JP7062376B2 - Purification method and purification equipment for wastewater containing radioactive concrete sludge - Google Patents

Purification method and purification equipment for wastewater containing radioactive concrete sludge Download PDF

Info

Publication number
JP7062376B2
JP7062376B2 JP2017101609A JP2017101609A JP7062376B2 JP 7062376 B2 JP7062376 B2 JP 7062376B2 JP 2017101609 A JP2017101609 A JP 2017101609A JP 2017101609 A JP2017101609 A JP 2017101609A JP 7062376 B2 JP7062376 B2 JP 7062376B2
Authority
JP
Japan
Prior art keywords
wastewater
radioactive
solid
adjuster
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017101609A
Other languages
Japanese (ja)
Other versions
JP2018197664A (en
Inventor
千晶 並木
秀樹 中村
由樹 井上
紘子 澤田
雄生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2017101609A priority Critical patent/JP7062376B2/en
Publication of JP2018197664A publication Critical patent/JP2018197664A/en
Application granted granted Critical
Publication of JP7062376B2 publication Critical patent/JP7062376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

本発明は、放射性コンクリートスラッジを含む排水の浄化方法及び浄化装置に関する。 The present invention relates to a method for purifying wastewater containing radioactive concrete sludge and a purifying device.

一般的な建設現場等におけるコンクリート構造物の解体・切断時には、ダスト発生防止のために水散布が行われる。この際、コンクリートや金属粉を含む切削排水が発生する。一般的な建設現場等で発生する切削排水は、沈降分離によって上澄み液と沈降物に分離され、上澄み液は排水され、沈降物は開放系で輸送可能な状態まで脱水・乾燥処理される。また、上記沈降分離において、固形分を沈降しやすくするために、有機系高分子剤を添加することも行われる。 When dismantling or cutting concrete structures at general construction sites, water is sprayed to prevent dust generation. At this time, cutting drainage containing concrete and metal powder is generated. The cutting wastewater generated at a general construction site or the like is separated into a supernatant liquid and a sediment by sedimentation separation, the supernatant liquid is drained, and the sediment is dehydrated and dried until it can be transported in an open system. Further, in the sedimentation separation, an organic polymer agent may be added in order to facilitate the sedimentation of the solid content.

コンクリート構造物が原子力施設である場合、廃炉工事などによる、その解体・切断時には、放射性の切削排水が大量に発生することが予想される。このような放射性切削排水の処理においては、切削排水が放射性物質を含むため、安全上、一般建設現場等で行われるような開放系での処理ができない。また、固形分を沈降しやすくするために、有機系高分子剤を添加した場合、固形分中に混在する有機系高分子剤分解することが考えられ、長期の安全性を担保できないおそれがある。 When a concrete structure is a nuclear facility, it is expected that a large amount of radioactive cutting wastewater will be generated during dismantling and cutting due to decommissioning work. In the treatment of such radioactive cutting wastewater, since the cutting wastewater contains radioactive substances, it cannot be treated in an open system as is performed at a general construction site for safety reasons. In addition, when an organic polymer agent is added to facilitate sedimentation of the solid content, it is possible that the organic polymer agent mixed in the solid content is decomposed, and long-term safety may not be guaranteed. ..

このような放射性切削排水の浄化方法として、放射性コンクリートスラッジを含む廃液を脱水処理し、その後中和処理して放流する方法が提案されている(例えば、特許文献1参照。)。 As a method for purifying such radioactive cutting wastewater, a method has been proposed in which a waste liquid containing radioactive concrete sludge is dehydrated, then neutralized and discharged (see, for example, Patent Document 1).

特開2002-333496号公報Japanese Unexamined Patent Publication No. 2002-333496

切削排水には、コンクリートのスラッジ分が含まれているため、固形分濃度が高い(例えば、10g/L程度)ことや、pHが高いという特徴がある。このような、コンクリートスラッジを含む排水を脱水処理する場合、液中に溶解された、コンクリート由来のカルシウムが浮遊物質となるため、ろ過性が悪いという課題があった。一方、放射性物質を含む排水に中和処理を施して、カルシウムを固形化し、その後、ろ過しようとすると、中和によって排水のpHが下がり、固形分中に含有された放射性物質が溶解して液中に溶出するという課題があった。 Since the cutting wastewater contains the sludge content of concrete, it is characterized by a high solid content concentration (for example, about 10 g / L) and a high pH. When such wastewater containing concrete sludge is dehydrated, there is a problem that the filterability is poor because calcium derived from concrete dissolved in the liquid becomes a suspended solid. On the other hand, when the wastewater containing radioactive substances is neutralized to solidify calcium and then filtered, the pH of the wastewater is lowered by neutralization, and the radioactive substances contained in the solid content are dissolved and the liquid is dissolved. There was a problem of elution inside.

本発明は、放射性のコンクリートスラッジを含む排水の処理に際して、排水のろ過性を向上させるとともに、放射性物質を固形分中に固定化することのできる放射性コンクリートスラッジを含む排水の浄化方法及び浄化装置を提供することを目的とする。 The present invention provides a method and apparatus for purifying wastewater containing radioactive concrete sludge, which can improve the filterability of wastewater and immobilize radioactive substances in solids when treating wastewater containing radioactive concrete sludge. The purpose is to provide.

本発明の排水浄化方法の一態様は、放射性のコンクリート構造物を切断する際に発生し、放射性物質であるSrおよびCaが含まれる放射性コンクリートスラッジを含む排水の浄化方法であって、前記排水にpH調整剤として炭酸ガスまたは空気を添加して、前記排水中に溶解したCaが固形化され、かつSrを固形分中に沈降させるpHに、前記排水のpHを調整するpH調整工程と、前記pHが調整され、固形化された前記放射性物質であるSrおよびCaが含まれた固形分を含む排水を固液分離して前記排水中の固形分を分離する固液分離工程とを具備し、固形化された前記放射性物質であるSrおよびCaを前記固形分中に固定化させる。 One aspect of the wastewater purification method of the present invention is a method for purifying wastewater containing radioactive concrete sludge, which is generated when cutting a radioactive concrete structure and contains radioactive substances Sr and Ca. A pH adjusting step of adding carbon dioxide gas or air as a pH adjusting agent to adjust the pH of the wastewater to a pH at which Ca dissolved in the wastewater is solidified and Sr is settled in the solid content, and the above-mentioned It is provided with a solid-liquid separation step of separating the wastewater containing the solid content containing the solidified radioactive substances Sr and Ca by solid-liquid separation to separate the solid content in the waste water. The solidified radioactive substances Sr and Ca are immobilized in the solid content.

本発明の排水浄化装置の一態様は、放射性のコンクリート構造物を切断する際に発生し、放射性物質であるSrおよびCaが含まれる放射性コンクリートスラッジを含む排水を処理する排水浄化装置であって、前記排水にpH調整剤として炭酸ガスまたは空気を添加して前記排水を収容する収容槽と、前記収容槽内の排水に前記pH調整剤を添加して前記排水中に溶解したCaが固形化され、かつSrを固形分中に沈降させるpHに調整するpH調整剤添加装置と、前記pH調整剤が添加され、固形化された前記放射性物質であるSrおよびCaが含まれた固形分を含む排水を固液分離して前記排水中の固形分を分離する固液分離装置とを具備し、固形化された前記放射性物質であるSrおよびCaを前記固形分中に固定化させる。 One aspect of the wastewater purification device of the present invention is a wastewater purification device that treats wastewater containing radioactive concrete sludge generated when cutting a radioactive concrete structure and containing the radioactive substances Sr and Ca. A storage tank in which carbon dioxide gas or air is added as a pH adjuster to the wastewater to accommodate the wastewater , and Ca dissolved in the wastewater by adding the pH adjuster to the wastewater in the storage tank are solidified. And a pH adjuster addition device that adjusts the pH to cause Sr to settle in the solid content, and wastewater containing solid content containing the radioactive substances Sr and Ca to which the pH adjuster is added and solidified. Is provided with a solid-liquid separation device for solid-liquid separation to separate the solid content in the waste water, and the solidified radioactive substances Sr and Ca are immobilized in the solid content.

本発明によれば、放射性のコンクリートスラッジを含む排水の処理に際して、排水のろ過性を向上させるとともに、放射性物質を固形分中に固定化することのできる放射性コンクリートスラッジを含む排水の浄化方法及び浄化装置を提供できる。 According to the present invention, when treating wastewater containing radioactive concrete sludge, a method and purification method and purification of wastewater containing radioactive concrete sludge capable of improving the filterability of the wastewater and immobilizing radioactive substances in the solid content. Equipment can be provided.

実施形態に係る排水浄化方法を概略的に示すフロー図である。It is a flow diagram which shows schematic the wastewater purification method which concerns on embodiment. 実施形態に係る排水浄化装置を概略的に示すブロック図である。It is a block diagram which shows schematic of the wastewater purification apparatus which concerns on embodiment.

以下、図面を参照して、実施形態を詳細に説明する。
(第1の実施形態)
図1は、本実施形態に係る排水浄化方法を概略的に示すフロー図である。図1に示すように、本実施形態に係る排水浄化方法は、放射性コンクリートスラッジを含む排水(以下、単に「排水」という。)1のpHを調整するpH調整工程S10と、pHの調整された排水1を固液分離して排水1中の固形分2を分離する固液分離工程S20とを有している。
Hereinafter, embodiments will be described in detail with reference to the drawings.
(First Embodiment)
FIG. 1 is a flow chart schematically showing a wastewater purification method according to the present embodiment. As shown in FIG. 1, the wastewater purification method according to the present embodiment includes a pH adjusting step S10 for adjusting the pH of wastewater containing radioactive concrete sludge (hereinafter, simply referred to as “drainage”) 1 and pH adjusted. It has a solid-liquid separation step S20 for separating the solid-liquid content 2 in the drainage 1 by solid-liquid separation of the drainage 1.

また、図2は、本実施形態に係る排水浄化装置10を概略的に示すブロック図である。図2に示すように、本実施形態に係る排水浄化装置10は、排水1を収容する収容槽11と、収容槽11内の排水1にpH調整剤4を添加するpH調整剤添加装置12と、pH調整剤4の添加された排水1を固液分離する固液分離装置13を備えている。 Further, FIG. 2 is a block diagram schematically showing the wastewater purification device 10 according to the present embodiment. As shown in FIG. 2, the wastewater purification device 10 according to the present embodiment includes a storage tank 11 for accommodating wastewater 1 and a pH adjuster addition device 12 for adding a pH adjuster 4 to the wastewater 1 in the storage tank 11. The solid-liquid separation device 13 for solid-liquid separation of the wastewater 1 to which the pH adjuster 4 is added is provided.

排水1は、放射性コンクリートスラッジを含む排水である。排水1は、例えば、原子力施設等、放射性のコンクリート構造物を切断する際に発生し、コンクリートスラッジと水とを含む。また、コンクリートスラッジには放射性物質が含まれる。このような放射性物質としては、例えば、放射性のSr、Ca、Fe、Cs等である。 Drainage 1 is wastewater containing radioactive concrete sludge. The wastewater 1 is generated when cutting a radioactive concrete structure such as a nuclear facility, and contains concrete sludge and water. In addition, concrete sludge contains radioactive substances. Examples of such radioactive substances include radioactive Sr, Ca, Fe, Cs and the like.

本実施形態に係る排水浄化方法では、図2に示す収容槽11内に排水1が収容され、pH調整剤添加装置12によって、収容槽11内の排水1にpH調整剤4が添加される(pH調整工程S10)。 In the wastewater purification method according to the present embodiment, the wastewater 1 is accommodated in the storage tank 11 shown in FIG. 2, and the pH adjuster 4 is added to the wastewater 1 in the storage tank 11 by the pH adjuster addition device 12 (the pH adjuster 4 is added to the wastewater 1 in the storage tank 11. pH adjustment step S10).

pH調整剤4は、例えば炭酸ガスである。排水1中に炭酸ガスが添加されることで、水中に溶解したCaが固形化される。そのため、排水1のろ過比抵抗が低下され、続く固液分離工程S20における排水1のろ過性を向上させることができる。また、排水1中に炭酸ガスが添加されることで、Ca以外にも、放射性物質、例えばSrを固形分中に沈降させて、放射性物質の液中濃度を低減することができる。 The pH adjuster 4 is, for example, carbon dioxide gas. By adding carbon dioxide gas to the waste water 1, Ca dissolved in water is solidified. Therefore, the filtration resistivity of the wastewater 1 is lowered, and the filterability of the wastewater 1 in the subsequent solid-liquid separation step S20 can be improved. Further, by adding carbon dioxide gas to the waste water 1, a radioactive substance such as Sr can be settled in the solid content in addition to Ca, and the concentration of the radioactive substance in the liquid can be reduced.

排水1中に炭酸ガスを添加する方法としては、排水1中に常温で二酸化炭素のガスをバブリングする方法が簡便である。また、二酸化炭素を含む気体をバブリングしてもよい。例えば、二酸化炭素が入手し難い場合には、二酸化炭素を含む空気を用いることができる。 As a method of adding carbon dioxide gas to the waste water 1, a method of bubbling carbon dioxide gas at room temperature in the waste water 1 is convenient. Further, a gas containing carbon dioxide may be bubbled. For example, when carbon dioxide is difficult to obtain, air containing carbon dioxide can be used.

炭酸ガスの添加された排水1のpHは10.4~12.5の範囲であることが好ましい。排水1のpHが10.4以上であると、水中のCa濃度低下によるろ過性の向上効果が得易い。また、排水1のpHが12.5以下であると、放射性物質の沈降による水中濃度の低減効果が向上する。 The pH of the waste water 1 to which carbon dioxide gas is added is preferably in the range of 10.4 to 12.5. When the pH of the wastewater 1 is 10.4 or higher, it is easy to obtain the effect of improving the filterability by lowering the Ca concentration in the water. Further, when the pH of the wastewater 1 is 12.5 or less, the effect of reducing the concentration in water due to the sedimentation of the radioactive substance is improved.

炭酸ガスの添加量は例えば、排水1中のCa濃度や放射性物質濃度にもよるが、排水1の1Lあたり30~150mL/minである。炭酸ガスの添加量は、多くなると放射性物質の沈降効果の向上が顕著であるため、特に好ましくは排水1Lあたり150mL/min程度である。また、空気の添加量は例えば、排水1の1Lあたり5L/minである。 The amount of carbon dioxide added is, for example, 30 to 150 mL / min per 1 L of the waste water 1, although it depends on the Ca concentration and the radioactive substance concentration in the waste water 1. The amount of carbon dioxide gas added is particularly preferably about 150 mL / min per 1 L of wastewater because the sedimentation effect of the radioactive substance is remarkably improved as the amount is increased. Further, the amount of air added is, for example, 5 L / min per 1 L of wastewater 1.

次いで、図2に示す固液分離装置13によって、pH調整剤4を含む排水1が固液分離される。これにより、排水1は、固形分2と、固形分2の除去された上澄み液3に分離される(固液分離工程S20)。固液分離装置13としては、フィルタープレス装置等が用いられる。この際、pH調整工程S10において、Caが固形化されることによって液中のCa濃度が低減されているため、pH調整を行わずに固液分離を行う場合に比べてろ過性が向上される。 Next, the wastewater 1 containing the pH adjuster 4 is solid-liquid separated by the solid-liquid separation device 13 shown in FIG. As a result, the waste water 1 is separated into the solid content 2 and the supernatant liquid 3 from which the solid content 2 has been removed (solid-liquid separation step S20). As the solid-liquid separation device 13, a filter press device or the like is used. At this time, in the pH adjusting step S10, the Ca concentration in the liquid is reduced by solidifying Ca, so that the filterability is improved as compared with the case where the solid-liquid separation is performed without adjusting the pH. ..

固形分2中には、コンクリートスラッジのほか、排水1中に溶解してpH調整剤4により固形化した放射性のCa、Sr等の放射性物質が含まれる。固形分2は、安定化処理(S30)された後、保管ないし貯蔵される。 In addition to concrete sludge, the solid content 2 contains radioactive substances such as Ca and Sr that are dissolved in the wastewater 1 and solidified by the pH adjuster 4. The solid content 2 is stored or stored after being stabilized (S30).

上澄み液3は、必要に応じて、吸着剤等によって上澄み液3中に残留する放射性物質が吸着除去され、さらに、ろ過処理(S40)されるなどの後処理が施されて環境排水基準を満たした後、放出される。 If necessary, the supernatant liquid 3 is subjected to post-treatment such as adsorption and removal of radioactive substances remaining in the supernatant liquid 3 by an adsorbent or the like, and further subjected to a post-treatment such as filtration treatment (S40) to satisfy the environmental wastewater standard. After that, it is released.

以上説明した本実施形態の排水の浄化方法及び浄化装置によれば、放射性のコンクリートスラッジを含む排水の処理に際して、排水のpH調整を行った後に固液分離をすることで、排水のろ過性を向上させるとともに、放射性物質を固形分中に固定化することができる。 According to the wastewater purification method and purification device of the present embodiment described above, when treating wastewater containing radioactive concrete sludge, the filterability of the wastewater is improved by performing solid-liquid separation after adjusting the pH of the wastewater. While improving, radioactive substances can be immobilized in the solid content.

(実施例1)
本実施例では、pH調整による放射性物質の沈降効果について調べた。排水として、酸化ケイ素(SiO)や炭酸カルシウム(CaCO)を主成分とするコンクリートをバンドソーで切断した際に発生したコンクリート切削排水を用いた。コンクリート切削排水を撹拌し、その後1時間静置して、上澄み液の1.0Lを分取した。上澄み液のpHは12.7であった。この上澄み液に炭酸ガスを150mL/minの流量で添加した。炭酸ガスの添加を続けながら、添加開始から表1に示す時間経過毎に上澄み液のpH測定とサンプリングを行い、サンプリングした上澄み液中の元素濃度を誘導結合プラズマ質量分析機(ICP-MS)によって測定した。結果を表1に示す。
(Example 1)
In this example, the sedimentation effect of radioactive substances by pH adjustment was investigated. As the wastewater, concrete cutting wastewater generated when concrete containing silicon oxide (SiO 2 ) and calcium carbonate (CaCO 3 ) as main components was cut with a band saw was used. The concrete cutting drainage was stirred and then allowed to stand for 1 hour to separate 1.0 L of the supernatant liquid. The pH of the supernatant was 12.7. Carbon dioxide gas was added to the supernatant at a flow rate of 150 mL / min. While continuing to add carbon dioxide gas, the pH of the supernatant was measured and sampled every time shown in Table 1 from the start of addition, and the element concentration in the sampled supernatant was measured by an inductively coupled plasma mass spectrometer (ICP-MS). It was measured. The results are shown in Table 1.

Figure 0007062376000001
Figure 0007062376000001

表1に示す結果から、コンクリート切削排水中のCa、Sr濃度は、炭酸ガスを添加することで、添加前に対して99%以上低減されたことが分かる。なお、実施例1では、コンクリート切削排水のろ過比抵抗は、炭酸ガス添加前で5.7×1013m/kg、炭酸ガス5分添加後で3.0×1011m/kgと、炭酸ガス添加により低減された。 From the results shown in Table 1, it can be seen that the Ca and Sr concentrations in the concrete cutting wastewater were reduced by 99% or more by adding carbon dioxide gas as compared with those before the addition. In Example 1, the filtration resistivity of the concrete cutting wastewater was 5.7 × 10 13 m / kg before the addition of the carbon dioxide gas and 3.0 × 10 11 m / kg after the addition of the carbon dioxide gas for 5 minutes. It was reduced by adding gas.

(実施例2)
本実施例では、上記実施例1と同様のコンクリート切削排水の上澄み液(pH12.9)の1.0Lに、炭酸ガスを30~40mL/minの流量で添加した。炭酸ガスの添加を続けながら、炭酸ガスの添加開始から表2に示す時間経過毎にpHの測定と上澄み液のサンプリングを行い、サンプリングした上澄み液中の元素濃度をICP-MSによって測定した。結果を表2に示す。なお、実施例2では、コンクリート切削排水のろ過比抵抗は、炭酸ガス添加前で5.7×1013m/kg、炭酸ガス60分添加後で3.3×1011m/kgと、炭酸ガス添加により低減された。
(Example 2)
In this example, carbon dioxide gas was added to 1.0 L of the supernatant liquid (pH 12.9) of the concrete cutting wastewater similar to that in Example 1 at a flow rate of 30 to 40 mL / min. While continuing the addition of carbon dioxide gas, the pH was measured and the supernatant was sampled every time shown in Table 2 from the start of the addition of carbon dioxide, and the element concentration in the sampled supernatant was measured by ICP-MS. The results are shown in Table 2. In Example 2, the filtration resistivity of the concrete cutting wastewater was 5.7 × 10 13 m / kg before the addition of carbon dioxide gas and 3.3 × 10 11 m / kg after the addition of carbon dioxide gas for 60 minutes. It was reduced by adding gas.

Figure 0007062376000002
Figure 0007062376000002

表2に示す結果から、コンクリート切削排水中のCa、Sr濃度は炭酸ガスを添加することで、添加前に対してCa濃度は99%以上、Sr濃度は最大で96%低減されたことが分かる。 From the results shown in Table 2, it can be seen that the Ca and Sr concentrations in the concrete cutting wastewater were reduced by 99% or more and the Sr concentration by 96% at the maximum by adding carbon dioxide gas. ..

(実施例3)
本実施例では、上記実施例1と同様のコンクリート切削排水の上澄み液(pH12.6)の1.0Lに、空気を5L/minの流量で添加した。空気の添加を続けながら、空気の添加開始から表3に示す時間経過毎にpHの測定と上澄み液のサンプリングを行い、サンプリングした上澄み液中の元素濃度をICP-MSによって測定した。結果を表3に示す。なお、実施例3では、コンクリート切削排水のろ過比抵抗は、空気添加前で5.7×1013m/kg、空気1000分添加後で3.7×1010m/kgと、空気添加により低減された。
(Example 3)
In this example, air was added to 1.0 L of the supernatant liquid (pH 12.6) of the concrete cutting wastewater similar to that in Example 1 at a flow rate of 5 L / min. While continuing the addition of air, the pH was measured and the supernatant was sampled every time shown in Table 3 from the start of the addition of air, and the element concentration in the sampled supernatant was measured by ICP-MS. The results are shown in Table 3. In Example 3, the filtration resistivity of the concrete cutting wastewater was 5.7 × 10 13 m / kg before the addition of air and 3.7 × 10 10 m / kg after the addition of 1000 minutes of air. It was reduced.

Figure 0007062376000003
Figure 0007062376000003

表3に示す結果から、コンクリート切削排水中のCa、Sr濃度は、空気の添加によっても、低減されたことが分かる。 From the results shown in Table 3, it can be seen that the Ca and Sr concentrations in the concrete cutting drainage were also reduced by the addition of air.

上記実施例より、実施形態の排水の浄化方法及び浄化装置によれば、放射性のコンクリートスラッジを含む排水の処理に際して、排水のpH調整を行った後に固液分離をすることで、排水のろ過性を向上させるとともに、放射性物質を固形分中に固定化することができる。 From the above embodiment, according to the wastewater purification method and purification device of the embodiment, when treating wastewater containing radioactive concrete sludge, the pH of the wastewater is adjusted and then solid-liquid separation is performed to filter the wastewater. And the radioactive material can be immobilized in the solid content.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…排水、2…固形分、3…上澄み液、4…pH調整剤、10…排水浄化装置、11…収容槽、12…pH調整剤添加装置、13…固液分離装置、S10…pH調整工程、S20…固液分離工程。 1 ... drainage, 2 ... solid content, 3 ... supernatant liquid, 4 ... pH adjuster, 10 ... wastewater purification device, 11 ... storage tank, 12 ... pH adjuster addition device, 13 ... solid-liquid separation device, S10 ... pH adjustment Step, S20 ... Solid-liquid separation step.

Claims (4)

放射性のコンクリート構造物を切断する際に発生し、放射性物質であるSrおよびCaが含まれる放射性コンクリートスラッジを含む排水の浄化方法であって、
前記排水にpH調整剤として炭酸ガスまたは空気を添加して、前記排水中に溶解したCaが固形化され、かつSrを固形分中に沈降させるpHに、前記排水のpHを調整するpH調整工程と、
前記pHが調整され、固形化された前記放射性物質であるSrおよびCaが含まれた固形分を含む排水を固液分離して前記排水中の固形分を分離する固液分離工程と
を具備し、
固形化された前記放射性物質であるSrおよびCaを前記固形分中に固定化させることを特徴とする排水浄化方法。
A method for purifying wastewater containing radioactive concrete sludge, which is generated when cutting a radioactive concrete structure and contains radioactive substances Sr and Ca.
A pH adjusting step of adding carbon dioxide gas or air as a pH adjuster to the wastewater to adjust the pH of the wastewater to a pH at which Ca dissolved in the wastewater is solidified and Sr is settled in the solid content. When,
The present invention comprises a solid-liquid separation step of separating wastewater containing solids containing the solidified radioactive substances Sr and Ca with the pH adjusted, and separating the solids in the wastewater. ,
A wastewater purification method comprising immobilizing the solidified radioactive substances Sr and Ca in the solid content.
前記pH調整工程において、pH調整剤を添加して前記排水のpHを10.4~12.5の範囲に調整することを特徴とする請求項1に記載の排水浄化方法。 The wastewater purification method according to claim 1, wherein in the pH adjusting step, a pH adjusting agent is added to adjust the pH of the wastewater in the range of 10.4 to 12.5. 前記pH調整工程において、前記排水の温度は常温であることを特徴とする請求項1または2に記載の排水浄化方法。 The wastewater purification method according to claim 1 or 2, wherein in the pH adjusting step, the temperature of the wastewater is at room temperature. 放射性のコンクリート構造物を切断する際に発生し、放射性物質であるSrおよびCaが含まれる放射性コンクリートスラッジを含む排水を処理する排水浄化装置であって、
前記排水にpH調整剤として炭酸ガスまたは空気を添加して前記排水を収容する収容槽と、
前記収容槽内の排水に前記pH調整剤を添加して前記排水中に溶解したCaが固形化され、かつSrを固形分中に沈降させるpHに調整するpH調整剤添加装置と、
前記pH調整剤が添加され、固形化された前記放射性物質であるSrおよびCaが含まれた固形分を含む排水を固液分離して前記排水中の固形分を分離する固液分離装置とを具備し、固形化された前記放射性物質であるSrおよびCaを前記固形分中に固定化させることを特徴とする排水浄化装置。
A wastewater purification device that treats wastewater containing radioactive concrete sludge that is generated when cutting radioactive concrete structures and contains radioactive substances Sr and Ca.
A storage tank for accommodating the wastewater by adding carbon dioxide gas or air as a pH adjuster to the wastewater, and
A pH adjuster addition device that adjusts the pH to a pH at which Ca dissolved in the wastewater is solidified and Sr is settled in the solid content by adding the pH adjuster to the wastewater in the storage tank.
A solid-liquid separation device for solid-liquid separation of wastewater containing solids containing the radioactive substances Sr and Ca to which the pH adjuster is added and solidifying the solids in the wastewater. A wastewater purification device comprising and immobilizing the solidified radioactive substances Sr and Ca in the solid content.
JP2017101609A 2017-05-23 2017-05-23 Purification method and purification equipment for wastewater containing radioactive concrete sludge Active JP7062376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017101609A JP7062376B2 (en) 2017-05-23 2017-05-23 Purification method and purification equipment for wastewater containing radioactive concrete sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017101609A JP7062376B2 (en) 2017-05-23 2017-05-23 Purification method and purification equipment for wastewater containing radioactive concrete sludge

Publications (2)

Publication Number Publication Date
JP2018197664A JP2018197664A (en) 2018-12-13
JP7062376B2 true JP7062376B2 (en) 2022-05-06

Family

ID=64663846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017101609A Active JP7062376B2 (en) 2017-05-23 2017-05-23 Purification method and purification equipment for wastewater containing radioactive concrete sludge

Country Status (1)

Country Link
JP (1) JP7062376B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234620A (en) 2005-02-25 2006-09-07 Shimizu Corp Recycle treating device and treating method of activated concrete
WO2007052618A1 (en) 2005-10-31 2007-05-10 Sumitomo Osaka Cement Co., Ltd. Method for removing metals from waste water and apparatus for removing metals from waste water
JP2008292228A (en) 2007-05-23 2008-12-04 Tetsutada Sakurai Method for detecting degree of contamination of nuclear power plant facility and constituent member
JP2009095774A (en) 2007-10-17 2009-05-07 Metawater Co Ltd Apparatus for recovering waste water
JP2014145619A (en) 2013-01-28 2014-08-14 Shimizu Corp Processing method for radioactive cement
JP2014213479A (en) 2013-04-23 2014-11-17 大阪生コン物流事業協同組合 Water for concrete production, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234620A (en) 2005-02-25 2006-09-07 Shimizu Corp Recycle treating device and treating method of activated concrete
WO2007052618A1 (en) 2005-10-31 2007-05-10 Sumitomo Osaka Cement Co., Ltd. Method for removing metals from waste water and apparatus for removing metals from waste water
JP2008292228A (en) 2007-05-23 2008-12-04 Tetsutada Sakurai Method for detecting degree of contamination of nuclear power plant facility and constituent member
JP2009095774A (en) 2007-10-17 2009-05-07 Metawater Co Ltd Apparatus for recovering waste water
JP2014145619A (en) 2013-01-28 2014-08-14 Shimizu Corp Processing method for radioactive cement
JP2014213479A (en) 2013-04-23 2014-11-17 大阪生コン物流事業協同組合 Water for concrete production, and method for producing the same

Also Published As

Publication number Publication date
JP2018197664A (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP4766719B1 (en) Disposal method of leachate at final disposal site
EA201200103A1 (en) SYSTEM AND METHOD FOR TREATMENT OF WASTE WATER, INCLUDING THE EXPOSURE TO SOLID SUBSTANCES WHEN PRIMARY
EP2792645A1 (en) Process for removing fluorides from water
JP2007014870A (en) Dioxins removing method and removing agent
JP6100185B2 (en) Processing method and processing apparatus for used ion exchange resin
JP7062376B2 (en) Purification method and purification equipment for wastewater containing radioactive concrete sludge
CN109095631B (en) Mixed sewer overflow and non-point pollution source treatment system capable of simultaneously removing suspended matters, phosphorus and heavy metals
EP3539930B1 (en) Method for supplying activated carbon slurry
JPH11137958A (en) Treatment of stack gas desulfurization waste water
JP6850634B2 (en) How to purify mercury-contaminated soil
JP4306422B2 (en) Cement kiln extraction dust processing method
JP2016016341A (en) Method for treating calcium-containing waste water
CN107531511B (en) Method and apparatus for treating water by contact with adsorbent material
RU2455238C1 (en) Method of removing copper ions from effluents
RU2394777C1 (en) Method of purifying water from organic contaminants using ozone in presence of catalyst
JP3715570B2 (en) Removal of radium in water
JP2758607B2 (en) Treatment method for desulfurization wastewater from wet exhaust gas desulfurization equipment
FR2302970A1 (en) Treating effluent sludge containing hydroxides of heavy metals - by mixing into solidifying insol. material for safe disposal
JP6840650B2 (en) Purification method and purification device for wastewater containing radioactive concrete sludge
JP5314213B1 (en) Leachate treatment facility and leachate treatment method at final disposal site
JP2022045088A (en) EXPANSION SUPPRESSION TREATMENT METHOD OF STEELMAKING SLAG, UTILIZATION METHOD OF STEELMAKING SLAG, AND PRODUCTION METHOD OF LOW f-CAO-CONTAINING SLAG
RU2654195C1 (en) Method for processing liquid radioactive wastes
JP2009136873A (en) Treatment method for dust in cement kiln extraction gas
JP2016114396A (en) Disposal method and disposal device for radioactive substance adsorbent
RU2228304C1 (en) Water treatment process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220420

R150 Certificate of patent or registration of utility model

Ref document number: 7062376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150