JP7054633B2 - Electron microscope and electron microscope control method - Google Patents

Electron microscope and electron microscope control method Download PDF

Info

Publication number
JP7054633B2
JP7054633B2 JP2018022129A JP2018022129A JP7054633B2 JP 7054633 B2 JP7054633 B2 JP 7054633B2 JP 2018022129 A JP2018022129 A JP 2018022129A JP 2018022129 A JP2018022129 A JP 2018022129A JP 7054633 B2 JP7054633 B2 JP 7054633B2
Authority
JP
Japan
Prior art keywords
voltage
acceleration
electrode
power supply
accelerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018022129A
Other languages
Japanese (ja)
Other versions
JP2019139964A (en
Inventor
琢磨 岩崎
祐二 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2018022129A priority Critical patent/JP7054633B2/en
Publication of JP2019139964A publication Critical patent/JP2019139964A/en
Application granted granted Critical
Publication of JP7054633B2 publication Critical patent/JP7054633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Sources, Ion Sources (AREA)

Description

本発明は、電子顕微鏡および電子顕微鏡の制御方法に関する。 The present invention relates to an electron microscope and a control method for the electron microscope.

電子顕微鏡に搭載されている電子銃は、エミッタと、エミッタから電子を引き出す引き出し電極と、エミッタから放出された電子線に所定のエネルギーを与える加速電極と、を備えている。また、電子銃から放出された電子線は加速管で加速される。加速管は複数の加速電極を有しており、各加速電極には、加速電圧を複数段の分圧用抵抗で分圧した電圧が印加される。 The electron gun mounted on the electron microscope includes an emitter, a drawing electrode that draws electrons from the emitter, and an accelerating electrode that gives a predetermined energy to the electron beam emitted from the emitter. In addition, the electron beam emitted from the electron gun is accelerated by the acceleration tube. The accelerating tube has a plurality of accelerating electrodes, and a voltage obtained by dividing the accelerating voltage by a plurality of stages of voltage dividing resistors is applied to each accelerating electrode.

電子顕微鏡では、引き出し電極と加速電極との間のレンズ作用、および加速電極と加速管の初段の加速電極との間のレンズ作用によって、加速管の下にクロスオーバーを形成している。 In the electron microscope, a crossover is formed under the accelerating tube by the lens action between the extraction electrode and the accelerating electrode and the lens action between the accelerating electrode and the first-stage accelerating electrode of the accelerating tube.

ここで、例えば、加速電圧を高加速電圧から低加速電圧に切り替えた場合、これらのレンズ条件が成り立たなくなる。そのため、特許文献1には、分圧用抵抗に並列にそれぞれの端子とアース間を短絡する段数切り替えスイッチを設けて、加速電圧の変更に応じて、分圧用抵抗の段数を切り替えている。 Here, for example, when the acceleration voltage is switched from the high acceleration voltage to the low acceleration voltage, these lens conditions do not hold. Therefore, in Patent Document 1, a stage number changeover switch for short-circuiting between each terminal and the ground is provided in parallel with the voltage division resistance, and the number of stages of the voltage division resistance is switched according to the change of the acceleration voltage.

特開平5-290774号公報Japanese Unexamined Patent Publication No. 5-290774

しかしながら、特許文献1に記載の電子顕微鏡では、段数切り替えスイッチを操作する際には、加速電圧の印加を停止しなければならない。加速電圧の印加を停止してしまうと、再び加速電圧が印加されて電子銃が安定するまでには時間がかかってしまう。 However, in the electron microscope described in Patent Document 1, the application of the acceleration voltage must be stopped when the stage number changeover switch is operated. If the application of the acceleration voltage is stopped, it will take time for the electron gun to stabilize by applying the acceleration voltage again.

本発明に係る電子顕微鏡の一態様は、
エミッタと、
前記エミッタから電子を引き出す引き出し電極と、
前記引き出し電極の後段に配置され、前記エミッタから引き出された電子線を加速させる第1加速電極と、
前記第1加速電極の後段に配置され、複数の第2加速電極を備える加速管と、
加速電圧を発生させる加速電圧電源と、
前記第1加速電極に電圧を印加する加速電極用電源と、
補助電圧を発生させる補助電圧電源と、
前記加速電圧と前記補助電圧とが重畳された入力電圧を分圧して、前記複数の第2加速電極の各々に印加する複数の分圧用抵抗と、
を含み、
前記加速電極用電源で前記第1加速電極の電位を制御し、前記補助電圧電源で前記複数の第2加速電極のうちの1つの第2加速電極の電位を制御することによって、前記第1加速電極と前記1つの第2加速電極との間のレンズ作用を制御する
One aspect of the electron microscope according to the present invention is
Emitter and
An extraction electrode that draws electrons from the emitter and
A first accelerating electrode, which is arranged after the extraction electrode and accelerates the electron beam drawn from the emitter,
An accelerating tube arranged after the first accelerating electrode and having a plurality of second accelerating electrodes,
Acceleration voltage power supply that generates acceleration voltage,
A power supply for an accelerating electrode that applies a voltage to the first accelerating electrode,
Auxiliary voltage power supply that generates auxiliary voltage and
A plurality of voltage dividing resistors that divide the input voltage on which the acceleration voltage and the auxiliary voltage are superimposed and apply it to each of the plurality of second acceleration electrodes.
Including
The first acceleration is performed by controlling the potential of the first acceleration electrode with the power supply for the acceleration electrode and controlling the potential of the second acceleration electrode of one of the plurality of second acceleration electrodes with the auxiliary voltage power supply. It controls the lens action between the electrode and the one second acceleration electrode .

このような電子顕微鏡では、複数の分圧用抵抗の入力電圧を、加速電圧と補助電圧とが重畳された電圧とすることができるため、補助電圧を制御することによって、第1加速電極と初段の第2加速電極との間の電位差を制御することができる。これにより、第1加速電極と初段の第2加速電極との間に形成されるレンズの作用を制御できる。そのため、このような電子顕微鏡では、加速電圧が変更された場合であっても、加速電圧の印加を停止
することなく、第1加速電極と初段の第2加速電極との間に形成されるレンズの作用が低下することを抑制できる。
In such an electron microscope, the input voltage of a plurality of voltage dividing resistors can be a voltage obtained by superimposing an acceleration voltage and an auxiliary voltage. Therefore, by controlling the auxiliary voltage, the first acceleration electrode and the first stage can be used. The potential difference with the second acceleration electrode can be controlled. Thereby, the action of the lens formed between the first accelerating electrode and the second accelerating electrode of the first stage can be controlled. Therefore, in such an electron microscope, a lens formed between the first acceleration electrode and the second acceleration electrode of the first stage without stopping the application of the acceleration voltage even when the acceleration voltage is changed. It is possible to suppress the decrease in the action of.

本発明に係る電子顕微鏡の制御方法の一態様は、
エミッタと、
前記エミッタから電子を引き出す引き出し電極と、
前記引き出し電極の後段に配置され、前記エミッタから引き出された電子線を加速させる第1加速電極と、
前記第1加速電極の後段に配置され、複数の第2加速電極を備える加速管と、
加速電圧を発生させる加速電圧電源と、
前記引き出し電極に電圧を印加する引き出し電極用電源と、
前記第1加速電極に電圧を印加する加速電極用電源と、
補助電圧を発生させる補助電圧電源と、
前記加速電圧と前記補助電圧とが重畳された入力電圧を分圧して前記複数の第2加速電極の各々に印加する複数の分圧用抵抗と、を含む電子顕微鏡の制御方法であって、
前記引き出し電極用電源で前記引き出し電極の電位を制御し、前記加速電極用電源で前記第1加速電極の電位を制御することによって、前記引き出し電極と前記第1加速電極の間のレンズ作用を制御する工程と、
前記加速電圧を変更する工程と、
前記加速電圧の変更に応じて前記補助電圧電源を制御することによって前記複数の第2加速電極のうちの1つの第2加速電極の電位を制御して、前記第1加速電極と前記1つの第2加速電極との間のレンズ作用を制御する工程と、
を含む
One aspect of the electron microscope control method according to the present invention is
Emitter and
An extraction electrode that draws electrons from the emitter and
A first accelerating electrode, which is arranged after the extraction electrode and accelerates the electron beam drawn from the emitter,
An accelerating tube arranged after the first accelerating electrode and having a plurality of second accelerating electrodes,
Acceleration voltage power supply that generates acceleration voltage,
A power supply for the lead-out electrode that applies a voltage to the lead-out electrode,
A power supply for an accelerating electrode that applies a voltage to the first accelerating electrode,
Auxiliary voltage power supply that generates auxiliary voltage and
It is a control method of an electron microscope including a plurality of voltage dividing resistors that divide an input voltage in which the acceleration voltage and the auxiliary voltage are superimposed and apply it to each of the plurality of second acceleration electrodes.
By controlling the potential of the extraction electrode with the power supply for the extraction electrode and controlling the potential of the first acceleration electrode with the power supply for the acceleration electrode, the lens action between the extraction electrode and the first acceleration electrode is controlled. And the process to do
The process of changing the acceleration voltage and
By controlling the auxiliary voltage power supply in response to the change in the acceleration voltage, the potential of the second acceleration electrode of the plurality of second acceleration electrodes is controlled, and the first acceleration electrode and the first acceleration electrode are controlled. 2 The process of controlling the lens action between the accelerating electrode and
Including .

このような電子顕微鏡の制御方法では、加速電圧の変更に応じて補助電圧を設定し、加速電圧に補助電圧を重畳して入力電圧とする工程を含むため、加速電圧が変更された場合であっても、加速電圧の印加を停止することなく、第1加速電極と初段の第2加速電極との間に形成されるレンズの作用が低下することを抑制できる。 Such an electronic microscope control method includes a step of setting an auxiliary voltage according to a change in the acceleration voltage and superimposing the auxiliary voltage on the acceleration voltage to obtain an input voltage, so that the acceleration voltage may be changed. However, it is possible to suppress a decrease in the action of the lens formed between the first acceleration electrode and the second acceleration electrode of the first stage without stopping the application of the acceleration voltage.

実施形態に係る電子顕微鏡の構成を示す図。The figure which shows the structure of the electron microscope which concerns on embodiment. 実施形態に係る電子顕微鏡の電子銃および加速管の構成を示す図。The figure which shows the structure of the electron gun and the acceleration tube of the electron microscope which concerns on embodiment. 実施形態に係る電子顕微鏡の電子銃および加速管の動作状態を示す図。The figure which shows the operation state of the electron gun and the acceleration tube of the electron microscope which concerns on embodiment. 参考例に係る電子顕微鏡の電子銃および加速管の動作状態を示す図。The figure which shows the operation state of the electron gun and the acceleration tube of the electron microscope which concerns on a reference example. 参考例に係る電子顕微鏡の電子銃および加速管の動作状態を示す図。The figure which shows the operation state of the electron gun and the acceleration tube of the electron microscope which concerns on a reference example.

以下、本発明の好適な実施形態について図面を用いて詳細に説明する。なお、以下に説明する実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The embodiments described below do not unreasonably limit the content of the present invention described in the claims. Moreover, not all of the configurations described below are essential constituent requirements of the present invention.

1. 電子顕微鏡
まず、本実施形態に係る電子顕微鏡について図面を参照しながら説明する。図1は、本実施形態に係る電子顕微鏡1の構成を示す図である。
1. 1. Electron Microscope First, the electron microscope according to this embodiment will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of an electron microscope 1 according to the present embodiment.

電子顕微鏡1は、図1に示すように、電子銃10と、加速管20と、電源部30と、制御部32と、収束レンズ40と、試料ホルダー50と、対物レンズ60と、中間レンズ70と、投影レンズ80と、検出器90と、を含む。 As shown in FIG. 1, the electron microscope 1 includes an electron gun 10, an acceleration tube 20, a power supply unit 30, a control unit 32, a focusing lens 40, a sample holder 50, an objective lens 60, and an intermediate lens 70. The projection lens 80 and the detector 90 are included.

電子顕微鏡1では、電子銃10から放出された電子線を、加速管20で加速し収束レンズ40で収束して試料ホルダー50に保持された試料Sに照射する。そして、対物レンズ60によって試料Sを透過した電子線で透過電子顕微鏡像を結像し、中間レンズ70および投影レンズ80によって像をさらに拡大して検出器90上に結像する。電子銃10および加速管20には、電源部30から加速電圧等が供給される。電源部30は、制御部32によって制御される。このように、電子顕微鏡1は、透過電子顕微鏡(transmission electron microscope、TEM)である。 In the electron microscope 1, the electron beam emitted from the electron gun 10 is accelerated by the accelerating tube 20 and converged by the focusing lens 40 to irradiate the sample S held in the sample holder 50. Then, a transmission electron microscope image is formed by the electron beam transmitted through the sample S by the objective lens 60, and the image is further magnified by the intermediate lens 70 and the projection lens 80 to form an image on the detector 90. Acceleration voltage and the like are supplied from the power supply unit 30 to the electron gun 10 and the acceleration tube 20. The power supply unit 30 is controlled by the control unit 32. As described above, the electron microscope 1 is a transmission electron microscope (TEM).

なお、電子顕微鏡1は、図示はしないが、試料Sに照射される電子線を走査する走査コイルを備え、走査透過電子顕微鏡像を取得できるように構成されていてもよい。すなわち、電子顕微鏡1は、走査透過電子顕微鏡(scanning transmission electron microscope、STEM)として機能してもよい。 Although not shown, the electron microscope 1 may be provided with a scanning coil for scanning the electron beam irradiated to the sample S so that a scanning transmission electron microscope image can be obtained. That is, the electron microscope 1 may function as a scanning transmission electron microscope (STEM).

図2は、電子銃10および加速管20の構成を示す図である。 FIG. 2 is a diagram showing the configuration of the electron gun 10 and the acceleration tube 20.

電子銃10は、図2に示すように、エミッタ100と、引き出し電極102と、加速電極(第1加速電極)104と、を含む。 As shown in FIG. 2, the electron gun 10 includes an emitter 100, a pull-out electrode 102, and an accelerating electrode (first accelerating electrode) 104.

エミッタ100(フィラメント)は、電子の放出源、すなわち陰極である。エミッタ100は、フィラメント電源301に接続されている。エミッタ100には、フィラメント電源301からフィラメント電流が供給される。エミッタ100にフィラメント電流を流すことによって、エミッタ100が加熱される。 The emitter 100 (filament) is a source of electrons, that is, a cathode. The emitter 100 is connected to the filament power supply 301. A filament current is supplied to the emitter 100 from the filament power supply 301. The emitter 100 is heated by passing a filament current through the emitter 100.

引き出し電極102は、エミッタ100から電子を引き出すための電極である。引き出し電極102は、エミッタ100に対向して配置されている。引き出し電極102は、引き出し電極用電源302に接続されている。引き出し電極102には、エミッタ100の表面に強電界を形成するための正の電圧(引き出し電圧)が印加される。 The extraction electrode 102 is an electrode for extracting electrons from the emitter 100. The extraction electrode 102 is arranged so as to face the emitter 100. The extraction electrode 102 is connected to a power supply 302 for the extraction electrode. A positive voltage (pull-out voltage) for forming a strong electric field on the surface of the emitter 100 is applied to the lead-out electrode 102.

加速電極104は、引き出し電極102の後段に配置されている。加速電極104は、エミッタ100から放出される電子線に所定のエネルギーを与えるための電極である。加速電極104は、加速電極用電源304に接続されている。 The acceleration electrode 104 is arranged after the extraction electrode 102. The accelerating electrode 104 is an electrode for applying a predetermined energy to the electron beam emitted from the emitter 100. The accelerating electrode 104 is connected to the accelerating electrode power supply 304.

加速管20は、複数の加速電極(第2加速電極)201,202,203,204,205,206と、碍子210と、複数の分圧用抵抗素子221,222,223,224,225,226,227を有する分圧用回路220と、筐体230と、を含む。 The accelerating tube 20 includes a plurality of accelerating electrodes (second accelerating electrodes) 201, 202, 203, 204, 205, 206, an insulator 210, and a plurality of voltage dividing resistance elements 221,222, 223, 224, 225, 226. A voltage dividing circuit 220 having 227 and a housing 230 are included.

加速電極201,202,203,204,205,206は、加速電極104の後段に配置されている。加速電極201,202,203,204,205,206は、光軸に沿って複数段に積み重ねられている。図示の例では、加速管20は、6段の加速電極201,202,203,204,205,206を有している。これらは、電子銃10側から、加速電極201、加速電極202、加速電極203、加速電極204、加速電極205、加速電極206の順で配置されている。隣り合う加速電極の間には、碍子210が配置されている。複数の加速電極201,202,203,204,205,206によって、電子銃10から放出された電子線を加速させることができる。 The accelerating electrodes 201, 202, 203, 204, 205, 206 are arranged after the accelerating electrode 104. The acceleration electrodes 201, 202, 203, 204, 205, 206 are stacked in a plurality of stages along the optical axis. In the illustrated example, the accelerating tube 20 has six stages of accelerating electrodes 201, 202, 203, 204, 205, 206. These are arranged in the order of the accelerating electrode 201, the accelerating electrode 202, the accelerating electrode 203, the accelerating electrode 204, the accelerating electrode 205, and the accelerating electrode 206 from the electron gun 10 side. Insulator 210s are arranged between adjacent acceleration electrodes. The electron beam emitted from the electron gun 10 can be accelerated by the plurality of acceleration electrodes 201, 202, 203, 204, 205, 206.

加速電極201は、加速管20を構成する複数の加速電極のうちの初段の加速電極である。すなわち、加速電極203は、6段の加速電極のうちの最も電子銃10側(加速電極104側)に位置している電極である。 The accelerating electrode 201 is the first-stage accelerating electrode among the plurality of accelerating electrodes constituting the accelerating tube 20. That is, the acceleration electrode 203 is an electrode located on the electron gun 10 side (acceleration electrode 104 side) of the six-stage acceleration electrodes.

分圧用回路220は、複数の抵抗素子221,222,223,224,225,226,227を有している。図示の例では、分圧用回路220は、7つの抵抗素子221,222,223,224,225,226,227を有している。7つの抵抗素子221,222,223,224,225,226,227は、直列に接続されている。 The voltage dividing circuit 220 has a plurality of resistance elements 221,222, 223, 224, 225, 226, 227. In the illustrated example, the voltage dividing circuit 220 has seven resistance elements 221,222, 223, 224, 225, 226, 227. The seven resistance elements 221,222,223,224,225,226,227 are connected in series.

電子顕微鏡1では、分圧用回路220に印加される入力電圧、すなわち、複数の抵抗素子221,222,223,224,225,226,227の全体に印加される入力電圧を、高圧電源300が発生させる加速電圧と、補助電圧電源306が発生させる補助電圧と、が重畳された電圧とすることができる。分圧用回路220では、入力電圧を複数の
抵抗素子221,222,223,224,225,226,227で分圧して、複数の加速電極201,202,203,204,205,206の各々に印加する。
In the electron microscope 1, the high-voltage power supply 300 generates an input voltage applied to the voltage dividing circuit 220, that is, an input voltage applied to the entire plurality of resistance elements 221,222, 223, 224, 225, 226, 227. The accelerating voltage to be generated and the auxiliary voltage generated by the auxiliary voltage power supply 306 can be superimposed. In the voltage dividing circuit 220, the input voltage is divided by a plurality of resistance elements 221,222,223,224,225,226,227 and applied to each of the plurality of accelerating electrodes 201, 202, 203, 204, 205, 206. do.

筐体230には電子線が入射する開口が設けられており、電子線は当該開口を通過して筐体230の内部に至る。筐体230には、複数の加速電極201,202,203,204,205,206が収容されている。筐体230の電子線が入射する開口が設けられた入口部分232は、高圧電源300に接続されている。 The housing 230 is provided with an opening through which the electron beam is incident, and the electron beam passes through the opening and reaches the inside of the housing 230. A plurality of acceleration electrodes 201, 202, 203, 204, 205, 206 are housed in the housing 230. The inlet portion 232 provided with an opening through which the electron beam of the housing 230 is incident is connected to the high voltage power supply 300.

電源部30は、高圧電源300(加速電圧電源)と、フィラメント電源301と、引き出し電極用電源302と、加速電極用電源304と、補助電圧電源306と、を含む。 The power supply unit 30 includes a high voltage power supply 300 (acceleration voltage power supply), a filament power supply 301, a lead-out electrode power supply 302, an acceleration electrode power supply 304, and an auxiliary voltage power supply 306.

高圧電源300は、エミッタ100で発生した電子線を加速させるための加速電圧を供給する。加速電圧は、エミッタ100と加速管20との間に印加される。電子顕微鏡1では、加速電圧は可変である。 The high voltage power supply 300 supplies an acceleration voltage for accelerating the electron beam generated by the emitter 100. The acceleration voltage is applied between the emitter 100 and the accelerating tube 20. In the electron microscope 1, the acceleration voltage is variable.

フィラメント電源301は、エミッタ100にフィラメント電流を供給する。 The filament power supply 301 supplies a filament current to the emitter 100.

引き出し電極用電源302は、引き出し電極102に引き出し電圧(正の電圧)を印加する。引き出し電圧は、エミッタ100から電子線を引き出すために引き出し電極102に印加される電圧である。 The lead-out electrode power supply 302 applies a lead-out voltage (positive voltage) to the lead-out electrode 102. The extraction voltage is a voltage applied to the extraction electrode 102 to extract an electron beam from the emitter 100.

加速電極用電源304は、加速電極104に正の電圧を供給する。 The power supply 304 for the accelerating electrode supplies a positive voltage to the accelerating electrode 104.

補助電圧電源306は、高圧電源300と初段の抵抗素子221との間に配置されている。補助電圧電源306は、補助電圧を発生させる。補助電圧電源306は、高圧電源300に直列に接続されている。補助電圧電源306は、高圧電源300が発生させる加速電圧に補助電圧を重畳して分圧用回路220に印加する。これにより、分圧用回路220に印加される入力電圧を、高圧電源300が発生させる加速電圧と補助電圧電源306が発生させる補助電圧が重畳された電圧とすることができる。補助電圧電源306が発生させる補助電圧は、可変である。 The auxiliary voltage power supply 306 is arranged between the high voltage power supply 300 and the resistance element 221 of the first stage. The auxiliary voltage power supply 306 generates an auxiliary voltage. The auxiliary voltage power supply 306 is connected in series with the high voltage power supply 300. The auxiliary voltage power supply 306 superimposes the auxiliary voltage on the acceleration voltage generated by the high voltage power supply 300 and applies it to the voltage dividing circuit 220. As a result, the input voltage applied to the voltage dividing circuit 220 can be a voltage obtained by superimposing the acceleration voltage generated by the high voltage power supply 300 and the auxiliary voltage generated by the auxiliary voltage power supply 306. Auxiliary voltage The auxiliary voltage generated by the power supply 306 is variable.

なお、図示はしないが、電子顕微鏡1は、高圧電源300を補助電圧電源306を介して分圧用回路220に接続する場合と、高圧電源300を補助電圧電源306を介さずに直接、分圧用回路220に接続する場合と、を切り替える手段(スイッチ)を有していてもよい。これにより、分圧用回路220に加速電圧と補助電圧とを重畳して印加する場合と、分圧用回路220に加速電圧のみを印加する場合と、を切り替えることができる。 Although not shown, the electron microscope 1 has a case where the high voltage power supply 300 is connected to the voltage dividing circuit 220 via the auxiliary voltage power supply 306 and a case where the high voltage power supply 300 is directly connected to the voltage dividing circuit 220 without the auxiliary voltage power supply 306. It may have a means (switch) for switching between the case of connecting to 220 and the case of connecting to 220. Thereby, it is possible to switch between the case where the acceleration voltage and the auxiliary voltage are superimposed and applied to the voltage dividing circuit 220 and the case where only the acceleration voltage is applied to the voltage dividing circuit 220.

引き出し電極用電源302、加速電極用電源304、補助電圧電源306は、高圧電源300の出力電圧を基準電位としている。 The lead-out electrode power supply 302, the acceleration electrode power supply 304, and the auxiliary voltage power supply 306 use the output voltage of the high-voltage power supply 300 as a reference potential.

図1に示す制御部32は、高圧電源300、フィラメント電源301、引き出し電極用電源302、加速電極用電源304、および補助電圧電源306を制御する。制御部32の機能は、各種プロセッサ(CPU(Central Processing Unit)等)でプログラムを実行することにより実現することができる。なお、制御部32の機能の少なくとも一部を、ASIC(application specific integrated circuit)などの専用回路により実現してもよい。制御部32の処理については、後述する「3. 制御部の処理」で説明する。 The control unit 32 shown in FIG. 1 controls a high-voltage power supply 300, a filament power supply 301, a power supply 302 for an extraction electrode, a power supply 304 for an acceleration electrode, and an auxiliary voltage power supply 306. The function of the control unit 32 can be realized by executing a program on various processors (CPU (Central Processing Unit) or the like). At least a part of the function of the control unit 32 may be realized by a dedicated circuit such as an ASIC (application specific integrated circuit). The processing of the control unit 32 will be described in "3. Processing of the control unit" described later.

2. 電子顕微鏡の動作
次に、電子顕微鏡1の動作について説明する。まず、電子顕微鏡1の電子銃10および加速管20の基本的な動作について説明する。
2. 2. Operation of the electron microscope Next, the operation of the electron microscope 1 will be described. First, the basic operations of the electron gun 10 and the acceleration tube 20 of the electron microscope 1 will be described.

電子顕微鏡1では、引き出し電極102に引き出し電極用電源302が発生させる正の電圧が印加されることによって、エミッタ100から電子が引き出される。そして、加速電極104には加速電極用電源304が発生させる正の電圧が印加され、引き出し電極102と加速電極104との間には、引き出し電極102と加速電極104とによって形成される電界により収束レンズ(静電レンズ)が形成される。 In the electron microscope 1, electrons are extracted from the emitter 100 by applying a positive voltage generated by the power supply 302 for the extraction electrode to the extraction electrode 102. Then, a positive voltage generated by the power supply 304 for the accelerating electrode is applied to the accelerating electrode 104, and the electric field formed between the extraction electrode 102 and the accelerating electrode 104 converges between the extraction electrode 102 and the accelerating electrode 104. A lens (electrostatic lens) is formed.

また、分圧用回路220には、高圧電源300が発生させる加速電圧と、補助電圧電源306が発生させる補助電圧とが重畳された入力電圧が印加される。これにより、当該入力電圧が分圧されて、複数の加速電極201,202,203,204,205,206の各々に印加される。加速電極104と初段の加速電極201との間には、加速電極104と初段の加速電極201とによって形成される電界により収束レンズ(静電レンズ)が形成される。 Further, an input voltage in which the acceleration voltage generated by the high voltage power supply 300 and the auxiliary voltage generated by the auxiliary voltage power supply 306 are superimposed is applied to the voltage dividing circuit 220. As a result, the input voltage is divided and applied to each of the plurality of acceleration electrodes 201, 202, 203, 204, 205, 206. A convergent lens (electrostatic lens) is formed between the accelerating electrode 104 and the first-stage accelerating electrode 201 by the electric field formed by the accelerating electrode 104 and the first-stage accelerating electrode 201.

このように、エミッタ100から引き出された電子は、引き出し電極102と加速電極104との間に形成される収束レンズの作用、および加速電極104と初段の加速電極201との間に形成される収束レンズの作用によって、加速管20の下にクロスオーバーを形成する。 In this way, the electrons drawn from the emitter 100 are the action of the focusing lens formed between the extraction electrode 102 and the accelerating electrode 104, and the convergence formed between the accelerating electrode 104 and the first-stage accelerating electrode 201. By the action of the lens, a crossover is formed under the acceleration tube 20.

次に、引き出し電極102、加速電極104、および初段の加速電極201に印加される電圧について説明する。図3は、電子顕微鏡1の電子銃10および加速管20の動作状態を示す図である。下記表1は、加速電圧HT=-200kVの場合と加速電圧HT=-80kVの場合の、電圧A1、電圧A2、電圧A3、および電位差A2-A3の一例を示す表である。なお、下記表1に示す電圧A1、電圧A2、および電圧A3の値は一例であり、この値に限定されない。 Next, the voltage applied to the extraction electrode 102, the acceleration electrode 104, and the acceleration electrode 201 of the first stage will be described. FIG. 3 is a diagram showing an operating state of the electron gun 10 and the accelerating tube 20 of the electron microscope 1. Table 1 below shows an example of voltage A1, voltage A2, voltage A3, and potential difference A2-A3 when the acceleration voltage HT = −200 kV and the acceleration voltage HT = −80 kV. The values of voltage A1, voltage A2, and voltage A3 shown in Table 1 below are examples, and are not limited to these values.

Figure 0007054633000001
Figure 0007054633000001

図3に示すように、引き出し電極102には、引き出し電極用電源302が発生させる電圧A1が印加される。加速電極104には、加速電極用電源304が発生させる電圧A2が印加される。筐体230の入口部分232には高圧電源300が発生させる加速電圧HTが印加される。加速電極201には電圧A3が印加される。 As shown in FIG. 3, a voltage A1 generated by the power supply 302 for the lead electrode is applied to the lead electrode 102. A voltage A2 generated by the power supply 304 for the accelerating electrode is applied to the accelerating electrode 104. An acceleration voltage HT generated by the high-voltage power supply 300 is applied to the inlet portion 232 of the housing 230. A voltage A3 is applied to the accelerating electrode 201.

まず、高加速電圧の場合について説明する。具体的には、高圧電源300が発生させる加速電圧HTがHT=-200kVである場合について説明する。 First, the case of a high acceleration voltage will be described. Specifically, a case where the acceleration voltage HT generated by the high-voltage power supply 300 is HT = −200 kV will be described.

加速電圧HT=-200kVの場合、引き出し電極102には電圧A1=3kVが印加され、加速電極104には電圧A2=6kVが印加される。また、高加速電圧の場合、補助電圧電源306が発生させる補助電圧ACLは、0Vである。そのため、分圧用回路220には加速電圧HT=-200kVのみが印加される。分圧用回路220の入力電圧(加速電圧HT=-200kV)は、7つの抵抗R1,R2,R3,R4,R5,R6,R7で分圧されて、電圧A3=-200/7=-28.6kVとなる。ここでは、7つの抵抗R1,R2,R3,R4,R5,R6,R7は互いに等しい抵抗値を有している。このように、電圧A2は6kVであり、電圧A3は-28.6kVであるため、加速電極104と初段の加速電極201との間の電位差A2-A3は、22.6kVとなる。電位差A2-A3によって、加速電極104と初段の加速電極201との間に形成される収束レンズの作用の強弱が決まる。 When the acceleration voltage HT = −200 kV, the voltage A1 = 3 kV is applied to the extraction electrode 102 , and the voltage A2 = 6 kV is applied to the acceleration electrode 104. Further, in the case of a high acceleration voltage, the auxiliary voltage ACL generated by the auxiliary voltage power supply 306 is 0V. Therefore, only the acceleration voltage HT = −200 kV is applied to the voltage dividing circuit 220. The input voltage (acceleration voltage HT = -200 kV) of the voltage dividing circuit 220 is divided by seven resistors R1, R2, R3, R4, R5, R6, R7, and the voltage A3 = -200 / 7 = -28. It will be 6 kV. Here, the seven resistors R1, R2, R3, R4, R5, R6, and R7 have equal resistance values. As described above, since the voltage A2 is 6 kV and the voltage A3 is −28.6 kV, the potential difference A2-A3 between the accelerating electrode 104 and the accelerating electrode 201 of the first stage is 22.6 kV. The potential difference A2-A3 determines the strength of the action of the convergent lens formed between the acceleration electrode 104 and the acceleration electrode 201 of the first stage.

次に、低加速電圧の場合について説明する。具体的には、高圧電源300が発生させる加速電圧HTがHT=-80kVである場合について説明する。 Next, the case of a low acceleration voltage will be described. Specifically, a case where the acceleration voltage HT generated by the high-voltage power supply 300 is HT = −80 kV will be described.

加速電圧HT=-80kVの場合、加速電圧HT=-200kVの場合と同様に、引き出し電極102には電圧A1=3kVが印加され、加速電極104には電圧A2=6kVが印加される。低加速電圧の場合、補助電圧電源306が発生させる補助電圧ACLは、例えば、10kVである。そのため、分圧用回路220には加速電圧HT=-80kVに補助電圧ACL=10kVが重畳された-70kVが印加される。したがって、電圧A3=-70/7-10=-20kVとなる。よって、加速電極104と初段の加速電極201との間の電位差A2-A3は、14kVとなる。 When the acceleration voltage HT = −80 kV, the voltage A1 = 3 kV is applied to the extraction electrode 102 and the voltage A2 = 6 kV is applied to the acceleration electrode 104, as in the case of the acceleration voltage HT = −200 kV. In the case of a low acceleration voltage, the auxiliary voltage ACL generated by the auxiliary voltage power supply 306 is, for example, 10 kV. Therefore, −70 kV in which the auxiliary voltage ACL = 10 kV is superimposed on the acceleration voltage HT = −80 kV is applied to the voltage dividing circuit 220. Therefore, the voltage A3 = −70 / 7-10 = −20 kV. Therefore, the potential difference A2-A3 between the accelerating electrode 104 and the accelerating electrode 201 of the first stage is 14 kV.

このように、電子顕微鏡1では、低加速電圧の場合には、高加速電圧の場合と比べて、補助電圧ACLを大きくする。これにより、低加速電圧にすることによる初段の加速電極201の電位の低下を抑制でき、電位差A2-A3の低下が抑制される。この結果、加速電極104と初段の加速電極201との間に形成される収束レンズの作用の低下を抑制できる。 As described above, in the electron microscope 1, the auxiliary voltage ACL is increased in the case of the low acceleration voltage as compared with the case of the high acceleration voltage. As a result, the decrease in the potential of the acceleration electrode 201 in the first stage due to the low acceleration voltage can be suppressed, and the decrease in the potential difference A2-A3 is suppressed. As a result, it is possible to suppress a decrease in the action of the convergent lens formed between the accelerating electrode 104 and the first-stage accelerating electrode 201.

以下では、電子顕微鏡1と参考例に係る電子顕微鏡とを比較することで、電子顕微鏡1の作用効果を説明する。図4は、参考例に係る電子顕微鏡の電子銃10および加速管20の動作状態を示す図である。下記表2は、参考例に係る電子顕微鏡における加速電圧HT=-200kVの場合と加速電圧HT=-80kVの場合の、電圧A1、電圧A2、電圧A3、および電位差A2-A3の一例を示す表である。 Hereinafter, the action and effect of the electron microscope 1 will be described by comparing the electron microscope 1 with the electron microscope according to the reference example. FIG. 4 is a diagram showing an operating state of the electron gun 10 and the accelerating tube 20 of the electron microscope according to the reference example. Table 2 below shows an example of voltage A1, voltage A2, voltage A3, and potential difference A2-A3 when the acceleration voltage HT = −200 kV and the acceleration voltage HT = -80 kV in the electron microscope according to the reference example. Is.

Figure 0007054633000002
Figure 0007054633000002

図4に示す例では、図2に示す補助電圧電源306がない。そのため、加速電圧HT=-80kVの場合、分圧用回路220には加速電圧HT=-80kVが印加される。したがって、初段の加速電極201に印加される電圧A3は、電圧A3=-80/7=-11.4kVとなる。このように、図4に示す例では、低加速電圧とすることで、初段の加速電極201の電位が大きく低下してしまう。また、このとき、電圧A1=3kV、電圧A2=6kVとすると、加速電極104と初段の加速電極201との間の電位差A2-A3は、5.43kVとなる。このように、図4に示す例では、初段の加速電極201の電位の低下により電位差A2-A3が低下し、加速電極104と初段の加速電極201との間に形成される収束レンズの作用が低下してしまう。この結果、電子線が拡がってしまい、所望の位置にクロスオーバーを形成できない場合がある。 In the example shown in FIG. 4, the auxiliary voltage power supply 306 shown in FIG. 2 is not provided. Therefore, when the acceleration voltage HT = −80 kV, the acceleration voltage HT = −80 kV is applied to the voltage dividing circuit 220. Therefore, the voltage A3 applied to the acceleration electrode 201 of the first stage is the voltage A3 = −80 / 7 = -11.4 kV. As described above, in the example shown in FIG. 4, the potential of the acceleration electrode 201 in the first stage is greatly reduced by setting the acceleration voltage to a low level. At this time, if the voltage A1 = 3 kV and the voltage A2 = 6 kV, the potential difference A2-A3 between the acceleration electrode 104 and the acceleration electrode 201 of the first stage is 5.43 kV. As described above, in the example shown in FIG. 4, the potential difference A2-A3 decreases due to the decrease in the potential of the acceleration electrode 201 in the first stage, and the action of the convergent lens formed between the acceleration electrode 104 and the acceleration electrode 201 in the first stage acts. It will drop. As a result, the electron beam may spread and the crossover may not be formed at a desired position.

また、例えば、図4に示す例では、電圧A2を下げることで、電位差A2-A3を大きくすることができる。下記表3は、参考例に係る電子顕微鏡における加速電圧HT=-200kVの場合と加速電圧HT=-80kVの場合の、電圧A1、電圧A2、電圧A3、および電位差A2-A3の他の例を示す表である。 Further, for example, in the example shown in FIG. 4, the potential difference A2-A3 can be increased by lowering the voltage A2. Table 3 below shows other examples of voltage A1, voltage A2, voltage A3, and potential difference A2-A3 when the acceleration voltage HT = −200 kV and the acceleration voltage HT = -80 kV in the electron microscope according to the reference example. It is a table showing.

Figure 0007054633000003
Figure 0007054633000003

例えば、加速電圧HT=-80kVの場合に、電圧A1=3kV、電圧A2=3kVとして、加速電圧HT=-200kVの場合よりも電圧A2を下げる。これにより、電位差A2-A3は8.4kVとなり、電位差A2-A3の低下が抑制される。しかしながら、この場合、電圧A2を下げたことにより、電位差A1-A2が小さくなり、引き出し電極102と加速電極104との間に形成される収束レンズの作用が低下してしまう。 For example, when the acceleration voltage HT = −80 kV, the voltage A1 = 3 kV and the voltage A2 = 3 kV, and the voltage A2 is lowered as compared with the case of the acceleration voltage HT = −200 kV. As a result, the potential difference A2-A3 becomes 8.4 kV, and the decrease in the potential difference A2-A3 is suppressed. However, in this case, by lowering the voltage A2, the potential difference A1-A2 becomes smaller, and the action of the convergent lens formed between the extraction electrode 102 and the acceleration electrode 104 is reduced.

図5は、参考例に係る電子顕微鏡の電子銃10および加速管20の動作状態を示す図である。下記表4は、参考例に係る電子顕微鏡における加速電圧HT=-200kVの場合と加速電圧HT=-80kVの場合の、電圧A1、電圧A2、電圧A3、および電位差A2-A3の一例を示す表である。 FIG. 5 is a diagram showing an operating state of the electron gun 10 and the accelerating tube 20 of the electron microscope according to the reference example. Table 4 below shows an example of voltage A1, voltage A2, voltage A3, and potential difference A2-A3 when the acceleration voltage HT = −200 kV and the acceleration voltage HT = -80 kV in the electron microscope according to the reference example. Is.

Figure 0007054633000004
Figure 0007054633000004

図5に示す例では、低加速電圧にした場合に、3段目の加速電極203を、スイッチを用いて基準電位(例えば接地電位)に短絡させる短絡機構を備えている。この短絡機構により、加速電極201の電位の低下を抑制できる。例えば、図5に示すように、3段目の加速電極203を短絡させると、加速電極201に印加される電圧A3は、電圧A3=-80/3=-26.7kVとなる。また、このとき、電位差A2-A3は、20.7kVとなる。このように、図5に示すように短絡機構を設けた場合、図4に示す例に比べて、電位差A2-A3の低下が抑制される。しかしながら、このような短絡機構を設けた場合、加速電極201を基準電位に短絡させる際には、加速電圧の印加を停止、すなわち、加速電圧を基準電位しなければならない。 The example shown in FIG. 5 is provided with a short-circuit mechanism for short-circuiting the third-stage acceleration electrode 203 to a reference potential (for example, a ground potential) using a switch when the acceleration voltage is low. By this short-circuit mechanism, it is possible to suppress a decrease in the potential of the accelerating electrode 201. For example, as shown in FIG. 5, when the acceleration electrode 203 of the third stage is short-circuited, the voltage A3 applied to the acceleration electrode 201 becomes the voltage A3 = −80 / 3 = −26.7 kV. At this time, the potential difference A2-A3 becomes 20.7 kV. As described above, when the short-circuit mechanism is provided as shown in FIG. 5, the decrease in the potential difference A2-A3 is suppressed as compared with the example shown in FIG. However, when such a short-circuit mechanism is provided, when the acceleration electrode 201 is short-circuited to the reference potential, the application of the acceleration voltage must be stopped, that is, the acceleration voltage must be set to the reference potential.

これに対して、電子顕微鏡1では、補助電圧ACLを変更することによって、加速電極201の電位を制御できるため、加速電圧HTが変更された場合であっても、加速電圧HTの印加を停止することなく、加速電極104と初段の加速電極201との間に形成される収束レンズの作用が低下することを抑制できる。 On the other hand, in the electron microscope 1, since the potential of the acceleration electrode 201 can be controlled by changing the auxiliary voltage ACL, the application of the acceleration voltage HT is stopped even when the acceleration voltage HT is changed. Without this, it is possible to suppress a decrease in the action of the convergent lens formed between the acceleration electrode 104 and the acceleration electrode 201 of the first stage.

さらに、電子顕微鏡1では、補助電圧ACLが可変であり、加速電極201の電位を細かく制御することができる。そのため、例えば、上記の短絡機構を用いた場合と比べて、電位差A2-A3を細かく制御することが可能である。例えば、上記の短絡機構を用いた場合、電圧A3は加速電圧と抵抗素子221,222,223,224,225,226,227の数で決定されるため、電位差A2-A3の細かい制御はできない。 Further, in the electron microscope 1, the auxiliary voltage ACL is variable, and the potential of the accelerating electrode 201 can be finely controlled. Therefore, for example, the potential difference A2-A3 can be finely controlled as compared with the case where the above-mentioned short-circuit mechanism is used. For example, when the above short-circuit mechanism is used, the voltage A3 is determined by the acceleration voltage and the number of resistance elements 221,222,223,224,225,226,227, so that the potential difference A2-A3 cannot be finely controlled.

3. 制御部の処理
次に、制御部32の処理について説明する。
3. 3. Processing of the control unit Next, the processing of the control unit 32 will be described.

制御部32は、加速電圧HTを変更する処理と、加速電圧HTの変更に応じて補助電圧ACLを設定し、加速電圧HTに補助電圧ACLを重畳して分圧用回路220の入力電圧とする処理と、を行う。 The control unit 32 has a process of changing the acceleration voltage HT and a process of setting an auxiliary voltage ACL according to the change of the acceleration voltage HT and superimposing the auxiliary voltage ACL on the acceleration voltage HT to obtain the input voltage of the voltage dividing circuit 220. And do.

制御部32は、加速電圧が高加速電圧から低加速電圧に変更された場合、低加速電圧に切り替えたことによる初段の加速電極201の電位の低下が抑制されるように補助電圧ACLを設定する。 The control unit 32 sets the auxiliary voltage ACL so that when the acceleration voltage is changed from the high acceleration voltage to the low acceleration voltage, the decrease in the potential of the acceleration electrode 201 in the first stage due to the switching to the low acceleration voltage is suppressed. ..

例えば、加速電圧HT=-200kVの場合、制御部32は、電圧A1=3kV、電圧A2=6kV、補助電圧ACL=0kVとなるように電源部30を制御する。このとき、電圧A3=-200/7=-28.6kVとなり、電位差A2-A3=22.6kVとなる。 For example, when the acceleration voltage HT = −200 kV, the control unit 32 controls the power supply unit 30 so that the voltage A1 = 3 kV, the voltage A2 = 6 kV, and the auxiliary voltage ACL = 0 kV. At this time, the voltage A3 = −200 / 7 = −28.6 kV, and the potential difference A2-A3 = 22.6 kV.

加速電圧HT=-200kVから加速電圧HT=-80kVに切り替えた場合、制御部32は、電圧A1=3kV、電圧A2=6kV、補助電圧ACL=10kVとなるように電源部30を制御する。このとき、電圧A3=-70/7+10=-20kVとなり、電位差A2-A3=14kVとなる。このように、制御部32の処理により、低加速電圧に切り替えたことによる初段の加速電極201の電位の低下が抑制され、加速電極104と初段の加速電極201との間に形成される収束レンズの作用の低下を抑制できる。 When the acceleration voltage HT = −200 kV is switched to the acceleration voltage HT = −80 kV, the control unit 32 controls the power supply unit 30 so that the voltage A1 = 3 kV, the voltage A2 = 6 kV, and the auxiliary voltage ACL = 10 kV. At this time, the voltage A3 = −70 / 7 + 10 = −20 kV, and the potential difference A2-A3 = 14 kV. In this way, the processing of the control unit 32 suppresses the decrease in the potential of the first-stage acceleration electrode 201 due to the switching to the lower acceleration voltage, and the convergent lens formed between the acceleration electrode 104 and the first-stage acceleration electrode 201. It is possible to suppress the decrease in the action of.

電子顕微鏡1は、例えば、加速電極201の電位の低下が抑制される最適な、加速電圧HTと、補助電圧ACLと、の関係を示すテーブルが記憶された記憶装置(図示せず)を有している。制御部32は、加速電圧HTが変更された場合に、このテーブルに基づいて補助電圧ACLを設定する。これにより、加速電圧HTの変更された場合に、適切な補助電圧ACLを加速電圧HTに重畳することができる。 The electron microscope 1 has, for example, a storage device (not shown) in which a table showing the relationship between the acceleration voltage HT and the auxiliary voltage ACL, which is optimal for suppressing the decrease in the potential of the acceleration electrode 201, is stored. ing. The control unit 32 sets the auxiliary voltage ACL based on this table when the acceleration voltage HT is changed. Thereby, when the acceleration voltage HT is changed, an appropriate auxiliary voltage ACL can be superimposed on the acceleration voltage HT.

なお、上記では、制御部32が加速電圧HTの変更に応じて補助電圧ACLを設定する場合について説明したが、ユーザーが操作部(図示せず)を介して補助電圧ACLの大きさを設定することで、制御部32が設定された補助電圧ACLを加速電圧HTに重畳する処理を行ってもよい。すなわち、この場合、ユーザーが補助電圧ACLを任意の大きさに設定できる。 In the above, the case where the control unit 32 sets the auxiliary voltage ACL according to the change of the acceleration voltage HT has been described, but the user sets the size of the auxiliary voltage ACL via the operation unit (not shown). As a result, the control unit 32 may perform a process of superimposing the set auxiliary voltage ACL on the acceleration voltage HT. That is, in this case, the user can set the auxiliary voltage ACL to an arbitrary size.

4. 特徴
電子顕微鏡1は、例えば、以下の特徴を有する。
4. Features The electron microscope 1 has the following features, for example.

電子顕微鏡1は、エミッタ100と、エミッタ100から電子を引き出す引き出し電極102と、引き出し電極102の後段に配置され、エミッタ100から引き出された電子線を加速させる加速電極104と、加速電極104の後段に配置され、複数の加速電極201,202,203,204,205,206を備える加速管20と、加速電圧HTを発生させる高圧電源300と、補助電圧ACLを発生させる補助電圧電源306と、加速電圧HTと補助電圧ACLとが重畳された入力電圧を分圧して、複数の加速電極201,202,203,204,205,206の各々に印加する複数の抵抗素子221,222,223,224,225,226,227と、を含む。 The electron microscope 1 is arranged after the emitter 100, the extraction electrode 102 for drawing electrons from the emitter 100, and the acceleration electrode 104 for accelerating the electron beam drawn from the emitter 100, and the rear stage of the acceleration electrode 104. An acceleration tube 20 having a plurality of acceleration electrodes 201, 202, 203, 204, 205, 206, a high voltage power supply 300 for generating an acceleration voltage HT, an auxiliary voltage power supply 306 for generating an auxiliary voltage ACL, and acceleration. Multiple resistance elements 211,222,223,224, which divide the input voltage on which the voltage HT and the auxiliary voltage ACL are superimposed and apply it to each of the plurality of acceleration electrodes 201, 202, 203, 204, 205, 206. 225, 226, 227 and the like.

そのため、電子顕微鏡1では、複数の抵抗素子221,222,223,224,225,226,227の入力電圧を加速電圧HTと補助電圧ACLとが重畳された電圧とすることができる。そのため、補助電圧ACLを制御することによって、加速電極104と初段の加速電極201との間の電位差A2-A3を制御することができる。これにより、
加速電極104と初段の加速電極201との間に形成される収束レンズの作用を制御できる。したがって、電子顕微鏡1では、例えば、加速電圧HTが変更された場合であっても、加速電圧HTの印加を停止することなく、加速電極104と初段の加速電極201との間に形成される収束レンズの作用が低下することを抑制できる。
Therefore, in the electron microscope 1, the input voltage of the plurality of resistance elements 221,222,223,224,225,226,227 can be set as the voltage on which the acceleration voltage HT and the auxiliary voltage ACL are superimposed. Therefore, by controlling the auxiliary voltage ACL, the potential difference A2-A3 between the accelerating electrode 104 and the accelerating electrode 201 of the first stage can be controlled. This will result in
The action of the convergent lens formed between the accelerating electrode 104 and the accelerating electrode 201 of the first stage can be controlled. Therefore, in the electron microscope 1, for example, even when the acceleration voltage HT is changed, the convergence formed between the acceleration electrode 104 and the first-stage acceleration electrode 201 without stopping the application of the acceleration voltage HT. It is possible to suppress the decrease in the action of the lens.

さらに、電子顕微鏡1では、例えば上記の短絡機構を設ける場合と比べて、加速電極104と初段の加速電極201との間に形成される収束レンズの作用を細かく制御できる。これにより、クロスオーバー位置を精度よく調整することができる。 Further, in the electron microscope 1, the action of the convergent lens formed between the accelerating electrode 104 and the first-stage accelerating electrode 201 can be finely controlled as compared with the case where the short-circuit mechanism is provided, for example. As a result, the crossover position can be adjusted with high accuracy.

電子顕微鏡1は、補助電圧電源306を制御する制御部32を含み、制御部32は、加速電圧HTの変更に応じて補助電圧ACLを設定し、加速電圧HTに補助電圧ACLを重畳して分圧用回路220の入力電圧とする処理を行う。そのため、電子顕微鏡1では、加速電圧HTが変更された場合であっても、適切な補助電圧ACLを設定できる。したがって、例えば、高加速電圧から低加速電圧に切り替えた場合であっても、加速電極104と初段の加速電極201との間に形成される収束レンズの作用が低下することを抑制できる。 The electron microscope 1 includes a control unit 32 that controls the auxiliary voltage power supply 306, and the control unit 32 sets the auxiliary voltage ACL according to the change of the acceleration voltage HT, and superimposes the auxiliary voltage ACL on the acceleration voltage HT. The process of using the input voltage of the compression circuit 220 is performed. Therefore, in the electron microscope 1, an appropriate auxiliary voltage ACL can be set even when the acceleration voltage HT is changed. Therefore, for example, even when the high acceleration voltage is switched to the low acceleration voltage, it is possible to suppress the deterioration of the action of the convergent lens formed between the acceleration electrode 104 and the acceleration electrode 201 of the first stage.

本実施形態に係る電子顕微鏡1の制御方法は、加速電圧HTを変更する工程と、加速電圧HTの変更に応じて補助電圧ACLを設定し、加速電圧HTに補助電圧ACLを重畳して入力電圧とする工程と、を含む。そのため、加速電圧が変更された場合であっても、加速電圧HTの印加を停止することなく、加速電極104と初段の加速電極201との間に形成される収束レンズの作用が低下することを抑制できる。 In the control method of the electron microscope 1 according to the present embodiment, the auxiliary voltage ACL is set according to the step of changing the acceleration voltage HT and the change of the acceleration voltage HT, and the auxiliary voltage ACL is superimposed on the acceleration voltage HT to input the input voltage. And the process of Therefore, even when the acceleration voltage is changed, the action of the convergent lens formed between the acceleration electrode 104 and the acceleration electrode 201 of the first stage is reduced without stopping the application of the acceleration voltage HT. Can be suppressed.

なお、上記では、電子顕微鏡1が透過電子顕微鏡である場合について説明したが、本発明に係る電子顕微鏡は、走査電子顕微鏡(scanning electron microscope、SEM)であってもよい。 Although the case where the electron microscope 1 is a transmission electron microscope has been described above, the electron microscope according to the present invention may be a scanning electron microscope (SEM).

本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。 The present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect). The present invention also includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. Further, the present invention includes a configuration having the same effect as the configuration described in the embodiment or a configuration capable of achieving the same object. Further, the present invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

1…電子顕微鏡、10…電子銃、20…加速管、30…電源部、32…制御部、40…収束レンズ、50…試料ホルダー、60…対物レンズ、70…中間レンズ、80…投影レンズ、90…検出器、100…エミッタ、102…引き出し電極、104…加速電極、201…加速電極、202…加速電極、203…加速電極、204…加速電極、205…加速電極、206…加速電極、210…碍子、220…分圧用回路、221…抵抗素子、222…抵抗素子、223…抵抗素子、224…抵抗素子、225…抵抗素子、226…抵抗素子、227…抵抗素子、230…筐体、300…高圧電源、301…フィラメント電源、302…引き出し電極用電源、304…加速電極用電源、306…補助電圧電源 1 ... Electron microscope, 10 ... Electron gun, 20 ... Acceleration tube, 30 ... Power supply unit, 32 ... Control unit, 40 ... Convergent lens, 50 ... Sample holder, 60 ... Objective lens, 70 ... Intermediate lens, 80 ... Projection lens, 90 ... detector, 100 ... emitter, 102 ... extraction electrode, 104 ... acceleration electrode, 201 ... acceleration electrode, 202 ... acceleration electrode, 203 ... acceleration electrode, 204 ... acceleration electrode, 205 ... acceleration electrode, 206 ... acceleration electrode, 210 ... 碍, 220 ... voltage dividing circuit, 221 ... resistance element, 222 ... resistance element, 223 ... resistance element, 224 ... resistance element, 225 ... resistance element, 226 ... resistance element, 227 ... resistance element, 230 ... housing, 300 ... High-voltage power supply, 301 ... Filament power supply, 302 ... Lead-out electrode power supply, 304 ... Acceleration electrode power supply, 306 ... Auxiliary voltage power supply

Claims (5)

エミッタと、
前記エミッタから電子を引き出す引き出し電極と、
前記引き出し電極の後段に配置され、前記エミッタから引き出された電子線を加速させる第1加速電極と、
前記第1加速電極の後段に配置され、複数の第2加速電極を備える加速管と、
加速電圧を発生させる加速電圧電源と、
前記第1加速電極に電圧を印加する加速電極用電源と、
補助電圧を発生させる補助電圧電源と、
前記加速電圧と前記補助電圧とが重畳された入力電圧を分圧して、前記複数の第2加速電極の各々に印加する複数の分圧用抵抗と、
を含み、
前記加速電極用電源で前記第1加速電極の電位を制御し、前記補助電圧電源で前記複数の第2加速電極のうちの1つの第2加速電極の電位を制御することによって、前記第1加速電極と前記1つの第2加速電極との間のレンズ作用を制御する、電子顕微鏡。
Emitter and
An extraction electrode that draws electrons from the emitter and
A first accelerating electrode, which is arranged after the extraction electrode and accelerates the electron beam drawn from the emitter,
An accelerating tube arranged after the first accelerating electrode and having a plurality of second accelerating electrodes,
Acceleration voltage power supply that generates acceleration voltage,
A power supply for an accelerating electrode that applies a voltage to the first accelerating electrode,
Auxiliary voltage power supply that generates auxiliary voltage and
A plurality of voltage dividing resistors that divide the input voltage on which the acceleration voltage and the auxiliary voltage are superimposed and apply it to each of the plurality of second acceleration electrodes.
Including
The first acceleration is performed by controlling the potential of the first acceleration electrode with the power supply for the acceleration electrode and controlling the potential of the second acceleration electrode of one of the plurality of second acceleration electrodes with the auxiliary voltage power supply. An electron microscope that controls the lens action between the electrode and the one second accelerating electrode .
請求項1において、
前記引き出し電極に電圧を印加する引き出し電極用電源を含み、
前記引き出し電極用電源で前記引き出し電極の電位を制御し、前記加速電極用電源で前記第1加速電極の電位を制御することによって、前記引き出し電極と前記第1加速電極との間のレンズ作用を制御する、電子顕微鏡。
In claim 1,
A power supply for the lead-out electrode that applies a voltage to the lead-out electrode is included.
By controlling the potential of the extraction electrode with the power supply for the extraction electrode and controlling the potential of the first acceleration electrode with the power supply for the acceleration electrode, the lens action between the extraction electrode and the first acceleration electrode can be obtained. An electron microscope to control .
請求項1または2において、
前記加速電圧は、可変である、電子顕微鏡。
In claim 1 or 2,
The acceleration voltage is variable, an electron microscope.
請求項1ないし3のいずれか1項において、
前記補助電圧電源を制御する制御部を含み、
前記制御部は、前記加速電圧の変更に応じて前記補助電圧を設定し、前記加速電圧に前記補助電圧を重畳して前記入力電圧とする処理を行う、電子顕微鏡。
In any one of claims 1 to 3,
A control unit that controls the auxiliary voltage power supply is included.
The control unit sets the auxiliary voltage in response to a change in the acceleration voltage, and superimposes the auxiliary voltage on the acceleration voltage to obtain the input voltage.
エミッタと、
前記エミッタから電子を引き出す引き出し電極と、
前記引き出し電極の後段に配置され、前記エミッタから引き出された電子線を加速させる第1加速電極と、
前記第1加速電極の後段に配置され、複数の第2加速電極を備える加速管と、
加速電圧を発生させる加速電圧電源と、
前記引き出し電極に電圧を印加する引き出し電極用電源と、
前記第1加速電極に電圧を印加する加速電極用電源と、
補助電圧を発生させる補助電圧電源と、
前記加速電圧と前記補助電圧とが重畳された入力電圧を分圧して前記複数の第2加速電極の各々に印加する複数の分圧用抵抗と、を含む電子顕微鏡の制御方法であって、
前記引き出し電極用電源で前記引き出し電極の電位を制御し、前記加速電極用電源で前記第1加速電極の電位を制御することによって、前記引き出し電極と前記第1加速電極の間のレンズ作用を制御する工程と、
前記加速電圧を変更する工程と、
前記加速電圧の変更に応じて前記補助電圧電源を制御することによって前記複数の第2加速電極のうちの1つの第2加速電極の電位を制御して、前記第1加速電極と前記1つの第2加速電極との間のレンズ作用を制御する工程と、
を含む、電子顕微鏡の制御方法。
Emitter and
An extraction electrode that draws electrons from the emitter and
A first accelerating electrode, which is arranged after the extraction electrode and accelerates the electron beam drawn from the emitter,
An accelerating tube arranged after the first accelerating electrode and having a plurality of second accelerating electrodes,
Acceleration voltage power supply that generates acceleration voltage,
A power supply for the lead-out electrode that applies a voltage to the lead-out electrode,
A power supply for an accelerating electrode that applies a voltage to the first accelerating electrode,
Auxiliary voltage power supply that generates auxiliary voltage and
It is a control method of an electron microscope including a plurality of voltage dividing resistors that divide an input voltage in which the acceleration voltage and the auxiliary voltage are superimposed and apply it to each of the plurality of second acceleration electrodes.
By controlling the potential of the extraction electrode with the power supply for the extraction electrode and controlling the potential of the first acceleration electrode with the power supply for the acceleration electrode, the lens action between the extraction electrode and the first acceleration electrode is controlled. And the process to do
The process of changing the acceleration voltage and
By controlling the auxiliary voltage power supply in response to the change in the acceleration voltage, the potential of the second acceleration electrode of the plurality of second acceleration electrodes is controlled, and the first acceleration electrode and the one first acceleration electrode are controlled. 2 The process of controlling the lens action between the accelerating electrode and
How to control an electron microscope, including .
JP2018022129A 2018-02-09 2018-02-09 Electron microscope and electron microscope control method Active JP7054633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018022129A JP7054633B2 (en) 2018-02-09 2018-02-09 Electron microscope and electron microscope control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018022129A JP7054633B2 (en) 2018-02-09 2018-02-09 Electron microscope and electron microscope control method

Publications (2)

Publication Number Publication Date
JP2019139964A JP2019139964A (en) 2019-08-22
JP7054633B2 true JP7054633B2 (en) 2022-04-14

Family

ID=67694252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018022129A Active JP7054633B2 (en) 2018-02-09 2018-02-09 Electron microscope and electron microscope control method

Country Status (1)

Country Link
JP (1) JP7054633B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018568A1 (en) * 2022-07-20 2024-01-25 株式会社日立ハイテク Charged particle beam device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243908A (en) 2000-02-28 2001-09-07 Hitachi Ltd Charged particle beam accelerator
US20090085504A1 (en) 2007-10-01 2009-04-02 Varian Semiconductor Equipment Associates, Inc. Techniques for controlling a charged particle beam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381743A (en) * 1986-09-26 1988-04-12 Jeol Ltd Electric field emission type electron gun
JP3088550B2 (en) * 1992-04-03 2000-09-18 日本電子株式会社 Field emission type electron gun

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243908A (en) 2000-02-28 2001-09-07 Hitachi Ltd Charged particle beam accelerator
US20090085504A1 (en) 2007-10-01 2009-04-02 Varian Semiconductor Equipment Associates, Inc. Techniques for controlling a charged particle beam

Also Published As

Publication number Publication date
JP2019139964A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP6340165B2 (en) Electron gun, charged particle gun and charged particle beam apparatus using them
JP6310920B2 (en) Dual lens gun electron beam device for high resolution imaging using both high and low beam currents
EP2478546B1 (en) Distributed ion source acceleration column
JP4133602B2 (en) Aberration correction method in charged particle beam apparatus and charged particle beam apparatus
JP2004087460A (en) Charged particle beam apparatus equipped with aberration correcting device
JP3899317B2 (en) Deflection system for particle beam equipment
JP7054633B2 (en) Electron microscope and electron microscope control method
US10134561B2 (en) Electron microscope and method of controlling same
JP5854734B2 (en) Particle beam device and method for analyzing and / or processing objects
JP6814313B2 (en) A device that controls an ion beam
WO2019186936A1 (en) Charged particle beam device
JP6432905B2 (en) Energy analyzer and monochromator using retarding
JPWO2008084537A1 (en) Electron gun and electron beam exposure apparatus
JP2019087337A (en) Electron microscope and control method thereof
JP2001351561A (en) Focusing ion beam device
JP6339734B2 (en) Charged particle beam application apparatus and aberration corrector
US2444700A (en) Method of operating electron guns
JP6261228B2 (en) Focused ion beam apparatus, focused ion / electron beam processing observation apparatus, and sample processing method
JP3469404B2 (en) Field emission type charged particle gun and charged particle beam irradiation device
JP6163255B2 (en) Charged particle beam apparatus and spherical aberration correction method
JP2009231036A (en) Aberration correcting focused ion beam device
JP3046452B2 (en) Pulse beam generating method and generating apparatus
JP2778227B2 (en) Ion source
JP2016143583A (en) Ion source, ion beam device and processing method for sample
JP2004199912A (en) Aberration correcting device for electrically-charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7054633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150