JP7058037B2 - Manufacturing method of resin molded products - Google Patents

Manufacturing method of resin molded products Download PDF

Info

Publication number
JP7058037B2
JP7058037B2 JP2018116074A JP2018116074A JP7058037B2 JP 7058037 B2 JP7058037 B2 JP 7058037B2 JP 2018116074 A JP2018116074 A JP 2018116074A JP 2018116074 A JP2018116074 A JP 2018116074A JP 7058037 B2 JP7058037 B2 JP 7058037B2
Authority
JP
Japan
Prior art keywords
resin
fiber
molded product
resin molded
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018116074A
Other languages
Japanese (ja)
Other versions
JP2019217678A (en
Inventor
徹 南
慎哉 菊谷
達也 北川
秀紀 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2018116074A priority Critical patent/JP7058037B2/en
Publication of JP2019217678A publication Critical patent/JP2019217678A/en
Application granted granted Critical
Publication of JP7058037B2 publication Critical patent/JP7058037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂成型品の製造方法に関し、具体的には高強度の樹脂成型品を形成する技術に関するものである。 The present invention relates to a method for producing a resin molded product , and specifically to a technique for forming a high-strength resin molded product.

従来、内部にキャビティを有する成形型において、キャビティ内に挿入する芯材を回転させながら中空の成形体を製造する技術が知られている(例えば、特許文献1を参照)。 Conventionally, in a molding die having a cavity inside, a technique for manufacturing a hollow molded body while rotating a core material to be inserted into the cavity is known (see, for example, Patent Document 1).

特開2009-101554号公報Japanese Unexamined Patent Publication No. 2009-101554

前記特許文献1には、繊維を混合した熱硬化性樹脂が成形原料として記載されている。そして、芯材を回転させながら成形原料の加熱成形を行うことにより、芯材と成形原料との間から蒸気を逃がす構成としている。このように、前記特許文献に記載の技術は、加熱成形時に発生する蒸気によって中空成形体に生じる損傷を抑制するためのものである。 The patent document 1 describes a thermosetting resin mixed with fibers as a molding raw material. Then, by heat-molding the molding raw material while rotating the core material, steam is released from between the core material and the molding raw material. As described above, the technique described in the patent document is for suppressing damage to the hollow molded body due to steam generated during heat molding.

一方、繊維を混合した樹脂成型品を製造する際に、繊維を周方向に配向することにより樹脂成型品の強度を高める技術についても知られている。前記特許文献に記載の技術は、繊維を所定の方向に配向させるためのものではないため、充分に繊維を成形体の周方向に配向することができなかった。 On the other hand, there is also known a technique for increasing the strength of a resin molded product by orienting the fibers in the circumferential direction when manufacturing a resin molded product in which fibers are mixed. Since the technique described in the patent document is not for orienting the fiber in a predetermined direction, the fiber could not be sufficiently oriented in the circumferential direction of the molded product.

本発明は以上の如き状況に鑑みてなされたものであり、本発明が解決しようとする課題は、繊維を周方向に配向することにより強度を高めることを可能とする、樹脂成型品の製造方法を提供することである。 The present invention has been made in view of the above circumstances, and the problem to be solved by the present invention is a method for manufacturing a resin molded product , which makes it possible to increase the strength by orienting the fibers in the circumferential direction. Is to provide.

本発明は、前述の課題解決のために、以下の樹脂成型品の製造方法を構成した。 The present invention constitutes the following method for manufacturing a resin molded product in order to solve the above-mentioned problems.

(1)内周面が円筒形状に形成される固定型と、前記固定型の内周側で軸心回りに回転可能に設けられる可動型と、の間に形成されるキャビティに、繊維配合樹脂を射出することにより、穴部が形成された円筒形状の樹脂成型品を成形する、樹脂成型品の製造方法であって、前記キャビティに前記繊維配合樹脂を射出する際に前記可動型を回転させることにより、前記穴部の内周に繊維を円周方向に配向し、前記樹脂成型品に残存する前記繊維の平均繊維長を0.5mmから5.0mmとし、ディスクゲートを介して、前記繊維配合樹脂を前記キャビティに射出する、樹脂成型品の製造方法。 (1) A fiber-blended resin is formed in a cavity formed between a fixed mold having an inner peripheral surface formed in a cylindrical shape and a movable mold rotatably provided around the axis on the inner peripheral side of the fixed mold. Is a method for manufacturing a resin molded product in which a cylindrical resin molded product having a hole is formed by injecting the fiber-blended resin, and the movable mold is rotated when the fiber-blended resin is injected into the cavity. Thereby, the fibers are oriented in the circumferential direction on the inner circumference of the hole portion, and the average fiber length of the fibers remaining in the resin molded product is set to 0.5 mm to 5.0 mm, and the fiber is set to 0.5 mm to 5.0 mm through the disc gate. A method for manufacturing a resin molded product, in which a fiber-blended resin is injected into the cavity .

(2)前記ディスクゲートを、前記キャビティの側が拡径した円錐形状とする、(1)に記載の樹脂成型品の製造方法。(2) The method for manufacturing a resin molded product according to (1), wherein the disc gate has a conical shape with an enlarged diameter on the cavity side.

(3)前記繊維配合樹脂として、繊維長が5mmから20mmの繊維を一方向に配向したペレット状樹脂を用いる、(1)又は(2)に記載の樹脂成型品の製造方法。 (3) The method for producing a resin molded product according to (1) or (2) , wherein as the fiber-blended resin, a pellet-shaped resin in which fibers having a fiber length of 5 mm to 20 mm are oriented in one direction is used.

(4)前記ペレット状樹脂は、連続する繊維とともに押出成形した樹脂ストランドを断続的に切断して形成される、(3)に記載の樹脂成型品の製造方法。 (4) The method for producing a resin molded product according to (3), wherein the pellet-shaped resin is formed by intermittently cutting a resin strand extruded together with continuous fibers.

本発明に係る樹脂成型品の製造方法によれば、繊維を周方向に配向することにより樹脂成型品の強度を高めることが可能となる、という効果を奏する。 According to the method for producing a resin molded product according to the present invention, it is possible to increase the strength of the resin molded product by orienting the fibers in the circumferential direction.

本実施形態に係る樹脂成型品であるすべり軸受を示す斜視図。The perspective view which shows the slide bearing which is a resin molded product which concerns on this embodiment. 樹脂成型品を製造する成形装置を示した斜視図。The perspective view which showed the molding apparatus which manufactures a resin molded article. 成形装置の部分断面図。Partial cross-sectional view of the molding machine. 射出成型時の成形装置を示す部分断面図。A partial cross-sectional view showing a molding apparatus at the time of injection molding. 成形装置から型抜きした樹脂を示す斜視図。The perspective view which shows the resin which was die-cut from the molding apparatus. 各条件で成形したすべり軸受の圧環強度を比較した図。The figure which compared the pressure ring strength of the slide bearing formed under each condition.

まず、図1から図5を用いて、本実施形態に係る樹脂成形品であるすべり軸受1、及び、すべり軸受1を製造する成形装置10について説明する。図1に示す如く、すべり軸受1は穴部である内周面2、及び、外周面3を備えた円筒形状の部材であり、重機等における摺動部材として用いられる。本実施形態に係るすべり軸受1の内周面2には、繊維Fが円周方向に配向されている。詳細には図1中の拡大図に示す如く、繊維Fはすべり軸受1の内周面2において円周方向に沿った斜め方向に配向される。なお、後述するように繊維Fを円周方向とほぼ平行に配向することも可能である。すべり軸受1においては、繊維Fの平均繊維長が0.5mmから5.0mmとなるように構成されている。 First, with reference to FIGS. 1 to 5, a slide bearing 1 which is a resin molded product according to the present embodiment and a molding device 10 for manufacturing the slide bearing 1 will be described. As shown in FIG. 1, the slide bearing 1 is a cylindrical member having an inner peripheral surface 2 and an outer peripheral surface 3 which are holes, and is used as a sliding member in heavy machinery and the like. Fibers F are oriented in the circumferential direction on the inner peripheral surface 2 of the slide bearing 1 according to the present embodiment. In detail, as shown in the enlarged view in FIG. 1, the fiber F is oriented diagonally along the circumferential direction on the inner peripheral surface 2 of the slide bearing 1. As will be described later, it is also possible to orient the fiber F substantially in parallel with the circumferential direction. In the slide bearing 1, the average fiber length of the fibers F is configured to be 0.5 mm to 5.0 mm.

図2に示す如く、成形装置10は複数の金属部材が直方体形状に組み合わされた装置である。本実施形態においては、図2中の矢印で成形装置10の前後方向を規定する。具体的に、成形装置10は、成形装置10の後端部分と前端部分にそれぞれ配置される後端部材11及び前端部材12と、後端部材11と前端部材12との間に配置される第一~第六部材13~18と、第二~第六部材14~18の各部材を貫通して回動可能に配置される可動型21と、前端部材12、第六部材18、及び第五部材17の内部に配置される固定型30と、を主な構成要素として備えている。 As shown in FIG. 2, the molding apparatus 10 is an apparatus in which a plurality of metal members are combined in a rectangular parallelepiped shape. In the present embodiment, the arrows in FIG. 2 define the front-back direction of the molding apparatus 10. Specifically, the molding apparatus 10 is arranged between the rear end member 11 and the front end member 12 arranged at the rear end portion and the front end portion of the molding apparatus 10, respectively, and between the rear end member 11 and the front end member 12. The first to sixth members 13 to 18, the movable mold 21 rotatably arranged through each member of the second to sixth members 14 to 18, the front end member 12, the sixth member 18, and the fifth. A fixed mold 30 arranged inside the member 17 is provided as a main component.

図2に示す如く、後端部材11、前端部材12、及び、第一~第六部材13~18は、第一~第六部材13~18が後端部材11と前端部材12との間に挟まれた状態で前後方向に並べられ、それぞれを貫通する図示しない固定柱により固定される。第一部材13には外部からの駆動力を伝達するために上側に開口部13aが形成されている。第二~第六部材14~18は前後方向に厚さ方向を向けた板状に形成されている。 As shown in FIG. 2, in the rear end member 11, the front end member 12, and the first to sixth members 13 to 18, the first to sixth members 13 to 18 are between the rear end member 11 and the front end member 12. They are arranged in the front-rear direction in a sandwiched state, and are fixed by fixed pillars (not shown) that penetrate each of them. The first member 13 is formed with an opening 13a on the upper side in order to transmit a driving force from the outside. The second to sixth members 14 to 18 are formed in a plate shape with the thickness direction facing in the front-rear direction.

前端部材12の前面における中央部分には、射出装置Mi(図4を参照)の射出口を組付けるための受け部材19が設けられる。また、前端部材12の前面における受け部材19の内周部分には筒状のガイド部材20が組付けられる。図3及び図4に示す如く、ガイド部材20の内部には、射出装置Miから射出される繊維配合樹脂RfをキャビティCに注入する際の注入経路20aが形成されている。 A receiving member 19 for assembling the injection port of the injection device Mi (see FIG. 4) is provided at the central portion on the front surface of the front end member 12. Further, a tubular guide member 20 is assembled to the inner peripheral portion of the receiving member 19 on the front surface of the front end member 12. As shown in FIGS. 3 and 4, an injection path 20a for injecting the fiber-blended resin Rf injected from the injection device Mi into the cavity C is formed inside the guide member 20.

成形装置10は、成形装置10の内部において前後方向に向けた軸心回りに回動可能とされる可動型21を備えている。図3及び図4に示す如く、可動型21は軸受41を介して第四部材16に組付けられている。可動型21の後端部分は第一部材13の開口部13aに延出されるとともに入力ギヤ22が固定されている。入力ギヤ22は図示しない駆動装置に連結されており、この駆動装置からの駆動力が伝達されることにより、入力ギヤ22及び可動型21が図4中の矢印に示す如く軸心回りに回動する。可動型21の前端部分の表面は外周面が円柱形状に形成された型表面21aが形成されており、型表面21aの前端面は前方に突出する円錐形状に形成されている。 The molding apparatus 10 includes a movable mold 21 that is rotatable around an axial center in the front-rear direction inside the molding apparatus 10. As shown in FIGS. 3 and 4, the movable mold 21 is assembled to the fourth member 16 via the bearing 41. The rear end portion of the movable mold 21 extends to the opening 13a of the first member 13 and the input gear 22 is fixed to it. The input gear 22 is connected to a drive device (not shown), and the drive force from the drive device is transmitted to rotate the input gear 22 and the movable mold 21 around the axis as shown by an arrow in FIG. do. The surface of the front end portion of the movable mold 21 is formed with a mold surface 21a having a cylindrical outer peripheral surface, and the front end surface of the mold surface 21a is formed with a conical shape protruding forward.

成形装置10の内部において、可動型21の前端部分の周囲にはゲートG及びキャビティCが形成される。具体的には図3に示す如く、第五部材17、第六部材18、及び、前端部材12の内部に、第一型31、第二型32、及び、第三型33で構成される固定型30が組付けられる。本実施形態において、第一型31は第五部材17に、第二型32は第六部材18に、第三型33は前端部材12に、それぞれ図示しないボルトを介して固定されている。固定型30のうち、第二型32の内周面は円筒形状に形成されている。また、第三型33の内周面は円錐形状に形成されている。 Inside the molding apparatus 10, a gate G and a cavity C are formed around the front end portion of the movable mold 21. Specifically, as shown in FIG. 3, a fixing composed of a first type 31, a second type 32, and a third type 33 inside the fifth member 17, the sixth member 18, and the front end member 12. The mold 30 is assembled. In the present embodiment, the first mold 31 is fixed to the fifth member 17, the second mold 32 is fixed to the sixth member 18, and the third mold 33 is fixed to the front end member 12 via bolts (not shown). Of the fixed mold 30, the inner peripheral surface of the second mold 32 is formed in a cylindrical shape. Further, the inner peripheral surface of the third type 33 is formed in a conical shape.

固定型30の内周側には、可動型21の前端部分が挿入される。これにより、第二型32の内周面と、可動型21の型表面21aとの間に、円筒形状のキャビティCが形成される。また、第三型33の内周面と、可動型21の前端部分の型表面21aとの間は、キャビティCの側が拡径した円錐形状のゲート(より詳細には、円錐形状に変形したディスクゲート)Gとして形成される。なお、図3に示す如く、第六部材18の内周面と第二型32の外周面との間にはシール部材42が設けられている。 The front end portion of the movable mold 21 is inserted into the inner peripheral side of the fixed mold 30. As a result, a cylindrical cavity C is formed between the inner peripheral surface of the second mold 32 and the mold surface 21a of the movable mold 21. Further, between the inner peripheral surface of the third mold 33 and the mold surface 21a of the front end portion of the movable mold 21, a conical gate having an enlarged diameter on the side of the cavity C (more specifically, a disk deformed into a conical shape). Gate) Formed as G. As shown in FIG. 3, a seal member 42 is provided between the inner peripheral surface of the sixth member 18 and the outer peripheral surface of the second mold 32.

上記の成形装置10において、図4に示す如く射出装置MiからキャビティCに、ガイド部材20の注入経路20a及びゲートGを介して繊維配合樹脂Rfを射出する。これにより、注入経路20a、ゲートG、及び、キャビティCには図5に示す形状の樹脂Rが充填される。 In the molding device 10, the fiber-blended resin Rf is injected from the injection device Mi into the cavity C via the injection path 20a of the guide member 20 and the gate G as shown in FIG. As a result, the injection path 20a, the gate G, and the cavity C are filled with the resin R having the shape shown in FIG.

図5に示す如く、樹脂Rのうち、キャビティCに注入される部分は円筒部R1として形成される。また、ゲートGに残留する部分は中空の円錐部R2として形成される。また、注入経路20aの内部に残留する部分は柱部R3として形成される。樹脂Rを成形装置10から取り出す際には、前端部材12及び第三型33、第六部材18及び第二型32、第五部材17及び第一型31を順に、他の部材から分離する。第五部材17を第四部材16から分離する際に、樹脂Rも同時に離型する。 As shown in FIG. 5, the portion of the resin R to be injected into the cavity C is formed as a cylindrical portion R1. Further, the portion remaining in the gate G is formed as a hollow conical portion R2. Further, the portion remaining inside the injection path 20a is formed as the pillar portion R3. When the resin R is taken out from the molding apparatus 10, the front end member 12, the third mold 33, the sixth member 18, the second mold 32, the fifth member 17, and the first mold 31 are separated from the other members in order. When the fifth member 17 is separated from the fourth member 16, the resin R is also released at the same time.

上記のように形成された樹脂Rにおいて、円筒部R1と、円錐部R2及び柱部R3と、を切り離す。これにより、円筒部R1を、穴部が形成された円筒形状の樹脂成形品であるすべり軸受1として形成するのである。 In the resin R formed as described above, the cylindrical portion R1, the conical portion R2, and the pillar portion R3 are separated from each other. As a result, the cylindrical portion R1 is formed as a slide bearing 1 which is a cylindrical resin molded product having a hole portion formed therein.

本実施形態において上記の如く構成された成形装置10では、キャビティCに繊維配合樹脂Rfを射出する際に、可動型21を図4中の矢印に示す如く回転させる構成としている。これにより、すべり軸受1における穴部である内周面2に位置する繊維Fは可動型21の回転に沿って円周方向に配向される。より詳細には、繊維Fは射出装置Miの射出による繊維配合樹脂Rfの後方への流動と、可動型21の周方向への回転とにより、繊維Fはすべり軸受1の内周面2において円周方向に沿った斜め方向に配向される(図1を参照)。なお、射出速度と可動型21の回転速度とを調整することにより、円周方向とほぼ平行となるように繊維Fを配向することも可能である。 In the molding apparatus 10 configured as described above in the present embodiment, the movable mold 21 is rotated as shown by the arrow in FIG. 4 when the fiber-blended resin Rf is injected into the cavity C. As a result, the fibers F located on the inner peripheral surface 2 which is a hole in the slide bearing 1 are oriented in the circumferential direction along the rotation of the movable mold 21. More specifically, the fiber F is formed into a circle on the inner peripheral surface 2 of the slide bearing 1 due to the backward flow of the fiber-blended resin Rf by the injection of the injection device Mi and the rotation of the movable type 21 in the circumferential direction. Oriented diagonally along the circumferential direction (see Figure 1). By adjusting the injection speed and the rotation speed of the movable mold 21, the fiber F can be oriented so as to be substantially parallel to the circumferential direction.

本実施形態に係る成形装置10ですべり軸受1を製造する際には、射出装置Miにおいて図示しないペレット状樹脂を溶融させた繊維配合樹脂RfをキャビティCに射出する。この繊維配合樹脂Rfの原料であるペレット状樹脂は、繊維長が5mmから20mmの繊維を一方向に配向したもの(長繊維ペレット)が用いられる。また、ペレット状樹脂は、連続する繊維とともに押出成形した樹脂ストランドを断続的に切断して形成される。繊維長が5mmから20mmのペレット状樹脂を原料として用いた場合、射出装置Miからの射出の際に繊維が折れたり切れたりするため、樹脂成型品であるすべり軸受1に残存する繊維Fの平均繊維長は0.5mmから5.0mmの範囲内となる。 When the slide bearing 1 is manufactured by the molding apparatus 10 according to the present embodiment, the fiber-blended resin Rf obtained by melting a pellet-like resin (not shown) is injected into the cavity C in the injection apparatus Mi. As the pellet-shaped resin which is the raw material of the fiber-blended resin Rf, fibers having a fiber length of 5 mm to 20 mm oriented in one direction (long fiber pellets) are used. Further, the pellet-shaped resin is formed by intermittently cutting a resin strand extruded together with continuous fibers. When a pellet-shaped resin having a fiber length of 5 mm to 20 mm is used as a raw material, the fibers are broken or broken during injection from the injection device Mi, so that the average of the fibers F remaining in the slide bearing 1 which is a resin molded product is average. The fiber length is in the range of 0.5 mm to 5.0 mm.

本願出願人は、成形装置10で製造したすべり軸受に関して、条件を変更して射出成形を行った場合の圧環強度を測定する試験を行った。圧環強度は、円筒状のすべり軸受に対して半径方向に圧縮応力を負荷した際にすべり軸受が破断した時の荷重と、すべり軸受の軸方向長さ、外径、及び、壁厚と、から算出される。 The applicant of the present application conducted a test for measuring the pressure ring strength of the slide bearing manufactured by the molding apparatus 10 when injection molding was performed under different conditions. The annulus strength is derived from the load when the plain bearing breaks when a compressive stress is applied to the cylindrical plain bearing in the radial direction, and the axial length, outer diameter, and wall thickness of the plain bearing. It is calculated.

本願出願人は本試験において、繊維長が11mmの長繊維ペレットと、繊維長が0.5mmの短繊維ペレットと、のそれぞれを繊維配合樹脂Rfの原料として射出を行い、また、それぞれのケースにおいて、キャビティCに繊維配合樹脂Rfを射出する際に、可動型21を回転させてすべり軸受の周方向に繊維Fを配向させた場合と、可動型21を回転させずにすべり軸受に繊維Fをランダムに配置した場合と、について比較を行った。 In this test, the applicant of the present application injects a long fiber pellet having a fiber length of 11 mm and a short fiber pellet having a fiber length of 0.5 mm as raw materials for the fiber-blended resin Rf, and in each case. When the fiber compound resin Rf is injected into the cavity C, the fiber F is oriented in the circumferential direction of the slide bearing by rotating the movable mold 21, and the fiber F is placed in the slide bearing without rotating the movable mold 21. A comparison was made between the case of randomly arranged fibers and the case of randomly arranged fibers.

図6を用いて、本試験の結果について説明する。本試験の結果、長繊維ペレットを原料として可動型21を回転させた場合の圧環強度は292MPaであった。また、長繊維ペレットを原料として可動型21を回転させなかった場合の圧環強度は231MPaであった。また、短繊維ペレットを原料として可動型21を回転させた場合の圧環強度は230MPaであった。また、短繊維ペレットを原料として可動型21を回転させなかった場合の圧環強度は190MPaであった。 The results of this test will be described with reference to FIG. As a result of this test, the pressure ring strength when the movable mold 21 was rotated using the long fiber pellets as a raw material was 292 MPa. Further, the pressure ring strength when the movable mold 21 was not rotated using the long fiber pellets as a raw material was 231 MPa. Further, the pressure ring strength when the movable mold 21 was rotated using the staple fibers as a raw material was 230 MPa. Further, the pressure ring strength when the movable mold 21 was not rotated using the staple fibers as a raw material was 190 MPa.

上記の如く、本試験の結果、成形装置10ですべり軸受1を製造するに際して、繊維長が5mmから20mmの繊維を一方向に配向した長繊維ペレットを繊維配合樹脂Rfの原料として採用し、キャビティCに繊維配合樹脂Rfを射出する際に可動型21を回転させてすべり軸受1の内周面2に繊維Fを円周方向に配向させた場合に、最も高い圧環強度を得られることが確かめられた。このように、本実施形態に係る樹脂成型品であるすべり軸受1、及び、すべり軸受1の製造方法によれば、繊維Fを周方向に配向することにより、すべり軸受の圧環強度を高めることができたのである。なお、上記試験において、長繊維ペレットを原料として可動型21を回転させた場合にすべり軸受1に残存する繊維の平均繊維長は2.12mmであった。 As described above, as a result of this test, when the slide bearing 1 is manufactured by the molding apparatus 10, long fiber pellets in which fibers having a fiber length of 5 mm to 20 mm are oriented in one direction are adopted as a raw material for the fiber-blended resin Rf, and a cavity is used. It is confirmed that the highest crimp strength can be obtained when the movable mold 21 is rotated when the fiber-blended resin Rf is injected into C and the fiber F is oriented in the circumferential direction on the inner peripheral surface 2 of the slide bearing 1. Was done. As described above, according to the slide bearing 1 and the method for manufacturing the slide bearing 1, which are resin molded products according to the present embodiment, the pressure ring strength of the slide bearing can be increased by orienting the fiber F in the circumferential direction. It was done. In the above test, the average fiber length of the fibers remaining in the slide bearing 1 when the movable mold 21 was rotated using the long fiber pellets as a raw material was 2.12 mm.

また、本実施形態に係る成形装置10においては、ディスクゲートであるゲートGを介して繊維配合樹脂RfをキャビティCに射出する構成としている。これにより、一般的なゲート方式である8点ピンゲートと比較して、繊維を滑らかにキャビティCまで流動させることができる。即ち、繊維配合樹脂RfがキャビティCに射出されるまでの間に繊維が折れたり切れたりすることを抑制できるため、すべり軸受1に残存する繊維長を長くすることができる。 Further, in the molding apparatus 10 according to the present embodiment, the fiber-blended resin Rf is injected into the cavity C via the gate G which is a disk gate. As a result, the fibers can be smoothly flowed to the cavity C as compared with the 8-point pin gate which is a general gate method. That is, since it is possible to prevent the fibers from breaking or breaking until the fiber-blended resin Rf is injected into the cavity C, the fiber length remaining in the slide bearing 1 can be lengthened.

さらに、成形装置10においてはゲートGの形状を、キャビティCの側が拡径した円錐形状としている。これにより、通常のディスクゲートのように繊維が直角に流動することがない。つまり、本実施形態においては円錐形状のゲートGを採用することにより、繊維をより滑らかにキャビティCに射出することができるため、すべり軸受1に残存する繊維長をさらに長くして強度を大きくすることができる。具体的に、成形装置10で製造したすべり軸受1においては、8点ピンゲートを採用して製造したすべり軸受に対して残存する繊維長を1.36倍にすることができた。 Further, in the molding apparatus 10, the shape of the gate G is a conical shape in which the diameter of the cavity C is expanded. As a result, the fibers do not flow at right angles as in a normal disk gate. That is, in the present embodiment, by adopting the conical gate G, the fibers can be ejected into the cavity C more smoothly, so that the fiber length remaining in the slide bearing 1 is further lengthened to increase the strength. be able to. Specifically, in the slide bearing 1 manufactured by the molding apparatus 10, the remaining fiber length could be increased 1.36 times as compared with the slide bearing manufactured by adopting the 8-point pin gate.

なお、成形装置10で製造する樹脂成型品はすべり軸受1のような円筒形状に限定されない。即ち、円筒穴部があり、可動型21を回転させて成形できるものであれば、成形装置10で製造することが可能である。例えば、成形装置10における樹脂成形品として、チェーン、リンク、カム、歯車等を製造することができる。本実施形態に係る樹脂成形品は高強度であるため、特に高い面圧特性が要求される重機、工業用ロボットのすべり軸受として採用することが好適である。 The resin molded product manufactured by the molding apparatus 10 is not limited to a cylindrical shape such as the slide bearing 1. That is, if it has a cylindrical hole and can be molded by rotating the movable mold 21, it can be manufactured by the molding apparatus 10. For example, chains, links, cams, gears, and the like can be manufactured as resin molded products in the molding apparatus 10. Since the resin molded product according to this embodiment has high strength, it is preferably used as a slide bearing for heavy machinery and industrial robots that require particularly high surface pressure characteristics.

また、樹脂成形品に形成される円筒穴部は複数でもあってもよい。この場合、二以上の可動型21を同時に回転させて樹脂成型品を成形する事もできる。また、円筒穴部の形状として、円柱形のほかに円錐形、半球形を採用することも可能である。この場合、可動型21の型表面21aの形状も、それぞれの円筒穴部と同じ円錐形又は半球形に形成される。 Further, the number of cylindrical holes formed in the resin molded product may be plural. In this case, it is also possible to mold the resin molded product by rotating two or more movable molds 21 at the same time. Further, as the shape of the cylindrical hole portion, it is also possible to adopt a conical shape or a hemispherical shape in addition to the cylindrical shape. In this case, the shape of the mold surface 21a of the movable mold 21 is also formed into the same conical shape or hemispherical shape as each cylindrical hole portion.

また、本実施形態において繊維配合樹脂Rfの原料として採用されるペレット状樹脂に配向される繊維には、炭素繊維、ガラス繊維、アラミド繊維等が用いられる。ペレット状樹脂における繊維長は、流動性と、繊維が切れないという成形性と、の観点より、5mmから20mmが好適であるが、樹脂成形品の大きさ等に応じて20mm以上の繊維を用いることも可能である。 Further, carbon fibers, glass fibers, aramid fibers and the like are used as the fibers oriented to the pellet-shaped resin used as the raw material of the fiber-blended resin Rf in the present embodiment. The fiber length in the pellet-shaped resin is preferably 5 mm to 20 mm from the viewpoint of fluidity and moldability that the fiber does not break, but a fiber of 20 mm or more is used depending on the size of the resin molded product and the like. It is also possible.

また、ペレット状樹脂に採用される樹脂は、ポリアミド(PA66、PA6、PA12)、PPS、PEEK、ポリアセタール、ポリイミド、ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリカーボネイト、ABS、PFA等、射出成形できる樹脂であれば何でも良い。本実施形態においては、ポリアミドであるダイセルポリマー株式会社製のプラストロン(登録商標)(PA66-GF60、PA66-CF40)を用いた。 The resin used for the pellet resin can be injection molded such as polyamide (PA66, PA6, PA12), PPS, PEEK, polyacetal, polyimide, polyethylene, polypropylene, polybutylene terephthalate, polyethylene terephthalate, polycarbonate, ABS, PFA and the like. Any resin may be used. In this embodiment, Plastron (registered trademark) (PA66-GF60, PA66-CF40) manufactured by Daicel Polymer Co., Ltd., which is a polyamide, was used.

成形装置10において、可動型21の回転速度は、10~200rpmが望ましく、必要に応じて10~1000rpmの範囲で成形することが可能である。なお、上記試験においては、可動型21の回転速度を60rpmとして行った。また、成形装置10に繊維配合樹脂Rfを射出する際、射出装置Miにおけるシリンダー温度は300℃程度として行った。また、固定型30及び可動型21の温度は100℃前後とした。これらの射出条件は、射出装置Miで採用する樹脂製品の品質に応じて設定することが好ましい。なお、成形装置10で樹脂成型品を製造するに際して、難燃剤、着色剤、耐熱剤、耐候剤等の添加剤を加えて成形する事も可能である。 In the molding apparatus 10, the rotation speed of the movable mold 21 is preferably 10 to 200 rpm, and it is possible to mold in the range of 10 to 1000 rpm as needed. In the above test, the rotation speed of the movable type 21 was set to 60 rpm. Further, when the fiber-blended resin Rf was injected into the molding apparatus 10, the cylinder temperature in the injection apparatus Mi was set to about 300 ° C. The temperature of the fixed mold 30 and the movable mold 21 was set to around 100 ° C. These injection conditions are preferably set according to the quality of the resin product used in the injection device Mi. When the resin molded product is manufactured by the molding apparatus 10, it is also possible to add additives such as a flame retardant, a colorant, a heat resistant agent, and a weather resistant agent for molding.

1 すべり軸受(樹脂成型品) 2 内周面
3 外周面 10 成型装置
11 後端部材 12 前端部材
13 第一部材 13a 開口部
14 第二部材 15 第三部材
16 第四部材 17 第五部材
18 第六部材 19 受け部材
20 ガイド部材 20a 注入経路
21 可動型 21a 型表面
22 入力ギヤ 30 固定型
31 第一型 32 第二型
33 第三型 41 軸受
42 シール部材 C キャビティ
F 繊維 G ゲート
Mi 射出装置 Rf 繊維配合樹脂
R 樹脂 R1 円筒部
R2 円錐部 R3 柱部
1 Plain bearing (resin molded product) 2 Inner peripheral surface
3 Outer surface 10 Molding device
11 Rear end member 12 Front end member
13 First member 13a Opening
14 Second member 15 Third member
16 Fourth member 17 Fifth member
18 6th member 19 Receiving member
20 Guide member 20a Injection path
21 Movable type 21a type surface
22 Input gear 30 Fixed type
31 Type 1 32 Type 2
33 Type 3 41 Bearing
42 Seal member C Cavity
F fiber G gate
Mi injection device Rf fiber compound resin
R resin R1 Cylindrical part
R2 conical part R3 pillar part

Claims (4)

内周面が円筒形状に形成される固定型と、前記固定型の内周側で軸心回りに回転可能に設けられる可動型と、の間に形成されるキャビティに、繊維配合樹脂を射出することにより、穴部が形成された円筒形状の樹脂成型品を成形する、樹脂成型品の製造方法であって、
前記キャビティに前記繊維配合樹脂を射出する際に前記可動型を回転させることにより、前記穴部の内周に繊維を円周方向に配向し、
前記樹脂成型品に残存する前記繊維の平均繊維長を0.5mmから5.0mmとし、
ディスクゲートを介して、前記繊維配合樹脂を前記キャビティに射出する、樹脂成型品の製造方法。
The fiber-blended resin is injected into a cavity formed between a fixed mold having an inner peripheral surface formed in a cylindrical shape and a movable mold rotatably provided around the axis on the inner peripheral side of the fixed mold. This is a method for manufacturing a resin molded product, which forms a cylindrical resin molded product having a hole formed therein.
By rotating the movable mold when injecting the fiber-blended resin into the cavity, the fibers are oriented in the circumferential direction on the inner circumference of the hole.
The average fiber length of the fibers remaining in the resin molded product is set to 0.5 mm to 5.0 mm .
A method for manufacturing a resin molded product, in which the fiber-blended resin is injected into the cavity via a disc gate .
前記ディスクゲートを、前記キャビティの側が拡径した円錐形状とする、請求項1に記載の樹脂成型品の製造方法。 The method for manufacturing a resin molded product according to claim 1, wherein the disc gate has a conical shape with an enlarged diameter on the side of the cavity. 前記繊維配合樹脂の原料として、繊維長が5mmから20mmの繊維を一方向に配向したペレット状樹脂を用いる、請求項1又は請求項2に記載の樹脂成型品の製造方法。 The method for producing a resin molded product according to claim 1 or 2 , wherein a pellet-shaped resin in which fibers having a fiber length of 5 mm to 20 mm are oriented in one direction is used as a raw material for the fiber-blended resin. 前記ペレット状樹脂は、連続する繊維とともに押出成形した樹脂ストランドを断続的に切断して形成される、請求項3に記載の樹脂成型品の製造方法。
The method for producing a resin molded product according to claim 3, wherein the pellet-shaped resin is formed by intermittently cutting a resin strand extruded together with continuous fibers.
JP2018116074A 2018-06-19 2018-06-19 Manufacturing method of resin molded products Active JP7058037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018116074A JP7058037B2 (en) 2018-06-19 2018-06-19 Manufacturing method of resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018116074A JP7058037B2 (en) 2018-06-19 2018-06-19 Manufacturing method of resin molded products

Publications (2)

Publication Number Publication Date
JP2019217678A JP2019217678A (en) 2019-12-26
JP7058037B2 true JP7058037B2 (en) 2022-04-21

Family

ID=69095088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018116074A Active JP7058037B2 (en) 2018-06-19 2018-06-19 Manufacturing method of resin molded products

Country Status (1)

Country Link
JP (1) JP7058037B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145786A (en) 1998-11-05 2000-05-26 Nippon Petrochem Co Ltd Resinous bearing and its production
JP2014100841A (en) 2012-11-19 2014-06-05 Toyota Motor Corp Method for producing fiber-reinforced resin material
CN105523771A (en) 2014-10-21 2016-04-27 兰毅 Fiber reinforced ceramic composite material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0467516A1 (en) * 1990-07-20 1992-01-22 Cabot Technology Corporation Hemostatic stent
US5549394A (en) * 1994-11-10 1996-08-27 Hycomp, Inc. Bearing arrangement having a polyimide graphite-fiber reinforced composite embedded therein
JP3709253B2 (en) * 1997-03-13 2005-10-26 Ntn株式会社 Resin gears and resin gears for office equipment
JP3072556B2 (en) * 1998-03-23 2000-07-31 日本ピラー工業株式会社 Fluororesin ring sliding member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145786A (en) 1998-11-05 2000-05-26 Nippon Petrochem Co Ltd Resinous bearing and its production
JP2014100841A (en) 2012-11-19 2014-06-05 Toyota Motor Corp Method for producing fiber-reinforced resin material
CN105523771A (en) 2014-10-21 2016-04-27 兰毅 Fiber reinforced ceramic composite material

Also Published As

Publication number Publication date
JP2019217678A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US4439387A (en) Method of manufacturing a composite reinforcing structure
USRE32772E (en) Method of manufacturing a composite reinforcing structure
US4312917A (en) Fiber-reinforced compound composite structure and method of manufacturing same
US20040241276A1 (en) Injection molded resin gear and injection molded resin rotating body
US20210162639A1 (en) Method for manufacturing rotary power transmission member
JP6108547B2 (en) Fiber reinforced resin gear, fiber reinforced resin gear injection molding method, fiber reinforced resin rotating body, and fiber reinforced resin rotating body injection molding method
JP7058037B2 (en) Manufacturing method of resin molded products
JP2015189012A (en) Mold for injection molding
CN105751458A (en) Screw and plunger coaxial type injection molding machine
US20190308351A1 (en) Synthetic resin thrust plate and method for manufacturing the same
JP2019171858A (en) Toric resin molding and composite member
JP7053953B2 (en) Inner shell for pressurized fluid storage tanks for automated vehicles
JP6989245B2 (en) Mold for forming a tubular hollow body, a method for forming a tubular hollow body, and a tubular hollow body
JP2016175211A (en) Method for manufacturing resin molding, and resin molding
AU2018358705B2 (en) Injection mold and method for producing a double walled drinking vessel, the double walled drinking vessel comprising an outer container and an inner container
JP6396102B2 (en) Cylindrical injection mold and cylindrical injection molding method
WO2019189054A1 (en) Annular resin molded body and composite member
CN101497230B (en) Screw of injection apparatus
EP2258533B1 (en) Screw and injection device
JP2017170821A (en) Injection mold and injection molding method
RU187738U1 (en) CENTRIFUGAL PUMP DRIVING WHEEL
JP6818571B2 (en) Resin tubular body, resin tubular body manufacturing mold, and resin tubular body manufacturing method
JP2013028020A (en) Method of molding resin molded product
JP2016107450A (en) Production method of hollow cylindrical resin molded body
CN205705152U (en) Screw plunger coaxial-type injection moulding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7058037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150