液に溶解した場合の0.1質量%塩粘度が2~5mPa・sであり、25g/L塩化ナトリウム溶液に溶解した場合の0.1質量%溶液粘度が6mPa・s以下であり、かつ、アニオン当量が4.5meq/g以上である水処理剤を注入することを特徴とする水処理方法。
After injecting an inorganic flocculant into the water to be treated selected from the group consisting of river water, lake water, reservoir water, rainwater, underground water, groundwater and well water,
Poly (meth) acrylic acid or its salt and
Optionally selected from alginic acid (salt), carboxymethyl cellulose (salt), polyglutamic acid (salt), and (meth) acrylic acid (salt) and (meth) acrylamide, (meth) acrylate (salt) or derivatives thereof. With at least one selected from the group consisting of polycarboxylic acid-based copolymers obtained by copolymerizing with one or more nonionic monomers.
A polycarboxylic acid-based polymer comprising the polycarboxylic acid-based polymer in which the poly (meth) acrylic acid or a salt thereof accounts for 50% by mass or more of the entire polycarboxylic acid-based polymer . The 0.1% by mass salt viscosity when dissolved in a 1 mol / L sodium chloride solution is 2 to 5 mPa · s, and the 0.1% by mass solution viscosity when dissolved in a 25 g / L sodium chloride solution is 6 mPa · s. A water treatment method comprising injecting a water treatment agent having an anion equivalent of 4.5 meq / g or more and having an anion equivalent of s or less.
前記無機凝集剤を、前記被処理水1L当たり10~200mg注入し、
前記被処理水1L当たり0.05~20mgの前記水処理剤を注入することを特徴とする請求項1に記載の水処理方法。
10 to 200 mg of the inorganic flocculant is injected per 1 L of the water to be treated.
The water treatment method according to claim 1, wherein 0.05 to 20 mg of the water treatment agent is injected per 1 L of the water to be treated.
前記水処理剤の注入により成長したフロックを、当該水処理剤を注入する前の前記被処理水に返送することを特徴とする請求項1又は2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein the flocs grown by injecting the water treatment agent are returned to the water to be treated before the water treatment agent is injected. 河川水、湖沼水、貯水地水、雨水、伏流水、地下水及び井水からなる群から選択される被処理水が導入される凝集混和部と、
前記凝集混和部に無機凝集剤を注入する無機凝集剤の薬剤供給手段と、
前記無機凝集剤を注入後の被処理水が導入されるフロック形成部と、
前記フロック形成部で形成されたフロックを沈降分離する沈殿部と、
前記沈殿部の上澄水が導入されるろ過部と、
前記凝集混和部と、前記フロック形成部と、前記凝集混和部と前記フロック形成部との間のいずれか1か所以上の注入場所で、
ポリ(メタ)アクリル酸又はその塩と、
任意にアルギン酸(塩)、カルボキシメチルセルロース(塩)、ポリグルタミン酸(塩)、および、(メタ)アクリル酸(塩)と(メタ)アクリルアミド、(メタ)アクリレート(塩)またはこれらの誘導体から選択される1種以上のノニオン性モノマーとを共重合させて得られるポリカルボン酸系共重合体からなる群より選択される少なくとも1種以上と
からなるポリカルボン酸系重合体であって、前記ポリ(メタ)アクリル酸又はその塩が前記ポリカルボン酸系重合体全体に占める割合が50質量%以上であるポリカルボン酸系重合体を含有するとともに、1mol/L塩化ナトリウム溶液に溶解した場合の0.1質量%塩粘度が2~5mPa・sであり、25g/L塩化ナトリウム溶液に溶解した場合の0.1質量%溶液粘度が6mPa・s以下であり、かつ、アニオン当量が4.5meq/g以上である水処理剤を注入する水処理剤の薬剤供給手段と、
を有することを特徴とする水処理装置。
Aggregate admixture where treated water selected from the group consisting of river water, lake water, reservoir water, rainwater, underground water, groundwater and well water is introduced.
A drug supply means for the inorganic flocculant for injecting the inorganic flocculant into the coagulation miscible portion,
A floc forming portion into which the water to be treated after injecting the inorganic flocculant is introduced, and
A sedimentation portion that precipitates and separates the flocs formed in the floc forming portion, and a sedimentation portion.
The filtration part into which the supernatant water of the settling part is introduced, and the filtration part.
At one or more injection sites between the agglomerated-mixed portion, the flock-forming portion, and the agglomerated-mixed portion and the flock-forming portion.
Poly (meth) acrylic acid or its salt and
Optionally selected from alginic acid (salt), carboxymethyl cellulose (salt), polyglutamic acid (salt), and (meth) acrylic acid (salt) and (meth) acrylamide, (meth) acrylate (salt) or derivatives thereof. With at least one selected from the group consisting of polycarboxylic acid-based copolymers obtained by copolymerizing with one or more nonionic monomers.
A polycarboxylic acid-based polymer comprising the polycarboxylic acid-based polymer in which the poly (meth) acrylic acid or a salt thereof accounts for 50% by mass or more of the entire polycarboxylic acid-based polymer . The 0.1% by mass salt viscosity when dissolved in a 1 mol / L sodium chloride solution is 2 to 5 mPa · s, and the 0.1% by mass solution viscosity when dissolved in a 25 g / L sodium chloride solution is 6 mPa · s. A drug supply means for a water treatment agent for injecting a water treatment agent having an anion equivalent of 4.5 meq / g or more and s or less.
A water treatment device characterized by having.
前記無機凝集剤の薬剤供給手段は、前記無機凝集剤を被処理水1リットル当たり10~200mg注入し、
前記水処理剤の薬剤供給手段は、当該水処理剤を被処理水1リットル当たり0.05~20mg注入することを特徴とする請求項4に記載の水処理装置。
The agent supplying means for the inorganic flocculant is such that 10 to 200 mg of the inorganic flocculant is injected per liter of water to be treated.
The water treatment apparatus according to claim 4, wherein the chemical supply means for the water treatment agent injects 0.05 to 20 mg of the water treatment agent per liter of water to be treated.
前記水処理剤を注入後の被処理水と、当該被処理水から沈降分離したフロックのいずれか一方又は両方を返送する返送手段を更に有し、
前記返送手段は、前記薬剤供給手段による前記水処理剤の注入場所よりも上流側の1か所以上の返送場所に、前記被処理水と沈降分離した前記フロックのいずれか一方又は両方を返送することを特徴とする請求項4又は請求項5に記載の水処理装置。
Further having a return means for returning either or both of the water to be treated after injecting the water treatment agent and the flocs sedimented and separated from the water to be treated.
The return means returns either or both of the water to be treated and the flocs that have been settled and separated to one or more return locations on the upstream side of the injection site of the water treatment agent by the drug supply means. The water treatment apparatus according to claim 4 or 5.
JP2017051044A 2017-03-16 2017-03-16 Water treatment agent, water treatment method and water treatment equipment Active JP7068773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017051044A JP7068773B2 (en) 2017-03-16 2017-03-16 Water treatment agent, water treatment method and water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017051044A JP7068773B2 (en) 2017-03-16 2017-03-16 Water treatment agent, water treatment method and water treatment equipment

Publications (3)

Publication Number Publication Date
JP2018153729A JP2018153729A (en) 2018-10-04
JP2018153729A5 JP2018153729A5 (en) 2019-04-25
JP7068773B2 true JP7068773B2 (en) 2022-05-17

Family

ID=63715454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017051044A Active JP7068773B2 (en) 2017-03-16 2017-03-16 Water treatment agent, water treatment method and water treatment equipment

Country Status (1)

Country Link
JP (1) JP7068773B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697199B1 (en) * 2019-07-11 2020-05-20 株式会社楢崎製作所 Turbid water treatment device and its treatment method
JP7225073B2 (en) * 2019-10-02 2023-02-20 水ing株式会社 Coagulating filtration method and coagulating filtration device
WO2021079818A1 (en) * 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Water treatment device
JP7520779B2 (en) 2021-07-20 2024-07-23 水ing株式会社 Slurry circulation type high-speed coagulation and sedimentation device and water purification method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340208A (en) 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2014128746A (en) 2012-12-28 2014-07-10 Hitachi Ltd Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301582B2 (en) * 1996-08-26 2009-07-22 味の素株式会社 Wastewater treatment by the coagulation sedimentation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340208A (en) 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2014128746A (en) 2012-12-28 2014-07-10 Hitachi Ltd Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination

Also Published As

Publication number Publication date
JP2018153729A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
JP6114295B2 (en) Surface treated calcium carbonate and its use in water purification and sludge and sediment dewatering
Xu et al. Impacts of organic coagulant aid on purification performance and membrane fouling of coagulation/ultrafiltration hybrid process with different Al-based coagulants
WO2014038537A1 (en) Water treatment method and apparatus
JP5512068B2 (en) Water treatment method
CN204824453U (en) Desulfurization pretreatment of water device that gives up
JP5364298B2 (en) Dispersant-containing water treatment method
JP4223870B2 (en) Water purification method
JP2011230038A (en) Water treatment apparatus
JP4004854B2 (en) Water purification method and apparatus
US20110203977A1 (en) Filtration apparatus and water treatment apparatus
WO2019008822A1 (en) Water treatment method and water treatment device
JP3409322B2 (en) Pure water production method
JP2021186793A (en) Water purification method and water purification apparatus
CN111547898A (en) Back flush wastewater backflow flocculation filter equipment
JP2011206750A (en) Water treatment method and water treatment apparatus
JP2019198806A (en) Water treatment method, and water treatment device
JP5949206B2 (en) Cooling water blow water treatment method and treatment apparatus
JP7142540B2 (en) Water purification method and water purification device
JP6197016B2 (en) Water purification method and water purification device
JP7075718B2 (en) Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment
CN110655230A (en) Treatment method of circulating water for copper material production
JP6197021B2 (en) Water purification method and water purification facility
JP2016093789A (en) Water treatment method and water treatment system
JP2005007246A (en) Treatment method for organic waste water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200930

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201009

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201013

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201225

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210105

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211026

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220208

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220308

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220412

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7068773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150