JP7063034B2 - 積層造形方法 - Google Patents

積層造形方法 Download PDF

Info

Publication number
JP7063034B2
JP7063034B2 JP2018054307A JP2018054307A JP7063034B2 JP 7063034 B2 JP7063034 B2 JP 7063034B2 JP 2018054307 A JP2018054307 A JP 2018054307A JP 2018054307 A JP2018054307 A JP 2018054307A JP 7063034 B2 JP7063034 B2 JP 7063034B2
Authority
JP
Japan
Prior art keywords
unit
dimensional data
internal structure
modeled object
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018054307A
Other languages
English (en)
Other versions
JP2019167562A (ja
Inventor
博宣 ▲高▼坂
勝弘 井藤
亨嘉 気田
喜之 三矢
尚弘 吉田
剛史 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018054307A priority Critical patent/JP7063034B2/ja
Publication of JP2019167562A publication Critical patent/JP2019167562A/ja
Application granted granted Critical
Publication of JP7063034B2 publication Critical patent/JP7063034B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は積層造形方法に関し、特に、粉末を積層し溶融結合させることを繰り返すことによって造形物を製造する積層造形方法に関する。
近年、無機材料もしくは有機材料からなる粉末に光ビームを照射し、焼結または溶融固化させることにより、三次元形状の積層造形物を製造する積層造形装置が、脚光を浴びている。具体的には、定盤上に粉末を敷き詰め、粉末層を形成する工程と、この粉末層の所定領域に光ビ-ムを照射し、焼結または溶融固化させることにより硬化層を形成する工程とを繰り返す。これにより、多数の硬化層を積層一体化して三次元形状の造形物を製造することができる。
また、積層造形方法において、造形物の軽量化、造形時間の短縮、使用材料の低減(コスト削減)、などを目的として、造形物の必要機能や性能を維持しつつ、造形体積を低減するために、位相最適化(トポロジー最適化)を採用することも行われている。
ここで、トポロジー最適化とは、構造物の位相を設計変数として最適化する「位相最適化」のことであり、想定される構造的な制約、荷重条件及び拘束条件の下、設定した設計空間(材料が分布可能な領域)において、最も効率のよい材料の分布を見つけるものである。特許文献1には、三次元形状の造形物の製造に際し、トポロジー最適化を行う積層造形方法が開示されている。
特開2008-231490号公報
発明者らは、粉末を積層し溶融結合させることを繰り返すことによって造形物を製造する積層造形方法に関し、トポロジー最適化を行った場合について、以下の問題点を見出した。
一般に、造形物に対してトポロジー最適化を行うと、最も効率のよい材料の分布、すなわち、中実構造であった部分または部位が取り除かれる(肉抜きされる)ことになるので、結果として、凹凸、空洞および空間(スペース)などの新たな形状や内部構造が出現する。
この新たに形成された凹凸やスペースを活用して、そこに測定、冷却または加熱、加振、流体の流動制御、などの各種機能を発揮させるための機器(機能機器)を取り付けることで、従来は機能を発揮することが困難であった部位に機能を発揮させることや、より高精度・高効率に機能を発揮させることなどができるようになる場合がある。
ところが、凹凸やスペースがあるが故に、新たに形成された形状や内部構造の表面形状は複雑なものになり、例えば「安定して固定するために必要な平面(または寸法)」などの、機能機器の取り付け仕様などにより、取り付けが困難になる場合があった。
本発明は、上記の問題を鑑みてなされたものであり、造形物の造形体積を低減しつつ、所望の位置に機能機器を取り付けることが可能な積層造形方法を提供するものである。
本発明にかかる積層造形方法は、粉末を積層し溶融結合させることを繰り返すことによって三次元形状の造形物を製造する積層造形方法であって、造形物の三次元データを取得する工程と、取得した三次元データをトポロジー最適化する工程と、を備え、トポロジー最適化される前又はトポロジー最適化された後の三次元データに対し、造形物に機能機器を配設するためのベース部を形成する。
本発明にかかる積層造形方法では、トポロジー最適化される前又はトポロジー最適化された後の三次元データに対し、造形物に機能機器を配設するためのベース部を形成する。よって、造形物の造形体積を低減しつつ、所望の位置に機能機器を取り付けることが可能な積層造形方法を提供することができる。
本発明により、造形物の造形体積を低減しつつ、所望の位置に機能機器を取り付けることができる。
実施の形態にかかる積層造形方法に用いる積層造形装置の概要を示す模式的断面図である。 実施の形態にかかる積層造形方法に用いる制御装置の構成を示すブロック図である。 実施の形態にかかる積層造形方法で製造される造形物を例示する図である。 実施の形態にかかる積層造形方法を示すフローチャートである。 図3に示したフローチャートにおけるステップS20の工程の詳細を示すフローチャートである。 実施の形態にかかる積層造形方法で製造される造形物の模式的断面図である。 実施の形態にかかる積層造形方法で製造される他の造形物の模式的断面図である。
以下、図面を参照して本発明の実施の形態について説明する。但し、本発明が以下の実施の形態に限定されるわけではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。
なお、当然のことながら、図1、図6及び図7に示した右手系xyz座標は、構成要素の位置関係を説明するための便宜的なものである。通常、z軸プラス向きが鉛直上向き、xy平面が水平面である。
(実施の形態)
まず、図1を参照して、実施の形態にかかる積層造形方法に用いる積層造形装置について説明する。図1は、実施の形態にかかる積層造形装置1の概要を示す模式的断面図である。図1に示すように、実施の形態にかかる積層造形方法に用いる積層造形装置1は、ベース30、定盤2、造形槽3、造形槽支持部4、造形槽駆動部5、支柱6、支持部7、レーザスキャナ8、光ファイバ9、レーザ発振器10、スキージ11、樋12、粉末分配器13、粉末供給部14、及び制御装置100を備えている。
ベース30は、定盤2及び支柱6を固定するための台である。ベース30は、定盤2が載置される上面が水平になるように、床面に設置される。定盤2は、ベース30の水平な上面に載置、固定されている。定盤2の上面も水平であって、この定盤2の上面に粉末が敷き詰められ、三次元形状の造形物50が形成されていく。図1の例では、定盤2は、四角柱状の部材である。図1に示すように、定盤2の上面の周縁全体に、水平方向に張り出したフランジ状の凸部2aが形成されている。この凸部2aの外周面が全体に亘り造形槽3の内側面と接触しているため、定盤2の上面及び造形槽3の内側面に囲われた空間に積層粉末51を保持することができる。ここで、造形槽3の内側面と接触している凸部2aの外周面に、例えばフェルトからなるシール部材(不図示)を設けることにより、積層粉末51の保持力を高めることができる。
造形槽3は、この定盤2の上面に敷き詰められた粉末を側面から保持する筒状の部材である。図1の例では、定盤2が四角柱状であるため、造形槽3は、上端にフランジ部3aを備えた角パイプである。造形槽3は、例えば厚さ1~6mm程度(好適には3~5mm程度)のステンレス鋼鈑から構成され、軽量である。造形槽3の上部開口端3bに粉末層を形成し、この粉末層にレーザビームLBを照射することにより硬化層を形成する。上部開口端3bの形状は、例えば600mm×600mmである。
また、造形槽3は、上下方向(z軸方向)に移動可能に設置されている。詳細には後述するように、硬化層を形成する度に造形槽3を定盤2に対して一定量ずつ上昇させ、造形物50を形成していく。ここで、実施の形態に係る積層造形装置1では、一定重量かつ軽量な造形槽3のみを上昇させればよい。そのため、毎回精度良く粉末層を形成することができる。その結果、精度良く造形物50を形成することができる。
造形槽支持部4は、造形槽3のフランジ部3aの上面が水平となるように、フランジ部3aの下面を3点で支持している支持部材である。造形槽支持部4は、造形槽3を上下方向(z軸方向)に移動させる造形槽駆動部5の連結部5cに連結されている。
造形槽駆動部5は、造形槽3を上下方向(z軸方向)に移動させるための駆動機構である。造形槽駆動部5は、モータ5a、ボールねじ5b、連結部5cを備えている。モータ5aが駆動すると、z軸方向に延設されたボールねじ5bが回転する。そして、ボールねじ5bが回転すると、ボールねじ5bに沿って、連結部5cが上下方向(z軸方向)に移動する。上述の通り、造形槽3を支持する造形槽支持部4が連結部5cに連結されているため、造形槽駆動部5により造形槽3が上下方向(z軸方向)に移動可能となる。なお、造形槽駆動部5の駆動源は、モータに限らず、油圧シリンダなどを用いてもよい。
ここで、造形槽駆動部5は、ベース30から略垂直に(すなわち鉛直方向に)立設された支柱6の上部に固定されている。このように、本実施の形態に係る積層造形装置1では、造形槽駆動部5が、造形槽3の外部に設置されているため、メンテナンス性に優れている。
レーザスキャナ8は、造形槽3の上部開口端3bに形成された粉末層に対して、レーザビームLBを照射する。レーザスキャナ8は、図示されないレンズ及びミラーを有している。そのため、図1に示すように、レーザスキャナ8は、粉末層における水平面(xy平面)上の位置に関わらず、粉末層にレーザビームLBの焦点を合わせることができる。
ここで、レーザビームLBは、レーザ発振器10において生成され、光ファイバ9を介して、レーザスキャナ8に導入される。
また、レーザスキャナ8は、支持部7を介して、造形槽3のフランジ部3aに固定されている。そのため、レーザスキャナ8とレーザビームLBの照射対象である粉末層との距離を一定に保つことができる。したがって、実施の形態にかかる積層造形装置1は、精度良く造形物50を製造することができる。
スキージ11は、第1のスキージ11a及び第2のスキージ11bから構成されている。第1のスキージ11a及び第2のスキージ11bは、いずれもy軸方向に延設されている。また、スキージ11は、造形槽3の上部開口端3bを介して、一方のフランジ部3aから対向するフランジ部3aまでx軸方向にスライドすることができる。
図1に示すように、第1のスキージ11a及び第2のスキージ11bが、x軸マイナス側のフランジ部3a上に設置された状態で、両者の間に粉末が供給される。ここで、2回分の粉末層を形成するための粉末が供給される。すなわち、スキージ11がx軸マイナス側のフランジ部3aからx軸プラス側のフランジ部3aまでスライドすることにより、1回分の粉末層が造形槽3の上部開口端3bに形成される。図1に破線で示したように、この粉末層に対してレーザビームLBを照射し、硬化層を形成している間、スキージ11はx軸プラス側のフランジ部3a上で待機している。そして、スキージ11がx軸プラス側のフランジ部3aからx軸マイナス側のフランジ部3aまでスライドすることにより、もう1回分の粉末層が造形槽3の上部開口端3bに形成される。
なお、例えば硬化層の形成領域が狭い場合には、スキージ11をx軸マイナス側のフランジ部3aからx軸プラス側のフランジ部3aまで最大限スライドさせずに、硬化層の形成領域はカバーした上で、途中でスライドを止めてもよい。粉末層を形成するための粉末量を節約できるとともに時間を短縮することができる。
樋12及び粉末分配器13は、粉末供給部14から投下された粉末をスキージ11の長手方向に均一に分配するためのものである。樋12の下面には、第1のスキージ11a及び第2のスキージ11bの間隔(x軸方向)より狭く、スキージ11の粉末投入領域と同程度の長さ(y軸方向)を有する開口部が形成されている。
粉末分配器13は、樋12の溝の断面形状と同形状の板状部材である。粉末分配器13は、図示しない駆動機構によりy軸方向にスライドすることができる。ここで、図1では、分かり易くするため、粉末分配器13を樋12から離して描いている。しかし、実際には、粉末分配器13は樋12の溝の両側面と隙間なく接触しながらスライドする。粉末分配器13が、樋12において粉末が投下された一端から他端までスライドすることにより、粉末が樋12の開口部を介して、スキージ11の長手方向(y軸方向)に均一に分配される。
なお、例えば硬化層の形成領域が狭い場合には、粉末分配器13を樋12の一端から他端まで最大限スライドさせずに、硬化層の形成領域はカバーした上で、途中でスライドを止めてもよい。粉末層を形成するための粉末量を節約できるとともに時間を短縮することができる。
粉末供給部14は、粉末が蓄えられた小型タンクである。粉末供給部14の詳細については後述する。なお、粉末は、無機材料(金属やセラミック)もしくは有機材料(プラスチック)からなる。好適には、平均粒径20μm程度の鉄粉が用いられる。
制御装置100は、積層造形装置1の動作を制御する。具体的には、制御装置100は、造形槽駆動部5、レーザスキャナ8、レーザ発振器10、スキージ11等と、有線又は無線で接続されている。制御装置100は、造形物50を製造するための三次元データを記憶している。制御装置100は、この三次元データを用いてこれらの構成要素を制御する。これにより、積層造形装置1は、造形物50を成形する。
図2は、実施の形態にかかる積層造形方法に用いる制御装置100の構成を示すブロック図である。制御装置100は、例えばコンピュータである。制御装置100は、主要なハードウェア構成として、CPU(Central Processing Unit)102と、ROM(Read Only Memory)104と、RAM(Random Access Memory)106と、インタフェース部108(IF;Interface)とを有する。CPU102、ROM104、RAM106及びインタフェース部108は、データバスなどを介して相互に接続されている。
CPU102は、制御処理及び演算処理等を行う演算装置としての機能を有する。ROM104は、CPU102によって実行される制御プログラム及び演算プログラム等を記憶するための機能を有する。RAM106は、処理データ等を一時的に記憶するための機能を有する。インタフェース部108は、有線又は無線を介して外部と信号の入出力を行う。インタフェース部108は、通信ポートを含み得る。
また、制御装置100は、三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118を有する。三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118は、例えば、CPU102がROM104に記憶されたプログラムを実行することによって実現可能である。また、必要なプログラムを任意の不揮発性記録媒体に記録しておき、必要に応じてインストールすることで、三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118を実現するようにしてもよい。
また、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
なお、三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118は、上記のようにソフトウェアによって実現されることに限定されず、何らかの回路素子等のハードウェアによって実現されてもよい。さらに、三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118は、物理的に1つの装置内に設けられている必要はなく、別個のハードウェアとして構成されていてもよい。その場合、三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118のそれぞれが、コンピュータとして機能してもよい。
三次元データ取得部112、内部構造検討部114、三次元データ修正部116及び積層造形制御部118の具体的な機能については後述する。なお、内部構造検討部114によって行われる処理は、コンピュータ等の装置によって行われる必要はなく、作業者によって行われてもよい。また、制御装置100は、積層造形装置1と一体でなくてもよく、積層造形装置1の専用の装置でなくてもよい。制御装置100は、汎用の情報端末であってもよい。
ここで、図3を参照して本実施の形態の積層造形方法を用いて製造される造形物50について説明する。
図3は、実施の形態にかかる積層造形方法で製造される造形物50を例示する図である。図3は、造形物50の断面図である。図3に例示された造形物50は、三次元データ取得部112によって取得された三次元データを用いて製造され得る。実施の形態にかかる造形物50は、例えば冷却回路を有する金型である。図3に示すように、実施の形態にかかる造形物50は、一例として、冷却回路を構成する中空の経路60を内部に有する金型である。この場合、造形物50の三次元データに経路60の情報を含む。
次に、図4を参照して、積層造形方法の一連の流れについて説明する。
図4は、実施の形態にかかる積層造形方法を示すフローチャートである。なお、実施の形態にかかる積層造形方法は、例えば、三次元データを元に製作された試作品を用いて行われてもよいし、CAE(Computer Aided Engineering)によるコンピュータシミュレーションによって行われてもよい。
まず、造形物の三次元データを取得する(ステップS10)。次に、内部構造の検討を行う(ステップS20)。内部構造の検討は複数の工程を有しており、詳細は後述する。次に、三次元データの修正を行う(ステップS30)。次に、積層造形を行う(ステップS40)。最後に、残留粉末を除去する(ステップS50)。
以下、上記各ステップについて、図2~図7を参照しつつ説明する。
まず、図2~4を参照しつつ説明する。
<ステップS10:造形物の三次元データを取得>
三次元データ取得部112は、造形物50を造形するための三次元データを取得する(ステップS10)。具体的には、三次元データ取得部112は、CAD/CAM(Computer Aided Design/Computer Aided Manufacturing)データを用いて、三次元データ(3Dデータ)を生成する。三次元データ取得部112は、これにより、三次元データを取得する。なお、三次元データ取得部112は、他の装置によって生成された三次元データを受信することで、三次元データを取得してもよい。
<ステップS20:内部構造の検討>
内部構造検討部114は、造形物50の内部構造を検討する(ステップS20)。具体的には、内部構造検討部114は、実際に造形物50を製造する前に、三次元データを用いて経路60を模擬した「経路モデル」を用いて、造形物50の内部構造(経路60)が「所定の性能」を満たすか否かを判定する。
ここで、この「経路モデル」については、ステップS10の工程で取得された三次元データを用いて製造(試作)された試作品であってもよい。また、「経路モデル」は、ステップS10の工程で取得された三次元データを用いたCAE解析においてシミュレーションによって再現された経路であってもよい。
また、本実施の形態における「所定の性能」については、「機能成立性」及び「構造成立性」であり、「機能成立性」は、冷却水による冷却機能を十分に発揮できるか否かを示し、「構造成立性」は、造形物50が中空形状である経路60を内部に有することになった場合でも造形物50が必要な剛性を確保できるか否かを示す。
次に、「トポロジー最適化」及び「機能機器取付用肉付け処理」を行う。
「トポロジー最適化」では、造形物50の最小体積化を行い、「機能機器取付用肉付け処理」では、造形物50の内部に形成された凸部に対し、機能機器を取り付けるための肉付け処理を行う。
ここで、本実施の形態においては、「機能成立性」「構造成立性」「トポロジー最適化」及び「機能機器取付用肉付け処理」を行っているが、少なくとも「トポロジー最適化」及び「機能機器取付用肉付け処理」を行えばよく、換言すると、「機能成立性」及び「構造成立性」の検討については、必ずしも行われる必要はない。
なお、ステップS20の各工程に関する、より具体的な詳細については、後述する。
<ステップS30:三次元データの修正>
三次元データ修正部116は、ステップS20の工程で行われたトポロジー最適化及び肉付け処理に基づいて、ステップS10の工程で取得された三次元データを修正する(ステップS30)。つまり、三次元データ修正部116によって修正された三次元データでは、トポロジー最適化され、造形物50の内部表面に肉付け処理が行われた状態であり、経路60の配置が修正されている。ここで、「配置」とは、経路60の長さ、径、曲がり具合(曲率)、位置(造形物50の外表面からの距離、分岐等を含む)等を含む。なお、ステップS20の工程で「機能成立性」及び「構造成立性」について検討された場合は、三次元データ修正部116は、さらに「機能成立性」及び「構造成立性」が向上するように、ステップS10の工程で取得された三次元データを修正してもよい。なお、経路60の配置の修正自体については、三次元データ修正部116が行ってもよいし、後述するように、内部構造検討部114が行ってもよい。
<ステップS40:積層造形>
積層造形制御部118は、ステップS30の工程で修正された三次元データを用いて、上述したように、積層造形によって造形物50を製造する(ステップS40)。
<ステップS50:残留粉末を除去>
造形物50を製造した後、経路60の内部には残留粉末が存在する。ステップS40の工程で実際に製造された造形物50の内部に形成された経路60から、残留粉末を除去する(ステップS50)。実施の形態では、例えば入口60aから経路60に圧縮エア、水又は油等の流体を注入し、経路60に残存する残留粉末を除去する。または、例えば出口60bから経路60内の空気を吸引することによって、経路60に残存する残留粉末を除去する。
以下、図5を参照して、ステップS20の詳細を説明する。
図5は、図3に示したフローチャートにおけるステップS20の工程の詳細を示すフローチャートである。
[ステップS20の詳細]
ステップS20では、まず、ステップS10の工程で取得された三次元データを用いて、経路モデルを配置する(ステップS210)。次に、機能成立性の検討を行う(ステップS220)。機能の条件を充足している場合(ステップS222YES)、構造成立性の検討を行う(ステップS230)。剛性の条件を充足している場合(ステップS232YES)、トポロジー最適化を行う(ステップS240)。最後に、機能機器取付用肉付け処理を行い(ステップS250)、ステップS30へ進む。なお、ステップS220NO、ステップ230NOの場合は、ステップS210へ戻る。
<ステップS210:経路モデルの配置>
内部構造検討部114は、ステップS10の工程で取得された三次元データを用いて、経路モデルを配置する(ステップS210)。例えば、積層造形方法(ステップS20の工程)が試作品を用いて行われる場合、ステップS10の工程で取得した三次元データを用いて、積層造形装置1により試作品が製作される。これにより、造形物50の試作品の内部に、経路モデルが形成される。また、例えば、積層造形方法(ステップS20の工程)がCAE解析を用いて行われる場合、ステップS10の工程で取得した三次元データを用いたコンピュータシミュレーションにより、経路モデルが再現される。
<ステップS220:機能成立性の検討>
内部構造検討部114は、機能成立性の検討を行う(ステップS220)。そして、内部構造検討部114は、機能の条件を充足するか否かを判定する(ステップS222)。機能の条件を充足しない場合(ステップS222のNO)、工程はステップS210に戻る。一方、機能の条件を充足する場合(ステップS222のYES)、工程はステップS230に進む。
経路60によって発揮される機能が冷却機能である場合、内部構造検討部114は、経路モデルに冷却水を流通させて金型で成形を行ったときの高温領域の温度を取得して、その温度が所定温度以下となるか否かを判定する(ステップS222)。そして、温度が所定温度以下である場合に、機能の条件を充足すると判定される(ステップS222のYES)。
ステップS20の工程が試作品を用いて行われる場合、ステップS220において、試作品に形成された経路モデルに冷却水を流通させて、その試作品にかかる金型で成形が行われる。そして、内部構造検討部114は、そのときの、試作品における高温領域に対応する箇所の温度を取得する。温度は、例えばサーモグラフィによって計測可能である。なお、試作品を用いる場合、成形品又は金型の不具合の有無を検知することで、機能の条件を充足するか否かを判定してもよい。
また、ステップS20の工程がCAE解析を用いて行われる場合、ステップS220において、内部構造検討部114は、CAEによるコンピュータシミュレーションで、経路モデルに冷却水を流通させた状態で金型成形を行うことを再現する。そして、内部構造検討部114は、CAEによる温度解析(冷却解析)により、高温領域の温度を算出する。
また、冷却機能の条件を充足しない場合(ステップS222のNO)、ステップS210の工程で、内部構造検討部114は、冷却機能の条件を充足するように、経路モデルの配置を変更する。例えば、内部構造検討部114は、高温領域に近い経路60の径を大きくしてもよい。また、内部構造検討部114は、高温領域に経路60をさらに近づけてもよいし、高温領域により近い部分経路を新たに配置するように分岐を設けてもよい。
なお、本実施の形態においては、造形物50を金型とし、経路60によって発揮される機能が冷却機能としたが、他の実施の形態として、経路60によって発揮される機能が防音又は防振である場合、内部構造検討部114は、経路モデルに流体を流通させたときの音量又は振動の大きさが、所定の値以下であるかを判定してもよい(ステップS222)。また、経路60によって発揮される機能が搬送などを行うエアシュータである場合、内部構造検討部114は、経路モデルに流体を流通させて物を搬送したときの速度が所定の速度以上であるか否かを判定してもよい(ステップS222)。
<ステップS230:構造成立性の検討>
内部構造検討部114は、構造成立性の検討を行う(ステップS230)。そして、内部構造検討部114は、剛性の条件を充足するか否かを判定する(ステップS232)。剛性の条件を充足しない場合(ステップS232のNO)、工程はステップS210に戻る。一方、剛性の条件を充足する場合(ステップS232のYES)、工程はステップS240に進む。
具体的には、内部構造検討部114は、経路モデルを内部に有する造形物50のモデル(金型モデル)に負荷を加えたときの、金型モデルにおける歪又は変形量を取得して、その歪又は変形量が所定の許容値以下であるか否かを判定する(ステップS222)。そして、歪又は変形量が所定の許容値以下である場合に、剛性の条件を充足すると判定される(ステップS222のYES)。なお、ステップS230では、剛性の評価ではなく強度の評価を行ってもよく、この場合、強度の条件の判定は、金型モデルにおける歪又は変形量ではなく、応力値を用いて行われ得る。
ステップS20の工程が試作品を用いて行われる場合、ステップS230において、経路モデルが内部に形成された試作品に対して剛性試験が行われる。そして、内部構造検討部114は、そのときの所定の箇所における歪又は変形量を取得する。なお、歪は、所定の箇所に歪ゲージを取り付けることで計測可能である。なお、試作品を用いる場合、試作品の剛性不足による成形品又は金型の不具合を検知することで、構造の成立性を判定してもよい。
また、ステップS20の工程がCAE解析を用いて行われる場合、ステップS230において、内部構造検討部114は、FEM(Finite Element Method;有限要素法)を用いた構造解析を行う。そして、内部構造検討部114は、所定の箇所における歪又は変形量を算出する。なお、内部構造検討部114は、構造解析によって得られた応力分布で示された応力値が許容値以下であるか否かを判定してもよい。また、構造解析において、熱応力を考慮してもよい。
なお、条件を充足しない場合(ステップS232のNO)、ステップS210の工程で、内部構造検討部114は、剛性の条件を充足するように、経路モデルの配置を変更する。例えば、内部構造検討部114は、経路60を造形物50の外表面から離すように、経路60の配置を変更してもよい。
<ステップS240:トポロジー最適化>
内部構造検討部114は、三次元データをトポロジー最適化する(ステップS240)。
実施の形態にかかる造形物50は、一例として、流体を流通させる冷却回路として中空の経路60を内部に有する金型である。したがって、実施の形態にかかる造形物50において想定される構造的な制約、荷重条件及び拘束条件とは、例えば、金型温度履歴から予測される熱応力、鋳造圧、組合される入子又は隣り合う入子などの金型部品による拘束、及び締結ボルトの軸力などである。当該制約及び条件の下で造形物50のトポロジー最適化を行うことにより、造形物50の最小造形体積、すなわち最小粉末材料を求めることができる。
<ステップS250:機能機器取付用肉付け処理>
内部構造検討部114は、機能機器取付用肉付け処理を行う(ステップS250)。実施の形態における「機能機器」とは、例えば、測定機能機器、冷却または加熱機能機器、加振機能機器、流動制御機能機器等である。具体的には、測定機能機器は、流体を流通させる中空の経路60や立体物の変化または状況を測定する各種センサーなどであり、より具体的には、熱電対等の温度センサ、歪ゲージ及び流量計などである。冷却または加熱機能機器は、立体物の冷却や加熱を行う機器であり、より具体的には、ペルチェ素子やヒーターなどである。加振機能機器は、振動または音波発生装置などである。流動制御機能機器とは、内部空間にも冷却媒体などの流体を流す場合に用いる機器であり、より具体的には、整流板や乱流板などである。また、表示機能機器としての表示板や、固定・保持機能機器としてのボルト・螺子、クリップ及びホルダーなども、これに含まれる。
上述の通り、トポロジー最適化を行うことによって実施の形態にかかる造形物50は最小造形体積となるため、造形物50の内部の既に形成されていた中空の経路60の他に、三次元データ上には新たな内部構造が形成される。当該内部構造の表面に対し、機能機器の取り付け又は配設を行うことができる。ここで、最小体積となった造形物50の内部構造の表面形状は、凹凸を有している場合が多い。凹凸を有する内部構造の表面に対して機能機器を配設するために、取り付けを所望する機能機器の種類に応じて、ベース部の肉付け処理を行う。
次に、図6を参照して、凹凸を有する内部構造の表面に対して機能機器を配設するために、ベース部B1の肉付け処理を行う場合について説明する。
図6は、実施の形態にかかる積層造形方法で製造される造形物50の模式的断面図である。図6に示すように、内部構造の表面の凸部C1に肉付け処理によってベース部B1が形成されている。当該ベース部B1上に機能機器として温度センサSが配設されている。図6において一例として示した造形物50は中実構造であるが、上述の通り、中空構造を有していてもよい。
図6は具体例であり、特に、ステップS240のトポロジー最適化によって造形物50の内部構造の表面に形成された凹凸のうち、凸部C1の頂点部の温度を測定するため、凸部C1の頂点部に温度センサSを配設する場合を想定したものである。図6に示すように、内部構造検討部114は、例えば三次元データ上で凸部C1に対して肉付け処理を行い、ベース部B1を形成する。図6の例では、凸部C1に対して肉付け処理を行い、上面が平坦なベース部B1を形成している。ベース部B1の上面には、温度センサSが配設されている。
ベース部B1の形状は、機能機器の種類や機能機器の発揮部位に応じて、平坦な取付座を有する形状としてもよいし、取付穴や取付溝等を有する形状としてもよく、所望の形状に応じて適宜変更可能である。すなわち、肉付け処理の情報には、設置寸法の設定も含まれる。
上述の、図6を参照して説明した肉付け処理では、測定したい場合が凸部の頂点である場合を説明したが、これに限定されない。例えば、機能機器の目的機能に応じ、CAE等のシミュレーションを用いることによって、造形物50の内部構造の表面に形成された凹凸における機能機器の取付部位を決定することもできる。
具体的には、測定機能機器として温度センサを取り付ける場合、シミュレーションを用いて内部構造の温度分布を予測し、最高温部位または最低温部位、変異幅の大きい部位等に基づいて、取付部位を決定することもできる。また、例えば、前述したステップS50において残留粉末を除去するための加振機能機器を取り付ける場合、流体を流通させる中空の経路60における未溶融粉末が残留または凝集しやすい位置を、シミュレーションを用いて予測し、取付部位を決定することもできる。
なお、実施の形態では、トポロジー最適化(ステップS240)を行った後に機能機器取付用肉付け処理(ステップS250)を行っているが、順番はこれに限定されない。具体的には、先にCAE等のシミュレーションを用いて、機能機器の取付部位の決定および設置寸法の決定を行った肉付け処理の情報を加味した上で、トポロジー最適化を行ってもよい。
また、本実施の形態では、トポロジー最適化によって形成された内部構造の表面に、機能機器を取り付けているが、造形物の外周面や側面などの表面において、トポロジー最適化によって形成される凹凸部(特に凹部)に、ベース部を肉付けすることも可能である。
更に、CAE等のシミュレーションを用いて、温度センサSなどの機能機器を取り付けるベース部B2の位置を決定した上で、トポロジー最適化を行うこともできる。図7は、実施の形態にかかる積層造形方法で製造される他の造形物50の模式的断面図である。図7には、図6を参照して説明した凸部C1について、参考のために仮想線を用いて示した。図7に示すように、造形物50の内部構造の凸部C2の内側に、機能機器を取り付けるためのベース部B2として空間が形成されている。当該ベース部B2に機能機器として温度センサSが配設されている。図7に示すように、造形物50の内部構造では、ベース部B2として空間を設けた状態で、トポロジー最適化を行うことにより、凸部C2が形成される。また、図7に示すように、ベース部B2に温度センサSなどの機能機器を配設するための開口部Aを形成することが望ましい。
以上が、ステップS20の詳細である。
発明者は、従来のようにトポロジー最適化を行うと、造形物の表面形状が凹凸となるため、凹凸部に取り付けることが困難な機能機器など、一部の機能機器を取り付けることが困難となるという問題を見出した。
本実施の形態では、取得した三次元データをトポロジー最適化し、トポロジー最適化された三次元データに対し、トポロジー最適化された造形物に機能機器を配設するためのベース部を形成することによって、造形物の造形体積を低減しつつ、所望の位置に機能機器を取り付けることができる。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
1 積層造形装置
50 造形物
51 積層粉末
60 経路
100 制御装置
112 三次元データ取得部
114 内部構造検討部
116 三次元データ修正部
118 積層造形制御部
B1、B2 ベース部
C1、C2 凸部
S 温度センサ

Claims (1)

  1. 粉末を積層し溶融結合させることを繰り返すことによって三次元形状の造形物を製造する積層造形方法であって、
    前記造形物の三次元データを取得する工程と、
    取得した前記三次元データをトポロジー最適化する工程と、を備え、
    ポロジー最適化された後の前記三次元データに対し、トポロジー最適化によって形成された凹凸を有する前記造形物の表面に機能機器を配設するためのベース部を形成する肉付け処理を行う
    積層造形方法。
JP2018054307A 2018-03-22 2018-03-22 積層造形方法 Active JP7063034B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018054307A JP7063034B2 (ja) 2018-03-22 2018-03-22 積層造形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018054307A JP7063034B2 (ja) 2018-03-22 2018-03-22 積層造形方法

Publications (2)

Publication Number Publication Date
JP2019167562A JP2019167562A (ja) 2019-10-03
JP7063034B2 true JP7063034B2 (ja) 2022-05-09

Family

ID=68106341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018054307A Active JP7063034B2 (ja) 2018-03-22 2018-03-22 積層造形方法

Country Status (1)

Country Link
JP (1) JP7063034B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111319268B (zh) * 2020-02-20 2021-12-28 西北工业大学 一种考虑增材制造打印方向的自支撑结构优化设计方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013182A1 (de) 2015-10-10 2017-04-13 Diehl Defence Gmbh & Co. Kg Gehäuse für ein Getriebe und Verwendung eines additiven Fertigungsverfahrens

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013182A1 (de) 2015-10-10 2017-04-13 Diehl Defence Gmbh & Co. Kg Gehäuse für ein Getriebe und Verwendung eines additiven Fertigungsverfahrens

Also Published As

Publication number Publication date
JP2019167562A (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP6760096B2 (ja) 積層造形方法
Dang et al. Design of U-shape milled groove conformal cooling channels for plastic injection mold
Paul et al. Process energy analysis and optimization in selective laser sintering
JP6502946B2 (ja) 付加製造装置および付加製造方法
Courter et al. Finite element simulation of the fused deposition modelling process
US11733678B2 (en) Method for determining building instructions for an additive manufacturing method, method for generating a database with correction measures for controlling the process of an additive manufacturing method
JP6975779B2 (ja) 付加製造によって物体を製造する装置、及び装置の使用方法
JP7063034B2 (ja) 積層造形方法
Hopmann et al. Investigation of an inverse thermal injection mould design methodology in dependence of the part geometry
JP7073970B2 (ja) 積層造形方法
Saifullah et al. Cycle time reduction in injection moulding with conformal cooling channels
Hopmann et al. Inverse thermal mold design for injection molds: Adressing the local cooling demand as quality function for an inverse heat transfer problem
CN105829045A (zh) 用于复合材料的辐射固化***和方法
CN201070836Y (zh) 一种用于光固化快速成型的树脂加热***
Soe et al. FEA support structure generation for the additive manufacture of CastForm™ polystyrene patterns
Xu et al. Deformation control based on in-situ sensors for mask projection based stereolithography
JP6618069B2 (ja) 複合成形品の設計支援装置、複合成形品の製造方法、コンピュータ・ソフトウェア、記憶媒体
Storti et al. A numerical framework for three-dimensional optimization of cooling channels in thermoplastic printed molds
Hopmann et al. Automatic cooling channel design for injection moulds
Fradl et al. Finite element simulation of the multi jet fusion (mjf™) process using abaqus
Vezzetti Spin casting characterization: An experimental approach for the definition of runners design guidelines
Zeng et al. Numerical simulation of the temperature history for plastic parts in fused filament fabrication (FFF) process
Yilmaz et al. On the relation between cooling rate and parts geometry in powder bed fusion additive manufacturing
JP2012011610A (ja) 光造形装置
Tavakoli et al. Feeder growth: a new method for automatic optimal feeder design in gravity casting processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R151 Written notification of patent or utility model registration

Ref document number: 7063034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151