JP7059039B2 - Method for solidifying modified materials such as soft soil and residual soil - Google Patents

Method for solidifying modified materials such as soft soil and residual soil Download PDF

Info

Publication number
JP7059039B2
JP7059039B2 JP2018027837A JP2018027837A JP7059039B2 JP 7059039 B2 JP7059039 B2 JP 7059039B2 JP 2018027837 A JP2018027837 A JP 2018027837A JP 2018027837 A JP2018027837 A JP 2018027837A JP 7059039 B2 JP7059039 B2 JP 7059039B2
Authority
JP
Japan
Prior art keywords
powder
polymer
modifier
sludge
mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018027837A
Other languages
Japanese (ja)
Other versions
JP2019143030A (en
Inventor
徹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Cement Co Ltd
Original Assignee
Nippon Steel Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Cement Co Ltd filed Critical Nippon Steel Cement Co Ltd
Priority to JP2018027837A priority Critical patent/JP7059039B2/en
Publication of JP2019143030A publication Critical patent/JP2019143030A/en
Application granted granted Critical
Publication of JP7059039B2 publication Critical patent/JP7059039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、建設現場等で発生する軟弱土壌等を固化させてその強度を高めるために有用な改質材に関する。 The present invention relates to a modifier useful for solidifying soft soil or the like generated at a construction site or the like and increasing its strength.

トンネルのシールド工法等で発生する建設残土は、含水率が高く、そのままの状態では使用又はダンプトラック等による搬出作業が困難なため、固化剤等の改質材を添加して、流動性を低減させるとともに、この強度を向上させたりすることが行われている。かかる改質材としては、石膏や高分子吸水ポリマー等の吸水材系や、セメント、石灰、マグネシア等の硬化剤系やこれらの組み合わせが知られている。しかし、石膏は耐水性が弱く、水分と接する機会の多い埋め立て等の用途には適さない。高分子系吸水材は高価であるうえ、固化処理後の圧縮強度が弱く、また地表面に露出した場合には紫外線に弱く分解しやすいという問題がある。さらに、高分子系吸水材は残土中に含まれる間隙水中にカルシウ、ナトリウム、アンモニウム等の陽イオンが多く含まれると吸水性能が著しく低下する欠点を有している。セメントや石灰系の硬化剤は、固化処理後の残土をアルカリ性とするため、これで埋め立て又は盛り土等をした土地での植物の成長や地下水に悪影響を与える。 The construction surplus soil generated by the tunnel shield method has a high water content, and it is difficult to use it as it is or carry it out by a dump truck, etc., so a modifier such as a solidifying agent is added to reduce the fluidity. At the same time, this strength is improved. As such a modifier, a water-absorbing material system such as gypsum or a polymer water-absorbing polymer, a curing agent system such as cement, lime, or magnesia, or a combination thereof is known. However, gypsum has poor water resistance and is not suitable for landfills and the like, which often come into contact with moisture. The polymer-based water-absorbing material is expensive, has a weak compressive strength after solidification treatment, and has a problem that it is weak against ultraviolet rays and easily decomposed when exposed on the ground surface. Further, the polymer-based water-absorbing material has a drawback that the water-absorbing performance is significantly deteriorated when a large amount of cations such as calcium, sodium, and ammonium are contained in the interstitial water contained in the residual soil. Cement and lime-based hardeners make the residual soil after solidification treatment alkaline, which adversely affects plant growth and groundwater in landfills or embankments.

また、原発事故等により放射性物質で汚染された放射性廃棄物が、原子力発電所のみならず、その周辺から多量に発生するが、これは安全な放射能レベルとなるまで中間貯蔵設備等で長期間保管されている。しかし、貯蔵設備の増設には限りがあり、これの減量化が強く望まれている。放射性廃棄物は、コンクリート片や木片、鉄骨、石等の瓦礫と、汚泥との混合物となっていることが多いが、放射性物質は主に汚泥中の土壌等に吸着されていて、瓦礫中には殆ど含まれない場合が多い。そこで、放射性廃棄物と中の瓦礫と汚泥を簡易に分離することができれば、厳重な管理が必要な高濃度汚染物が大幅に減量することができることになる。瓦礫と汚泥を分離するためには、汚泥を乾燥した状態又は粒状にさせると共に、乾燥後に瓦礫と強固に接着させないことが有効である。この目的のためには、従来の改質材は適しているとは言えない。 In addition, a large amount of radioactive waste contaminated with radioactive substances due to the nuclear accident, etc. is generated not only from the nuclear power plant but also from the surrounding area, but this is a long-term use in intermediate storage facilities until it reaches a safe radioactive level. It is kept. However, the expansion of storage facilities is limited, and there is a strong demand for weight reduction. Radioactive waste is often a mixture of sludge and rubble such as concrete pieces, wood pieces, steel frames, and stones, but radioactive substances are mainly adsorbed on the soil in the sludge and are contained in the rubble. Is rarely included. Therefore, if radioactive waste and the debris and sludge inside can be easily separated, the amount of high-concentration pollutants that require strict control can be significantly reduced. In order to separate the rubble and the sludge, it is effective to make the sludge dry or granular and not to firmly adhere to the rubble after drying. Conventional modifiers are not suitable for this purpose.

固化材については、これまでに各種の改良提案がなされている。例えば、半水石膏を主成分とし、これに高炉セメントや中和剤としての硫酸アルミニウムを少量添加したもの(特許文献1)、高炉徐冷スラグを炭酸成分とともに使用するもの(特許文献2)、水硬性アルミナ及び炭酸リチウムより成るもの(特許文献3)、生石灰と過リン酸石灰等の中和剤とセメント等の固化助剤と石膏とからなるもの(特許文献4)など数多くの提案が挙げられる。また、泥土の処理方法としても、例えば、三種類の薬剤、すなわち石膏からなる固化材、高分子凝集剤、次いで吸水材を、順次、添加混合することなども提案されている。 As for the solidifying material, various improvement proposals have been made so far. For example, a product containing hemihydrate gypsum as a main component, to which a small amount of blast furnace cement or aluminum sulfate as a neutralizing agent is added (Patent Document 1), and a blast furnace slow-cooling slag used together with a carbon dioxide component (Patent Document 2). Many proposals have been made, such as those consisting of water-hardening alumina and lithium carbonate (Patent Document 3), those consisting of neutralizing agents such as quicklime and superphosphate, solidifying aids such as cement, and gypsum (Patent Document 4). Be done. Further, as a method for treating mud, for example, it has been proposed to sequentially add and mix three kinds of chemicals, that is, a solidifying material composed of gypsum, a polymer flocculant, and then a water absorbing material.

特許文献5は、水溶性高分子、無機又は有機の粉末及び無機系固化剤を含む残土の固化処理剤を開示する。ここで、水溶性高分子はアニオン性ポリアクリルアミドやグアガム等であり、無機又は有機の粉末はタルクやベントナイト等であり、無機系固化剤がセメント等であるが、全体としては上記硬化剤系に該当し、それらの有する問題点がある。 Patent Document 5 discloses a solidifying agent for residual soil containing a water-soluble polymer, an inorganic or organic powder, and an inorganic solidifying agent. Here, the water-soluble polymer is anionic polyacrylamide, guagam, etc., the inorganic or organic powder is talc, bentonite, etc., and the inorganic solidifying agent is cement, etc. It is applicable and there are problems that they have.

特許第4070982号公報Japanese Patent No. 4070982 特許第3841770号公報Japanese Patent No. 3841770 特許第4462853号公報Japanese Patent No. 4462853 特許第4663999号公報Japanese Patent No. 4639999 特許第4506184号公報Japanese Patent No. 4506184 特開平8-333571公報Japanese Unexamined Patent Publication No. 8-333571

本発明の目的は、建設現場等で発生する高含水の残土等を固化させてその強度を高めることができ、固化された残土の耐水性が高く、しかも実質的に中性な改質材を提供することにある。 An object of the present invention is to solidify a highly water-containing residual soil or the like generated at a construction site or the like to increase its strength, and to provide a substantially neutral reforming material having high water resistance of the solidified residual soil. To provide.

本発明は、軟弱土壌又は汚泥の改質材であって、石灰石及び珪酸塩鉱物から選ばれる天然鉱物の粉末と、層状粘土鉱物焼成物の粉末を含む混合物であることを特徴とする改質材である。 The present invention is a modifier for soft soil or sludge, which is a mixture containing a powder of a natural mineral selected from limestone and silicate minerals and a powder of a layered clay mineral calcined product. Is.

本発明の改質材は、次のいずれか1つ以上を満足することが望ましい。
1) 更に、高分子吸水ポリマー、半水石膏等の吸水材を含むこと。
2) 高分子凝集剤又は高分子増粘剤を含むこと。
3) 珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末からなり、両者の合計に対する珪酸塩鉱物の粉末の配合割合が30~95重量%であること。
4) 珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末、および高分子吸水ポリマーを含み、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計の配合割合が85~99重量%であること。
5) 高分子吸水ポリマーの周囲に層状粘土鉱物焼成物の粉末が被覆されて存在すること。
6) 珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末、および半水石膏を含み、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計の配合割合が30~90重量%であること。
7) 天然鉱物の粉末が珪酸塩鉱物の粉末であること。
珪酸塩鉱物が、硬質砂岩、砂岩、粘板岩、泥岩、珪岩、凝灰岩、花崗岩、閃緑岩、斑れい岩、カンラン岩、安山岩、玄武岩、流紋岩、結晶片岩及び蝋石から選ばれるシリカ分が50~80wt%の珪酸塩鉱物であること。
8) 層状粘土鉱物焼成物が、風化黒雲母、金雲母、セリサイト、ヒル石、バーミキュライト、頁岩、風化火山灰、風化軽石、及び風化凝灰岩から選ばれる鉱物を400℃~1000℃で焼成後に粉砕したものであること。
It is desirable that the modifier of the present invention satisfies any one or more of the following.
1) Further, it contains a water-absorbing material such as a polymer water-absorbing polymer and semi-water-absorbing gypsum.
2) Contains a polymer flocculant or polymer thickener.
3) It consists of silicate mineral powder and layered clay mineral calcined product powder, and the blending ratio of silicate mineral powder to the total of both is 30 to 95% by weight.
4) The total blending ratio of the silicate mineral powder, the layered clay mineral calcined product powder, and the polymer water-absorbing polymer, and the silicate mineral powder and the layered clay mineral calcined product powder is 85 to 99% by weight. There is.
5) The powder of the layered clay mineral calcined product is coated around the super absorbent polymer.
6) The total blending ratio of the silicate mineral powder, the layered clay mineral calcined product powder, and the hemihydrate gypsum, and the silicate mineral powder and the layered clay mineral calcined product powder is 30 to 90% by weight. thing.
7) The natural mineral powder is a silicate mineral powder.
Silicate minerals are selected from hard sandstone, sandstone, mucilage, mudstone, siliceous rock, tuff, granite, bleaching rock, mottled rock, canlanite, anthropite, genbu rock, rheumatism, crystalline slab and wax. Must be 80 wt% silicate mineral.
8) The layered clay mineral calcined product crushed minerals selected from weathered black mica, phlogopite, sericite, hillstone, vermiculite, stubble, weathered volcanic ash, weathered peatstone, and weathered tuff at 400 ° C to 1000 ° C. Being a thing.

また、本発明は、軟弱土壌又は汚泥が、建設現場で発生する残土であり、残土1m3に対し上記いずれかの改質材を10~300Kg混合することを特徴とする残土の固化処理方法である。 Further, the present invention is a method for solidifying the residual soil, wherein the soft soil or sludge is the residual soil generated at the construction site, and 10 to 300 kg of any of the above-mentioned modifiers is mixed with 1 m 3 of the residual soil. be.

更に、本発明は、軟弱土壌又は汚泥が、放射性物質含有廃棄物に含有される汚泥であり、放射性物質含有廃棄物に上記いずれかの改質材を混合して放射性物質含有廃棄物中の汚泥を固化させ、次いでこの固化汚泥と瓦礫を分離することを特徴とする放射性物質含有廃棄物の処理方法である。 Further, in the present invention, the soft soil or sludge is sludge contained in the radioactive substance-containing waste, and the sludge in the radioactive substance-containing waste is obtained by mixing any of the above-mentioned modifiers with the radioactive substance-containing waste. It is a method for treating radioactive substance-containing waste, which is characterized by solidifying the solidified sludge and then separating the solidified sludge and the rubble.

また、本発明は、上記改質材に使用される資材であって、層状粘土鉱物焼成物の粉末と、上記吸水材が混合されていることを特徴とする改質材用資材である。 Further, the present invention is a material used for the reforming material, which is a material for a reforming material, which is a mixture of a powder of a fired layered clay mineral and a water absorbing material.

本発明の処理剤は、珪酸塩鉱物粉末と層状粘土鉱物焼成物粉末を主要成分として使用するため、反応性が低く、しかも溶出イオンが少ないものとなり、水を多量に含んで軟弱な残土等をこれで固化処理すると強度及び耐水性が高く、中性を維持可能なものとすることが可能である。そのため、この処理剤で処理された残土等は埋め立て資材、土木建設資材として好適に利用できる。また、本発明の処理剤は、放射性物質含有廃棄物の減容処理にも有効である。 Since the treatment agent of the present invention uses silicate mineral powder and layered clay mineral calcined product powder as main components, it has low reactivity and few elution ions, and contains a large amount of water to contain soft residual soil and the like. When solidified with this, the strength and water resistance are high, and it is possible to maintain neutrality. Therefore, the residual soil or the like treated with this treatment agent can be suitably used as a landfill material or a civil engineering construction material. The treatment agent of the present invention is also effective in reducing the volume of radioactive substance-containing waste.

本発明の改質材は、珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末を含む。有利には、これらに加えて吸水材を含む。吸水材としては、高分子吸水ポリマー及び半水石膏から選ばれる1種以上が適する。更に有利には、高分子凝集剤又は増粘剤を含む。 The modifier of the present invention contains a powder of a silicate mineral and a powder of a calcined layered clay mineral. Advantageously, in addition to these, a water absorbing material is included. As the water-absorbing material, one or more selected from a polymer water-absorbing polymer and a superabsorbent gypsum is suitable. More preferably, it contains a polymeric flocculant or thickener.

天然鉱物の粉末としては、石灰石の粉末又は珪酸塩鉱物の粉末が使用されるが、珪酸塩鉱物の粉末が適する。また、石灰石の粉末と珪酸塩鉱物の粉末の両方を使用してもよい。
珪酸塩鉱物の粉末としては、シリカ分の含有量が50重量%以上、好ましくは60重量%以上含み、80重量%以下を含有する岩石又は鉱物の粉砕物が適する。このような珪酸塩鉱物の粉砕物は、その粒度等によって建材用、鋳物用、農薬担持用等として市販されているので、入手が容易であるという利点がある。
一方、ガラス原料等で使用される結晶質石英の粉砕物、石英粒を主成分とする堆積物から精製した珪砂は、二酸化ケイ素の含有率が90重量%以上と高く、微粉末を吸入した場合には人体の呼吸器系に悪影響を及ぼす。また、硬度が高いために破砕され難く、粉砕設備の磨耗を招き粉砕コストの増加を招く。石英粒を主成分とする粉末は、電気絶縁性に優れるため、混合時の摩擦により静電気を帯びやすく、高分子吸水ポリマーとの混合性能が悪化すため、本発明の珪酸塩鉱物としては適さない。しかし、珪砂であっても、二酸化ケイ素の含有量が90重量%未満、好ましくは80重量以下であれば、珪酸塩鉱物として適する。
As the natural mineral powder, limestone powder or silicate mineral powder is used, but silicate mineral powder is suitable. Also, both limestone powder and silicate mineral powder may be used.
As the powder of the silicate mineral, a pulverized rock or mineral having a silica content of 50% by weight or more, preferably 60% by weight or more and 80% by weight or less is suitable. Since such pulverized silicate minerals are commercially available for building materials, castings, pesticide carriers, etc., depending on their particle size and the like, they have the advantage of being easily available.
On the other hand, silica sand purified from crushed crystalline quartz used as a raw material for glass and deposits containing quartz grains as a main component has a high silicon dioxide content of 90% by weight or more, and when fine powder is inhaled. Has an adverse effect on the respiratory system of the human body. Further, since the hardness is high, it is difficult to be crushed, which causes wear of the crushing equipment and increases the crushing cost. Since the powder containing quartz grains as a main component has excellent electrical insulation, it is easily charged with static electricity due to friction during mixing, and the mixing performance with the super absorbent polymer deteriorates, so that it is not suitable as the silicate mineral of the present invention. .. However, even silica sand is suitable as a silicate mineral if the silicon dioxide content is less than 90% by weight, preferably 80% by weight or less.

天然鉱物の粉末の粒度には制限はないが、これと併用する吸水材又は高分子凝集剤・増粘剤との相分離を防ぐためには、80メッシュを90wt%以上が通過することが好ましく、100メッシュを90wt%以上が通過することがより好ましい。平均粒径(D50)としては、80~150メッシュであることがよい。 There is no limit to the particle size of the natural mineral powder, but in order to prevent phase separation from the water-absorbing material or polymer flocculant / thickener used in combination with this, it is preferable that 90 wt% or more pass through 80 mesh. It is more preferable that 90 wt% or more pass through 100 mesh. The average particle size (D50) is preferably 80 to 150 mesh.

天然鉱物の粉末は、それ自体は水に対する溶解性がないか、少なく、水濡れ性が良いものが好ましく、これは土壌や汚泥中に分散して、骨材として機能すると考えられ、これを使用することにより、軟弱な残土等の固化処理後の強度を向上させる。
天然鉱物としては、珪酸塩鉱物が挙げられ、珪酸塩鉱物としては、硬質砂岩、砂岩、チャート、珪岩、凝灰岩、花崗岩、閃緑岩、斑れい岩、カンラン岩、蛇紋岩、安山岩、玄武岩、輝緑岩、花崗斑岩、流紋岩、軽石、片麻岩、結晶片岩、ホルンフェルス、珪灰石、蝋石等が挙げられ、好ましくは硬質砂岩、砂岩、粘板岩、泥岩、珪岩、凝灰岩、花崗岩、閃緑岩、斑れい岩、カンラン岩、安山岩、玄武岩、流紋岩、結晶片岩、又は蝋石が優れる。
Natural mineral powders that are not or less soluble in water by themselves and have good water wettability are preferable, and they are thought to disperse in soil and sludge and function as aggregates, and this is used. By doing so, the strength of soft residual soil after solidification treatment is improved.
Examples of natural minerals include silicate minerals, and examples of silicate minerals include hard sand rocks, sand rocks, charts, siliceous rocks, tuffstones, granites, flashes, pebbles, kanran rocks, serpentine rocks, ansan rocks, genbu rocks, and bright greens. Rocks, granite spots, rhymestones, peasites, hemp rocks, crystalline shards, hornfels, siliceous ashstones, waxites, etc. , Spotted rock, Kanran rock, Anshan rock, Genbu rock, Ryumon rock, Crystal slab, or wax stone are excellent.

層状粘土鉱物焼成物としては、その構造中に結晶水を多く含み、焼成により結晶水が脱水し易い層状構造を有する岩石又は鉱物の焼成物の粉砕物が適する。このような層状粘土鉱物焼成物は、その粒度等によって建材用、農業用資材等として市販されているので、入手が容易であるという利点がある。層状粘土鉱物焼成物の粉末は、それ自体の吸水性が良いため、土壌や汚泥中に分散して、吸水材と骨材として機能すると考えられるが、これを使用することにより、軟弱な残土等の固化処理後の強度を向上させる。
上記層状粘土鉱物焼成物としては、風化黒雲母、金雲母、セリサイト、ヒル石、バーミキュライト、頁岩、風化火山灰、風化軽石、又は風化凝灰岩であるから選ばれる鉱物を400℃~1000℃で焼成したものが適する。
As the layered clay mineral calcined product, a crushed product of a rock or mineral calcined product having a layered structure in which a large amount of water of crystallization is contained in the structure and the water of crystallization is easily dehydrated by calcining is suitable. Since such a layered clay mineral calcined product is commercially available as a building material, an agricultural material, or the like depending on its particle size and the like, it has an advantage that it is easily available. Since the powder of the layered clay mineral calcined product itself has good water absorption, it is thought that it disperses in the soil and sludge and functions as a water absorption material and an aggregate. Improves the strength after solidification treatment.
As the layered clay mineral calcined product, a mineral selected from weathered black mica, phlogopite, serisite, hillstone, vermiculite, shale, weathered volcanic ash, weathered peatstone, or weathered tuff was fired at 400 ° C to 1000 ° C. Things are suitable.

層状粘土鉱物焼成物の粉末の粒度には制限はないが、これと併用する珪酸塩鉱物の粉末との相分離を防ぐためには、60メッシュを90wt%以上が通過することが好ましく、また骨材として機能させるために、300メッシュの通過が20wt%以下であることがより好ましい。平均粒径(D50)としては、200~300メッシュであることがよい。 There is no limit to the particle size of the powder of the layered clay mineral calcined product, but in order to prevent phase separation from the silicate mineral powder used in combination with this, it is preferable that 90 wt% or more pass through 60 mesh, and the aggregate It is more preferable that the passage of 300 mesh is 20 wt% or less in order to function as a clay. The average particle size (D50) is preferably 200 to 300 mesh.

本発明の改質材には吸水材を配合することができ、この吸水材は、高分子吸水ポリマー及び半水石膏から選ばれる。高分子吸水ポリマーとしては、デンプン系、セルロース系、ポリアクリル酸系、ポリビニルアルコール系、ポリアクリルアミド系、ポリオキシエチレン系などを使用できるが、好ましくはポリアクリル酸系ポリマーである。高分子吸水ポリマーは、非水溶性であって、粉末状であることが望ましい。
高分子吸水ポリマーの吸水率は、真水に対しては自重の200倍以上であることがよい。好ましくは自重の200~600倍の範囲である。なお、食塩水に対しては、真水に比べて吸水率は落ちるが、0.5%食塩水に対しては自重の30倍以上であることが好ましい。
A water-absorbing material can be blended in the modifier of the present invention, and the water-absorbing material is selected from a polymer water-absorbing polymer and a semi-hydrated gypsum. As the polymer water-absorbing polymer, starch-based, cellulose-based, polyacrylic acid-based, polyvinyl alcohol-based, polyacrylamide-based, polyoxyethylene-based, and the like can be used, but polyacrylic acid-based polymers are preferable. The polymer water-absorbing polymer is preferably water-insoluble and in the form of powder.
The water absorption rate of the polymer water-absorbing polymer is preferably 200 times or more of its own weight with respect to fresh water. It is preferably in the range of 200 to 600 times its own weight. It should be noted that the water absorption rate of the saline solution is lower than that of the fresh water, but it is preferably 30 times or more of its own weight with respect to the 0.5% saline solution.

半水石膏としては、脱硫の際の副生石膏など任意の半水石膏が使用できるが、不純物として鉄分を含有する副生石膏が汚泥等の有機物を多く含んだものを固化処理する場合に、硫酸還元菌による硫化水素の発生を抑制するために適する。かかる鉄分を含有する副生石膏としては、硫酸法によりチタン鉱石から酸化チタンを製造する際に副生する半水石膏が挙げられる。半水石膏は、改質材に配合される他の成分と均一に混合されるため、粉末状であることが好ましい。 As the hemihydrate gypsum, any hemihydrate gypsum such as by-product gypsum for desulfurization can be used, but when the by-product gypsum containing iron as an impurity is solidified with a large amount of organic substances such as sludge, it is reduced to sulfate. Suitable for suppressing the generation of hydrogen sulfide by bacteria. Examples of the by-product gypsum containing iron include hemihydrate gypsum produced as a by-product when titanium oxide is produced from titanium ore by the sulfuric acid method. The hemihydrate gypsum is preferably in the form of powder because it is uniformly mixed with other components contained in the modifier.

本発明の改質材には高分子凝集剤や高分子増粘剤を配合することができ、この高分子凝集剤は、アニオン性、ノニオン性、カチオン性の材料が知られているが、低毒性などの観点から、アニオン性、ノニオン性の高分子凝集剤、特にポリアクリルアミド系の高分子凝集剤が好ましい。また、高分子増粘剤としては、セルロース誘導体を主成分とする水溶性混合物が知られており、グリオキサール付加ヒドロキシプロピルメチルセルロース系の高分子増粘剤が好ましい。高分子凝集剤又は高分子増粘剤を配合することによって、土壌中の水分バランスを適性化し、固化後における強度維持に寄与する。 A polymer flocculant or a polymer thickener can be blended in the modifier of the present invention, and the polymer flocculant is known to be anionic, nonionic, or cationic, but low. From the viewpoint of toxicity and the like, anionic and nonionic polymer flocculants, particularly polyacrylamide-based polymer flocculants, are preferable. Further, as the polymer thickener, a water-soluble mixture containing a cellulose derivative as a main component is known, and a glyoxal-added hydroxypropylmethylcellulose-based polymer thickener is preferable. By blending a polymer flocculant or a polymer thickener, the water balance in the soil is optimized and contributes to maintaining the strength after solidification.

本発明の改質材は、天然鉱物の粉末と、層状粘土鉱物焼成物の粉末を必須成分として含み、上記吸水材、並びに高分子凝集剤又は高分子増粘剤を好ましい成分として含むが、必要により増量材等の他の添加材を含んでもよい。
以下、天然鉱物の粉末を珪酸塩鉱物の粉末で代表して説明する。したがって、断りがない限り、珪酸塩鉱物の粉末は石灰石の粉末の場合を含む意味と理解される。
The modifier of the present invention contains a powder of a natural mineral and a powder of a fired layered clay mineral as essential components, and contains the above-mentioned water absorbing material and a polymer flocculant or a polymer thickener as preferable components, but is necessary. May contain other additives such as bulking materials.
Hereinafter, the powder of a natural mineral will be described as a representative of the powder of a silicate mineral. Therefore, unless otherwise noted, silicate mineral powder is understood to include the case of limestone powder.

本発明の改質材における上記必須成分の配合割合は、珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末の合計に対し、珪酸塩鉱物の粉末が30~95重量%であることがよく、好ましくは30~70重量%である。 The blending ratio of the above essential components in the modifier of the present invention is often 30 to 95% by weight of the silicate mineral powder with respect to the total of the silicate mineral powder and the layered clay mineral calcined product powder. It is preferably 30 to 70% by weight.

本発明の改質材が、珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末と、高分子吸水ポリマーを含む場合にあっては、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計の配合割合が85~99重量%であることがよい。この場合、高分子吸水ポリマーの配合割合は、1~15重量%、好ましくは2~10重量%である。更に、高分子凝集剤又は高分子増粘剤を含む場合にあっては、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末と高分子吸水ポリマーの合計100重量部に対して、高分子凝集剤又は高分子増粘剤の配合割合は、0.01~2重量部、好ましくは0.02~1重量部であることがよい。 When the modifier of the present invention contains a silicate mineral powder, a layered clay mineral calcined product powder, and a polymer water-absorbing polymer, the silicate mineral powder and the layered clay mineral calcined product powder. The total blending ratio is preferably 85 to 99% by weight. In this case, the blending ratio of the super absorbent polymer is 1 to 15% by weight, preferably 2 to 10% by weight. Further, in the case of containing a polymer flocculant or a polymer thickener, the polymer aggregates with respect to a total of 100 parts by weight of the silicate mineral powder, the layered clay mineral calcined product powder and the polymer water-absorbing polymer. The blending ratio of the agent or the polymer thickener is preferably 0.01 to 2 parts by weight, preferably 0.02 to 1 part by weight.

珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末と、半水石膏、又は半水石膏と高分子増粘剤を含む場合にあっては、シリカ鉱物の粉末と層状粘土鉱物焼成物粉末の合計の配合割合が30~90重量%であることがよい。この場合、半水石膏の配合割合は、10~70重量%、好ましくは10~50重量%である。吸水材として半水石膏を使用する場合は、理論的には半水石膏が二水石膏となる量の水しか吸水できず、高分子吸水ポリマーに比べて吸水率が低いので、半水石膏は比較的多量に配合される。更に、高分子凝集剤又は高分子増粘剤を含む場合にあっては、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末と高分子吸水ポリマーの混合物100重量部に対して、高分子凝集剤の配合割合は、0.05~2重量%あることがよく、好ましくは0.1~1重量%であり、高分子増粘剤の配合割合は、0.01~1重量部、好ましくは0.05~0.5重量部である。 Silicate mineral powder, layered clay mineral calcined powder, and hemihydrate gypsum, or if it contains hemihydrate gypsum and polymer thickener, silica mineral powder and layered clay mineral calcined powder. The total blending ratio is preferably 30 to 90% by weight. In this case, the blending ratio of the hemihydrate gypsum is 10 to 70% by weight, preferably 10 to 50% by weight. When using hemihydrate gypsum as a water-absorbing material, theoretically, hemihydrate gypsum can absorb only the amount of water that becomes dihydrate gypsum, and the water absorption rate is lower than that of high-molecular-weight water-absorbing polymer. It is blended in a relatively large amount. Further, in the case of containing a polymer flocculant or a polymer thickener, the polymer aggregates with respect to 100 parts by weight of a mixture of a silicate mineral powder, a layered clay mineral fired product powder and a polymer water-absorbing polymer. The compounding ratio of the agent is often 0.05 to 2% by weight, preferably 0.1 to 1% by weight, and the compounding ratio of the polymer thickener is 0.01 to 1 part by weight, preferably 0.01 to 1 part by weight. It is 0.05 to 0.5 parts by weight.

本発明の改質材が、上記必須成分に加えて増量材等の他の材料を含む場合は、必須成分の合計を100重量%として、上記配合割合を満足することがよい。しかし、他の材料を含む場合であっても、それが少量であれば、改質材中に上記配合割合で含むことがよい。 When the modifier of the present invention contains other materials such as a bulking material in addition to the essential components, the total of the essential components may be 100% by weight to satisfy the above compounding ratio. However, even when other materials are contained, if the amount is small, the modified material may be contained in the above-mentioned compounding ratio.

本発明の改質材における珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末と高分子吸水ポリマーの存在形態には制限はなく、粉末状態で混合されていてもよいが、高分子吸水ポリマーの表面が層状粘土鉱物焼成物の粉末により被覆されて存在する形態であることがよい。 The present form of the silicate mineral powder, the layered clay mineral calcined product powder, and the polymer water-absorbent polymer in the modifier of the present invention is not limited and may be mixed in a powder state, but the polymer water-absorbent polymer may be mixed. It is preferable that the surface is covered with the powder of the layered clay mineral calcined product and exists.

本発明の改質材は、珪酸塩鉱物の粉末と、層状粘土鉱物焼成物の粉末を含み、必要により上記吸水材、高分子凝集剤又は高分子増粘剤、又はその他の材料を含む成分を混合することにより得ることができる。有利にはこれらの粉末をリボンミキサー、スーパーミキサー等の混合装置を用いて、攪拌、混合して得ることができる。 The modifier of the present invention contains a powder of a silicate mineral and a powder of a calcined layered clay mineral, and optionally contains a component containing the above-mentioned water-absorbing material, polymer flocculant or polymer thickener, or other material. It can be obtained by mixing. Advantageously, these powders can be obtained by stirring and mixing using a mixing device such as a ribbon mixer or a super mixer.

本発明の改質材は、軟弱土壌又は汚泥の固化又は強度の向上に有用である。軟弱土壌又は汚泥としては、掘削工事から生じる高含水率の残土、その他の建設汚泥、鉱山等や工場から排出される汚泥や、汚泥状又は汚泥を含む放射性廃棄物などが挙げられる。好ましくは、シールド工法によるトンネル工事で排出される残土である。この残土は量が多いだけでなく、現場での再使用が困難で、遠方の埋め立て地等に搬送して、埋め立て材として使用されることが多いので、工事現場での固化が容易であることが望まれる。 The modifier of the present invention is useful for solidifying or improving the strength of soft soil or sludge. Examples of soft soil or sludge include residual soil having a high water content generated from excavation work, other construction sludge, sludge discharged from mines and factories, and radioactive waste containing sludge or sludge. The residual soil discharged by the tunnel construction by the shield method is preferable. Not only is this residual soil large in quantity, but it is also difficult to reuse at the site, and it is often transported to a distant landfill site and used as a landfill material, so it is easy to solidify at the construction site. Is desired.

本発明の改質材は、処理すべき軟弱土壌又は汚泥(これらを総称して残土等ともいう。)の使用量は、残土等の含水率やその他の性状によって異なるが、残土等1m3に対して、10~100kgの範囲が適する。そして、処理後の残土等のコーン指数が200kN/m2以上とすることがよい。 In the modifier of the present invention, the amount of soft soil or sludge to be treated (collectively referred to as residual soil, etc.) varies depending on the water content of the residual soil and other properties, but it is 1 m 3 of the residual soil, etc. On the other hand, a range of 10 to 100 kg is suitable. The cone index of the residual soil after treatment should be 200 kN / m 2 or more.

本発明の改質材は、放射性物質含有廃棄物の処理に有用である。放射性物質含有廃棄物は、コンクリート、木材、金属材、石材等の比較的大きな固形物からなる瓦礫の他に汚泥が混在し、これが瓦礫に付着して全体として放射性廃棄物として隔離、貯蔵されている。しかし、放射性物質は主に汚泥中の土壌等に吸着されていて、瓦礫自体は比較的放射能が低いことが多い。そこで、汚泥と瓦礫を簡易に分離することができれば、隔離、貯蔵される量を大幅に減少できる可能性がある。汚泥と瓦礫を分離するためには、汚泥が有する接着性又は粘着性を失わせるために固化させて、半乾燥状態又は粉状状態とすることが有効であるが、これがセメントのように硬化してしまうと分離が更に困難となる。本発明の改質材は、このような硬化の問題を起こすことなく、汚泥を半乾燥状態又は粉状状態として、接着性又は粘着性を失わせることができる。このための改質材としては、吸水材として半水石膏ではなく、高分子吸水ポリマーを使用したものが適する。 The modifier of the present invention is useful for treating radioactive substance-containing waste. The radioactive substance-containing waste contains sludge in addition to rubble consisting of relatively large solids such as concrete, wood, metal, and stone, which adheres to the rubble and is isolated and stored as radioactive waste as a whole. There is. However, radioactive substances are mainly adsorbed on soil in sludge, and the rubble itself often has relatively low radioactivity. Therefore, if sludge and rubble can be easily separated, there is a possibility that the amount of isolation and storage can be significantly reduced. In order to separate sludge and rubble, it is effective to solidify the sludge to make it semi-dry or powdery in order to lose the adhesiveness or stickiness of the sludge, but it hardens like cement. If it does, it will be more difficult to separate. The modifier of the present invention can leave sludge in a semi-dry or powdery state and lose its adhesiveness or stickiness without causing such a hardening problem. As the modifier for this purpose, a material using a polymer water-absorbing polymer instead of a superabsorbent polymer as the water-absorbing material is suitable.

本発明の放射性物質含有廃棄物の処理方法は、汚泥を含む放射性物質含有廃棄物に本発明の改質材を混合して放射性物質含有廃棄物中の汚泥を固化させ、次いでこの固化汚泥と、瓦礫を分離する方法である。本発明の改質材を混合することにより、汚泥中の水分が吸収されて固化して半乾燥状態又は粉状状態となるので、これを篩等で粉状物と塊状物とに分離すれば、放射性物質を高度に含む粉状物と、それ以外の瓦礫とに分けることができる。その場合、層状粘土鉱物焼成物の粉末として、風化黒雲母焼成物の粉末、ヒル石焼成物の粉末、バーミキュライト焼成物の粉末等の放射性セシウムの吸着効果を有する鉱物を使用すると、汚泥中の放射性セシウムを不溶化することができる。 In the method for treating radioactive substance-containing waste of the present invention, the modifier of the present invention is mixed with the radioactive substance-containing waste containing sludge to solidify the sludge in the radioactive substance-containing waste, and then the solidified sludge and the solidified sludge are used. This is a method of separating rubble. By mixing the modifier of the present invention, the water in the sludge is absorbed and solidified to become a semi-dry state or a powder state. , It can be divided into powdery substances containing a high amount of radioactive substances and other rubble. In that case, if a mineral having an effect of adsorbing radioactive cesium, such as a powder of a weathered black mica calcined product, a powder of a hirustone calcined product, and a powder of a vermiculite calcined product, is used as the powder of the layered clay mineral calcined product, it is radioactive in the sludge. It can insolubilize cesium.

また、本発明の改質材用資材は、層状粘土鉱物焼成物の粉末と上記吸水材があらかじめ混合されているため、これを工事現場に持ち込み、そこで工事現場付近で比較的入手が容易な天然鉱物の粉末と混合するようにすれば、容易に本発明の改質材とすることができる。 Further, since the material for the modifier of the present invention is a mixture of the powder of the fired layered clay mineral and the above-mentioned water absorbing material in advance, it is brought to the construction site, where it is relatively easy to obtain in the vicinity of the construction site. By mixing with mineral powder, the modifier of the present invention can be easily obtained.

以下、本発明を、実施例によって具体的に説明するが、これらによって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

実施例1
珪酸塩鉱物の粉末として、日瓢鉱山産出の硬質砂岩を、ジョークラツシャーで粗砕後、トンネルキルンを用いて乾燥し、さらにロールクラツシャー、ロッドミル、ゲージミルと、振動フルイ、サイクロンセバレータ等の分級機を用いて、実質的な付着水分0%で、粉末粒度100メッシュ通過100%、吸水率5%の粉末Aを得た。
得られた珪酸塩鉱物粉末Aの化学組成(wt%)は、蛍光X線分析の結果によると、表1のとおりであった。
Example 1
As a powder of silicate mineral, hard sandstone produced at Nichigo Mine is coarsely crushed with Joe Kratzshire, dried using a tunnel kiln, and then rolled Kratzshire, rod mill, gauge mill, vibration fluy, cyclone sevaler, etc. A powder A having a powder particle size of 100 mesh passing through 100% and a water absorption rate of 5% was obtained with substantially 0% of adhering water content using the classifier of No. 1.
The chemical composition (wt%) of the obtained silicate mineral powder A is as shown in Table 1 according to the results of fluorescent X-ray analysis.

Figure 0007059039000001
Figure 0007059039000001

層状粘土鉱物焼成物の粉末として、南アフリカ・パラボラ産出のバーミキュライト原石を、加熱温度800℃のバーミキュライト焼成用斜炉を用いて焼成し、さらにターボミルを用いて、実質的な付着水分0%で、粉末粒度60メッシュ通過92%、粉末粒度300メッシュ通過5%、吸水率380%の粉末Bを得た。
得られた層状粘土鉱物焼成物粉末Bの化学組成(wt%)は、蛍光X線分析の結果によると、表2のとおりであった。

Figure 0007059039000002
As a powder of layered clay mineral calcined product, rough vermiculite from Parabola, South Africa is calcined using a vermiculite calcining tilting furnace with a heating temperature of 800 ° C. Powder B having a particle size of 60 mesh passing 92%, a powder particle size of 300 mesh passing 5%, and a water absorption rate of 380% was obtained.
The chemical composition (wt%) of the obtained layered clay mineral calcined powder B is as shown in Table 2 according to the results of fluorescent X-ray analysis.
Figure 0007059039000002

珪酸塩鉱物粉末A100重量部に、層状粘土鉱物焼成物粉末B100重量部を添加し、スーパーミキサーを用いて混合し、改質材1を得た。 To 100 parts by weight of the silicate mineral powder A, 100 parts by weight of the layered clay mineral calcined product powder B was added and mixed using a super mixer to obtain a modifier 1.

実施例2
100重量部の改質材1に、ポリアクリル酸系吸水性ポリマー(三洋化成工業株式会社製サンフレッシュST-500D)を3重量部添加し、スーパーミキサーを用いて混合し、改質材2を得た。
なお、使用した吸水性ポリマーの純水に対する吸水量は約400g/gであり、0.5%NaCl溶液に対する吸水量は約53g/gであった。
Example 2
Add 3 parts by weight of a polyacrylic acid-based water-absorbent polymer (Sunfresh ST-500D manufactured by Sanyo Chemical Industries, Ltd.) to 100 parts by weight of the modifier, mix using a super mixer, and add the modifier 2. Obtained.
The water absorption amount of the used water-absorbent polymer with respect to pure water was about 400 g / g, and the water absorption amount with respect to the 0.5% NaCl solution was about 53 g / g.

実施例3
100重量部の改質材2に、さらにメチルセルロース系高分子増粘剤(第一工業製薬株式会社製、ユニショツトA-10)0.5重量部を添加し、実施例1で使用したと同じ粉体混合機を用いて混合し、改質材3を得た。
Example 3
To 100 parts by weight of the modifier 2, 0.5 part by weight of a methylcellulose-based polymer thickener (Unishot A-10, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) was further added, and the same powder as used in Example 1 was added. Mixing was performed using a body mixer to obtain a modifier 3.

実施例4
100重量部の改質材1と、市販の半水石膏(試薬)100重量部を、実施例1で使用したと同じ粉体混合機を用いて混合し、改質材4を得た。
Example 4
100 parts by weight of the modifier 1 and 100 parts by weight of commercially available hemihydrate gypsum (reagent) were mixed using the same powder mixer used in Example 1 to obtain a modifier 4.

実施例5
100重量部の改質材4に、実施例3で使用したと同じメチルセルロース系高分子増粘剤0.5重量部を、実施例1で使用したと同じ粉体混合機を用いて混合し、改質材5を得た。
Example 5
0.5 parts by weight of the same methylcellulose-based polymer thickener used in Example 3 was mixed with 100 parts by weight of the modifier 4 using the same powder mixer as used in Example 1. The modifier 5 was obtained.

比較例1
実施例1で使用したと同じ珪酸塩鉱物粉末のみを比較用改質材(改質材H1)とした。
Comparative Example 1
Only the same silicate mineral powder used in Example 1 was used as a comparative modifier (modifier H1).

比較例2
実施例2で使用したと同じポリアクリル酸系吸水性ポリマーの粉末のみを改質材H2とした。
Comparative Example 2
Only the powder of the same polyacrylic acid-based water-absorbent polymer used in Example 2 was used as the modifier H2.

比較例3
実施例4で使用したと同じ半水石膏のみを改質材H3とした。
Comparative Example 3
Only the same hemihydrate gypsum used in Example 4 was used as the modifier H3.

実施例6
含水比75%の園芸用荒木田土に浄水を添加して、含水比130%の土壌スラリーを作成した。この土壌スラリー1kg中に実施例で得た改質材1~5を表3に示す重量で添加し、卓上ミキサーにて5分間混練した時の固化状況を調査したところ、表3のとおりであった。
Example 6
Purified water was added to horticultural Araki field soil having a water content of 75% to prepare a soil slurry having a water content of 130%. Table 3 shows the solidification status when the modifiers 1 to 5 obtained in Examples were added to 1 kg of this soil slurry by the weight shown in Table 3 and kneaded with a tabletop mixer for 5 minutes. rice field.

比較例4
実施例6で使用したと同じ土壌スラリー1kg中に、比較例で得た比較改質材H1~H3を表3に示す重量で添加し、卓上ミキサーにて5分間混練した時の固化状況を調査したところ、表3のとおりであった。
Comparative Example 4
The comparative modifiers H1 to H3 obtained in Comparative Example were added to 1 kg of the same soil slurry used in Example 6 by the weight shown in Table 3, and the solidification state when kneaded with a tabletop mixer for 5 minutes was investigated. As a result, it was as shown in Table 3.

各改質材の添加量、各資材の配合組成(重量部)、並びに土壌混合時の固化性能、総合評価結果を表3に示す。ここで、固化性能は固化処理後の土壌の強度A、固化処理後の土壌と容器の器壁との剥離性B、及び固化速度Cについて、評価した。強度は大、中、小で評価し、剥離性は良、中(やや悪い)、不良で評価し、固化速度は速い、中(やや遅い)、遅いで評価した。強度大は、「A;大」、剥離性良は、「B;良」、固化速度速いは、「C;速い」ように記す。総合の評価は○、△、×の順であり、○は改質材として優れることを意味する。 Table 3 shows the amount of each modifier added, the composition of each material (parts by weight), the solidification performance when the soil is mixed, and the comprehensive evaluation results. Here, the solidification performance was evaluated for the strength A of the soil after the solidification treatment, the peelability B between the soil after the solidification treatment and the vessel wall of the container, and the solidification rate C. The strength was evaluated as high, medium, and small, the peelability was evaluated as good, medium (slightly bad), and poor, and the solidification rate was evaluated as fast, medium (slightly slow), and slow. High strength is described as "A; large", good peelability is described as "B; good", and fast solidification rate is described as "C; fast". The overall evaluation is in the order of ○, △, ×, and ○ means that it is excellent as a modifier.

Figure 0007059039000003
Figure 0007059039000003

Claims (8)

軟弱土壌又は汚泥の改質材であって、珪酸塩鉱物(ベントナイト又はグリーンタフを除く。以下同じ)の粉末と、層状粘土鉱物焼成物の粉末を含む混合物であり、 珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計に対し、珪酸塩鉱物の粉末の配合割合が30~70重量%であり、高分子吸水ポリマーを含む場合にあっては、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計の配合割合が85~99重量%であり、高分子吸水ポリマー以外の高分子化合物を含まないことを特徴とする改質材。 A modifier of soft soil or sludge, which is a mixture containing a powder of silicate mineral (excluding bentonite or green tough; the same applies hereinafter) and a powder of a layered clay mineral calcined product, and is a layered powder of a silicate mineral. When the blending ratio of the silicate mineral powder is 30 to 70% by weight with respect to the total of the powder of the calcined clay mineral, and the polymer water-absorbing polymer is contained, the silicate mineral powder and the layered clay mineral are used. A modifier having a total blending ratio of the powder of the fired product of 85 to 99% by weight and containing no polymer compound other than the polymer water-absorbing polymer . 軟弱土壌又は汚泥の改質材であって、珪酸塩鉱物(ベントナイト又はグリーンタフを除く。以下同じ)の粉末と、層状粘土鉱物焼成物の粉末を含む混合物であり、 珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計に対し、珪酸塩鉱物の粉末の配合割合が30~70重量%であり、半水石膏を含む場合にあっては、珪酸塩鉱物の粉末と層状粘土鉱物焼成物の粉末の合計の配合割合が30~90重量%であり、高分子吸水ポリマー以外の高分子化合物を含まないことを特徴とする改質材。 A modifier of soft soil or sludge, which is a mixture containing a powder of silicate mineral (excluding bentonite or green tough; the same applies hereinafter) and a powder of a layered clay mineral calcined product, and is a layered powder of a silicate mineral. The compounding ratio of the silicate mineral powder is 30 to 70% by weight with respect to the total powder of the clay mineral calcined product, and when the hemihydrate gypsum is contained, the silicate mineral powder and the layered clay mineral calcined product. A modifier having a total blending ratio of 30 to 90% by weight of a substance powder and containing no polymer compound other than a polymer water-absorbing polymer . 更に、高分子凝集剤又は高分子増粘剤を含む請求項1又は2に記載の改質材。 The modifier according to claim 1 or 2 , further comprising a polymer flocculant or a polymer thickener. 高分子吸水ポリマーの周囲に層状粘土鉱物焼成物の粉末が被覆されて存在する請求項1又は2に記載の改質材。 The modifier according to claim 1 or 2 , wherein the powder of the fired layered clay mineral is coated around the superabsorbent polymer. 珪酸塩鉱物の粉末が、硬質砂岩、砂岩、粘板岩、泥岩、珪岩、花崗岩、閃緑岩、斑れい岩、カンラン岩、安山岩、玄武岩、流紋岩、結晶片岩及び蝋石から選ばれるシリカ分が50~80wt%の珪酸塩鉱物の粉末である請求項1又は2に記載の改質材。 Silica content of silicate mineral powder selected from hard sand rock, sand rock, mucilage, mud rock, siliceous rock, granite, diorite, gabbro, peridotite, ansan rock, genbu rock, rhematode rock, crystalline slab rock and wax stone is 50 ~ The modifier according to claim 1 or 2 , which is a powder of 80 wt% silicate mineral. 層状粘土鉱物焼成物の粉末が、風化黒雲母、金雲母、セリサイト、ヒル石、バーミキュライト、頁岩、風化火山灰、風化軽石、及び風化凝灰岩から選ばれる鉱物を、400℃~1000℃で焼成後、粉砕したものである請求項1又は2に記載の改質材。 The powder of the layered clay mineral calcined product is obtained by calcining a mineral selected from weathered black mica, gold mica, sericite, hillstone, vermiculite, shale, weathered volcanic ash, weathered peatstone, and weathered tuff at 400 ° C to 1000 ° C. The modifier according to claim 1 or 2 , which is crushed. 軟弱土壌又は汚泥が、建設現場で発生する残土であり、残土1m3に対し請求項1又は2に記載の改質材を10~300Kg混合することを特徴とする残土の固化処理方法。 A method for solidifying residual soil, wherein the soft soil or sludge is residual soil generated at a construction site, and 10 to 300 kg of the modifier according to claim 1 or 2 is mixed with 1 m 3 of the residual soil. 軟弱土壌又は汚泥が、放射性物質含有廃棄物に含有される汚泥であり、放射性物質含有廃棄物に請求項1又は2に記載の改質材を混合して放射性物質含有廃棄物中の汚泥を固化させ、次いでこの固化汚泥と、瓦礫を分離することを特徴とする放射性物質含有廃棄物の処理方法。 Soft soil or sludge is sludge contained in radioactive substance-containing waste, and the sludge in radioactive substance-containing waste is solidified by mixing the modifier according to claim 1 or 2 with the radioactive substance-containing waste. A method for treating radioactive substance-containing waste, which comprises separating the solidified sludge and rubble.
JP2018027837A 2018-02-20 2018-02-20 Method for solidifying modified materials such as soft soil and residual soil Active JP7059039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027837A JP7059039B2 (en) 2018-02-20 2018-02-20 Method for solidifying modified materials such as soft soil and residual soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027837A JP7059039B2 (en) 2018-02-20 2018-02-20 Method for solidifying modified materials such as soft soil and residual soil

Publications (2)

Publication Number Publication Date
JP2019143030A JP2019143030A (en) 2019-08-29
JP7059039B2 true JP7059039B2 (en) 2022-04-25

Family

ID=67771879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027837A Active JP7059039B2 (en) 2018-02-20 2018-02-20 Method for solidifying modified materials such as soft soil and residual soil

Country Status (1)

Country Link
JP (1) JP7059039B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113025335A (en) * 2021-03-08 2021-06-25 西安丽水河谷环境技术有限责任公司 Soil solidifying agent and processing method thereof
CN113621380A (en) * 2021-08-23 2021-11-09 武汉中材科技有限公司 Expansive soil ecological modifier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271597A (en) 1999-03-24 2000-10-03 Daicel Chem Ind Ltd Sludge treating agent and sludge treating method
JP2016216719A (en) 2015-05-22 2016-12-22 鹿島建設株式会社 Bulk density adjustment material and bulk density adjustment method
JP2018030958A (en) 2016-08-25 2018-03-01 日鉄住金セメント株式会社 Modifier for soft soil or the like and solidification treatment method of remaining soil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783388B2 (en) * 1997-12-26 2006-06-07 栗田工業株式会社 Method for reforming and solidifying high water content mud, mud or sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271597A (en) 1999-03-24 2000-10-03 Daicel Chem Ind Ltd Sludge treating agent and sludge treating method
JP2016216719A (en) 2015-05-22 2016-12-22 鹿島建設株式会社 Bulk density adjustment material and bulk density adjustment method
JP2018030958A (en) 2016-08-25 2018-03-01 日鉄住金セメント株式会社 Modifier for soft soil or the like and solidification treatment method of remaining soil

Also Published As

Publication number Publication date
JP2019143030A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
CA2352926C (en) Binder for mine tailings
Siddique Utilization of cement kiln dust (CKD) in cement mortar and concrete—an overview
KR100464666B1 (en) Solidificator Manufacturing Method with Waste Oyster Shell
Lozano-Lunar et al. Safe use of electric arc furnace dust as secondary raw material in self-compacting mortars production
JP5636718B2 (en) CEMENT COMPOSITION, METHOD FOR PRODUCING THE SAME, AND METHOD FOR TREATING ARS Arsenic-Containing Waste
JP2007302885A (en) Insolubilizing agent for harmful substance
CN1207365C (en) Soil firming agent
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP7073088B2 (en) Soil reforming method
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
JP7059039B2 (en) Method for solidifying modified materials such as soft soil and residual soil
JP7422071B2 (en) Heavy metal insolubilization solidification material and method for improving contaminated soil
KR101215935B1 (en) Environment friendly of embankment block including illite
JP2014047122A (en) Coal ash granulated body and granulated body mixture
JP2019044054A (en) One component type neutral solidification agent
KR101931903B1 (en) A composite for solidification of heavy metal ions of abandoned mines by using fly ash and bottom ash from fluidized-bed boiler with a large amount of free-CaO
JP6114055B2 (en) Radioactive substance immobilization material and radioactive contaminant treatment method
JP6042246B2 (en) Earthwork material composition and method for reducing fluorine elution amount in the composition
Siddique et al. Cement kiln dust
JP4112666B2 (en) Solidified material
JP2503771B2 (en) Solidifying material for cohesive soil of volcanic ash
KR100881149B1 (en) High water content dredging mud solidification stabilizer and it's improved soil production method
KR102586157B1 (en) A solidification composites pulverized coal ash and fluidized-bed boiler coal ash
DE19758682C2 (en) Filler for back filling salt pits
JP3818808B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R150 Certificate of patent or registration of utility model

Ref document number: 7059039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150