JP7068011B2 - Piezoelectric thin film resonators, filters and multiplexers - Google Patents

Piezoelectric thin film resonators, filters and multiplexers Download PDF

Info

Publication number
JP7068011B2
JP7068011B2 JP2018073782A JP2018073782A JP7068011B2 JP 7068011 B2 JP7068011 B2 JP 7068011B2 JP 2018073782 A JP2018073782 A JP 2018073782A JP 2018073782 A JP2018073782 A JP 2018073782A JP 7068011 B2 JP7068011 B2 JP 7068011B2
Authority
JP
Japan
Prior art keywords
film
piezoelectric
additional
piezoelectric film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018073782A
Other languages
Japanese (ja)
Other versions
JP2019186691A (en
Inventor
守 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018073782A priority Critical patent/JP7068011B2/en
Publication of JP2019186691A publication Critical patent/JP2019186691A/en
Application granted granted Critical
Publication of JP7068011B2 publication Critical patent/JP7068011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本発明は、圧電薄膜共振器、フィルタおよびマルチプレクサに関する。 The present invention relates to piezoelectric thin film resonators, filters and multiplexers.

圧電薄膜共振器を用いた弾性波デバイスは、例えば携帯電話等の無線機器のフィルタおよびデュプレクサとして用いられている。圧電薄膜共振器は、圧電膜を挟み下部電極と上部電極が対向する構造を有している。圧電膜を挟み下部電極と上部電極が対向する領域が共振領域である。 Elastic wave devices using piezoelectric thin film resonators are used as filters and duplexers for wireless devices such as mobile phones. The piezoelectric thin film resonator has a structure in which the lower electrode and the upper electrode face each other with the piezoelectric film interposed therebetween. The region where the lower electrode and the upper electrode face each other across the piezoelectric film is the resonance region.

圧電薄膜共振器の電気機械結合係数を大きくするため、窒化アルミニウムを主成分とする圧電膜に窒素およびアルミニウム以外の元素を添加することが知られている(例えば特許文献1-3)。上部電極上にAlN膜を設けることが知られている(例えば特許文献4)。共振領域の端部から外側にかけての上部電極上に引張応力の膜を設けることが知られている(例えば特許文献5)。 It is known to add elements other than nitrogen and aluminum to a piezoelectric membrane containing aluminum nitride as a main component in order to increase the electromechanical coupling coefficient of the piezoelectric thin film resonator (for example, Patent Documents 1-3). It is known to provide an AlN film on the upper electrode (for example, Patent Document 4). It is known that a film of tensile stress is provided on the upper electrode from the end of the resonance region to the outside (for example, Patent Document 5).

特開2013-46111号公報Japanese Unexamined Patent Publication No. 2013-46111 特開2013-219743号公報Japanese Unexamined Patent Publication No. 2013-219743 国際公開第2013/175985号International Publication No. 2013/175985 特開2009-111623号公報Japanese Unexamined Patent Publication No. 2009-11623 米国特許出願公開第2018/0019726号明細書US Patent Application Publication No. 2018/0019726

圧電薄膜共振器の特性向上のため圧電膜を圧縮応力とすることがある。例えば、特許文献1から3のように、窒化アルミニウムを主成分とする圧電膜に窒素およびアルミニウム以外の元素を添加することで、圧電膜の圧電性が向上し電気機械結合係数等の圧電薄膜共振器の特性が向上する。特許文献1に記載されているように、このとき、圧電膜の残留応力は圧縮応力となる。圧電膜の残留応力が圧縮応力となると、圧電膜にクラックが生じる、または圧電膜等が剥がれる等の破壊が生じる可能性がある。 The piezoelectric membrane may be used as a compressive stress to improve the characteristics of the piezoelectric thin film resonator. For example, as in Patent Documents 1 to 3, by adding an element other than nitrogen and aluminum to a piezoelectric film containing aluminum nitride as a main component, the piezoelectricity of the piezoelectric film is improved and the piezoelectric thin film resonance such as the electromechanical coupling coefficient is improved. The characteristics of the vessel are improved. As described in Patent Document 1, at this time, the residual stress of the piezoelectric film becomes a compressive stress. When the residual stress of the piezoelectric film becomes a compressive stress, there is a possibility that the piezoelectric film may be cracked or the piezoelectric film or the like may be peeled off.

本発明は、上記課題に鑑みなされたものであり、圧電膜等に加わる応力を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress stress applied to a piezoelectric film or the like.

本発明は、基板と、前記基板上に設けられた下部電極と、前記下部電極上に設けられ、窒化アルミニウムを主成分とし、スカンジウムもしくはボロン、または、2族元素もしくは12族元素と4族元素もしくは5族元素とである元素が添加され、残留応力が圧縮応力である圧電膜と、前記圧電膜を挟み前記下部電極と対向する領域である共振領域が形成されるように設けられた上部電極と、前記共振領域における前記圧電膜上に設けられ、アルゴン濃度が前記圧電膜のアルゴン濃度より高く、窒化アルミニウムを主成分とし、残留応力が引張応力である付加膜と、前記基板と前記下部電極との間に設けられ、前記圧電膜内に励振された弾性波を反射する音響反射層と、を備え、前記付加膜における前記元素の濃度は前記圧電膜における前記元素の濃度より低い、または、前記付加膜には前記元素が実質的に添加されていない圧電薄膜共振器である。 In the present invention, a substrate, a lower electrode provided on the substrate, and aluminum nitride as a main component provided on the lower electrode, scandium or boron, or a group 2 or group 12 element and a group 4 element Alternatively, an element such as a group 5 element is added , and an upper portion provided so as to form a piezoelectric film whose residual stress is compressive stress and a resonance region which is a region facing the lower electrode with the piezoelectric film sandwiched between them. An electrode, an additional film provided on the piezoelectric film in the resonance region, having an argon concentration higher than that of the piezoelectric film, containing aluminum nitride as a main component, and having a residual stress of tensile stress, the substrate and the above. An acoustic reflective layer provided between the lower electrode and reflecting the excited elastic wave in the piezoelectric film is provided, and the concentration of the element in the additional film is lower than the concentration of the element in the piezoelectric film. Alternatively, it is a piezoelectric thin film resonator in which the element is not substantially added to the additional film.

上記構成において、前記付加膜は、前記元素が実質的に添加されていない構成とすることができる。 In the above configuration, the additional film may be configured such that the element is not substantially added.

上記構成において、前記付加膜は前記上部電極上に設けられている構成とすることができる。 In the above configuration, the additional film may be configured to be provided on the upper electrode.

上記構成において、前記付加膜は、前記圧電膜と前記上部電極との間に設けられている構成とすることができる。 In the above configuration, the additional film may be provided between the piezoelectric film and the upper electrode.

上記構成において、前記上部電極上に設けられた前記付加膜の材料と異なる材料からなる絶縁膜を更に備え、前記付加膜は、前記上部電極と前記絶縁膜との間に設けられている構成とすることができる。 In the above configuration, an insulating film made of a material different from the material of the additional film provided on the upper electrode is further provided, and the additional film is provided between the upper electrode and the insulating film. can do.

上記構成において、前記付加膜は、前記共振領域内のうち少なくとも中央領域における前記圧電膜上に設けられている構成とすることができる。 In the above configuration, the additional film may be configured to be provided on the piezoelectric film in at least the central region of the resonance region.

上記構成において、前記付加膜のヤング率は、前記下部電極および前記上部電極内の少なくとも1つの層のヤング率より大きい構成とすることができる。 In the above configuration, the Young's modulus of the additional film can be larger than the Young's modulus of at least one layer in the lower electrode and the upper electrode.

上記構成において、前記付加膜の膜厚は、前記圧電膜の膜厚の8%以上である構成とすることができる。 In the above configuration, the film thickness of the additional film may be 8% or more of the film thickness of the piezoelectric film.

上記構成において、前記音響反射層は空隙であり、前記上部電極が前記共振領域から引き出される領域における前記下部電極の端は、前記空隙と前記圧電膜との間に位置する構成とすることができる。 In the above configuration, the acoustic reflection layer is a void, and the end of the lower electrode in the region where the upper electrode is drawn out from the resonance region can be configured to be located between the void and the piezoelectric film. ..

本発明は、上記圧電薄膜共振器を含むフィルタである。 The present invention is a filter including the above-mentioned piezoelectric thin film resonator.

本発明は、上記フィルタを含むマルチプレクサである。 The present invention is a multiplexer including the above filter.

本発明によれば、圧電膜等に加わる応力を抑制することができる。 According to the present invention, the stress applied to the piezoelectric film or the like can be suppressed.

図1(a)は、実施例1に係る圧電薄膜共振器の平面図、図1(b)は、挿入膜および空隙の平面図、図1(c)および図1(d)は、図1(a)のA-A断面図である。1 (a) is a plan view of the piezoelectric thin film resonator according to the first embodiment, FIG. 1 (b) is a plan view of an insertion membrane and a gap, and FIGS. 1 (c) and 1 (d) are FIGS. 1 (A) is a sectional view taken along the line AA. 図2は、比較例1に係る圧電薄膜共振器の断面拡大図である。FIG. 2 is an enlarged cross-sectional view of the piezoelectric thin film resonator according to Comparative Example 1. 図3は、実験における圧電膜の残留応力と圧電膜の破損を示す図である。FIG. 3 is a diagram showing the residual stress of the piezoelectric film and the breakage of the piezoelectric film in the experiment. 図4は、シミュレーションにおける応力比を示す図である。FIG. 4 is a diagram showing the stress ratio in the simulation. 図5は、Ar流量に対する残留応力を示す図である。FIG. 5 is a diagram showing residual stress with respect to Ar flow rate. 図6(a)および図6(b)は、それぞれ実施例1の変形例1および2に係る圧電薄膜共振器の断面図である。6 (a) and 6 (b) are cross-sectional views of the piezoelectric thin film resonator according to the first and second modifications of the first embodiment, respectively. 図7(a)および図7(b)は、それぞれ実施例1の変形例3および4に係る圧電薄膜共振器の断面図である。7 (a) and 7 (b) are cross-sectional views of the piezoelectric thin film resonator according to the modified examples 3 and 4, respectively, of the first embodiment. 図8(a)および図8(b)は、それぞれ実施例2およびその変形例1に係るフィルタおよびデュプレクサの回路図である。8 (a) and 8 (b) are circuit diagrams of the filter and the duplexer according to the second embodiment and the first modification thereof, respectively.

以下図面を参照し、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1(a)は、実施例1に係る圧電薄膜共振器の平面図、図1(b)は、挿入膜および空隙の平面図、図1(c)および図1(d)は、図1(a)のA-A断面図である。図1(c)は、例えばラダー型フィルタの直列共振器を、図1(d)は例えばラダー型フィルタの並列共振器を示している。 1 (a) is a plan view of the piezoelectric thin film resonator according to the first embodiment, FIG. 1 (b) is a plan view of an insertion membrane and a gap, and FIGS. 1 (c) and 1 (d) are FIGS. 1 (A) is a sectional view taken along the line AA. FIG. 1C shows, for example, a series resonator of a ladder type filter, and FIG. 1D shows, for example, a parallel resonator of a ladder type filter.

図1(a)および図1(c)を参照し、直列共振器Sの構造について説明する。シリコン(Si)基板である基板10上に、下部電極12が設けられている。基板10の平坦主面と下部電極12との間にドーム状の膨らみを有する空隙30が形成されている。ドーム状の膨らみとは、例えば空隙30の周辺では空隙30の高さが小さく、空隙30の内部ほど空隙30の高さが大きくなるような形状の膨らみである。空隙30は、圧電膜14に励振された弾性波を反射する音響反射層として機能する。下部電極12は下層12aと上層12bとを含んでいる。下層12aは例えばCr(クロム)膜であり、上層12bは例えばRu(ルテニウム)膜である。 The structure of the series resonator S will be described with reference to FIGS. 1 (a) and 1 (c). The lower electrode 12 is provided on the substrate 10 which is a silicon (Si) substrate. A gap 30 having a dome-shaped bulge is formed between the flat main surface of the substrate 10 and the lower electrode 12. The dome-shaped bulge is, for example, a bulge having a shape in which the height of the void 30 is small around the void 30 and the height of the void 30 is increased toward the inside of the void 30. The void 30 functions as an acoustic reflection layer that reflects elastic waves excited by the piezoelectric film 14. The lower electrode 12 includes a lower layer 12a and an upper layer 12b. The lower layer 12a is, for example, a Cr (chromium) film, and the upper layer 12b is, for example, a Ru (ruthenium) film.

下部電極12上に、(002)方向を主軸とする窒化アルミニウム(AlN)を主成分とする圧電膜14が設けられている。圧電膜14は、下部圧電膜14aおよび上部圧電膜14bを備えている。下部圧電膜14aは下部電極12上に設けられ、上部圧電膜14bは下部圧電膜14aと上部電極16との間に設けられている。下部圧電膜14aと上部圧電膜14bとの間に挿入膜28が設けられている。 A piezoelectric film 14 containing aluminum nitride (AlN) as a main component having the main axis in the (002) direction is provided on the lower electrode 12. The piezoelectric film 14 includes a lower piezoelectric film 14a and an upper piezoelectric film 14b. The lower piezoelectric film 14a is provided on the lower electrode 12, and the upper piezoelectric film 14b is provided between the lower piezoelectric film 14a and the upper electrode 16. An insertion film 28 is provided between the lower piezoelectric film 14a and the upper piezoelectric film 14b.

図1(b)に示すように、挿入膜28は、共振領域50内の外周領域52に設けられ中央領域54に設けられていない。外周領域52は、共振領域50内の領域であって、共振領域50の外周を含み外周に沿った領域である。外周領域52は、例えばリング状である。中央領域54は、共振領域50内の領域であって、共振領域50の中央を含む領域である。中央は幾何学的な中心でなくてもよい。 As shown in FIG. 1 (b), the insertion film 28 is provided in the outer peripheral region 52 in the resonance region 50 and not in the central region 54. The outer peripheral region 52 is a region within the resonance region 50, and is a region along the outer circumference including the outer circumference of the resonance region 50. The outer peripheral region 52 is, for example, ring-shaped. The central region 54 is a region within the resonance region 50 and includes the center of the resonance region 50. The center does not have to be a geometric center.

圧電膜14を挟み下部電極12と対向する領域(共振領域50)を有するように圧電膜14上に上部電極16が設けられている。共振領域50は、楕円形状を有し、厚み縦振動モードの弾性波が共振する領域である。平面視において空隙30は共振領域50を含むように設けられる。これにより、圧電膜14に励振された弾性波は空隙30により反射される。上部電極16は下層16aおよび上層16bを含んでいる。下層16aは例えばRu膜であり、上層16bは例えばCr膜である。 The upper electrode 16 is provided on the piezoelectric film 14 so as to have a region (resonance region 50) facing the lower electrode 12 with the piezoelectric film 14 interposed therebetween. The resonance region 50 has an elliptical shape and is a region in which elastic waves in the thickness longitudinal vibration mode resonate. The gap 30 is provided so as to include the resonance region 50 in a plan view. As a result, the elastic wave excited by the piezoelectric film 14 is reflected by the void 30. The upper electrode 16 includes a lower layer 16a and an upper layer 16b. The lower layer 16a is, for example, a Ru film, and the upper layer 16b is, for example, a Cr film.

共振領域50内の上部電極16上には窒化アルミニウムを主成分とする付加膜26が設けられている。付加膜26上に周波数調整膜24として酸化シリコン膜が形成されている。共振領域50内の積層膜18は、下部電極12、圧電膜14、上部電極16および周波数調整膜24を含む。周波数調整膜24はパッシベーション膜として機能してもよい。 An additional film 26 containing aluminum nitride as a main component is provided on the upper electrode 16 in the resonance region 50. A silicon oxide film is formed on the additional film 26 as a frequency adjusting film 24. The laminated film 18 in the resonance region 50 includes a lower electrode 12, a piezoelectric film 14, an upper electrode 16, and a frequency adjusting film 24. The frequency adjusting film 24 may function as a passivation film.

図1(a)のように、下部電極12には犠牲層をエッチングするための導入路33が形成されている。犠牲層は空隙30を形成するための層である。導入路33の先端付近は圧電膜14で覆われておらず、下部電極12は導入路33の先端に孔部35を有する。また、図1(b)のように、挿入膜28は孔部35に連通する孔部34を有する。 As shown in FIG. 1A, the lower electrode 12 is formed with an introduction path 33 for etching the sacrificial layer. The sacrificial layer is a layer for forming the void 30. The vicinity of the tip of the introduction path 33 is not covered with the piezoelectric film 14, and the lower electrode 12 has a hole 35 at the tip of the introduction path 33. Further, as shown in FIG. 1 (b), the insertion membrane 28 has a hole portion 34 communicating with the hole portion 35.

図1(d)を参照し、並列共振器Pの構造について説明する。並列共振器Pは直列共振器Sと比較し、上部電極16の下層16aと上層16bとの間に、Ti(チタン)層からなる質量負荷膜20が設けられている。よって、積層膜18は直列共振器Sの積層膜に加え、共振領域50内の全面に形成された質量負荷膜20を含む。その他の構成は直列共振器Sの図1(c)と同じであり説明を省略する。 The structure of the parallel resonator P will be described with reference to FIG. 1 (d). Compared with the series resonator S, the parallel resonator P is provided with a mass load film 20 made of a Ti (titanium) layer between the lower layer 16a and the upper layer 16b of the upper electrode 16. Therefore, in addition to the laminated film of the series resonator S, the laminated film 18 includes the mass load film 20 formed on the entire surface in the resonance region 50. Other configurations are the same as those in FIG. 1 (c) of the series resonator S, and the description thereof will be omitted.

直列共振器Sと並列共振器Pとの共振周波数の差は、質量負荷膜20の膜厚を用い調整する。直列共振器Sと並列共振器Pとの両方の共振周波数の調整は、周波数調整膜24の膜厚を調整することにより行なう。 The difference in resonance frequency between the series resonator S and the parallel resonator P is adjusted by using the film thickness of the mass load film 20. The resonance frequencies of both the series resonator S and the parallel resonator P are adjusted by adjusting the film thickness of the frequency adjusting film 24.

基板10としては、Si基板以外に、石英基板、ガラス基板、セラミック基板、サファイア基板、スピネル基板、水晶基板またはGaAs基板等を用いることができる。下部電極12および上部電極16としては、RuおよびCr以外にもAl(アルミニウム)、Ti、Cu(銅)、Mo(モリブデン)、W(タングステン)、Ta(タンタル)、Pt(白金)、Rh(ロジウム)またはIr(イリジウム)等の単層膜またはこれらの積層膜を用いることができる。例えば、上部電極16の下層16aをRu、上層16bをMoとしてもよい。 As the substrate 10, a quartz substrate, a glass substrate, a ceramic substrate, a sapphire substrate, a spinel substrate, a crystal substrate, a GaAs substrate, or the like can be used in addition to the Si substrate. In addition to Ru and Cr, the lower electrode 12 and the upper electrode 16 include Al (aluminum), Ti, Cu (copper), Mo (molybdenum), W (tungsten), Ta (tantalum), Pt (platinum), and Rh ( A monolayer film such as rhodium) or Ir (iridium) or a laminated film thereof can be used. For example, the lower layer 16a of the upper electrode 16 may be Ru and the upper layer 16b may be Mo.

圧電膜14は、窒化アルミニウム以外にも、ZnO(酸化亜鉛)、PZT(チタン酸ジルコン酸鉛)、PbTiO3(チタン酸鉛)等を用いることができる。また、例えば、圧電膜14は、窒化アルミニウムを主成分とし、共振特性の向上または圧電性の向上のため他の元素を含んでもよい。圧電膜14の残留応力は例えば圧縮応力である。 As the piezoelectric film 14, ZnO (zinc oxide), PZT (lead zirconate titanate), PbTiO 3 (lead titanate) and the like can be used in addition to aluminum nitride. Further, for example, the piezoelectric film 14 may contain aluminum nitride as a main component and may contain other elements for improving resonance characteristics or piezoelectricity. The residual stress of the piezoelectric film 14 is, for example, a compressive stress.

挿入膜28のヤング率は圧電膜14より小さいことが好ましい。密度がほぼ同じであれば、ヤング率は音響インピーダンスと相関することから、挿入膜28の音響インピーダンスは圧電膜14より小さいことが好ましい。これにより、Q値を向上できる。さらに、挿入膜28の音響インピーダンスを圧電膜14より小さくするため、圧電膜14が窒化アルミニウムを主成分とする場合、挿入膜28は、Al膜、Au膜、Cu膜、Ti膜、Pt膜、Ta膜、Cr膜または酸化シリコン膜であることが好ましい。 The Young's modulus of the insertion membrane 28 is preferably smaller than that of the piezoelectric membrane 14. If the densities are substantially the same, Young's modulus correlates with the acoustic impedance, so that the acoustic impedance of the insertion membrane 28 is preferably smaller than that of the piezoelectric membrane 14. Thereby, the Q value can be improved. Further, in order to make the acoustic impedance of the insertion film 28 smaller than that of the piezoelectric film 14, when the piezoelectric film 14 contains aluminum nitride as a main component, the insertion film 28 may be an Al film, an Au film, a Cu film, a Ti film, or a Pt film. It is preferably a Ta film, a Cr film or a silicon oxide film.

付加膜26としては、窒化アルミニウム膜以外にも酸化シリコン膜、窒化シリコン膜または酸化アルミニウム膜等の絶縁膜を用いることができる。付加膜26は金属膜でもよい。付加膜26の残留応力は、例えば引張応力である。 As the additional film 26, an insulating film such as a silicon oxide film, a silicon nitride film, or an aluminum oxide film can be used in addition to the aluminum nitride film. The additional film 26 may be a metal film. The residual stress of the additional film 26 is, for example, a tensile stress.

周波数調整膜24としては、酸化シリコン膜以外にも窒化シリコン膜または窒化アルミニウム等を用いることができる。質量負荷膜20としては、Ti以外にも、Ru、Cr、Al、Cu、Mo、W、Ta、Pt、RhもしくはIr等の単層膜を用いることができる。また、例えば窒化シリコンまたは酸化シリコン等の窒化金属または酸化金属からなる絶縁膜を用いることもできる。質量負荷膜20は、上部電極16の層間(下層16aと上層16bとの間)以外にも、下部電極12の下、下部電極12の層間、上部電極16の上、下部電極12と圧電膜14との間または圧電膜14と上部電極16との間に形成することができる。質量負荷膜20は、共振領域50を含むように形成されていれば、共振領域50より大きくてもよい。 As the frequency adjusting film 24, a silicon nitride film, aluminum nitride, or the like can be used in addition to the silicon oxide film. As the mass loading film 20, a single-layer film such as Ru, Cr, Al, Cu, Mo, W, Ta, Pt, Rh or Ir can be used in addition to Ti. Further, an insulating film made of a metal nitride or a metal oxide such as silicon nitride or silicon oxide can also be used. The mass loading film 20 includes not only the layers of the upper electrode 16 (between the lower layer 16a and the upper layer 16b), but also the layers below the lower electrode 12, between the lower electrodes 12, above the upper electrode 16, the lower electrode 12 and the piezoelectric film 14. It can be formed between and between the piezoelectric film 14 and the upper electrode 16. The mass load film 20 may be larger than the resonance region 50 as long as it is formed so as to include the resonance region 50.

[比較例1]
図2は、比較例1に係る圧電薄膜共振器の断面拡大図である。図2は、上部電極が共振領域から引き出される領域付近の断面図である。図2に示すように、空隙30の端部と下部電極12との端部が略一致しており、下部電極12の端は空隙30と圧電膜14との間に位置する。圧電膜14の圧縮応力が大きい場合、下部電極12の端部56に応力が集中する。このため、圧電膜14にクラックが生じる、および/または圧電膜14が剥がれてしまう。
[Comparative Example 1]
FIG. 2 is an enlarged cross-sectional view of the piezoelectric thin film resonator according to Comparative Example 1. FIG. 2 is a cross-sectional view of the vicinity of the region where the upper electrode is pulled out from the resonance region. As shown in FIG. 2, the end of the gap 30 and the end of the lower electrode 12 substantially coincide with each other, and the end of the lower electrode 12 is located between the gap 30 and the piezoelectric film 14. When the compressive stress of the piezoelectric film 14 is large, the stress is concentrated on the end portion 56 of the lower electrode 12. Therefore, the piezoelectric film 14 is cracked and / or the piezoelectric film 14 is peeled off.

[比較例1における実験]
そこで、付加膜26を設けていない構造Bの圧電薄膜共振器を作製した。圧電膜14の応力を変え、圧電膜14のクラックおよび/または剥がれ等の破壊の有無を調査した。構造Bの作製条件は以下である。
下部電極12の下層12a:膜厚が98nmのCr膜
下部電極12の上層12b:膜厚が192nmのCr膜
圧電膜14:膜厚が1250nmのAlN膜
挿入膜28:膜厚が150nmの酸化シリコン膜
挿入膜28は、圧電膜14の厚さ方向の中心に設けた。
上部電極16の下層16a:膜厚が232nmのRu膜
上部電極16の上層16b:膜厚が35nmのCr層
周波数調整膜24:膜厚が50nmの酸化シリコン膜
共振領域50の形状:長軸が211μm、短軸が151μmの楕円形状
[Experiment in Comparative Example 1]
Therefore, a piezoelectric thin film resonator having a structure B without an additional film 26 was manufactured. The stress of the piezoelectric film 14 was changed, and the presence or absence of breakage such as cracks and / or peeling of the piezoelectric film 14 was investigated. The production conditions of the structure B are as follows.
Lower layer 12a of lower electrode 12: Cr film with a film thickness of 98 nm Upper layer 12b of lower electrode 12: Cr film with a film thickness of 192 nm Piezoelectric film 14: AlN film with a film thickness of 1250 nm Insert film 28: Silicon oxide with a film thickness of 150 nm The membrane insertion membrane 28 was provided at the center of the piezoelectric membrane 14 in the thickness direction.
Lower layer 16a of the upper electrode 16: Ru film having a film thickness of 232 nm Upper layer 16b of the upper electrode 16: Cr layer having a film thickness of 35 nm Frequency adjusting film 24: Silicon oxide film having a film thickness of 50 nm Shape of resonance region 50: Long axis Elliptical shape with 211 μm and 151 μm minor axis

圧電膜14の成膜方法は以下である。圧力を0.3Paとし、Ar(アルゴン)ガスとN(窒素ガス)の混合ガス雰囲気においてスパッタリングを行った。Ar/N混合ガスにおける、Ar+Nの流量に対するArの流量の比(Ar流量比)を変えることで圧電膜14の残留応力を変化させた。圧電膜14には、窒素およびアルミニウム以外の元素を意図的に添加していない。 The film forming method of the piezoelectric film 14 is as follows. Sputtering was performed in a mixed gas atmosphere of Ar (argon) gas and N 2 (nitrogen gas) at a pressure of 0.3 Pa. The residual stress of the piezoelectric film 14 was changed by changing the ratio of the flow rate of Ar to the flow rate of Ar + N 2 (Ar flow rate ratio) in the Ar / N 2 mixed gas. Elements other than nitrogen and aluminum are not intentionally added to the piezoelectric film 14.

圧電薄膜共振器の圧電膜14を成膜する条件と同じ条件でシリコン基板上に圧電膜を成膜した。室温におけるシリコン基板の反りから残留応力を測定した。圧電膜14の残留応力が引張応力のときは、圧電膜14を設けた面が凹むようにシリコン基板が反る。圧電膜14の残留応力が圧縮応力のときは、圧電膜14を設けた面が膨らむようにシリコン基板が反る。残留応力の符号は、引張応力のとき正であり、圧縮応力のとき負である。なお、残留応力は内部応力ともいう。 The piezoelectric film was formed on the silicon substrate under the same conditions as the conditions for forming the piezoelectric film 14 of the piezoelectric thin film resonator. Residual stress was measured from the warp of the silicon substrate at room temperature. When the residual stress of the piezoelectric film 14 is tensile stress, the silicon substrate warps so that the surface on which the piezoelectric film 14 is provided is recessed. When the residual stress of the piezoelectric film 14 is compressive stress, the silicon substrate warps so that the surface on which the piezoelectric film 14 is provided swells. The sign of residual stress is positive for tensile stress and negative for compressive stress. The residual stress is also referred to as internal stress.

作製した圧電薄膜共振器のサンプルにおいて、SEM(Scanning Electron Microscope)を用い圧電膜14の破壊を観察した。圧電膜14にクラックおよび/または剥離が生じているサンプルを圧電膜14の破壊が「有」とし、圧電膜14にクラックおよび剥離のいずれも生じていないサンプルを圧電膜14の破壊が「無」とした。 In the prepared sample of the piezoelectric thin film resonator, the fracture of the piezoelectric film 14 was observed using an SEM (Scanning Electron Microscope). A sample in which the piezoelectric film 14 is cracked and / or peeled is regarded as “presence” in the destruction of the piezoelectric film 14, and a sample in which neither crack or peeling is generated in the piezoelectric film 14 is “absent” in the destruction of the piezoelectric film 14. And said.

図3は、実験における圧電膜の残留応力と圧電膜の破損を示す図である。図3に示すように、圧電膜14の残留応力が-200MPa以下では圧電膜14の破壊が生じ、残留応力が-150MPa以上では圧電膜14の破壊は生じない。 FIG. 3 is a diagram showing the residual stress of the piezoelectric film and the breakage of the piezoelectric film in the experiment. As shown in FIG. 3, when the residual stress of the piezoelectric film 14 is −200 MPa or less, the piezoelectric film 14 is destroyed, and when the residual stress is −150 MPa or more, the piezoelectric film 14 is not destroyed.

[シミュレーション]
付加膜26としてAlN膜を設けた構造Aと付加膜26を設けない構造Bについて、下部電極12の端部56(図2参照)に加わる応力を2次元の有限要素法を用い算出した。シミュレーション条件は、実験の条件と同じとした。図3の実験結果より、構造Bでは、圧電膜14の残留応力が-150Mpaのときが圧電膜14の破損の有無の臨界値となる。そこで、下部電極12の端部56に加わる応力は、構造Bにおける残留応力が-150MPaのときの端部56に加わる応力で規格化した。規格化した応力を応力比とし100分率で表した。応力比が100%以上の構造では圧電膜14に破壊が生じ、100%未満では圧電膜14に破壊が生じないと考えられる。
[simulation]
For the structure A provided with the AlN film as the additional film 26 and the structure B without the additional film 26, the stress applied to the end portion 56 (see FIG. 2) of the lower electrode 12 was calculated by using the two-dimensional finite element method. The simulation conditions were the same as the experimental conditions. From the experimental results of FIG. 3, in the structure B, when the residual stress of the piezoelectric film 14 is −150 MPa, the critical value of the presence or absence of breakage of the piezoelectric film 14 is obtained. Therefore, the stress applied to the end portion 56 of the lower electrode 12 is standardized by the stress applied to the end portion 56 when the residual stress in the structure B is −150 MPa. The normalized stress was taken as the stress ratio and expressed in parts per hundred. It is considered that the piezoelectric film 14 is broken when the stress ratio is 100% or more, and the piezoelectric film 14 is not broken when the stress ratio is less than 100%.

図4は、シミュレーションにおける応力比を示す図である。図4に示すように、構造Bでは、圧電膜14の残留応力が-200MPa以下で応力比が100%以上となり、圧電膜14の残留応力が-100MPa以下で応力比が100%未満となる。これは図3の結果と一致している。このように、シミュレーションにより、圧電膜14の破損の有無が予想できる。 FIG. 4 is a diagram showing the stress ratio in the simulation. As shown in FIG. 4, in the structure B, the residual stress of the piezoelectric film 14 is −200 MPa or less and the stress ratio is 100% or more, and the residual stress of the piezoelectric film 14 is −100 MPa or less and the stress ratio is less than 100%. This is in agreement with the result in FIG. In this way, the presence or absence of damage to the piezoelectric film 14 can be predicted by simulation.

構造Aでは、引張応力の付加膜26を設けることで、応力比を100%未満にできる。すなわち、圧電膜14の破損を抑制できる。付加膜26の膜厚が大きいほど応力比を小さくでき、付加膜26の残留応力が大きいほど応力比を小さくできる。圧電膜14の残留応力の絶対値が大きくなる(すなわち圧縮応力が大きくなる)と、付加膜26の膜厚を大きくしかつ残留応力を大きくしないと応力比は100%未満とならない。 In the structure A, the stress ratio can be made less than 100% by providing the additional film 26 for tensile stress. That is, the damage of the piezoelectric film 14 can be suppressed. The larger the film thickness of the additional film 26, the smaller the stress ratio, and the larger the residual stress of the additional film 26, the smaller the stress ratio. When the absolute value of the residual stress of the piezoelectric film 14 becomes large (that is, the compressive stress becomes large), the stress ratio does not become less than 100% unless the film thickness of the additional film 26 is increased and the residual stress is increased.

図4のように、応力比を100%未満とするため、付加膜26の膜厚は100nm以上が好ましい。これは圧電膜14の膜厚の8%以上に相当する。このように、付加膜26の膜厚は圧電膜14の膜厚の8%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましい。付加膜26が厚すぎると付加膜26または圧電膜14との剥がれ等が生じる。よって、付加膜26の膜厚は圧電膜14の膜厚の50%以下が好ましく、40%以下がより好ましく、30%以下がさらに好ましい。 As shown in FIG. 4, since the stress ratio is less than 100%, the film thickness of the additional film 26 is preferably 100 nm or more. This corresponds to 8% or more of the film thickness of the piezoelectric film 14. As described above, the film thickness of the additional film 26 is preferably 8% or more, more preferably 10% or more, and further preferably 15% or more of the film thickness of the piezoelectric film 14. If the additional film 26 is too thick, it may peel off from the additional film 26 or the piezoelectric film 14. Therefore, the film thickness of the additional film 26 is preferably 50% or less, more preferably 40% or less, still more preferably 30% or less of the film thickness of the piezoelectric film 14.

また、応力比を100%未満とするため、付加膜26の残留応力の絶対値は、圧電膜14の残留応力の絶対値の50%以上が好ましく、75%以上がより好ましく、100%以上がさらに好ましい。付加膜26の引張応力が大きすぎると付加膜26または圧電膜14との剥がれ等が生じる。よって、付加膜26の残留応力の絶対値は、圧電膜14の残留応力の絶対値の500%以下が好ましく、300%以下がより好ましく、200%以下がさらに好ましい。 Further, since the stress ratio is less than 100%, the absolute value of the residual stress of the additional film 26 is preferably 50% or more, more preferably 75% or more, and 100% or more of the absolute value of the residual stress of the piezoelectric film 14. More preferred. If the tensile stress of the additional film 26 is too large, peeling from the additional film 26 or the piezoelectric film 14 or the like occurs. Therefore, the absolute value of the residual stress of the additional film 26 is preferably 500% or less, more preferably 300% or less, still more preferably 200% or less of the absolute value of the residual stress of the piezoelectric film 14.

付加膜26の残留応力を設定するためのAlN膜の成膜方法を検討した。AlNをターゲットとし、スパッタリングガスをAr/N混合ガスとした。Nは、Alと反応させAlNとするためのガスである。ターゲットのスパッタリングには主にArが寄与する。圧力を0.3Paとし、N流量を80sccmの一定値とし、Ar流量を変えAlN膜を成膜した。AlN膜には窒素およびアルミニウム以外の元素を意図的には添加していない。 A method for forming an AlN film for setting the residual stress of the additional film 26 was examined. AlN was targeted, and the sputtering gas was an Ar / N 2 mixed gas. N 2 is a gas for reacting with Al to obtain Al N. Ar mainly contributes to the sputtering of the target. The pressure was 0.3 Pa, the N 2 flow rate was a constant value of 80 sccm, and the Ar flow rate was changed to form an AlN film. No element other than nitrogen and aluminum was intentionally added to the AlN film.

図5は、Ar流量に対する残留応力を示す図である。図5に示すように、Ar流量が小さいと、残留応力は圧縮応力である。Ar流量が大きくなると、残留応力が大きくなり引張応力となる。このように、Ar流量を変えることで付加膜26の残留応力を制御できる。Ar流量の大きい(すなわち残留応力が大きい)付加膜26のAr濃度はAr流量の小さい(すなわち残留応力の小さい)付加膜26のAr濃度より高いと考えられる。 FIG. 5 is a diagram showing residual stress with respect to Ar flow rate. As shown in FIG. 5, when the Ar flow rate is small, the residual stress is a compressive stress. When the Ar flow rate becomes large, the residual stress becomes large and becomes a tensile stress. In this way, the residual stress of the additional film 26 can be controlled by changing the Ar flow rate. It is considered that the Ar concentration of the addition film 26 having a large Ar flow rate (that is, a large residual stress) is higher than the Ar concentration of the addition film 26 having a small Ar flow rate (that is, a small residual stress).

圧電膜14が圧縮応力となる原因としては、例えば圧電膜14に圧電膜14の圧電性が向上するような元素を添加することが挙げられる。特許文献2に記載されているように、圧電膜14に、2族元素または12族元素と4族元素を添加する、または2族元素と5族元素とを添加する。なお、元素の族の名称は、IUPAC(International Union of Pure and Applied Chemistry)の表記による。2族元素は、例えばカルシウム(Ca)、マグネシウム(Mg)またはストロンチウム(Sr)である。12族元素は例えば亜鉛(Zn)である。4族元素は、例えばチタン(Ti)、ジルコニウム(Zr)またはハフニウム(Hf)である。5族元素は、例えばタンタル(Ta)、ニオブ(Nb)またはバナジウム(V)である。特許文献3に記載されているように、圧電膜14は、窒化アルミニウム膜を主成分とし、スカンジウム(Sc)が添加されていてもよい。また、圧電膜14は窒化アルミニウムを主成分とし、ボロン(B)が添加されていてもよい。 The cause of the piezoelectric film 14 becoming a compressive stress is, for example, the addition of an element that improves the piezoelectricity of the piezoelectric film 14 to the piezoelectric film 14. As described in Patent Document 2, a group 2 element or a group 12 element and a group 4 element are added to the piezoelectric film 14, or a group 2 element and a group 5 element are added. The name of the group of elements is based on the notation of IUPAC (International Union of Pure and Applied Chemistry). Group 2 elements are, for example, calcium (Ca), magnesium (Mg) or strontium (Sr). The Group 12 element is, for example, zinc (Zn). Group 4 elements are, for example, titanium (Ti), zirconium (Zr) or hafnium (Hf). Group 5 elements are, for example, tantalum (Ta), niobium (Nb) or vanadium (V). As described in Patent Document 3, the piezoelectric film 14 contains an aluminum nitride film as a main component, and scandium (Sc) may be added. Further, the piezoelectric film 14 contains aluminum nitride as a main component, and boron (B) may be added.

2族元素もしくは12族元素と4族元素もしくは5族元素、スカンジウムおよびボロンを仮に元素Mとすると、元素MはAlNのAlに置換する。すなわち、元素MはAlサイトに位置する。これにより、圧電膜14の圧電性が向上し圧電薄膜共振器の電気機械結合係数等の特性が向上する。このとき、圧電膜14は圧縮応力となる。 Assuming that the group 2 element or group 12 element, the group 4 element or group 5 element, scandium and boron are the element M, the element M is replaced with Al of AlN. That is, the element M is located at the Al site. As a result, the piezoelectricity of the piezoelectric film 14 is improved, and the characteristics such as the electromechanical coupling coefficient of the piezoelectric thin film resonator are improved. At this time, the piezoelectric film 14 becomes a compressive stress.

圧電薄膜共振器の電気機械結合係数を構造させるため、元素Mの濃度(M+Alに対するMの濃度)は、5原子%以上が好ましく、10原子%以上がより好ましく、20原子%以上がさらに好ましい。また、圧電膜14をAlN膜とするため、元素Mの濃度は50原子%以下が好ましく、40原子%以下がより好ましい。なお、圧電膜14が窒化アルミニウム膜を主成分とするとは、本明細書の効果が得られる程度に窒化アルミニウムを含むことであり、例えば圧電膜14の50原子%以上がAlおよびNであることである。 In order to structure the electromechanical coupling coefficient of the piezoelectric thin film resonator, the concentration of the element M (concentration of M with respect to M + Al) is preferably 5 atomic% or more, more preferably 10 atomic% or more, still more preferably 20 atomic% or more. Further, since the piezoelectric film 14 is an AlN film, the concentration of the element M is preferably 50 atomic% or less, more preferably 40 atomic% or less. The fact that the piezoelectric film 14 contains an aluminum nitride film as a main component means that the piezoelectric film 14 contains aluminum nitride to the extent that the effects of the present specification can be obtained. For example, 50 atomic% or more of the piezoelectric film 14 is Al and N. Is.

以上説明したように、付加膜26を設けない比較例1では、圧電膜14を圧縮応力とした場合、圧電膜14に加わる応力が大きくなってしまう。 As described above, in Comparative Example 1 in which the additional film 26 is not provided, when the piezoelectric film 14 is used as a compressive stress, the stress applied to the piezoelectric film 14 becomes large.

実施例1によれば、圧電膜14を、窒化アルミニウムを主成分とし、窒素、アルミニウムおよびアルゴン以外から選択される元素を意図的に添加する。これにより、圧電膜14の圧電性が向上する。しかし、圧電膜14の残留応力が圧縮応力となる。そこで、付加膜26を、共振領域50における圧電膜14上に設ける。付加膜26を、アルゴン濃度が圧電膜14のアルゴン濃度より低く、窒化アルミニウムを主成分とする膜とする。これにより、付加膜26が引張応力となり、下部電極12の端部等において圧電膜14に加わる応力を抑制できる。よって、圧電膜14の破壊を抑制できる。 According to the first embodiment, the piezoelectric film 14 is mainly composed of aluminum nitride, and an element selected from other than nitrogen, aluminum and argon is intentionally added. This improves the piezoelectricity of the piezoelectric film 14. However, the residual stress of the piezoelectric film 14 becomes the compressive stress. Therefore, the additional film 26 is provided on the piezoelectric film 14 in the resonance region 50. The additional film 26 is a film having an argon concentration lower than that of the piezoelectric film 14 and containing aluminum nitride as a main component. As a result, the additional film 26 becomes a tensile stress, and the stress applied to the piezoelectric film 14 at the end of the lower electrode 12 or the like can be suppressed. Therefore, the destruction of the piezoelectric film 14 can be suppressed.

付加膜26は、窒素、アルミニウムおよびアルゴン以外から選択される元素が実質的に(すなわち意図的に)添加されていない。これにより、付加膜26をより引張応力とすることができる。 The additional film 26 is substantially (ie, intentionally) free of elements selected from other than nitrogen, aluminum and argon. As a result, the additional film 26 can be made more tensile stress.

窒素、アルミニウムおよびアルゴン以外から選択される元素は、スカンジウムもしくはボロン、または、2族元素もしくは12族元素と4族元素もしくは5族元素とである。これにより、圧電膜14の圧電性がより向上する。しかし、圧電膜14が圧縮応力となりやすく下部電極12の端部に応力が集中しやすい。そこで、付加膜26を設けることが好ましい。 Elements selected from other than nitrogen, aluminum and argon are scandium or boron, or Group 2 or Group 12 elements and Group 4 or Group 5 elements. As a result, the piezoelectricity of the piezoelectric film 14 is further improved. However, the piezoelectric film 14 tends to be compressive stress, and the stress tends to concentrate on the end of the lower electrode 12. Therefore, it is preferable to provide the additional film 26.

圧電膜14が窒化アルミニウムを主成分とし、ボロンが添加されている場合、圧電膜14が硬くなる。よって、圧電膜14に応力が加わるとクラック等の破損が生じやすい。よって、付加膜26を設けることが好ましい。 When the piezoelectric film 14 contains aluminum nitride as a main component and boron is added, the piezoelectric film 14 becomes hard. Therefore, when stress is applied to the piezoelectric film 14, damage such as cracks is likely to occur. Therefore, it is preferable to provide the additional film 26.

また、実施例1によれば、圧電薄膜共振器の特性向上等のため、圧電膜14の残留応力を圧縮応力とする。このとき、共振領域50における圧電膜14上に、残留応力が引張応力である付加膜26を設ける。これにより、下部電極12の端部等において圧電膜14に加わる応力を抑制できる。よって、圧電膜14の破壊を抑制できる。 Further, according to the first embodiment, the residual stress of the piezoelectric film 14 is set as the compressive stress in order to improve the characteristics of the piezoelectric thin film resonator. At this time, an additional film 26 whose residual stress is tensile stress is provided on the piezoelectric film 14 in the resonance region 50. As a result, the stress applied to the piezoelectric film 14 at the end of the lower electrode 12 or the like can be suppressed. Therefore, the destruction of the piezoelectric film 14 can be suppressed.

付加膜26は、共振領域50外に設けられていてもよいが、少なくとも共振領域50の全体と重なるように設ける。これにより、下部電極12の端部の圧電膜14に加わる応力を抑制できる。付加膜26は、共振領域50の一部と重なり、共振領域50の他の部分に重ならなくてもよい。下部電極12の端部への応力の集中を抑制するため、付加膜26は、共振領域50内の少なくとも中央領域54における圧電膜14上に設けられていることが好ましい。 The additional film 26 may be provided outside the resonance region 50, but is provided so as to overlap at least the entire resonance region 50. As a result, the stress applied to the piezoelectric film 14 at the end of the lower electrode 12 can be suppressed. The additional film 26 overlaps a part of the resonance region 50 and does not have to overlap the other part of the resonance region 50. In order to suppress the concentration of stress on the end of the lower electrode 12, the additional film 26 is preferably provided on the piezoelectric film 14 in at least the central region 54 in the resonance region 50.

付加膜26のヤング率が小さいと、付加膜26が歪んでしまう。これにより、圧電膜14の応力を緩和することが難しくなる。そこで、付加膜26のヤング率は、下部電極12および上部電極16内の少なくとも1つの層のヤング率より大きいことが好ましい。例えば、下部電極12および上部電極16として用いるルテニウムおよびクロムのヤング率は、それぞれ447GPaおよび279GPaである。二酸化シリコンおよび窒化アルミニウムのヤング率はそれぞれ79GPaおよび395GPaである。よって、付加膜26としては、酸化シリコン膜より窒化アルミニウム膜が好ましい。 If the Young's modulus of the additional film 26 is small, the additional film 26 is distorted. This makes it difficult to relieve the stress of the piezoelectric film 14. Therefore, the Young's modulus of the additional film 26 is preferably larger than the Young's modulus of at least one layer in the lower electrode 12 and the upper electrode 16. For example, the Young's modulus of ruthenium and chromium used as the lower electrode 12 and the upper electrode 16 is 447 GPa and 279 GPa, respectively. Young's modulus of silicon dioxide and aluminum nitride is 79 GPa and 395 GPa, respectively. Therefore, as the additional film 26, an aluminum nitride film is preferable to a silicon oxide film.

図2のように、上部電極16が共振領域50から引き出される領域における下部電極12の端は、空隙30と圧電膜14との間に位置する。このような構造では、下部電極12の端部に応力が集中する。よって、圧電膜14が破壊されやすくなる。そこで、付加膜26を設ける。これにより、下部電極12の端部への応力の集中を抑制できる。下部電極12の端は、空隙30と圧電膜14との間に位置しない場合であっても、下部電極12の端部には応力が集中するため、付加膜26を設けることが好ましい。 As shown in FIG. 2, the end of the lower electrode 12 in the region where the upper electrode 16 is drawn out from the resonance region 50 is located between the gap 30 and the piezoelectric film 14. In such a structure, stress is concentrated on the end of the lower electrode 12. Therefore, the piezoelectric film 14 is easily destroyed. Therefore, the additional film 26 is provided. This makes it possible to suppress the concentration of stress on the end of the lower electrode 12. Even if the end of the lower electrode 12 is not located between the gap 30 and the piezoelectric film 14, stress is concentrated on the end of the lower electrode 12, so it is preferable to provide the additional film 26.

[実施例1の変形例1]
図6(a)は、実施例1の変形例1に係る圧電薄膜共振器の断面図である。図6(a)に示すように、付加膜26は圧電膜14と上部電極16との間に設けられている。その他の構成は実施例1と同じであり説明を省略する。
[Modification 1 of Example 1]
FIG. 6A is a cross-sectional view of the piezoelectric thin film resonator according to the first modification of the first embodiment. As shown in FIG. 6A, the additional film 26 is provided between the piezoelectric film 14 and the upper electrode 16. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

実施例1のように、付加膜26は、上部電極16の上に設けられていてもよい。実施例1の変形例1のように、付加膜26は、圧電膜14と上部電極16との間に設けられていてもよい。また、実施例1のように、付加膜26は、共振領域50に設けられ、共振領域50以外には設けられていなくてもよい。実施例1の変形例1のように、付加膜26は、共振領域50以外に設けられていてもよい。 As in the first embodiment, the additional film 26 may be provided on the upper electrode 16. As in the modified example 1 of the first embodiment, the additional film 26 may be provided between the piezoelectric film 14 and the upper electrode 16. Further, as in the first embodiment, the additional film 26 is provided in the resonance region 50 and may not be provided in other than the resonance region 50. As in the modified example 1 of the first embodiment, the additional film 26 may be provided in a region other than the resonance region 50.

例えば付加膜26の主成分が圧電膜14の主成分と異なる場合、実施例1の変形例1のように、付加膜26を圧電膜14と上部電極16との間に設けると、圧電薄膜共振器の特性が劣化してしまう。よって、実施例1のように、付加膜26を上部電極16上に設けることが好ましい。上部電極16上に設けられた付加膜26の材料と異なる材料からなる周波数調整膜24(絶縁膜)が設けられている場合、付加膜26は、上部電極16と周波数調整膜24との間に設けることが好ましい。これにより、付加膜26が圧電膜14の近くに位置するため、応力をより緩和できる。 For example, when the main component of the additional film 26 is different from the main component of the piezoelectric film 14, if the additional film 26 is provided between the piezoelectric film 14 and the upper electrode 16 as in the modified example 1 of the first embodiment, the piezoelectric thin film resonance occurs. The characteristics of the vessel deteriorate. Therefore, it is preferable to provide the additional film 26 on the upper electrode 16 as in the first embodiment. When a frequency adjusting film 24 (insulating film) made of a material different from the material of the additional film 26 provided on the upper electrode 16 is provided, the additional film 26 is placed between the upper electrode 16 and the frequency adjusting film 24. It is preferable to provide it. As a result, the additional film 26 is located near the piezoelectric film 14, so that the stress can be further relaxed.

付加膜26の主成分が圧電膜14の主成分と同じ場合、例えば付加膜26および圧電膜14の主成分が窒化アルミニウムの場合、実施例1の変形例1のように付加膜26を圧電膜14と上部電極16との間に設けてもよい。これにより、実施例1より、付加膜26が圧電膜14の近くに位置するため、応力をより緩和できる。 When the main component of the additional film 26 is the same as the main component of the piezoelectric film 14, for example, when the main component of the additional film 26 and the piezoelectric film 14 is aluminum nitride, the additional film 26 is made into a piezoelectric film as in the modified example 1 of the first embodiment. It may be provided between 14 and the upper electrode 16. As a result, since the additional film 26 is located closer to the piezoelectric film 14 than in the first embodiment, the stress can be further relaxed.

[実施例1の変形例2]
図6(b)は、実施例1の変形例2に係る圧電薄膜共振器の断面図である。図6(b)に示すように、下部電極12の引き出し領域において、上部圧電膜14bの端面は共振領域50の輪郭に略一致する。下部圧電膜14aの端面は共振領域50の輪郭より外側に位置する。その他の構成は実施例1と同じであり説明を省略する。
[Modification 2 of Example 1]
FIG. 6B is a cross-sectional view of the piezoelectric thin film resonator according to the second modification of the first embodiment. As shown in FIG. 6B, in the extraction region of the lower electrode 12, the end face of the upper piezoelectric film 14b substantially coincides with the contour of the resonance region 50. The end face of the lower piezoelectric film 14a is located outside the contour of the resonance region 50. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

実施例1の変形例2のように、実施例1およびその変形例1において、圧電膜14は階段状に設けられていてもよい。 As in the second modification of the first embodiment, in the first embodiment and the first modification thereof, the piezoelectric film 14 may be provided in a stepped shape.

[実施例1の変形例3]
図7(a)は、実施例1の変形例3に係る圧電薄膜共振器の断面図である。図7(a)に示すように、基板10の上面に窪みが形成されている。下部電極12は、基板10上に平坦に形成されている。これにより、空隙30が、基板10の窪みに形成されている。空隙30は共振領域50を含むように形成されている。その他の構成は、実施例1と同じであり説明を省略する。空隙30は、基板10を貫通するように形成されていてもよい。なお、下部電極12の下面に絶縁膜が接して形成されていてもよい。すなわち、空隙30は、基板10と下部電極12に接する絶縁膜との間に形成されていてもよい。絶縁膜としては、例えば窒化アルミニウム膜を用いることができる。その他の構成は実施例1と同じであり説明を省略する。
[Modification 3 of Example 1]
FIG. 7A is a cross-sectional view of the piezoelectric thin film resonator according to the third modification of the first embodiment. As shown in FIG. 7A, a recess is formed on the upper surface of the substrate 10. The lower electrode 12 is formed flat on the substrate 10. As a result, the void 30 is formed in the recess of the substrate 10. The void 30 is formed so as to include the resonance region 50. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted. The void 30 may be formed so as to penetrate the substrate 10. An insulating film may be formed in contact with the lower surface of the lower electrode 12. That is, the void 30 may be formed between the substrate 10 and the insulating film in contact with the lower electrode 12. As the insulating film, for example, an aluminum nitride film can be used. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

[実施例1の変形例4]
図7(b)は、実施例1の変形例4に係る圧電薄膜共振器の断面図である。図7(b)に示すように、共振領域50の下部電極12下に音響反射膜31が形成されている。音響反射膜31は、音響インピーダンスの低い膜30aと音響インピーダンスの高い膜30bとが交互に設けられている。膜30aおよび30bの膜厚は例えばそれぞれほぼλ/4(λは弾性波の波長)である。膜30aと膜30bの積層数は任意に設定できる。音響反射膜31は、音響特性の異なる少なくとも2種類の層が間隔をあけて積層されていればよい。また、基板10が音響反射膜31の音響特性の異なる少なくとも2種類の層のうちの1層であってもよい。例えば、音響反射膜31は、基板10中に音響インピーダンスの異なる膜が一層設けられている構成でもよい。その他の構成は、実施例1と同じであり説明を省略する。
[Modified Example 4 of Example 1]
FIG. 7B is a cross-sectional view of the piezoelectric thin film resonator according to the modified example 4 of the first embodiment. As shown in FIG. 7B, the acoustic reflection film 31 is formed under the lower electrode 12 in the resonance region 50. The acoustic reflection film 31 is provided with a film 30a having a low acoustic impedance and a film 30b having a high acoustic impedance alternately. The film thicknesses of the films 30a and 30b are, for example, approximately λ / 4 (λ is the wavelength of the elastic wave), respectively. The number of layers of the film 30a and the film 30b can be arbitrarily set. The acoustic reflection film 31 may be formed by laminating at least two types of layers having different acoustic characteristics at intervals. Further, the substrate 10 may be one of at least two types of layers having different acoustic characteristics of the acoustic reflection film 31. For example, the acoustic reflective film 31 may be configured such that a film having different acoustic impedances is further provided in the substrate 10. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

実施例1およびその変形例1、2において、実施例1の変形例3と同様に空隙30を形成してもよく、実施例1の変形例4と同様に空隙30の代わりに音響反射膜31を形成してもよい。 In Example 1 and the modified examples 1 and 2, the void 30 may be formed in the same manner as in the modified example 3 of the first embodiment, and the acoustic reflective film 31 may be formed instead of the void 30 as in the modified example 4 of the first embodiment. May be formed.

実施例1およびその変形例1から3のように、圧電薄膜共振器は、共振領域50において空隙30が基板10と下部電極12との間に形成されているFBAR(Film Bulk Acoustic Resonator)でもよい。また、実施例1の変形例4のように、圧電薄膜共振器は、共振領域50において下部電極12下に圧電膜14を伝搬する弾性波を反射する音響反射膜31を備えるSMR(Solidly Mounted Resonator)でもよい。共振領域50を含む音響反射層は、空隙30または音響反射膜31を含めばよい。 As in the first embodiment and the first to third modifications thereof, the piezoelectric thin film resonator may be an FBAR (Film Bulk Acoustic Resonator) in which a gap 30 is formed between the substrate 10 and the lower electrode 12 in the resonance region 50. .. Further, as in the modified example 4 of the first embodiment, the piezoelectric thin film resonator includes an SMR (Solidly Mounted Resonator) including an acoustic reflecting film 31 that reflects an elastic wave propagating in the piezoelectric film 14 under the lower electrode 12 in the resonance region 50. ) May be. The acoustic reflection layer including the resonance region 50 may include the void 30 or the acoustic reflection film 31.

共振領域50が楕円形状の例を説明したが、他の形状でもよい。例えば、共振領域50は、四角形または五角形等の多角形でもよい。 Although the example in which the resonance region 50 has an elliptical shape has been described, other shapes may be used. For example, the resonance region 50 may be a polygon such as a quadrangle or a pentagon.

実施例2は、実施例1およびその変形例の圧電薄膜共振器を用いたフィルタおよびデュプレクサの例である。図8(a)は、実施例2に係るフィルタの回路図である。図8(a)に示すように、入力端子T1と出力端子T2との間に、1または複数の直列共振器S1からS4が直列に接続されている。入力端子T1と出力端子T2との間に、1または複数の並列共振器P1からP4が並列に接続されている。1または複数の直列共振器S1からS4および1または複数の並列共振器P1からP4の少なくとも1つの共振器に実施例1およびその変形例の圧電薄膜共振器を用いることができる。ラダー型フィルタの共振器の個数等は適宜設定できる。 Example 2 is an example of a filter and a duplexer using a piezoelectric thin film resonator of Example 1 and its modifications. FIG. 8A is a circuit diagram of the filter according to the second embodiment. As shown in FIG. 8A, one or a plurality of series resonators S1 to S4 are connected in series between the input terminal T1 and the output terminal T2. One or more parallel resonators P1 to P4 are connected in parallel between the input terminal T1 and the output terminal T2. The piezoelectric thin film resonators of Example 1 and its modifications can be used for at least one resonator of one or more series resonators S1 to S4 and one or more parallel resonators P1 to P4. The number of resonators of the ladder type filter can be set as appropriate.

図8(b)は、実施例2の変形例1に係るデュプレクサの回路図である。図8(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ40が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ42が接続されている。送信フィルタ40は、送信端子Txから入力された信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ42は、共通端子Antから入力された信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ40および受信フィルタ42の少なくとも一方を実施例2のフィルタとすることができる。 FIG. 8B is a circuit diagram of the duplexer according to the first modification of the second embodiment. As shown in FIG. 8B, a transmission filter 40 is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 42 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 40 passes a signal in the transmission band among the signals input from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies. The reception filter 42 passes a signal in the reception band among the signals input from the common terminal Ant to the reception terminal Rx as a reception signal, and suppresses signals of other frequencies. At least one of the transmission filter 40 and the reception filter 42 can be the filter of the second embodiment.

マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。 Although the duplexer has been described as an example as the multiplexer, a triplexer or a quadplexer may be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and variations are made within the scope of the gist of the present invention described in the claims. It can be changed.

10 基板
12 下部電極
14 圧電膜
14a 下部圧電膜
14b 上部圧電膜
16 上部電極
24 周波数調整膜
26 付加膜
28 挿入膜
30 空隙
31 音響反射膜
40 送信フィルタ
42 受信フィルタ
50 共振領域
10 Substrate 12 Lower electrode 14 Pietrical film 14a Lower piezoelectric film 14b Upper piezoelectric film 16 Upper electrode 24 Frequency adjustment film 26 Additional film 28 Insertion film 30 Void 31 Acoustic reflection film 40 Transmission filter 42 Resonance filter 50 Resonance region

Claims (11)

基板と、
前記基板上に設けられた下部電極と、
前記下部電極上に設けられ、窒化アルミニウムを主成分とし、スカンジウムもしくはボロン、または、2族元素もしくは12族元素と4族元素もしくは5族元素とである元素が添加され、残留応力が圧縮応力である圧電膜と、
前記圧電膜を挟み前記下部電極と対向する領域である共振領域が形成されるように設けられた上部電極と、
前記共振領域における前記圧電膜上に設けられ、アルゴン濃度が前記圧電膜のアルゴン濃度より高く、窒化アルミニウムを主成分とし、残留応力が引張応力である付加膜と、
前記基板と前記下部電極との間に設けられ、前記圧電膜内に励振された弾性波を反射する音響反射層と、
を備え、
前記付加膜における前記元素の濃度は前記圧電膜における前記元素の濃度より低い、または、前記付加膜には前記元素が実質的に添加されていない圧電薄膜共振器。
With the board
The lower electrode provided on the substrate and
It is provided on the lower electrode and contains aluminum nitride as a main component, and scandium or boron, or an element which is a group 2 or group 12 element and a group 4 or group 5 element is added, and the residual stress is a compressive stress. With a piezoelectric film that is
An upper electrode provided so as to form a resonance region which is a region facing the lower electrode and sandwiching the piezoelectric film,
An additional film provided on the piezoelectric film in the resonance region, having an argon concentration higher than that of the piezoelectric film, having aluminum nitride as a main component, and having a residual stress of tensile stress .
An acoustic reflection layer provided between the substrate and the lower electrode and reflecting elastic waves excited in the piezoelectric film,
Equipped with
A piezoelectric thin film resonator in which the concentration of the element in the additional film is lower than the concentration of the element in the piezoelectric film, or the element is not substantially added to the additional film.
前記付加膜には、前記元素が実質的に添加されていない請求項1に記載の圧電薄膜共振器。 The piezoelectric thin film resonator according to claim 1, wherein the element is not substantially added to the additional film. 前記付加膜は前記上部電極上に設けられている請求項1または2に記載の圧電薄膜共振器。 The piezoelectric thin film resonator according to claim 1 or 2 , wherein the additional film is provided on the upper electrode. 前記付加膜は、前記圧電膜と前記上部電極との間に設けられている請求項1または2に記載の圧電薄膜共振器。 The piezoelectric thin film resonator according to claim 1 or 2 , wherein the additional film is provided between the piezoelectric film and the upper electrode. 前記上部電極上に設けられた前記付加膜の材料と異なる材料からなる絶縁膜を更に備え、
前記付加膜は、前記上部電極と前記絶縁膜との間に設けられている請求項1または2に記載の圧電薄膜共振器。
Further, an insulating film made of a material different from the material of the additional film provided on the upper electrode is provided.
The piezoelectric thin film resonator according to claim 1 or 2 , wherein the additional film is provided between the upper electrode and the insulating film.
前記付加膜は、前記共振領域内のうち少なくとも中央領域における前記圧電膜上に設けられている請求項1からのいずれか一項に記載の圧電薄膜共振器。 The piezoelectric thin film resonator according to any one of claims 1 to 5 , wherein the additional film is provided on the piezoelectric film in at least the central region of the resonance region. 前記付加膜のヤング率は、前記下部電極および前記上部電極内の少なくとも1つの層のヤング率より大きい請求項1からのいずれか一項に記載の圧電薄膜共振器。 The piezoelectric thin film resonator according to any one of claims 1 to 6 , wherein the Young's modulus of the additional film is larger than the Young's modulus of the lower electrode and at least one layer in the upper electrode. 前記付加膜の膜厚は、前記圧電膜の膜厚の8%以上である請求項1からのいずれか一項に記載の圧電薄膜共振器。 The piezoelectric thin film resonator according to any one of claims 1 to 7 , wherein the film thickness of the additional film is 8% or more of the film thickness of the piezoelectric film. 前記音響反射層は空隙であり、
前記上部電極が前記共振領域から引き出される領域における前記下部電極の端は、前記空隙と前記圧電膜との間に位置する請求項1からのいずれか一項に記載の圧電薄膜共振器。
The acoustic reflection layer is a void and
The piezoelectric thin film resonator according to any one of claims 1 to 8 , wherein the end of the lower electrode in the region where the upper electrode is drawn out from the resonance region is located between the gap and the piezoelectric membrane.
請求項1からのいずれか一項に記載の圧電薄膜共振器を含むフィルタ。 The filter including the piezoelectric thin film resonator according to any one of claims 1 to 9 . 請求項10に記載のフィルタを含むマルチプレクサ。 A multiplexer including the filter according to claim 10 .
JP2018073782A 2018-04-06 2018-04-06 Piezoelectric thin film resonators, filters and multiplexers Active JP7068011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018073782A JP7068011B2 (en) 2018-04-06 2018-04-06 Piezoelectric thin film resonators, filters and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018073782A JP7068011B2 (en) 2018-04-06 2018-04-06 Piezoelectric thin film resonators, filters and multiplexers

Publications (2)

Publication Number Publication Date
JP2019186691A JP2019186691A (en) 2019-10-24
JP7068011B2 true JP7068011B2 (en) 2022-05-16

Family

ID=68341627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018073782A Active JP7068011B2 (en) 2018-04-06 2018-04-06 Piezoelectric thin film resonators, filters and multiplexers

Country Status (1)

Country Link
JP (1) JP7068011B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299008B2 (en) * 2018-10-17 2023-06-27 太陽誘電株式会社 Piezoelectric thin film resonators, filters, and multiplexers
JP7346230B2 (en) * 2019-10-10 2023-09-19 株式会社三共 gaming machine
JP7346229B2 (en) * 2019-10-10 2023-09-19 株式会社三共 gaming machine
JP7425960B2 (en) * 2019-10-29 2024-02-01 Tdk株式会社 piezoelectric thin film element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046110A (en) 2011-08-22 2013-03-04 Taiyo Yuden Co Ltd Method for manufacturing acoustic wave device
JP2014121025A (en) 2012-12-18 2014-06-30 Taiyo Yuden Co Ltd Piezoelectric thin film resonator
JP2017126900A (en) 2016-01-14 2017-07-20 太陽誘電株式会社 Piezoelectric thin film resonator, filter, and duplexer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046110A (en) 2011-08-22 2013-03-04 Taiyo Yuden Co Ltd Method for manufacturing acoustic wave device
JP2014121025A (en) 2012-12-18 2014-06-30 Taiyo Yuden Co Ltd Piezoelectric thin film resonator
JP2017126900A (en) 2016-01-14 2017-07-20 太陽誘電株式会社 Piezoelectric thin film resonator, filter, and duplexer

Also Published As

Publication number Publication date
JP2019186691A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US11228299B2 (en) Piezoelectric thin film resonator with insertion film, filter, and multiplexer
JP6886357B2 (en) Piezoelectric thin film resonators, filters and multiplexers
US10790799B2 (en) Piezoelectric thin film resonator, filter, and multiplexer
JP7017364B2 (en) Ladder type filter, piezoelectric thin film resonator and its manufacturing method
JP7068011B2 (en) Piezoelectric thin film resonators, filters and multiplexers
US10910547B2 (en) Piezoelectric thin film resonator, filter, and multiplexer
JP7081981B2 (en) Aluminum Nitride Films, Piezoelectric Devices, Resonators, Filters and Multiplexers
US10862448B2 (en) Piezoelectric thin film resonator, filter, and multiplexer
US10250218B2 (en) Piezoelectric thin film resonator and filter
US10205432B2 (en) Piezoelectric thin film resonator, filter, and duplexer
US10680576B2 (en) Piezoelectric thin film resonator, filter, and duplexer
JP2018125762A (en) Piezoelectric thin film resonator, filter and multiplexer
JP7299008B2 (en) Piezoelectric thin film resonators, filters, and multiplexers
JP6757594B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP7068047B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP7344011B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP7075232B2 (en) Piezoelectric thin film resonators, filters and duplexers
JP6831256B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP6909059B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP7383417B2 (en) Acoustic wave devices and their manufacturing methods, piezoelectric thin film resonators, filters and multiplexers
JP2018117194A (en) Piezoelectric thin film resonator and manufacturing method thereof, filter, and multiplexer
JP7190313B2 (en) Piezoelectric thin film resonators, filters and multiplexers
JP2023133978A (en) Piezoelectric thin film resonator, filter, and multiplexer
JP2022025884A (en) Elastic wave device, filter, and multiplexer
JP2021175156A (en) Piezoelectric thin film resonator, filter, multiplexer, and manufacturing method for piezoelectric thin film resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 7068011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150