JP7054083B2 - A construction method that uses a heat conductive plate to prevent the roof from freezing with waste heat from heating and melts the snow on the roof. - Google Patents

A construction method that uses a heat conductive plate to prevent the roof from freezing with waste heat from heating and melts the snow on the roof. Download PDF

Info

Publication number
JP7054083B2
JP7054083B2 JP2020066291A JP2020066291A JP7054083B2 JP 7054083 B2 JP7054083 B2 JP 7054083B2 JP 2020066291 A JP2020066291 A JP 2020066291A JP 2020066291 A JP2020066291 A JP 2020066291A JP 7054083 B2 JP7054083 B2 JP 7054083B2
Authority
JP
Japan
Prior art keywords
roof
snow
heat
attic
heat conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020066291A
Other languages
Japanese (ja)
Other versions
JP2020165301A (en
Inventor
功 牧野
Original Assignee
功 牧野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 功 牧野 filed Critical 功 牧野
Publication of JP2020165301A publication Critical patent/JP2020165301A/en
Application granted granted Critical
Publication of JP7054083B2 publication Critical patent/JP7054083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、住宅建築分野に属し、屋根の施工方法に関する。
屋根裏に留まる生活暖房の余熱で、屋根を凍結などから守るとともに、住宅の屋根上積雪を溶融する建築工法である。
The present invention belongs to the field of residential construction and relates to a roof construction method.
It is a construction method that protects the roof from freezing and melts the snow on the roof of the house by the residual heat of the living heating that stays in the attic.

従来寒冷地に於ける屋根の施工は、冬季は結氷するという自然状況を容認して施工しており、特にトタンには結氷するということを前提に対策を立てている。 Conventionally, roof construction in cold regions allows for the natural situation of freezing in winter, and measures are taken on the premise that galvanized iron will freeze.

M型無落雪屋根について、(図4)により従来のトタン屋根結氷状況を説明する。(図4)は屋根裏換気をしている住宅の簡単な説明図である。屋根裏換気口(図4)6から外気(図4)8が屋根裏に入り、屋根裏内部を通貫して換気口(図4)7から排出される。風向きが逆の場合は、換気口の入り口と排出口はそれぞれ逆となる。このように換気口から外気を取り込んで、屋根裏と外気との温度差をなくすことで結露を防止している。その結果として屋根裏(図4)11と屋根材などは外気により冷却されており、屋根が結氷しやすい状態である。 Regarding the M-type snow-free roof, the conventional galvanized iron roof freezing situation will be described with reference to (Fig. 4). (Fig. 4) is a brief explanatory diagram of a house with attic ventilation. The outside air (FIG. 4) 8 enters the attic from the attic ventilation port (FIG. 4) 6 and is discharged from the ventilation port (FIG. 4) 7 through the inside of the attic. If the wind direction is opposite, the entrance and exit of the ventilation port will be opposite. In this way, outside air is taken in from the ventilation port to eliminate the temperature difference between the attic and the outside air, thereby preventing dew condensation. As a result, the attic (FIG. 4) 11 and the roofing material are cooled by the outside air, and the roof is in a state where it is easy to freeze.

従来の工法で建築された屋根トタンは、冬季は外気の低温により冷えている。そのような環境で、日中に陽光で溶けた雪が屋根トタンの上を水となって流れ落ち、その水がトタンハゼの隙間に滲み込むと、夜間にはその水が低温で凍結する。凍結が起きると凍結膨張が起き、トタンハゼ部分の締め付けが緩む。この緩んだ箇所に、また溶けた水が浸み込んで凍結すると、ハゼはさらに緩み、これを繰り返しているうちに、ハゼの中のコーキング材にもひび割れを起こす。屋根トタンのハゼがこの状態のとき、M型屋根の軒天(図4)10の付近に、屋根積雪(図4)3が溶けて流れ落ち軒天結氷が起こる。これが雨漏れの原因となるのである。 The roof tin built by the conventional method is cold in winter due to the low temperature of the outside air. In such an environment, the snow melted in the sunlight during the day flows down on the roof galvanized iron as water, and when the water seeps into the gaps of the galvanized iron, the water freezes at a low temperature at night. When freezing occurs, freezing and expansion occur, and the tightening of the totanhaze part is loosened. When the melted water soaks into this loosened part and freezes, the goby loosens further, and as this process is repeated, the caulking material in the goby also cracks. When the roof galvanized iron goby is in this state, the roof snow (Fig. 4) 3 melts and flows down near the eaves of the M-shaped roof (Fig. 4) 10, causing freezing of the eaves. This causes rain leaks.

2019年2月25日に堀割った我が家の1階屋根の状態は、積雪は1メートルもあり、樋部分の軒天に厚さ5cmの氷が付いていた。この氷は多少の外力では容易に剥がせない状況である。昼間はプラスの温度 (指標は「摂氏」以後同じ) 、夜間はマイナス気温となる融雪時期は、軒天結氷の厚さがさらに増し、10cm程度にまで成長することもある。
石狩地方の2019年2月25日現在の積雪は110cmあり、この大量の雪が(石狩地方では2月20日頃から融雪期)1ヶ月程度の融雪期に溶け出して流れ落ちる。ただし屋根トタンのコーキングが破損したとしても、トタンのハゼ部分は2cmばかり高くなっているので、直ちに漏水が起こることはない。しかし上述したようなコーキングに破損が生じた状態の箇所に何らかの原因で結氷が生じ、その氷の上部(屋根勾配に対して上部)に雪解け水がダム状に溜まると、溜まった水がトタンのハゼを超え た場合は 漏水を起こす。
The condition of the roof of the first floor of my house, which was dug on February 25, 2019, was that there was 1 meter of snow and 5 cm of ice was attached to the eaves of the gutter. This ice cannot be easily peeled off with some external force. Positive temperature during the day (The index is the same after "Celsius") During the snowmelt season, when the temperature is negative at night, the thickness of the eaves freezing increases further and may grow to about 10 cm.
As of February 25, 2019, the amount of snow in the Ishikari region is 110 cm, and this large amount of snow melts and flows down during the snowmelt season of about one month (in the Ishikari region, the snowmelt season starts around February 20). However, even if the caulking of the roof galvanized iron is damaged, the galvanized iron's goby part is about 2 cm higher, so water leakage does not occur immediately. However, when freezing occurs for some reason in the place where the caulking is damaged as described above, and the thaw water collects in a dam shape on the upper part of the ice (upper part with respect to the roof slope), the accumulated water becomes galvanized iron. Beyond the goby If Causes a leak.

横樋部分全部が雪で覆われていると問題は起きないが、この樋部分のどこかに隙間ができると、この隙間から寒気が横樋内に入り、横樋直近屋根に軒天結氷を生成せしめる。例えば1階部分の屋根の場合、その家に2階があれば、2階壁と1階屋根積雪の接面は雪が溶けて隙間ができるし、また竪樋から横樋に続くような箇所が存在すると、この部分も竪樋から上昇してくる熱で上部の積雪が溶けて穴ができる。この穴から寒気が侵入する。また、排水パイプが屋外に設置されている場合は、このパイプからも寒気が入ってきて軒天結氷を生成せしめることになる。
融雪期にはこの結氷による漏水トラブルが発生しやすく、春先は、雨漏り修理などに係わる宣伝チラシが散見される。現在の高断熱住宅の屋根は漏水箇所が簡単に確認できない構造であるから、一度漏水すると修理は大きな工事になることが多い。
There is no problem if the entire gutter part is covered with snow, but if there is a gap somewhere in this gutter part, cold air will enter the gutter through this gap and cause eaves freezing on the roof near the gutter. For example, in the case of the roof of the first floor, if the house has a second floor, the snow melts and a gap is created at the contact surface between the second floor wall and the first floor roof, and there is a place that continues from the gutter to the gutter. Then, in this part as well, the heat rising from the gutter melts the snow on the upper part and creates a hole. Cold air invades through this hole. In addition, if the drainage pipe is installed outdoors, cold air will also enter from this pipe and cause eaves freezing.
During the snowmelt season, water leakage problems due to this freezing are likely to occur, and in early spring, advertising leaflets related to repairing rain leaks are scattered. Since the roof of the current highly insulated house has a structure in which the leaked part cannot be easily confirmed, repair is often a major work once the leak occurs.

従来の漏水の防止対策としては、横樋付近に電熱ヒーターを設置したものや、勾配の緩い落雪屋根の軒天下部に、三角状の雪止め屋根を構築して、その中に電熱ヒーターなどを取り付ける技術があるが、その部分が外気で冷やされて低温になるため、その低温下においてトタンを温め氷の付着防止や融雪を行うのには、多くのエネルギーが必要であり電気代も嵩むため、融雪装置を取り付けたものの使用していない現実もある。屋根部の凍結にかかる対処法として、トタンハゼのコーキングの研究・トタンハゼ部の改良等の対策が行われてきているが、これらはいずれも結氷を既成の事実として受け止め、氷の付く屋根に対して屋根の上から行う処置となっている。 As conventional measures to prevent water leakage, an electric heater is installed near the horizontal hut, or a triangular snow-stopping roof is constructed at the bottom of the eaves of a snow-falling roof with a gentle slope, and an electric heater is installed in it. Although there is technology, that part is cooled by the outside air and becomes cold, so it takes a lot of energy to heat Totan and prevent ice adhesion and melt snow under that low temperature, and the electricity bill also increases. There is also a reality that the snow melting device is installed but not used. As a countermeasure against freezing of the roof part, measures such as research on caulking of Totanhaze and improvement of Totanhaze part have been taken, but all of these take freezing as an established fact and for roofs with ice. It is a procedure performed from the top of the roof.

上述したように、現今の鋼板葺きM型無落雪屋根(図4)、又は勾配が緩くて雪が落下しにくい合掌造り等の鋼板葺き屋根も含めて、その軒天結氷による漏水を防止するのは、寒地住宅の大きな課題である。一部には、電熱線を屋根上に設置したものや、パイプに湯を通して、屋根雪の溶融を試みるものもあるが、設置費用が高額で普及にはいたっていない。いまだに寒冷地の住宅建築者が、安心して施工できる安価で耐久性のある、屋根雪融雪の技術は存在しない。
屋根の形状によっては、屋根に大量の雪が積み重なり、この雪の重量が建物に負担を掛ける。この屋根雪の対策としては、屋根上から人力による雪下ろしで対処しており、1シーズンに何度も雪下ろしを行わなければならない年もあり、その労力もさることながら、その際に起こる人身事故も、大きな問題になっているのは周知のとおりである。これにもかかわらず、従来は屋根上の積雪を、屋根裏に滞留する熱で溶融するという技術なかった。
As mentioned above, it is possible to prevent water leakage due to eaves freezing, including the current steel-roofed M-type snow-free roof (Fig. 4) or the steel-roofed roof made of gassho-zukuri, which has a gentle slope and makes it difficult for snow to fall. , Is a big issue for cold-weather housing. Some have installed heating wires on the roof, and some have tried to melt the snow on the roof by passing hot water through a pipe, but the installation cost is high and it has not become widespread. There is still no cheap and durable roof snowmelting technology that can be safely constructed by homebuilders in cold regions.
Depending on the shape of the roof, a large amount of snow accumulates on the roof, and the weight of this snow puts a burden on the building. As a countermeasure against this roof snow, we are dealing with it by manually removing the snow from the roof, and in some years it is necessary to remove the snow many times in one season, and in addition to the labor, there are also personal accidents that occur at that time. It is well known that it has become a big problem. Despite this, there has been no conventional technique to melt the snow on the roof with the heat accumulated in the attic.

雪国においては、屋根・道路など生活関連部門は雪によるトラブルを受けている。「工業所有権情報」誌によると、この雪の融雪に大手企業から個人に至るまで、多くの人が研究し、特許願いの数も数知れないほど出ている。屋根に係わる融雪方式では、科学的融雪、火炎利用の融雪、直接散水による融雪、電熱利用の融雪、温水循環による融雪等がある。温水利用ではヒートポンプを活用するものも多い。
本発明に近いものとしては、古いデータであるが、特許2684884(1991.07.19日)が挙げられる。これは、屋根温度のモニタリング結果に基づいて、屋根裏暖気吹き出し口の量をダンパーにより制御するものである。屋根裏の温度を利用する点は、この発明と共通点があるが、熱伝導板は使用していないので、本発明とは異なっている。
先進技術は多いが、そのほとんどは屋根の上における融雪設備であり、加えるに融雪のために特定のエネルギーを補給している。
In a snowy country, life-related departments such as roofs and roads are suffering from snow problems. According to "Industrial Property Information" magazine, many people, from major companies to individuals, have studied the melting of this snow, and the number of patent requests has been innumerable. Snowmelt methods related to roofs include scientific snowmelt, snowmelt using flame, snowmelt using direct watering, snowmelt using electric heat, and snowmelt using hot water circulation. Many use heat pumps when using hot water.
The old data, which is close to the present invention, is patent 2684884 (1991.07.19 days). This is to control the amount of the attic warm air outlet by the damper based on the monitoring result of the roof temperature. It has something in common with this invention in that it uses the temperature of the attic, but it differs from the present invention because it does not use a heat conductive plate.
There are many advanced technologies, but most of them are snowmelt equipment on the roof, and in addition, they supply specific energy for snowmelt.

本発明は、屋根裏換気をしない建築法(図5)(屋根裏密閉工法 出願番号 特願2016-222740)により造られた屋根裏(図5)13に滞留する熱によって、実現が可能な発明である。
本発明は、屋根トタン(図1)1に結氷を生じさせないように、すなわち結氷防止と、屋根上の積雪(図5)3を溶融することを主眼として行う住宅屋根の施工技術である。従って、従来の結氷を事実として受け止めて対策を立てるものとは、発想の段階から非常に異なっているものである。
本発明は、軒天結氷や屋根上積雪(図5)3に対する事後の対策でなく、結氷を未然に防ぐとともに屋根積雪を溶融する、いわゆる問題の発生する事前の観点から、問題を処理しようとする発明である。
The present invention is an invention that can be realized by the heat retained in the attic (FIG. 5) 13 created by the building method without attic ventilation (FIG. 5) (attic sealing method application number 2016-222740).
The present invention is a construction technique for a residential roof, which mainly aims to prevent freezing of the roof galvanized iron (FIG. 1) 1, that is, to prevent freezing and to melt the snow (FIG. 5) 3 on the roof. Therefore, it is very different from the conventional one that accepts freezing as a fact and takes measures from the stage of thinking.
The present invention is not an ex post facto measure against eaves freezing and roof snow accumulation (Fig. 5) 3, but attempts to deal with the problem from the viewpoint of preventing freezing and melting the roof snow, which is a so-called problem. It is an invention to be done.

本発明は結氷を防いで屋根トタン(図1)1を長持ちさせるとともに、屋根からの漏水を防止するものである。また、屋根上の積雪(図5)3を溶融せしめることにより、建物に加わる荷重を軽減し、雪の荷重による建物への害を少なくするものである。また屋根上積雪(図5)3の量が外気の温度によって自然に増減し、溶け残った残雪を住宅の断熱として活用するものである。さらに、屋根裏結露についても完全に処理するものである。 The present invention prevents freezing, prolongs the life of the roof galvanized iron (FIG. 1) 1, and prevents water leakage from the roof. Further, by melting the snow cover (FIG. 5) 3 on the roof, the load applied to the building is reduced, and the damage to the building due to the snow load is reduced. In addition, the amount of snow on the roof (Fig. 5) 3 naturally increases or decreases depending on the temperature of the outside air, and the remaining snow that remains unmelted is used as heat insulation for the house. In addition, attic dew condensation is also completely treated.

屋根裏換気をしない工法(図5)によって建築した住宅では、屋根裏は常にプラスの温度を保っている。この温度の測定は、屋根裏換気を行っていない我が家の2階部分の屋根裏で行ったものである。2階部分は空室になっていて暖房は入っていない。
この状態で屋根裏(図5)13の温度測定を行った。2019年2月9日外気温が24時間マイナス12度、しかもその日は一日中の降雪と毎秒15メートル以上の北風が吹いた猛吹雪の日であったが、そのような悪天候にあっても一日を通して屋根裏(図5)13の温度はプラス4度であった。同月12日は最低気温マイナス12度、日中マイナス5度、薄曇りで正午頃から晴れて陽光がさした。その日の午後4時時点での屋根裏の温度測定値は14度であった。2月22日、気温は最低気温マイナス5度、最高気温5度、快晴、この日の屋根裏の気温は最低5度、最高16度であった。
In a house built by a construction method without attic ventilation (Fig. 5), the attic always maintains a positive temperature. This temperature was measured in the attic of the second floor of my house without attic ventilation. The second floor is vacant and has no heating.
In this state, the temperature of the attic (FIG. 5) 13 was measured. February 9, 2019 The outside temperature was -12 degrees Celsius for 24 hours, and it was a day of snowfall all day and a blizzard with a northerly wind of 15 meters or more per second. Through the attic (Fig. 5) 13, the temperature was plus 4 degrees. On the 12th of the same month, the minimum temperature was -12 degrees Celsius, the daytime was -5 degrees Celsius, and it was lightly cloudy. The attic temperature reading at 4 pm that day was 14 degrees. On February 22, the minimum temperature was -5 degrees Celsius, the maximum temperature was 5 degrees Celsius, and the weather was fine. The temperature in the attic on that day was 5 degrees Celsius and 16 degrees Celsius.

温度測定の結果、屋根裏(図5)13の温度は石狩地方の場合、最低気温がマイナス12度程度でもプラスの温度であり、陽光があれば10度以上になることが分かった。朝から外気温がプラスで晴れた日には、屋根裏の温度は18度に達する。
本発明は、屋根裏に滞留する熱(家庭暖房の排熱、太陽熱及び外気の熱)を、屋根防水層(図1)1,2に伝導するため、熱伝導率の高い材質(鋼板又はアルミ等)で出来ている板状のもの(以後「熱伝導板」と称する)を介して屋根部の防水層に伝え、M型屋根(図4)10の軒天を温めて軒天の結氷を防止するとともに、屋根上の積雪(図5)3を溶融するものである。
As a result of the temperature measurement, it was found that the temperature of the attic (Fig. 5) 13 is a positive temperature even if the minimum temperature is about -12 degrees Celsius in the Ishikari region, and it becomes 10 degrees or more in the presence of sunlight. On sunny days with positive outside temperatures from the morning, the attic temperature reaches 18 degrees Celsius.
In the present invention, the heat accumulated in the roof (exhaust heat of home heating, solar heat and heat of outside air ) is conducted to the roof waterproof layers (Fig. 1) 1 and 2, so that a material having high thermal conductivity (steel plate, aluminum, etc.) ) Is transmitted to the waterproof layer of the roof via a plate-shaped material (hereinafter referred to as "heat conductive plate") to warm the eaves of the M-shaped roof (Fig. 4) 10 and prevent freezing of the eaves. At the same time, the snow cover (FIG. 5) 3 on the roof is melted .

この問題解決を添付の図面により説明する。
添付の図面(図1)は、M型屋根を谷コイル(横樋)と直角にカットした、垂直カット展開図の一部である。垂木(図1)6、及び野地板(図1)5を挟んで上下から断熱(図1)4、19を施したものである(断熱は建築者の希望により変えてよい)。一般仕様と異なっているのは、熱伝導板(図1)の3、13及び14を付加していることである。
This problem solving will be described with reference to the accompanying drawings.
The attached drawing (FIG. 1) is a part of a vertical cut development drawing in which an M-shaped roof is cut at a right angle to a valley coil (horizontal trough). The rafters (Fig. 1) 6 and the field board (Fig. 1) 5 are sandwiched between them and heat-insulated (Fig. 1) 4 and 19 (the heat insulation may be changed according to the wishes of the builder ). The difference from the general specifications is that the heat conductive plates (FIG. 1) 3, 13 and 14 are added.

この熱伝導板(図1)3を屋根裏から谷コイル(図1)10の横を通して、屋根の上部に延べ、屋根の上の発泡スチロール系の断熱材(図1)4と防水シート(図1)の2の間に敷設する。このように施工すると、熱伝導板(図1)3は外気に触れないので、劣化を防止できるし、また熱伝導板(図1)3が直接寒気にさらされて、屋根裏に結露を生じないようにする。熱伝導板の屋根裏部分で集熱した熱は、熱伝導板を伝って上方に移動して屋根上に移動する。これにより、M型無落雪屋根(図5)の軒天結氷を防止することができる。また、横樋(図1)10と熱伝導板(図1)3の間には、発泡スチロール系の断熱材(図1)12を装着して熱伝導板が冷却しないように施工する。
横樋を撤去した場合は、横樋のあった部分を谷として、両側の屋根を突き合わせV字型の屋根をつくり、この一番低い谷の箇所から屋根の両側に熱伝導板(図6)5、6を屋根上に出せばよい。
This heat conductive plate (Fig. 1) 3 is extended from the attic to the upper part of the roof through the side of the valley coil (Fig. 1) 10, and the styrofoam-based heat insulating material (Fig. 1) 4 and the waterproof sheet (Fig. 1) on the roof are extended. It is laid between 2 of. When constructed in this way, the heat conductive plate (Fig. 1) 3 does not come into contact with the outside air, so that deterioration can be prevented, and the heat conductive plate (Fig. 1) 3 is directly exposed to the cold air, and no dew condensation occurs on the attic. To do so. The heat collected in the attic of the heat conductive plate moves upward through the heat conductive plate and moves onto the roof. This makes it possible to prevent freezing of the eaves of the M-type snow-free roof (FIG. 5). Further, a styrofoam-based heat insulating material (FIG. 1) 12 is installed between the horizontal trough (FIG. 1) 10 and the heat conductive plate (FIG. 1) 3 so that the heat conductive plate is not cooled.
When the horizontal trough is removed, the part where the horizontal trough was located is used as a valley, and the roofs on both sides are abutted to form a V-shaped roof. 6 should be put out on the roof.

熱伝導板の結氷防止作用に加えて、屋根上積雪(図5)3の溶融を行う場合は、屋根面を上方に向かって、結氷防止施工の一枚(図1)3と同じようにして、熱伝導板を(図1)13及び14に示すように、数十cm程度の間隔で 施工すればよい。
熱伝導板(図1)3、13、14の継ぎ目は、重なりがあっても問題はない。むしろ重なり合う方が良い。熱伝導板は屋根上で、上方に向かって折曲げても、下方に向かって折り曲げてもよいが、それぞれに長短がある。
工事に当たっては、熱伝導板(図2)が垂木(図1)6に当たる部分は、(図2)16で示すように切り欠きを入れて、この切り欠きに垂木(図1)6を通して、熱伝導板(図1)13及び14の下部を屋根上から屋根を貫通して屋根裏に入れる。このように順次施工して、屋根全面をカバーするように熱伝導板を貼り付ければよい。熱伝導板の材質・大きさ、屋根裏の熱量、屋根の状態などから、必要に応じて雪を解かすことのできる造りにすればよいのである。
In addition to the anti-icing action of the heat conductive plate, when melting the snow on the roof (Fig. 5) 3, turn the roof surface upward in the same way as one of the anti-icing construction (Fig. 1) 3. , As shown in (Fig. 1) 13 and 14, the heat conductive plates are spaced at intervals of several tens of centimeters. It should be constructed.
There is no problem even if the seams of the heat conductive plates (FIG. 1) 3, 13 and 14 overlap. Rather, it is better to overlap. The heat conductive plate may be bent upward or downward on the roof, but each has advantages and disadvantages.
In the construction, the part where the heat conductive plate (Fig. 2) corresponds to the rafter (Fig. 1) 6 is cut out as shown in (Fig. 2) 16, and the heat is passed through the rafter (Fig. 1) 6 through this notch. The lower part of the conduction plate (Fig. 1) 13 and 14 is put into the attic from the roof through the roof. The heat conductive plate may be attached so as to cover the entire roof surface by sequentially constructing in this way. Depending on the material and size of the heat conductive plate, the amount of heat in the attic, the condition of the roof, etc., it is only necessary to make it so that the snow can be melted as needed.

熱伝導板(図2)は、屋根裏(図5)13に滞留する熱を集熱して、屋根トタン(図1)1に伝導することにより、結氷の防止及び屋根上の雪を溶融する大切な役割を果たす。よって熱伝導板は熱伝導率の高い材質を選ぶ必要がある。
熱伝導板(図1)3により屋根裏(図5)13で集熱された熱は、熱の持つ上昇特性により、熱伝導板に沿って上へ上へと移動し防水シート(図1)2を温める。熱はやがて防水シートの上の屋根鋼板(図1)1に達する。これにより鋼板の上の、軒天結氷を防止し、屋根上の積雪(図5)3を溶融するのである。この熱の移動は、熱の持っている上昇特性により行われるもので、この熱の移動が本発明の大きな特質である。
The heat conductive plate (Fig. 2) collects the heat accumulated in the attic (Fig. 5) 13 and conducts it to the roof tin (Fig. 1) 1, which is important for preventing freezing and melting the snow on the roof. Play a role. Therefore, it is necessary to select a material with high thermal conductivity for the heat conductive plate.
The heat collected in the attic (Fig. 5) 13 by the heat conductive plate (Fig. 1) 3 moves upward along the heat conductive plate due to the rising characteristics of the heat, and the waterproof sheet (Fig. 1) 2 Warm up. The heat eventually reaches the roof steel plate (Fig. 1) 1 on the tarpaulin. This prevents freezing of the eaves on the steel plate and melts the snow (FIG. 5) 3 on the roof. This heat transfer is performed by the ascending characteristic of heat, and this heat transfer is a major feature of the present invention.

軒天結氷防止の施工法概略を記述する。
工事に当たっては、屋根最下部の熱伝導板(図1)3が小屋束に当たる部分は、切り欠きを作って施工する必要がある。熱伝導板を屋根上から横樋(図1)10の横を通して屋根裏に入れる。屋根上の部分は、野地板(図1)5、その上に発泡スチロール系断熱材(図1)4を貼り付けてある屋根の上に、この熱伝導板(図1)3を延べて固定すればよい。その上に防水シート(図1)2を貼って、トタン(図1)1等で仕上げる。シート防水の場合は、熱伝導板の上に直接防水シートを貼ればよい。
Describe the outline of the construction method to prevent freezing in the eaves.
In the construction, it is necessary to make a notch in the part where the heat conductive plate (Fig. 1) 3 at the bottom of the roof hits the hut bundle. Insert the heat conductive plate from the roof through the side of the horizontal trough (Fig. 1) 10 into the attic. For the part on the roof, the heat conductive plate (Fig. 1) 3 is extended and fixed on the roof on which the field board (Fig. 1) 5 and the styrofoam heat insulating material (Fig. 1) 4 are pasted on it. Just do it. A waterproof sheet (Fig. 1) 2 is pasted on it, and it is finished with galvanized iron (Fig. 1) 1 and the like. In the case of waterproofing the sheet, the waterproof sheet may be attached directly on the heat conductive plate.

発泡スチロール系断熱材(図1)12で断熱することにより、谷コイル(図1)10部分での熱ロスを少なくし、集熱した熱は効率的に屋根部分に伝えられて、結氷を防止する。さらに熱に余力があれば、熱は屋根部分の上方に伝送されて、上部の雪を溶融する。熱の上昇特性を利用するのであるから、熱伝導板は屋根上で上方に折り曲げるのが望ましい。この場合、屋根の勾配は15%ないし20%程度あった方が良い。
しかし、最近の屋根はフラットに近いいわゆる水勾配程度の屋根も多く、このような屋根には横樋も設置してないので、これらに対する施工法は後に述べる。
By insulating with the styrofoam heat insulating material (Fig. 1) 12, the heat loss in the valley coil (Fig. 1) 10 part is reduced, and the collected heat is efficiently transferred to the roof part to prevent freezing. .. If there is more heat left, the heat will be transmitted above the roof and melt the snow above. It is desirable to bend the heat transfer plate upward on the roof because it utilizes the heat rising property. In this case, the slope of the roof should be about 15% to 20%.
However, many of the recent roofs have a so-called water gradient, which is close to flat, and no horizontal trough is installed on such roofs, so the construction method for these will be described later.

熱伝導板(図1)3を谷コイルの軒天部分から屋根上方に90cmほど設置するだけで、軒天結氷を防止することができる。軒天結氷の予防を目的とする場合は、一番下部即ち屋根の谷部分の熱伝導板を施工するだけで良い。 これは既存建築の屋根に、谷コイルから屋根上方に熱伝導板を1段付加するだけのことであるから、工事設計の変更は少なく、経費は僅かで施工も容易である。これだけで従来からの大問題であった軒天結氷を防止することができる。 Heat conduction plate (Fig. 1) 3 from the eaves of the valley coilroofEaves freezing can be prevented by simply installing it about 90 cm above. For the purpose of preventing freezing in the eaves, it is only necessary to install a heat conductive plate at the bottom, that is, in the valley of the roof. This is because the heat conduction plate is only added to the roof of the existing building from the valley coil to the upper part of the roof, so there are few changes in the construction design, the cost is small, and the construction is easy. This alone can prevent the eaves freezing, which has been a major problem in the past.

さらに、屋根積雪(図5)3の溶融を目的とする場合は、熱伝導板(図1)13及び14のように、熱伝導板(図2)を必要な枚数だけ、30から50cm程度の間隔で屋根全体に展張する。
熱伝導板(図1)13及び14の長さは、屋根材部分の厚みが15cm程度とし、屋根裏(図5)13に40cm程出して、屋根の上に50cm延べる場合、全体で105cm必要である。横幅は熱伝導板(図2)の材料に合わせて、容易に工事ができるように決め、この材料を屋根上に出す長さの箇所(図2)17から、直角に折曲げて使う。
この熱伝導板に、垂木を通すための穴あけ(図2)16加工を施す。垂木(図1)6の間隔に合わせて熱伝導板(図1)13及び14、およびその他必要とする熱伝導板に、必要な個所に穴をあけておく(図2)16。垂木打ち付けの段階で、この熱伝導板(図1)13及び14等に垂木(図1)6を通す。母屋(図1)11の位置と熱伝導板の枚数を勘案して、必要枚数を通して垂木を固定する。
Further, when the purpose is to melt the roof snow (FIG. 5) 3, the required number of heat conductive plates (FIG. 2) is about 30 to 50 cm as shown in the heat conductive plates (FIG. 1) 13 and 14. Spread over the entire roof at intervals.
The length of the heat conductive plates (Fig. 1) 13 and 14 should be 105 cm in total when the thickness of the roofing material is about 15 cm, and if the attic (Fig. 5) 13 is extended by about 40 cm and extended by 50 cm on the roof. Is. The width is determined according to the material of the heat conductive plate (Fig. 2) so that construction can be done easily, and this material is bent at a right angle from the length (Fig. 2) 17 where it is put out on the roof.
This heat conductive plate is drilled (Fig. 2) 16 for passing rafters. Drill holes in the heat conductive plates (Fig. 1) 13 and 14 and other required heat conductive plates at the required locations according to the intervals of the rafters (Fig. 1) 6 (Fig. 2) 16. At the stage of striking the rafters, the rafters (FIG. 1) 6 are passed through the heat conductive plates (FIG. 1) 13 and 14 and the like. Considering the position of the purlin (Fig. 1) 11 and the number of heat conductive plates, the rafters are fixed through the required number.

次に熱伝導板を上向きに折り曲げる場合は、屋根勾配の上端から野地板(図1)5を、加工した熱伝導板の幅に合わせて貼る、加工した熱伝導板を屋根上に50cm幅で展張する場合には、50cm幅で野地板(図1)5を釘止めする。次に発泡スチロール系断熱材(図1)4を同じ幅で打ち付けて、続けて屋根傾斜の一番上の熱伝導板(図2)を野地板(図1)5に打ち付ける。次に、その下部に野地板(図1)5を上から2枚目の熱伝導板(図2)の幅 に合わせて 打ち付け、発泡スチロール系断熱材(図1)4を打ち付け、熱伝導板(図2)を打ち付ける、このようにして順次下に施工していく。熱伝導板を下向きに折り曲げる場合は、屋根傾斜の下部から施工すると良い。
屋根全部に熱伝導板(図2)を打ち終わったら、その上に防水シート(図1)2を張り、最後にトタン(図1)1、で仕上げる。また、鋼板を貼らずにシート防水の屋根にすることもできる。シート防水の場合は、熱伝導板に直接防水シートの仕上げで良い。シート防水のほうが融雪効果は大きいと思われる。
この施工例は上部から作業を始めているが、熱伝導板をどちらに折り曲げるかにかかわらず、屋根下部からでも上部からでも、工事者が工事を容易に施工できるように順次施工すれば良い。
屋根裏に出ている熱伝導板は、屋根裏側にウレタン吹き付け断熱工事(希望に応じて)を行う場合は、熱伝導板(図2)を工事がやりやすいように押し曲げても良い。工事後はもとのように戻す。
Next, when bending the heat conductive plate upward, attach the field board (Fig. 1) 5 from the upper end of the roof slope according to the width of the processed heat conductive board, and attach the processed heat conductive board to the roof 50 cm.By widthWhen expanding, nail the field board (Fig. 1) 5 with a width of 50 cm. Next, the expanded polystyrene-based heat insulating material (FIG. 1) 4 is struck with the same width, and then the heat conductive plate (FIG. 2) at the top of the roof slope is struck against the field plate (FIG. 1) 5. Next, the field plate (Fig. 1) 5 is placed below it, and the width of the second heat conductive plate (Fig. 2) from the top. To suit Striking, styrofoam-based heat insulating material (Fig. 1) 4 is struck, and a heat conductive plate (Fig. 2) is struck. When bending the heat conductive plate downward, it is better to start from the bottom of the roof slope.
After hitting the heat conductive plate (Fig. 2) on the entire roof, put a tarpaulin (Fig. 1) 2 on it, and finally finish it with galvanized iron (Fig. 1) 1. It is also possible to make a sheet waterproof roof without attaching a steel plate. In the case of sheet waterproofing, the waterproof sheet may be finished directly on the heat conductive plate. It seems that the snow melting effect is greater when the sheet is waterproof.
In this construction example, the work is started from the upper part, but regardless of which way the heat conductive plate is bent, the work may be carried out sequentially from the lower part of the roof or from the upper part so that the builder can easily carry out the work.
As for the heat conductive plate protruding from the attic, when urethane spraying heat insulation work (if desired) is performed on the attic side, the heat conductive plate (FIG. 2) may be pushed and bent so that the work can be easily performed. After construction, return it to its original state.

熱伝導板の穴あけ施工及び工事が面倒な場合は、(図3)18のように垂木(図1)6の当たる部分を切り開いて、垂木を固定してから、(図3)のように加工した熱伝導板を、屋根上から屋根を貫通して屋根裏(図5)13に差し込み施工すると良い。
熱伝導板は、(図2)17から直角に曲げて、熱伝導板(図2)を屋根裏に差し込み、その後で切り開いた部分(図3)18をもとのように直す。この方が施工は簡単であるが、熱伝導は多少下がる。
If drilling and construction of the heat conductive plate is troublesome, cut open the part where the rafters (Fig. 1) 6 hit as shown in (Fig. 3) 18 and fix the rafters, and then process as shown in (Fig. 3). It is advisable to insert the heat conductive plate from above the roof through the roof and insert it into the attic (Fig. 5) 13.
The heat conductive plate is bent at a right angle from (FIG. 2) 17, the heat conductive plate (FIG. 2) is inserted into the attic, and then the cut-out portion (FIG. 3) 18 is repaired as before. This is easier to install, but heat conduction is slightly lower.

現在の住宅屋根の骨組みは、母屋と直角方向に傾斜して垂木を打ち付け、これに野地板を横貼りする工法で造られている。この造りの屋根に熱伝導板を施工する場合は、垂木のために熱伝導板工事が煩瑣になり時間もかかる、これを簡易化するために「上り母屋方式」とするとよい。
「上り母屋方式」の場合は、垂木を使わないで、従来の母屋の上に「上り母屋」を施工して、これを従来の垂木と同じ向きに幅およそ150から180cm程度にとりつける。この「上り母屋」に、直接丈夫な野地板(図6)3を貼り、この上に発泡スチロール系の断熱材(図6)4を貼って、これに熱伝導板(図6)5、6を貼る。こうすることで垂木による熱伝導板工事の手間を省くことができる。上り母屋方式の場合、横樋は無い方が良いが、横樋を付けたままでも施工できる。
またこの上り母屋方式の場合、工場で屋根材を作ることもできる。この屋根材は、根太クラスの材で180cm×30から50cmメートル程度の枠(上り母屋の間隔に合わせて)を作り、この枠に野地板及び断熱材を装着し、それに熱伝導板を張り付けて、一つのブロックを作る。これを建設現場に運び、現場ではその屋根ブロックを上り母屋(図6)2に打ち付けて、ノックダウン方式で屋根を施工することができる。工事は従来の作業より簡単且つスピーディに施工することができる。
The skeleton of the current residential roof is constructed by a method in which rafters are struck at an angle perpendicular to the main building and a field board is laid horizontally on it. When constructing a heat conductive plate on a roof of this structure, the heat conductive plate construction becomes complicated and time-consuming due to the rafters, and in order to simplify this, it is advisable to use the "upstream purlin method " .
In the case of the "upstream purlin method", instead of using rafters, the "upstream purlin" is constructed on the conventional purlin, and this is attached in the same direction as the conventional rafters with a width of about 150 to 180 cm. A strong field board (Fig. 6) 3 is directly pasted on this "upstream purlin", a styrofoam-based heat insulating material (Fig. 6) 4 is pasted on it, and heat conductive boards (Fig. 6) 5 and 6 are attached to this. stick. By doing so, it is possible to save the trouble of heat conduction board construction by rafters. In the case of the ascending purlin method, it is better not to have a horizontal trough, but it can be constructed even with the horizontal trough attached.
In addition, in the case of this ascending purlin method, roofing materials can be made at the factory. For this roofing material, make a frame of about 180 cm x 30 to 50 cm (according to the distance between the ascending purlins) from a joist class material, attach a field board and heat insulating material to this frame, and attach a heat conductive board to it. , Make one block. This can be carried to a construction site, where the roof block can be struck against the ascending purlin (Fig. 6) 2 to construct the roof by a knockdown method . The construction can be done more easily and speedily than the conventional work.

熱伝導板の上に防水屋根を張る。一般にはトタン屋根防水が多いが、熱伝導板の上の防水屋根は、シート防水が良い。熱伝導板と屋根のシートは密着しているので、熱を効率よく融雪に利用することができ、また熱伝導板の屋根上部分の結露を防止することができる。シート防水屋根は工事費が高いとされているが、その後のメンテナンスを考えると必ずしも高いとは言えない。シートの修理は簡単で水漏れの穴が開いた場合は、そこだけ貼り付けて簡単に溶接修理できる。これに比べトタン屋根の場合は水漏れ箇所の確認が難しく、水漏れした場合は簡単に修理できないという難点がある。 Put a waterproof roof on the heat conductive plate. Generally, tin roof waterproofing is common, but the waterproof roof on the heat conductive plate is good for sheet waterproofing. Since the heat conductive plate and the roof sheet are in close contact with each other, heat can be efficiently used for melting snow, and dew condensation on the roof portion of the heat conductive plate can be prevented. It is said that the construction cost of a waterproof roof is high, but it is not always high considering the subsequent maintenance. Repairing the sheet is easy, and if there is a hole for water leakage, you can simply paste it and repair it by welding. On the other hand, in the case of galvanized iron roof, it is difficult to confirm the leaked part, and if water leaks, it cannot be easily repaired.

熱伝導板を直接防水屋根とするのは、できないことはないが、無理がある。コーキングの目地が多く完全防水は難しいという防水の問題、外気が氷点下になって屋根にまだ積雪がない場合は、熱伝導板が直接寒気に触れることになり、屋根裏が冷えて家の中が冷えることも考えられる。また、屋根裏結露の問題が起こることも考えられる。さらに熱伝導板が腐食した場合の修理は大がかりな工事になるので、熱伝導板は上向き展張、下向き展張に係わらず、外気に触れないよう施工したほうが良い。熱伝導板に関するこれらの問題は、今後、熱伝導板の施工実績、その効果などを勘案して、研鑽されていくべき課題である。 It is possible, but impossible, to use the heat conductive plate directly as a waterproof roof. The problem of waterproofing is that there are many caulking joints and it is difficult to completely waterproof, and if the outside air is below freezing and there is no snow on the roof yet, the heat conductive plate will come into direct contact with the cold air, and the attic will cool and the inside of the house will cool. It is also possible. It is also possible that the problem of dew condensation on the attic may occur. Furthermore, if the heat conductive plate is corroded, repairing it will be a large-scale work, so it is better to install the heat conductive plate so that it does not come into contact with the outside air regardless of whether it is extended upward or downward. These problems related to the heat conductive plate are issues that should be studied in consideration of the construction results of the heat conductive plate and their effects.

熱伝導板によるスガ漏れ防止の施工法を説明する。
現今、長尺トタン屋根の場合、トタンの幅を40cm又は45cmに造り、これをハゼ方式により繋いで大きな屋根として施工している。従って、ハゼの下にはかならず垂木があるとは限らない。建物を作る大工仕事と屋根トタンの仕事は異なった事業者が担当しているので、このような工法になっている。
横樋部分の軒天結氷防止は、これまでに述べてきた熱伝導板を、横樋から50cm程度の幅で施工すれば防止できるが、この熱伝導板ではハゼ上部までの結氷防止はできない。ハゼ部分凍結防止のために、熱伝導板を施工する場合は、次のようにすればよい。
Explain the construction method to prevent suga leakage by using a heat conductive plateTo.
Currently, in the case of a long galvanized iron roof, the width of the galvanized iron is made to 40 cm or 45 cm, and this is connected by a goby method to construct a large roof. Therefore, there is not always a rafter under the goby. This is the method of construction because different companies are in charge of the carpentry work to make the building and the work of the roof tin.
The prevention of freezing on the eaves of the horizontal trough can be prevented by constructing the heat conductive plate described above with a width of about 50 cm from the horizontal trough, but this heat conductive plate cannot prevent freezing up to the upper part of the goby. When constructing a heat conductive plate to prevent the goby part from freezing, the following may be used.

この場合は、屋根トタンのハゼ幅と同じ幅、即ち一枚の加工した屋根トタンの幅と同じ幅で垂木を両側に並べて置き、この上に同じ幅の野地板、断熱材を貼る。従来野地板は垂木に対して横張であるが、この熱伝導板によるスガ漏れ防止工事の場合は、縦張りにする。トタンのハゼ間隔に合わせた2本の垂木、その幅に合わせて野地板、断熱材を貼り付けて一つの「ブロック」を作る。断熱材は野地板の上下両面に貼ることができて、断熱性の高いものとすることができる。このブロックは工場で生産して、現場ではノックダウン工法で施工することもできる。
このブロックを二つ合わせて、その合わせた所から熱伝導板を屋根裏から屋根上に出すのである。屋根上に出した熱伝導板は10から15cm程度として、右か左、トタンハゼの位置に合致する方向に曲げる。これにより、ハゼ部分を温めて凍結を防止する。この工法を順次繰り返して、ハゼ凍結防止の屋根を構築する。
In this case, rafters are placed side by side on both sides with the same width as the goby width of the roof tin, that is, the width of one processed roof tin, and a field board and heat insulating material of the same width are pasted on this. Conventionally, the field board is horizontally stretched with respect to the rafters, but in the case of the work to prevent suga leakage by this heat conduction board, it is stretched vertically. Make one "block" by pasting two rafters according to the distance between the galvanized irons, a field board and a heat insulating material according to the width. The heat insulating material can be attached to both the upper and lower sides of the field board, and can have high heat insulating properties. This block can also be produced at the factory and constructed on-site by the knockdown method.
Two of these blocks are put together, and the heat conductive plate is put out from the attic to the roof from the place where they are put together. The heat conductive plate placed on the roof should be about 10 to 15 cm, and be bent to the right or left in the direction that matches the position of the totanhaze. This warms the goby portion and prevents freezing. This method is repeated in sequence to build a roof to prevent goby freezing.

屋根裏に出た部分は、30cm程度あれば良い。これはまだ未実験なので、確定的には言えないが、融雪熱伝導板の結果から推して、十分に作動するものと判断する。
また、冬季の降雨時や思いがけない暖気で、何らかの原因でハゼ上に水がプール状に溜まりスガ漏れが予想され、このスガ漏れ防止に急を要する場合、又は横樋に寒気が入り込み、軒天結氷が想定される場合は。これらの氷を溶融するために、屋根裏に熱を加えるとよい。
The part protruding from the attic should be about 30 cm. Since this has not been tested yet, it cannot be said for sure, but it is judged that it works sufficiently based on the results of the snowmelt heat conduction plate.
In addition, when it rains in winter or unexpected warm air, water collects in a pool on the goby for some reason and it is expected that there will be a leak of suga. If is expected. Heat should be applied to the attic to melt these ice pieces.

熱伝導板の造りは、屋根上10cm、屋根の下30cm、屋根材の部分が10cmならば、幅50cmの鋼板を、10cmのところで右か左、必要な方向に直角に曲げる。それから母屋の当たるところを切り抜けばよい。長さは長くてもいいが、あまり長いと作業性が良くないので、1.8mから2.7m程度がよいと思われる。またトタン材は幅90cmであるから、これを半割して45cmで使用すると、経済的である。この場合は、屋根裏が25cm程度になる。この熱伝導板を現場で必要な長さに整えて使用すればよい。
このように熱伝導板を施工すると、屋根トタンのコーキングが機能しなくなっても、スガ漏れは非常に少ないので安心して生活することができる。
熱伝導板によるスガ漏れ防止の工事は、無落雪屋根を主体に考えているが、傾斜のある落雪屋根にも応用することもできる。
To make the heat conductive plate, if the roof is 10 cm above the roof, 30 cm below the roof, and the roofing material is 10 cm, a steel plate with a width of 50 cm is bent at a right angle to the right or left at 10 cm in the required direction. Then you just have to get through the place where the purlin hits. The length may be long, but if it is too long, workability is not good, so it seems that 1.8 m to 2.7 m is good. Further, since the galvanized iron material has a width of 90 cm, it is economical to divide it in half and use it at 45 cm. In this case, the attic is about 25 cm. This heat conductive plate may be adjusted to the required length in the field and used.
When the heat conductive plate is installed in this way, even if the caulking of the roof galvanized iron does not work, there is very little leakage of suga, so you can live with peace of mind.
The work to prevent leakage of suga with a heat conductive plate is mainly considered for snow-free roofs, but it can also be applied to sloping snow-fall roofs.

スガ漏れ防止のための熱伝導板は、屋根上の幅員は10から15cm程度であるが、この熱伝導板を幅広として屋根全面に展張すると、熱伝導板を縦に入れる縦貼り融雪屋根の施工となる。熱の移動形態から考えると、熱伝導板は横長の施工、即ち横張工法が良いと思われるが、工事の都合で縦貼り施工の必要がある場合は、このように施工することができる。両工法とも経費に大きな変わりはない。 The width of the heat conductive plate on the roof to prevent suga leakage is about 10 to 15 cm, but if this heat conductive plate is widened and spread over the entire roof, the construction of a vertically pasted snow melting roof in which the heat conductive plate is vertically inserted. It becomes. Considering the form of heat transfer, it seems that the heat conduction plate should be constructed horizontally, that is, the horizontal stretching method, but if it is necessary to perform vertical pasting for the convenience of construction, it can be constructed in this way. There is no big difference in cost between both methods.

本発明の実証実験として我が家の下屋(1階部分の屋根24平方メートル)を、改造しようと考え、工務店と交渉したが、引き受け手がなかったので、やむを得ず妻と二人で改造工事を行った。その概要を記述する。
我が家の形状は東西に長く、西側に65平方メートルの2階の屋根がある。東側に面積約25平方メートルの下屋がある。この下屋部分を、上り母屋方式に改造して、熱伝導板を取り付け、シート防水で仕上げた。
下屋は、2階部分屋根の南東にあり、ちょうど冬の北西季節風の風下に位置している。それで吹雪になると、1階部分から吹き下ろされた雪が、2メートルほどにもなっていた。また下屋の回り3方向には、上面幅が60cmのパラペットが付いており、これが屋根の面積を広めて積雪量を多くしていたため、最近の異常気象対策も兼ねて、このパラペットを撤去した。
As a demonstration experiment of the present invention, I thought about remodeling the lower house (24 square meters of the roof of the first floor) of my house and negotiated with the construction company, but since there was no underwriter, I had to do the remodeling work with my wife. rice field. Describe the outline.
The shape of our house is long from east to west, and there is a 65m2 second-floor roof on the west side. On the east side, there is a lower house with an area of about 25 square meters. This lower part was remodeled into an ascending purlin system, a heat conductive plate was attached, and the sheet was waterproofed.
The lower house is located to the southeast of the second-floor roof, just leeward of the northwest monsoon in winter. Then, when it became a snowstorm, the snow that was blown down from the first floor was about 2 meters. In addition, there are parapets with a top width of 60 cm in three directions around the lower house, which widened the roof area and increased the amount of snow, so this parapet was removed as a countermeasure against recent abnormal weather. ..

改修工事は、パラペット、屋根トタン、断熱材、野地板、垂木及び横樋を撤去して、母屋の上にもう一段母屋を設けて「上り母屋」とした。屋根の勾配は従来のままで、谷部分は両方の屋根の突き合わせとした。また、東即ち竪樋の方向に2/100の勾配を付けて、水が竪樋方向に集中して流れるように施工した。
上り母屋の間隔は、両端が55cm、中は120cm×2となった。熱伝導板工事は中央部分、即ち屋根の谷部分から始めた。野地板は2×10インチの、いわゆるツーバイの材を使用した。屋根の谷部分を中心として、両側にそれぞれ2枚のツーバイ材、(図6)3(2枚の材を1ブロックで表示している)を打ち付け、同じ大きさの発泡ウレタン40ミリ(図6)4の断熱材を重ねた。ツーバイ材の中央即ち谷の中央から2枚の熱伝導板(図6)5、6を出して、これを必要な長さでカットした。この熱伝導板を右と左に折り曲げて、谷の部分をコーキング材で塞いだ。
工事は(図7)左側のように熱伝導板を上向きに折り曲げて施工した。野地板2枚ごと、即ち48cm間隔で熱伝導板を張り付けた。熱伝導板(図6)5,6の屋根裏部分は約50cmになった。
この伝道板(図6)5,6の下部に結露水排出のために、50ミリの塩ビ管を半割してぶら下げ、この半割管に結露水が流れ落ちるように施工し、1/50の勾配を付け、各熱伝導板の下のパイプを横管の本管に落ちるようにして、結露水を径20ミリのパイプで流れ落ちるように工作した。このバイブの先を地下室に導き、結露水が落ちて来たら視認できるようし、その量も計測できるように工作した。 本来は、この排水管を屋根竪樋に接続する。
For the renovation work, the parapet, roof tin, heat insulating material, field board, rafters and horizontal troughs were removed, and another purlin was set up on the purlin to make it an "up purlin". The slope of the roof is the same as before, and the valley part is the butting of both roofs. Also, make a 2/100 gradient in the east, that is, in the direction of the gutter so that the water flows concentrated in the direction of the gutter.Constructionbottom.
The distance between the purlins was 55 cm at both ends and 120 cm x 2 inside. The heat conduction board construction started from the central part, that is, the valley part of the roof. The field board used a so-called two-bye material of 2 x 10 inches. Centering on the valley part of the roof, two two-by materials, (Fig. 6) 3 (two materials are shown in one block) are struck on both sides, and urethane foam of the same size is 40 mm (Fig. 6). ) The heat insulating material of 4 was piled up. Two heat conductive plates (Fig. 6) 5 and 6 were taken out from the center of the two-by material, that is, the center of the valley, and cut to the required length. This heat conductive plate was bent to the right and left, and the valley was covered with caulking material.
The work was carried out by bending the heat conductive plate upward as shown on the left side (Fig. 7). The heat conductive plates were attached to every two field plates, that is, at intervals of 48 cm. The attic portion of the heat conductive plate (Fig. 6) 5 and 6 became about 50 cm.
A 50 mm PVC pipe was split in half and hung on the lower part of this mission plate (Fig. 6) 5 and 6 for the discharge of dew condensation water.condensationIt was constructed so that water would flow down, with a gradient of 1/50, and the pipe under each heat conduction plate would fall into the main pipe of the horizontal pipe, and the dew condensation water would flow down with a pipe with a diameter of 20 mm. .. The tip of this vibe was guided to the basement so that it could be visually recognized when the dew condensation water fell, and the amount was also measured. Originally, this drainage pipe is connected to the roof gutter.

屋根裏の滞留熱に加えて、他の熱を屋根裏に入れる場合、熱を入れる付近の屋根部が熱を多く受け、屋根全体が平均に温度が行き渡らない可能性がある。即ち屋根裏の上部は熱伝導板で仕切られているので、空気の移動が制約されると考えられる。それで、付加する熱が屋根裏で均一に広がるように、一階天井の上に幅30cm高さ10cmのダクトを作って、これで熱を誘導した。このダクトの上面に12ミリの穴を多数あけ、このダクトを屋根裏の中ほどに、屋根の南北方向で取り付けた。この上にグラスウールを掛けて屋根部全体に熱が放散されるように施工した。 When other heat is put into the attic in addition to the accumulated heat of the attic, the roof part near where the heat is put receives a lot of heat, and the temperature of the entire roof may not be spread evenly. That is, since the upper part of the attic is partitioned by a heat conductive plate, it is considered that the movement of air is restricted. Therefore, a duct with a width of 30 cm and a height of 10 cm was made on the ceiling on the first floor so that the heat to be applied spreads evenly in the attic, and the heat was induced by this duct. A number of 12 mm holes were drilled in the upper surface of this duct, and this duct was installed in the middle of the attic in the north-south direction of the roof. Glass wool was hung on this to dissipate heat to the entire roof.

主要部分である熱伝導板の工事は、次のように施工した。まず、幅90cmのガリバリウム板を110cmの長さに切っておき、これを加工して取りつけた。加工の方法は、熱伝導板の屋根上に出る部分を計測し、それに合わせて110cmに切ってあるトタンに 直角に曲げるところに横線を引き。次に、母屋に合わせて伝導板を切り抜く印をつけた。
それから鋼板加工のために、柱材の一角に50mmの鉄製のアングルをとりつけ、これを適当な台に固定して、作業台を作った。この上に熱伝導板をのせて、あらかじめ付けて置いた折り曲げ線から、金敷でたたいて折り曲げた。次にトタンハサミで、印のつけてあった母屋部分を切り取った。場合により母屋部分は下まで切込を入れて、施工時屋根上から伝導板を差し込んだ。
The construction of the heat conduction plate, which is the main part, was carried out as follows. First, a gulliverium plate having a width of 90 cm was cut into a length of 110 cm, and this was processed and attached. The processing method is to measure the part of the heat conductive plate that appears on the roof and cut it into galvanized iron that is cut to 110 cm. Draw a horizontal line where you bend at a right angle. Next, I made a mark to cut out the conduction plate according to the purlin.
Then, for steel plate processing, a 50 mm iron angle was attached to one corner of the pillar material, and this was fixed to an appropriate table to make a workbench. A heat conductive plate was placed on this, and it was bent by hitting it with a metal floor from the bending line that had been attached in advance. Next, with Totan scissors, I cut off the marked purlin. In some cases, the purlin part was cut to the bottom, and the conduction plate was inserted from the roof at the time of construction.

(図7)の9は熱伝導板を屋根水の流れに対し、逆目に貼付する例である。この方式は屋根水の流れに逆目であるから、防水効果は期待できない。もし防水効果を持たせるなら、熱伝導板の継ぎ目を全部コーキングで塞ぐこととなり、これは大変な作業であって、完璧を期待するのは難しい。しかし熱伝導性は良いという特徴がある。
熱伝導板(図7)6に続き、2段目も2枚の2×10の材(図7)3aを置き、その上に発泡ウレタンの断熱材(図7)4aを張った。続いて熱伝導板(図7)9をこれらの材の上側から入れて、屋根上に出た部分を屋根上部に向けに曲げて貼り付けた。このように貼付すると屋根の流水に対し逆目となる。今回は初めての工事であったので、熱伝導が少しでも活発になるように、熱伝導板を上向けに曲げて施工した。熱伝導板を2段目の(図7)9と同じように、更に3段、4段と順次施工して工事を終了した。また、熱伝導板を貼る場合、熱伝導板が野地板に当たる両面にコーキング材を充填した。
今回の実験屋根は、熱伝導板を上向けに曲げる方法で施工した。熱伝導板の間隔は約50cmとした。笠木の部分は、笠木の上まで熱伝導板を被せて止めた。
9 in FIG. 7 is an example in which the heat conductive plate is attached to the opposite side of the roof water flow. Since this method is against the flow of roof water, no waterproof effect can be expected. If it were to be waterproof, all the seams of the heat transfer plate would be closed with caulking, which is a daunting task and it is difficult to expect perfection. However, it has the characteristic of good thermal conductivity.
Following the heat conductive plate (FIG. 7) 6, two 2 × 10 lumbers (FIG. 7) 3a were placed in the second stage, and a urethane foam heat insulating material (FIG. 7) 4a was placed on the two 2 × 10 lumbers (FIG. 7). Subsequently, the heat conductive plate (FIG. 7) 9 was inserted from the upper side of these materials, and the portion protruding on the roof was bent and attached toward the upper part of the roof. If it is attached in this way, it will be the opposite of the running water on the roof. Since this was the first construction work, the heat conduction plate was bent upward so that the heat conduction would be as active as possible. Similar to the second stage (Fig. 7) 9, the heat conduction plate was further constructed in the third and fourth stages, and the construction was completed. In addition, when the heat conductive plate was attached, the caulking material was filled on both sides of the heat conductive plate where the heat conductive plate hits the field board.
The experimental roof this time was constructed by bending the heat conductive plate upward. The distance between the heat conductive plates was about 50 cm. The part of the cap tree was stopped by covering the top of the cap tree with a heat conductive plate.

本工事計画時は、結露水が落ちないと判断していたが、以後この方式の屋根を施工する方が安心して施工できるように、ひな形として万全の方法で結露対策を施工した。
熱伝導板の工事が1段終わると、熱伝導板の屋根裏部分の下に、50mmの塩ビ管を半割にして 樋をつくり、熱伝導板を中に入れるようにしてぶら下げる。下げる方法は塩ビ管及び熱伝導板に、グラインダーなどで幅30mmくらいの細い横長の穴を開け、この穴に入る程度の幅にトタンを切って留め具を作る。これを伝導板の穴に通し、次に両端を塩ビ管の両側の穴に通して、その留め具のトタンを塩ビ管の両側で上方に曲げてとめた。
At the time of this construction plan, it was judged that dew condensation water would not fall, but after that, dew condensation countermeasures were implemented as a model so that it would be safer to construct this type of roof.
When the construction of the heat conductive plate is completed by one step, the 50 mm PVC pipe is split in half under the attic of the heat conductive plate. Make a gutter and hang it with a heat conductive plate inside. The method of lowering is to make a thin horizontally long hole with a width of about 30 mm in the PVC pipe and the heat conductive plate, and cut the galvanized iron to a width enough to fit in this hole to make a fastener. This was passed through the holes in the conductive plate, then both ends were passed through the holes on both sides of the PVC pipe, and the galvanized iron of the fastener was bent upward on both sides of the PVC pipe and fastened.

(図7)の右側部分は、屋根水の流れに順目になるように熱伝導板を施工した参考図である。このように施工すると、屋根水の流れに順目になり、熱伝導板だけでも一定の防水効果を持たせることができる。この施工は、熱伝導板が下向けに伸びるのであるから、屋根勾配がきついほど、熱の上昇による伝導特性は悪くなる。
最近の無落雪屋根の勾配は小さくなっており、 また、 熱伝導板による屋根積雪の融雪状況は、熱伝導板が屋根上に出た点が、線状に早く溶ける状況であるから、熱伝導板の間隔を狭くして施工すれば融雪効率を高め、屋根流水に順目に貼っても、良い結果が得られるものと判断する。
The right side portion of (FIG. 7) is a reference diagram in which a heat conductive plate is installed so as to be in order with the flow of roof water. When constructed in this way, the flow of roof water will be in order, and the heat conductive plate alone can have a certain waterproof effect. In this construction, the heat conductive plate extends downward, so the steeper the roof slope, the worse the conduction characteristics due to the rise in heat.
The slope of the snowless roof has become smaller these days, also, The snow melting situation of the roof snow by the heat conductive plate is the situation where the point where the heat conductive plate comes out on the roof melts quickly in a line, so if the space between the heat conductive plates is narrowed, the snow melting efficiency will be improved. It is judged that good results can be obtained even if it is applied to the roof running water in order.

屋根の防水工事は、屋根全体に貼った熱伝導板の上に、シート防水を施工した。
この工事は屋根工事専門店に依頼した。
For roof waterproofing work, sheet waterproofing was applied on the heat conductive plate attached to the entire roof.
This work was commissioned to a roof construction shop.

このようにして伝導板を50cm(正確には20インチ)間隔で施工したところ、屋根雪は伝導板が屋根裏から屋根上に出た所が早く溶け、屋根上積雪40cm程度になると、溶融状態は耕した畑に種をまく大きな畝を作ったような感じで溶けた。横から見るとミニチュアの段々畑のようでもあった。夜間に降雪があり、翌朝屋根の雪面を見るとわずか乍ら畝状のへこみが見られた。屋根雪は時間と共に全体的に溶けた。溶ける度合いは、陽光、気温、風、積雪の量などにより影響を受けるので、数値的に示すのは難がある。また熱伝導板からの結露水は見られなかった。
外気温がマイナス10度程度の時でも、積雪30cm程度の雪を掘って屋根との接面を調べると、屋根近くの雪は溶けて多くの水分を含み、握って絞ると水がしたたる程であった。積雪がある程度あると、昼夜にかかわりなく積雪は溶けていることが解った。
これにより、熱伝導板方式で、屋根上の積雪を溶かすことができることを確認した。また、積雪が10cm程度では、前の日に溶けていた屋根との接面は、翌朝は屋根に凍り付いていた。しかし、このような凍り付きも、太陽の光を受け少し暖かくなると氷の下から溶けて流れ出すといった程度の凍結で、トタン屋根のハゼを超えて漏水するような結氷には至らなかった。これにより、たとえ凍結で屋根に結氷しても、簡単に溶けて問題が起きないことが解った。また、凍結した上に、新雪が一定量積もると、夜中でもこの氷が溶けることが解った。
When the conduction plates were constructed at intervals of 50 cm (20 inches to be exact) in this way, the roof snow melted quickly when the conduction plates came out from the attic to the roof, and when the snow cover on the roof reached about 40 cm, the molten state was changed. It melted like a big ridge sowing seeds in a cultivated field. Seen from the side, it looked like a miniature terraced field. There was snowfall at night, and when I looked at the snow surface of the roof the next morning, I saw a slight ridge-shaped dent. The roof snow melted overall over time. The degree of melting is affected by sunlight, temperature, wind, amount of snow, etc., so it is difficult to indicate it numerically. No condensation water was found from the heat conductive plate.
Even when the outside temperature is about -10 degrees Celsius, if you dig up about 30 cm of snow and examine the contact surface with the roof, the snow near the roof melts and contains a lot of water, and when you squeeze it, the water drips. there were. It turned out that when there was a certain amount of snow, the snow melted day and night.
As a result, it was confirmed that the snow cover on the roof can be melted by the heat conduction plate method. In addition, when the snow cover was about 10 cm, the contact surface with the roof that had melted the previous day was frozen on the roof the next morning. However, even with such freezing, when it became a little warmer due to the sunlight, it melted from under the ice and flowed out, and it did not lead to freezing that leaked beyond the galvanized iron roof goby. From this, it was found that even if the roof freezes due to freezing, it melts easily and does not cause any problems. It was also found that the ice melts even at night when a certain amount of fresh snow accumulates on the frozen surface.

実験的に熱伝導板を施工した屋根は、2020年2月29日現在、雪はほとんど溶けていて、東端のほうにわずかに残っているだけである。隣近所の同じような環境にある屋根には、50cm以上の積雪がある。両者を対比すると、熱伝導板の効果が確かなものであることが解る。また、昨年(熱伝導板工事前)は窓の外にうずたかく雪が積もり、外の景色は見えなかったが、今年(熱伝導板工事後)は夏と同じように悠々と見渡せる状態であった。 As of February 29, 2020, the roof on which the heat conductive plate was experimentally constructed has almost melted snow, and only a small amount remains toward the eastern end. There is more than 50 cm of snow on the roof in a similar environment in the neighborhood. Comparing the two, it can be seen that the effect of the heat conductive plate is certain. Last year (before the construction of the heat conductive plate), snow piled up outside the window and I couldn't see the outside scenery, but this year (after the construction of the heat conductive plate), I could see it as comfortably as in the summer.

実験屋根の中央付近に降雪量の測定に備えて、胴縁で作ったゲージを立てた。このゲージの台として25cm長の10.5cm角を使用した。この台の所は融雪しないので、固くなった積雪が残った。この積雪が雪柱のようになって周りの積雪を支え、ゲージ棒を中心にして、径50cm位が丘のようになった。台付近の下部は、幅20cm程度は雪が溶けて空洞になった。こうなると積雪はなかなか溶けず最後までのこった。このことから、屋根の上に熱の通りが良くないもの、例えば木製のものを置くと、それが小さなものでも融雪に影響をきたすことが解った。 A gauge made from the furring strip was erected near the center of the experimental roof in preparation for measuring the amount of snowfall. A 25 cm long 10.5 cm square was used as the base for this gauge. Since the snow did not melt at this platform, hardened snow remained. This snow cover became like a snow pillar and supported the surrounding snow cover, and a radius of about 50 cm became like a hill around the gauge rod. At the bottom near the table, the snow melted and became hollow with a width of about 20 cm. When this happened, the snow did not melt easily and remained until the end. From this, it was found that if a thing with poor heat passage, such as a wooden one, is placed on the roof, even a small one will affect the snowmelt.

実験結果から熱伝導板のさらなる改良をすべきと考えた。熱伝導板の間隔は、50cmより狭くその半分程度が良いこと。そうすれば、屋根裏部分の集熱部も短くても良い。屋根裏に出る部分を短くできて、施工も容易である。だが短すぎると、集熱板でなくて結露板になる可能性もあり、十分な研究を要する。
熱伝導板の施工幅を狭くすると、畝状の溝も狭くなり、良く溶けるので、屋根上で上方に向かう熱伝導板の熱移動を期待しなくても良くなる。それで熱伝導板を屋根水の流れに対し、順目に貼っても問題がないと確認した。この施工法が現在の住宅工事で熱伝導板工法を採用する場合には、最適と思われる。
下から2段目の熱伝導板を屋根上に出た所から、下方に貼張することにより、屋根流水に対し順目に貼ることができて、熱伝導板に防水機能を持たせやすくなる。熱伝導板には防水機能は期待していないが、熱伝導板に防水機能があれば工事中に、にわか雨が降った時、或は作業中夜間の屋根防水養生作業が容易となるという利点がある。
From the experimental results, we thought that the heat conduction plate should be further improved. The distance between the heat conductive plates should be narrower than 50 cm and about half of that. Then, the heat collecting portion of the attic portion may be shortened. The part that appears in the attic can be shortened, and construction is easy. However, if it is too short, it may become a condensation plate instead of a heat collecting plate, so sufficient research is required.
When the construction width of the heat conductive plate is narrowed, the ridge-shaped groove is also narrowed and melts well, so that it is not necessary to expect heat transfer of the heat conductive plate upward on the roof. Therefore, it was confirmed that there is no problem even if the heat conductive plate is attached in order to the flow of roof water. This construction method seems to be optimal when the heat conduction plate construction method is adopted in the current housing construction.
By pasting the heat conductive plate on the second stage from the bottom from the place on the roof to the bottom, it can be pasted in order against the running water of the roof, and it becomes easier to give the heat conductive plate a waterproof function. .. We do not expect the heat conductive plate to have a waterproof function, but if the heat conductive plate has a waterproof function, it has the advantage of facilitating roof waterproofing and curing work during construction, when it rains suddenly, or during work at night. be.

また、笠木にも熱伝導板を掛けたが、顕著な効果はなかった。このことから笠木は幅が狭い方が良いと判断した。現在の笠木は屋根の見栄えのためか、幅0cmくらいで堂々と仕上げられている。これに降雪が乗ると40から50cmも積もる。この積雪を少なくするために、笠木は最小限の幅に抑えるべきと判断した。できれば笠木の上面をテーパー仕上げにして、雪が乗らないような工夫も、良いのではないかと考えた。また笠木にテーパーを付けて置けば、雪庇の切り落としにも効果が見込める。 A heat conductive plate was also hung on Kasagi, but there was no significant effect. From this, it was decided that Kasagi should be narrower. The current Kasagi is dignifiedly finished with a width of about 30 cm, probably because of the appearance of the roof. If it snows, it will pile up to 40 to 50 cm. In order to reduce this snowfall, we decided that Kasagi should be kept to a minimum width. If possible, I thought it would be a good idea to make the upper surface of the cap tree tapered so that snow would not get on it. Also, if you put a taper on the cap tree, you can expect an effect to cut off the cornice.

また、屋根裏全面に熱伝導板が何段も出ると、或る熱伝導板と隣の熱伝導板との間に、小部屋が出来たような状態になるため、屋根裏下部から屋根裏の高い部分への空気の移動は制限される。すなわち、小部屋から小部屋の空気の移動は難しくなる、このために湿度を含んだ比較的温度の高い空気が屋根裏の高い部分への移動は制限される。これは、屋根の高い部分に施工されている、湿度排出パイプの方向に空気が移動することができない状態であるから、この移動を助けるために、熱伝導板の屋根裏上部に、空気流通のための穴あけ加工をしておくとよい。
(図8)11に示すように、熱伝導板の天井裏上部に、穴を開けておく必要がある。穴の大きさは、横1cm縦3cmもあれば十分と思う(請求項6)。
Also, if there are many steps of heat conductive plates on the entire attic, it will be like a small room between a certain heat conductive plate and the adjacent heat conductive plate, so the part from the lower part of the attic to the high part of the attic. The movement of air to is restricted. That is, the movement of air from the small room to the small room becomes difficult, which limits the movement of relatively hot air containing humidity to the high part of the attic. This is a state in which air cannot move in the direction of the humidity discharge pipe, which is installed in the high part of the roof. It is good to make a hole in.
(FIG. 8) As shown in 11, it is necessary to make a hole in the upper part of the ceiling of the heat conductive plate. I think that the size of the hole should be 1 cm wide and 3 cm long (claim 6).

今年は雪が少なくて良いデータが出来なかった。しかし雪が確実に溶けることは確認した。
実験屋根上の積雪と、庭の積雪を実測比較して、屋根積雪の溶融状態を観察した。屋根の上の積雪測定は、屋根傾斜部分の中央に物差しを差し込んで実測した。庭積雪の測定は、庭の中央付近に10cm間隔の目盛を付けた胴縁を立てて、その目盛により確認した。屋根上の融雪は屋根全面が平均に溶けず、2階壁の近くが太陽の反射もあって、早く溶ける。それで積雪が25cm程度になると、屋根上の適当な点を数点測定して、平均値を予測して、これを積雪量とした。
両者の積雪量は、非常に異なっている。屋根上は雪が溶けやすいという条件にはあるのかもしれないが、陽光による溶融以上に両曲線の間隔は、降雪量と共にだんだんと広くなった。屋根積雪の平均値は、積雪二十数cmでほぼ横這いである。これに対し庭の積雪は降雪に比例して、だんだんと上向きに推移した。2020年3月5日両曲線の積雪差は70cm以上になった。このことから、熱伝導板により屋根雪が溶けたことを、確実に読み取ることができる。このように屋根積雪は、地上の積雪に比べて少なくなっているが、従来は、風下の下屋部分に2階屋根から吹き下ろされる雪が積もって、下屋上の積雪が地上の積雪より多かったのである。
There was little snow this year and I couldn't get good data. However, I confirmed that the snow would surely melt.
The melted state of the roof snow was observed by actually comparing the snow on the experimental roof with the snow in the garden. The snow cover on the roof was measured by inserting a ruler in the center of the sloped part of the roof. The measurement of the snow cover in the garden was confirmed by setting up a furring strip with a scale of 10 cm intervals near the center of the garden and using the scale. The snowmelt on the roof does not melt evenly on the entire roof, and it melts quickly near the second floor wall due to the reflection of the sun. Then, when the snow cover reached about 25 cm, several appropriate points on the roof were measured, the average value was predicted, and this was used as the amount of snow cover.
The amount of snow in both is very different. There may be a condition that the snow melts easily on the roof, but the distance between the two curves became wider and wider with the amount of snowfall than the melting by the sunlight. The average value of roof snow cover is about 20 cm, which is almost flat. On the other hand, the amount of snow in the garden gradually increased in proportion to the amount of snowfall. On March 5, 2020, the difference in snow cover between the two curves was 70 cm or more. From this, it can be reliably read that the roof snow has melted due to the heat conductive plate. In this way, the amount of snow on the roof is less than that on the ground, but in the past, the snow blown down from the roof on the second floor was piled up on the leeward roof, and the snow on the roof was more than the snow on the ground. It is.

外気温度がマイナス5度になると、積雪が10cm程度では雪の下は凍っている。しかし積雪が30cm以上あると、マイナス10度でも雪の下部即ち屋根に接している部分は溶けている。石狩における令和2年の最低気温はマイナス13.4度であり、この時屋根の積雪は33cmであった。積雪を掘り返して見ると、屋根との接面は溶けていた。このことは、積雪が多いと溶融率は上がり、積雪が少ないと溶融率は下がることを示している。また積雪が多い時期は低温の時節でもあるので、生活の暖房も強く入れる、この暖房熱と積雪の断熱作用によって、屋根上の積雪の溶融が進むのである。積雪量、外気温度、暖房熱量の相互関係で、溶け方が変わり、外気温度が低く、積雪が少なくなると積雪の溶融率が下がる。よって、積雪と外気温度との相関関係で残雪の量が決まる。それは、積雪量と温度の自然作用であるが、最も影響を受けるのは、積雪量である。積雪が多いと外気温にかかわらず溶融率は上がり、積雪が少ないと溶融率は下がる。従って、或る外気温では、それに比例した積雪が屋根上に残る、即ち、外気温が低いほど屋根上の溶け残りの雪量は多くなる。熱伝導板の融雪では、外気が凍結点以下であると、積雪が零になるまでは溶けない。この残雪が家の断熱効果を高める。このように、熱伝導板による融雪は、屋根の積雪量と外気温との関係によって屋根の残雪量を自動的に調整する効果が期待できる。 When the outside air temperature reaches -5 degrees Celsius, the snow is frozen under the snow when the snow cover is about 10 cm. However, if there is more than 30 cm of snow, the lower part of the snow, that is, the part in contact with the roof, is melted even at -10 degrees. The lowest temperature in Ishikari in 2nd year of Reiwa was -13.4 degrees Celsius, and the snow on the roof was 33 cm at this time. When I dug up the snow, the contact surface with the roof had melted. This indicates that the melting rate increases when there is a lot of snow, and the melting rate decreases when there is little snow. In addition, since the period when there is a lot of snow is also a low temperature period, the heating of daily life is strongly put in, and the heat of heating and the heat insulating action of the snow promote the melting of the snow on the roof. The melting method changes depending on the interrelationship between the amount of snow, the temperature of the outside air, and the amount of heat of heating. Therefore, the amount of remaining snow is determined by the correlation between the snow cover and the outside air temperature. It is a natural effect of snow cover and temperature, but it is the snow cover that is most affected. If there is a lot of snow, the melting rate will increase regardless of the outside temperature, and if there is little snow, the melting rate will decrease. Therefore, at a certain outside air temperature, a proportionate amount of snow remains on the roof, that is, the lower the outside air temperature, the greater the amount of unmelted snow on the roof. In the snow melting of the heat conductive plate, if the outside air is below the freezing point, the snow does not melt until the snow cover becomes zero. This residual snow enhances the heat insulating effect of the house. As described above, the snowmelt by the heat conductive plate can be expected to have the effect of automatically adjusting the amount of remaining snow on the roof according to the relationship between the amount of snow on the roof and the outside air temperature.

ここまで屋根の融雪等について、屋根の構造等を中心に書いてきたが、融雪のためには、家庭生活の暖房熱は大切なものであるから、我が家の暖房について、付記しておく。
我が家の暖房は熱源を地下に置いて、基礎コンクリートと一体化した焼却炉で、ガス、灯油、薪、石炭等、その時安く手に入るものを燃料としてきた。現在は薪を炊いている。焼却炉で燃料を燃やして、その熱を居間の床に回遊、いわゆるオンドルを通して、家のほぼ中央に配置した集合煙突に繋いでいる。また、焼却炉の回りに付けた15mmの銅パイプで水を温め、この温水を熱の上昇特性を利用して居間の放熱パネルに接続して、常時40から50度で放熱している。暖房に電気は使用していない。この設備は40年間メンテナンスフリーで稼働してきた。オンドル内に蓄積した煤は、年に1度か2度燃えて灰になり、容積は極めて小さくなる。この暖房設備は、寒冷地の防災型として、設計したものである。居間のオンドルとともに、暖まった基礎コンクリートも、生活空間を温めている。1階の生活空間2LDK、風呂トイレ合わせて66平方メートルを開放して、昼夜20から23度程度に暖房している。暖房の必要な期間は、秋から春まで暖房を入れている。このほか地下の火炊き場8畳、2階の8畳2間が、家の構造で自然に温まっている。これだけの熱量を生活に使用している。
So far, I have written about the melting of snow on the roof, focusing on the structure of the roof, but since the heating heat of home life is important for melting snow, I would like to add a note about the heating of my home.
The heating of my house is an incinerator that has a heat source underground and is integrated with the foundation concrete, and has been fueled by gas, kerosene, firewood, coal, etc., which are cheaply available at that time. Currently he is cooking firewood. The fuel is burned in an incinerator, and the heat is transferred to the floor of the living room, so-called ondol, and connected to the collective chimney located almost in the center of the house. In addition, water is heated by a 15 mm copper pipe attached around the incinerator, and this hot water is connected to the heat dissipation panel of the living room by utilizing the heat rising characteristic, and heat is constantly radiated at 40 to 50 degrees. No electricity is used for heating. This equipment has been operating maintenance-free for 40 years. The soot accumulated in the ondol burns once or twice a year to become ash, and the volume becomes extremely small. This heating facility was designed as a disaster prevention type in cold regions. Along with the ondol in the living room, the warm foundation concrete also warms the living space. The living space 2LDK on the 1st floor and the bath and toilet are open to 66 square meters and are heated to about 20 to 23 degrees day and night. During the period when heating is required, heating is on from autumn to spring. In addition, the 8 tatami mats in the basement and the 8 tatami mats on the 2nd floor are naturally warmed by the structure of the house. This amount of heat is used in daily life.

これまでに一般の人や建築専門家など十数人から、本発明について助言や意見を伺った。これらのほぼ全員が第一に挙げたのは、熱伝導板に付着する結露の問題であった。それ故結露に対する考察を書く。
身近に起こる結露は、夏の暑い時に冷たいビールをコップに注ぐと、ほどなくしてコップの回りに水滴がつき、テーブルの上にコップの水濡れた型が付く、こういうことは多くの人が経験していると思う。一般に夏の温度は30度以上で、ビールの温度は8度くらいと言われています。この温度差は20度以上である。
それで我が家の冬に、どんな条件で結露がおこるのか実験をした。我が家は老人の二人暮らしであり、住宅には相応の結露対策がしてある。また暖房は自然暖房で、冬季でも乾燥を感ずることが無いので、加湿器はない。このような状態で実験を行うと、室内で室内温度よりも20度低い温度の水をコップに注いで15分間放置しておいても、結露はしなかった。結露はその場の温度、両者の温度差、そしてその場の空気の中に含まれている湿度との相関関係で発生する。北海道の乾燥した冬においては、結露は比較的少ない。
屋根裏の温度はおよそ5度から18度くらいであり、屋根上から伝わる冷温は、屋根上に適量の雪があれば、2度程度と思われる。ということは、熱伝導板に沿って、屋根上の温度がストレートに下降したとしても、大部分の時間帯はその温度差が10度以下で、結露の条件を満たさないものと思われる。
So far, we have heard advice and opinions about the present invention from more than a dozen people, including ordinary people and architectural experts. Almost all of these raised the issue of dew condensation on the heat transfer plate first. Therefore write a consideration for condensation.
Condensation that occurs around us is that when you pour cold beer into a cup during the hot summer months, water droplets will soon form around the cup and a wet mold of the cup will form on the table, which many people experience. I think you are doing it. It is generally said that the summer temperature is over 30 degrees Celsius, and the temperature of beer is about 8 degrees Celsius. This temperature difference is 20 degrees or more.
Therefore, I conducted an experiment to see under what conditions condensation would occur in my winter. My house is an old man living with two people, and the house has appropriate measures against dew condensation. In addition, there is no humidifier because the heating is natural heating and you do not feel dry even in winter. When the experiment was conducted in such a state, no dew condensation occurred even when water having a temperature 20 degrees lower than the room temperature was poured into the cup and left for 15 minutes. Dew condensation occurs due to the correlation between the temperature of the place, the temperature difference between the two, and the humidity contained in the air of the place. In the dry winter of Hokkaido, there is relatively little condensation.
The temperature of the attic is about 5 to 18 degrees, and the cold temperature transmitted from the roof seems to be about 2 degrees if there is an appropriate amount of snow on the roof. That is, even if the temperature on the roof drops straight along the heat conductive plate, the temperature difference is 10 degrees or less in most of the time zones, and it seems that the condition of dew condensation is not satisfied.

加えるに、熱伝導板は屋根裏の温度を集熱して、熱の上昇特性で、その熱を上へ上へと押し上げている状態であるから、屋根上の寒気が下降する余地は無いと思われる。0.35ミリ厚の伝導板片面は熱が上昇し、片面は冷たい熱が下降する、ということにはならないと思う。0.35ミリ厚の金属を表裏同じ温度の空気の中において、熱の上昇と下降が起こるとは思われない。
実際に我が家の施工例でも全く結露は生じなかった。熱伝導板の中の温度の移動が、上へ上へと移動しているので、屋根上の冷気が下に伝わることができない状態になっていると思われる。更に、屋根に積雪があると、屋根と雪が接する面はプラスの温度なので、屋根裏との温度差が小さく、結露に至らないものと思われる。
In addition, since the heat conductive plate collects the temperature of the attic and pushes the heat upward due to the heat rising characteristic, it seems that there is no room for the cold air on the roof to fall. .. I don't think it means that heat rises on one side of a 0.35 mm thick conductive plate and cold heat falls on one side. It is unlikely that heat will rise and fall in air at the same temperature on both sides of a metal with a thickness of 0.35 mm.
In fact, no dew condensation occurred even in the construction example of my home. Since the temperature transfer in the heat conductive plate is moving upward, it seems that the cold air on the roof cannot be transmitted downward. Furthermore, if there is snow on the roof, the surface where the roof and snow come into contact has a positive temperature, so the temperature difference from the attic is small, and it is thought that condensation will not occur.

我が家で冬季間結露がなかったが、今後多くの方が施工した場合、建物の所在する地域、建物自体の結露対策、住んでいる方の生活様式など、いろんな要素により結露する場合も考えられるので、今回の実験施工では完全な結露対策を施工した。また、結露は冬季間に発生すると考えがちであるが、実験の結果湿度が低く熱伝導板の温度が比較的安定している冬季間は少ないが、湿度が高くなった季節の変り目、春秋の期間に突然上空に低温の気団が到来して冷たい雨が降る、そのような時に結露が多いことが解った。
今回の実験における結露樋の施工では、熱伝導板一段毎に、屋根裏の熱伝導板の下に樋を付けて、これに百分の2の勾配が付くように施工して、熱伝導板1枚完成毎に実際に水を流して、流れる方向を確認した。径50mmの塩ビ管を半割して樋状につくり、これを、熱伝導板の下部に下げて、これに結露が落ちるように加工した、各熱伝導板の樋から出てくる結露水を、一つの樋に流れ落ちるようにして、この樋の水を屋根の竪樋に流れ落ちるように施工し た。 これにより熱伝導板の結露対策は完全となった。
実験では、結露水は別の20mmの塩ビパイプで地下室まで導き、結露水が流れ落ちると視認できるように、透明の瓶に結露水が溜まるように加工した。冬季のシーズンを通して結露水は一滴も認めていない。
参考までに、我が家の防露対策を記しておく。建物の外壁全体に内部から発泡スチロール系断熱材20mmをベタ張りした、内装は12mmの石膏ボードにビニールクロス張りとした。室内上部の天井「回り縁」は取り付けないでクロスのはちあわせにして、各コーナーをコーキングで仕上げた(天井廻り縁の陰に隙間があることが多い)。壁の電気スイッチ、差し込みなどはできるだけ少なくして、湿度の壁内侵入を少なくした。
At homeDuring the winter seasonThere was no dew condensation, but if many people construct it in the future, it is possible that dew condensation may occur due to various factors such as the area where the building is located, measures against dew condensation on the building itself, and the lifestyle of the people who live in it. In the construction, complete measures against dew condensation were carried out.In addition, it is easy to think that dew condensation occurs during the winter season, but as a result of experiments, the humidity is low and the temperature of the heat conductive plate is relatively stable. During the period, a cold air mass suddenly arrived in the sky and it rained cold, and it turned out that there was a lot of condensation at that time.
In the construction of the dew condensation gutter in this experiment, a gutter was attached under the heat conductive plate in the roof for each stage of the heat conductive plate, and the heat conductive plate 1 was constructed so as to have a gradient of 2%. Every time the sheet was completed, water was actually flowed and the direction of flow was confirmed. A PVC pipe with a diameter of 50 mm is cut in half to make a gutter shape, which is lowered to the bottom of the heat conductive plate and processed so that dew drops on it. , Let it flow down into one gutter, and construct it so that the water in this gutter will flow down into the gutter of the roof. rice field. This completes the measures against dew condensation on the heat conductive plate.
In the experiment, the dew condensation water was guided to the basement by another 20 mm PVC pipe, and was processed so that the dew condensation water could be collected in a transparent bottle so that it could be visually recognized when the dew condensation water flowed down. No drops of condensation are allowed throughout the winter season.
For reference, I will write down the dew-proof measures for my home. The entire outer wall of the building was covered with 20 mm of styrofoam insulation from the inside, and the interior was made of 12 mm gypsum board with vinyl cloth. The ceiling "circumferential edge" at the top of the room was not attached, but the cloth was attached to each other, and each corner was finished with caulking (there is often a gap behind the ceiling peripheral edge). We reduced the number of electrical switches and plugs on the wall as much as possible to reduce the intrusion of humidity into the wall.

熱伝導板は屋根裏の熱を、積極的に屋根上に伝えるのであるから、屋根裏が冷えて、生活部分への影響を心配していた。しかし、実際に施工して一冬をすごした結果は、昨年度の冬よりも、暖房の効きが悪いという感じはなかった。端的に表現すると、生活している感じでは全く問題がなかった。厳密には何らかの影響は出ているはずであるが、体感としては解らなかった。今回改造した屋根の下の生活部門は、台所と寝室にあたるところであるが、何の変化も感じなかった。 Since the heat conductive plate actively transfers the heat of the attic to the roof, I was worried that the attic would get cold and affect the living parts. However, as a result of the actual construction and spending one winter, I did not feel that the heating effect was worse than last winter. To put it simply, there was no problem with the feeling of living. Strictly speaking, it should have had some effect, but I couldn't feel it. The living department under the remodeled roof is the kitchen and bedroom, but I didn't feel any change.

空気の温度が高いほど、水分を多く含有するのであるから、屋根裏においても、温度の高い空気を排出すると結露を防止できる。しかしながら、一番暖かい空気を排出するというのは、屋根裏の保温においてマイナスとなるものではあるが、これは一部犠牲にしなければならないものです。この温度の高い空気は一度に排出することなく、徐々に排出して屋根裏温度保持と結露防止を両立するように設定すればよい。温度の高い空気は、屋根裏の高い部分に集まるので、ここに排気のためのパイプを取り付け、湿度を多く含む比較的温度の高い空気を排出すると良い。 この排気パイプの高さは、屋根積雪の上に出てなおかつ、パイプのドラフト効果による排気を考えて設定するとよい。実験では1から1.5m程度が良いと思われる。 実際に稼働している屋根上の湿度排出パイプに手をかざすと、ほんのりと暖かさを感じて、空気が排出されていることが解る。また、屋根裏の壁や屋根の断熱を強化することによっても、結露を少なくすることができる。 The higher the temperature of the air, the more water it contains. Therefore, even in the attic, if the hot air is discharged, dew condensation can be prevented. However, discharging the warmest air has a negative effect on the heat retention of the attic, but this is a partial sacrifice. This high temperature air may not be discharged all at once, but may be gradually discharged so as to maintain the attic temperature and prevent dew condensation at the same time. Since hot air collects in the high part of the attic, it is advisable to attach a pipe for exhausting here to exhaust relatively hot air containing a lot of humidity. The height of this exhaust pipe should be set in consideration of the exhaust due to the draft effect of the pipe while it is on the roof snow. In the experiment, about 1 to 1.5 m seems to be good. When you hold your hand over the humidity discharge pipe on the roof that is actually in operation, you can feel a slight warmth and you can see that the air is being discharged. In addition, dew condensation can be reduced by strengthening the heat insulation of the attic wall and the roof.

これまで述べたように施工すれば、屋根裏の自然に滞留する熱、すなわち、生活空間の暖房熱が上昇して屋根裏に溜まる熱を、熱伝導板(図1)3、13及び14その他の熱伝導板によって屋根防水層に伝えるだけで、屋根上の雪が一定程度溶けて、結氷には至らない。ただし、積雪が少なくて屋根防水層が露出して寒風にさらされているような場合は、屋根面が凍結するが、屋根トタンが再び降雪に覆われると、屋根面の凍結は溶けてなくなる。極寒時には、完全融雪とはならず、一定量の積雪が残るが、これが家の断熱効果を高める。
生活の為の暖房エネルギーは、上へ上へと上昇して行く。屋根裏密閉造りの場合、一定の時間的な経過を経て、最後にはすべての断熱材も屋根材をも通過して一部は屋根から放出される、この熱による融雪もプラスに作用する。
If it is constructed as described above, the heat that naturally stays in the roof, that is, the heat that heats up the living space and accumulates in the roof, is the heat of the heat conductive plates (Fig. 1) 3, 13 and 14 and others. The snow on the roof melts to a certain extent and does not lead to freezing just by transmitting it to the roof waterproof layer with a conductive plate. However, if there is little snow and the roof waterproof layer is exposed and exposed to cold wind, the roof surface freezes, but when the roof tin is covered with snow again, the freezing of the roof surface disappears. In extremely cold weather, the snow does not melt completely and a certain amount of snow remains, which enhances the heat insulation effect of the house.
The heating energy for living rises upwards. In the case of an attic closed structure, after a certain period of time, all the heat insulating material and the roofing material are passed through, and a part of the roof is released from the roof. This heat melting snow also has a positive effect.

自然に滞留する熱だけでは、熱が不足の場合は、屋根の下に当たる生活空間に暖房を入れた部屋があれば、この部屋の天井に、換気扇のガラリのような物を付けて、これを開閉することにより、屋根裏に熱を供給することができる。この場合は湿度も空気と共に入るので注意を要する。今回の実験では、この設備は作ってない。 If the heat that stays in nature is not enough, if there is a heated room in the living space under the roof, attach something like a ventilation fan to the ceiling of this room. By opening and closing, heat can be supplied to the attic. In this case, it should be noted that the humidity also enters with the air. In this experiment, this equipment was not made.

生活している部屋の天井に、ガラリを付けて温度調節の場合は、(整理番号P16-1 出願番号 特願 2016-222740)に記載した結露防止法に示した、湿度抜きパイプ(図5)12の空気排出口を小さくする必要がある。そうしないと部屋の暖房熱は、ガラリから空気排出口へと気流が生じて、熱が生活室内から外へストレートに排出される可能性がある。北海道の場合、湿度抜きパイプ(図5)12の空気排出穴の大きさは、我が家の場合は親指大の穴が3個もあれば十分である。 In the case of temperature control by attaching a glass to the ceiling of the living room, the humidity removal pipe (Fig. 5) shown in the dew condensation prevention method described in (Reference No. P16-1 Application No. 2016-222740). It is necessary to make the 12 air outlets smaller. Otherwise, the heating heat of the room may generate an air flow from the louver to the air outlet, and the heat may be discharged straight from the living room to the outside. In the case of Hokkaido, the size of the air exhaust hole of the humidity bleeding pipe (Fig. 5) 12 is sufficient if there are three thumb-sized holes in the case of my home.

更に高い温度が必要な場合は、屋根裏にオイルヒーターのような、火災にも安全で故障も少ない発熱装置を設置するか、生活部分に暖房器具を設置してダクトなどで、屋根裏の温度を20度から40度程度に保てば、屋根上の積雪を容易に溶融することができる(請求項5)。
このようにすると、降雪量が多い場合に備えることかできるのであるが、今回の実験では、積極的加熱装置を設置することが可能な施工はしてあるが、加熱設備を稼働させるほどの積雪がなかったので、加熱装置は作動させなかった。この装置は豪雪地帯には、必要な装置である。
If a higher temperature is required, install a heat-generating device such as an oil heater in the attic that is safe against fire and has few failures, or install a heater in the living area and use a duct to raise the temperature of the attic to 20. If the temperature is kept at about 40 degrees, the snow on the roof can be easily melted (claim 5).
By doing this, it is possible to prepare for a large amount of snowfall, but in this experiment, although it was possible to install an active heating device, there was enough snow to operate the heating equipment. The heating device was not activated because there was no. This device is a necessary device in heavy snowfall areas.

屋根全体を熱伝導板で覆っても、屋根からの排水樋の回りは凍結する。これは雪で樋部分も塞がれるのであるが、樋の下部から温気が上昇してきて、樋の出口付近の雪を溶かし、更に上部の雪も溶かして径が10から20cmの空気穴を作るので、ここから夜間になると冷気が侵入して、昼間に溶けた雪を凍結せしめる。これが繰り返されて、竪樋に流れる水をせきとめる。横樋を使用している場合は、樋の中が冷え、横樋の軒天に結氷する。この状態が何度も繰り返され、樋の出口・軒天は大きな氷で取り囲まれ、春になって自然融雪が起こると、樋等の回りに水たまりができて、漏水事故につながる。この竪樋周りの凍結防止法は数多く発表されているが、そのほとんどは電気発熱体を使用している。
それで冬期の建築業の宣伝散しには、ダクト周りのヒーターの電源を入れることを忘れないように、といった注意書きがみられる。この注意書は、無落雪屋根の樋周りに電熱ヒーターを設置している家が多いことを示している。
Even if the entire roof is covered with a heat conductive plate, the area around the drain gutter from the roof freezes. This is because the gutter part is also blocked by snow, but the warm air rises from the bottom of the gutter, melting the snow near the exit of the gutter, and also melting the snow at the top, creating an air hole with a diameter of 10 to 20 cm. Since it is made, cold air invades from here at night and freezes the snow that melted in the daytime. This is repeated to stop the water flowing in the gutter. If you are using a gutter, the inside of the gutter gets cold and freezes on the eaves of the gutter. This state is repeated many times, and the exit of the gutter and the eaves are surrounded by large ice, and when natural snowmelt occurs in the spring, a puddle forms around the gutter and leads to a water leak accident. Many anti-freezing methods around the gutter have been announced, but most of them use electric heating elements.
Therefore, in the promotion of the construction industry in winter, there is a cautionary note that you should not forget to turn on the heater around the duct. This note indicates that many homes have electric heaters installed around gutters with snow-free roofs.

竪樋出口付近の凍結を防止するために、箱状の覆いを作って内部に断熱を施した。覆いの大きさは、底の一辺が30cm、高さは40cmである。覆いの底部には、竪樋からの熱が竪樋出口付近の雪を溶かさないように、竪樋より径の大きいパイプを10cmほど取り付けて、竪樋からの熱が竪樋出口付近の雪を溶かすことなく、すぐ上昇するようにした。そのパイプの上に径75ミリの排気用パイプを1メートルくらい取り付けた。このような造りとして、竪樋出口の覆いのようにして設置した。溶けた水の流路として、覆いの下部回りに2cmくらいの凸凹をつけた。また覆いは屋根の谷部においてあるので、覆いの底辺と谷部に隙間ができて、これも溶融水の流路となった。
大寒が過ぎた2020年2月8日に、この覆いの周囲を掘って状態を調査した。覆いの排出口の内部には、霜状のものが付いているだけで、結氷はない。覆いの下の屋根谷部分は雪が溶け、水が流れていた。覆いの底部を見ると、覆いを構成するコンパネが水で濡れており、結氷は確認できなかった。
以上述べたように、この箱状の覆いにより、無落雪屋根の大きな問題である、竪樋出口付近の結氷問題は、熱伝導板を取り付けた屋根においては、特別なエネルギーを使用せずに、熱伝導板がもたらす熱だけで完全に解決した。この覆いはテスト製作であり、外枠は木製なので腐食すると思われる。それでこれを塩ビ材等で作り、適当な重量を持たせば、年間通して使用に耐えるものになると確信する。風で飛ばされることも考えられるので、接着するかビス止めで固定する必要がある。
In order to prevent freezing near the gutter exit, a box-shaped cover was made and the inside was insulated. The size of the cover is 30 cm on one side of the bottom and 40 cm in height. At the bottom of the cover, a pipe with a diameter larger than the gutter is attached about 10 cm so that the heat from the gutter does not melt the snow near the gutter exit, and the heat from the gutter removes the snow near the gutter exit. I tried to rise immediately without melting. An exhaust pipe with a diameter of 75 mm was installed on the pipe for about 1 meter. As such a structure, it was installed like a cover of the gutter exit . As a flow path for the melted water, an unevenness of about 2 cm was made around the bottom of the cover. Also, since the cover is located in the valley of the roof, a gap was created between the bottom of the cover and the valley, which also became a flow path for molten water.
On February 8, 2020, after the great cold, I dug around this cover and investigated the condition. There is only frost-like material inside the outlet of the cover, and there is no freezing. The snow melted and water was flowing in the roof valley under the cover. Looking at the bottom of the cover, the control panel that makes up the cover was wet with water, and no freezing could be confirmed.
As mentioned above, due to this box-shaped cover, the problem of freezing near the gutter exit, which is a major problem of snow-free roofs, can be solved by using a roof with a heat conductive plate without using special energy. It was completely solved only by the heat generated by the heat conductive plate. This cover is a test production, and the outer frame is made of wood, so it seems to corrode. Therefore, I am convinced that if this is made of vinyl chloride or the like and has an appropriate weight, it will be usable throughout the year. It may be blown away by the wind, so it must be glued or fixed with screws.

熱伝導板によるシステムは、メンテナンスも不要で、且つ、家の寿命と同じくらい長持ちするという、有益で非常に経済的なシステムである。すなわち一度熱伝導板を取り付けると、屋根トタンが大きく破損して長期間そのまま放置することがなければ、その家を取り壊すまでの耐久力がある。施工の費用は、端的に表現すると、普通の工法に、ガリバリウムなどの平板を、屋根一面に二重張りする程度の費用で済む。我が家の場合、笠木も入れておよそ25平方メートルであり、トタンの材料代は3200/平方メートル円であった。施工も簡単で、建築工事に携わる者ならだれでも施工することができる。
しかもこの設備は、結氷防止のために特別なエネルギーを必要とせず、生活部の暖房の熱が順次上昇して行って屋根裏に留まる熱、即ち生活暖房の残りの熱と、自然の太陽熱が回り込んで屋根裏に溜まる熱をエネルギーとして稼働する。 このことは屋根積雪の融雪に特別なエネルギーを費やさないので、2酸化炭素の発生はなく地球にやさしい設備である。
A system with heat transfer plates is a useful and very economical system that requires no maintenance and lasts as long as the life of the house. That is, once the heat conductive plate is attached, it has durability until the house is demolished unless the roof tin is severely damaged and left as it is for a long period of time. To put it simply, the cost of construction is as low as double-stretching a flat plate such as gulliverium over the entire roof in the usual construction method. In the case of my home, it was about 25 square meters including Kasagi, and the material cost of galvanized iron was 3200 / square meter yen. Construction is easy, and anyone involved in building work can do it.
Moreover, this equipment does not require special energy to prevent freezing, and the heat of the heating of the living area rises in sequence and stays in the attic, that is, the remaining heat of the living heating and the natural solar heat rotate. It operates using the heat that accumulates in the attic as energy. This is an earth-friendly facility that does not generate carbon dioxide because it does not spend special energy on melting snow on the roof.

熱伝導板(図2)の選択に当たっては、金属の種類、質量、屋根裏の熱量などを勘案して、その家の必要に応じて組み合わせて施工する必要がある。熱伝導板としては、熱伝導率の良いものが理想であるが、価格との関係で、厚めのガリバリウム材が適当と思われる。その材質は50パーセント以上がアルミでできており、熱伝導性も良く価格もそれほど高くないのでこれを使うのが良いと思われる。 When selecting a heat conductive plate (Fig. 2), it is necessary to consider the type of metal, mass, amount of heat in the attic, etc., and combine them according to the needs of the house. The ideal thermal conductivity plate is one with good thermal conductivity, but a thicker gulliverium material seems to be suitable in relation to the price. The material is more than 50% made of aluminum, and it has good thermal conductivity and the price is not so high, so it seems better to use this.

また屋根の上に積雪(図5)3が一定量ある場合は、屋根の温度は1度程度にしか下がらない。地上1.5mの積雪を掘割って、雪の温度を測定すると、土に接する部分は溶けており、その部分の温度はプラス1度であった。このことから下部に熱のある屋根下部と屋根雪の接面温度は1度以上になるものと思慮する。よって、積雪は場合により有用な断熱材となる。外気がマイナス10度以下でも、屋根は積雪の断熱性により零度以上に保たれる。屋根積雪が多い場合は、熱伝導板による融雪効果が大きいが、積雪が少なくなるにしたがって、雪による断熱性が少なくなり、溶融効果が落ちてくる。この作用により、屋根上の積雪は、外気温度と熱伝導板工事方法に従って、自然的にある量に制限される。これは熱伝導板による、自動的な積雪量調整作用である。Further, when there is a certain amount of snow (FIG. 5) 3 on the roof, the temperature of the roof surface drops only to about 1 degree. When the snow temperature of 1.5 m above the ground was dug and the temperature of the snow was measured, the part in contact with the soil was melted, and the temperature of that part was +1 degree. From this, it is considered that the contact surface temperature between the lower part of the roof and the roof snow, which has heat in the lower part, will be 1 degree or more. Therefore, snow cover can be a useful heat insulating material in some cases. Even if the outside air is below -10 degrees Celsius, the roof is kept above zero degrees due to the heat insulating properties of the snow. When there is a lot of snow on the roof, the effect of melting snow by the heat conductive plate is large, but as the amount of snow decreases, the heat insulating property due to snow decreases, and the melting effect decreases. Due to this action, the amount of snow on the roof is naturally limited to a certain amount according to the outside air temperature and the method of constructing the heat conductive plate. This is an automatic snow cover adjustment action by the heat conductive plate.

屋根裏の断熱性を高めるためには、屋根の上に積雪(図5)3を30から40cmほど溜めて置くことと、屋根の下から屋根にウレタン吹き付け断熱を施し、これを屋根裏の壁部分にも施工することである。屋根裏からの吹き付け断熱は、たとえ厚みは薄くても、これを施工すると密閉度が高くなり大きな効果がある。また壁内結露の防止になる。
屋根裏密閉の造りの場合は、屋上に雪を30から40cmほど残しておくと、雪の断熱効果で、家の断熱性能は高くなる。よって、熱伝導板による屋上雪の溶融は、屋上に積雪が常に30cmくらい残っている状態がベストである、これに向かって今後研究する。
In order to improve the heat insulation of the attic, snow (Fig. 5) 3 is stored on the roof for about 30 to 40 cm, and urethane is sprayed on the roof from under the roof to insulate it, and this is applied to the wall of the attic. Is also to be constructed. Even if the thickness of the attic is thin, spraying heat insulation has a great effect because the degree of sealing becomes high when it is installed. It also prevents dew condensation inside the wall.
In the case of an attic closed structure, leaving about 30 to 40 cm of snow on the roof will improve the heat insulation performance of the house due to the heat insulation effect of the snow. Therefore, the best way to melt the rooftop snow due to the heat conductive plate is to have about 30 cm of snow on the rooftop, which we will study in the future.

屋根裏は屋根部分をしっかりと断熱してあるので、ここは気密室のような状態である。また容積も少ないので、屋根裏は効率よく暖めることができる。この屋根裏部分に入れた熱は、ほとんどがロスのように感ずるかも知れないが、決してそうではない。屋根上の積雪を溶融するほか、屋根裏が暖かいと生活空間から屋根裏に逃げていく熱が少なくなり、生活空間の暖房効率を良くする効果もある。 The attic has a well-insulated roof, so it looks like an airtight room. Also, since the volume is small, the attic can be heated efficiently. Most of the heat in this attic may feel like a loss, but it's never the case. In addition to melting the snow on the roof, if the attic is warm, the heat that escapes from the living space to the attic is reduced, which also has the effect of improving the heating efficiency of the living space.

熱導板だけの場合は、作りっぱなしでその家の寿命と同じくらい長持ちするのに比べ、暖房の放熱器とか、電力等の発熱体を使用する場合は、コントロール装置とか発熱する部品が経年効果などで劣化するので、一定のメンテナンスが必要となる、このメンテには細心の注意が必要である。電気加熱器の場合は、火災発生の危惧があり、湯による加熱の場合は水漏れの危惧がある。 If you use only a heat sink, it will last as long as the life of the house, but if you use a heating radiator or a heating element such as electric power, the control device or other parts that generate heat will age. Since it deteriorates due to effects, etc., certain maintenance is required, so great care must be taken in this maintenance. In the case of an electric heater, there is a risk of fire, and in the case of heating with hot water, there is a risk of water leakage.

以上の説明のとおり、安全面から判断すると、本発明はなるべく加熱器を使用しないで、屋根裏に滞留する熱の利用を第一に考え、次に生活部門からガラリで取り入れた熱を、使用すると良い。発熱装置を使用する場合は、可能であれば、発熱装置は生活部分に置き、押し入れや部屋の片隅にダクトを作り、このダクトによって屋根裏に熱を導くと良い。屋根裏の暖房は、大雪が降り、速やかに雪を溶融する必要がある場合に使用すると良い。 As explained above, judging from the viewpoint of safety, the present invention considers the use of heat accumulated in the attic first, and then uses the heat taken in by the louver from the living sector, without using a heater as much as possible. good. When using a heating device, if possible, place the heating device in a living area, create a duct in the closet or in one corner of the room, and use this duct to guide heat to the attic. Attic heating should be used when heavy snow falls and the snow needs to melt quickly.

熱伝導板をつけると真夏の灼熱が天井裏に入り込み、生活空間の温度を高くすることも考えられるが、熱は上昇する特性があるから、下にはあまり拡散されないのである。例えば、沸かし湯方式の風呂で、湯の上部が熱くても、下部は水だということからも、証明されることである。熱は金属の中でもコンクリートの中でも、水の中と同じように上部に溜まるのであるから、屋根裏の空気を攪拌しなければ下部への影響は少ない。
2020年8月15日、お盆を過ぎると北海道に於いては真夏日を終えた季節であるが、この夏を通して屋根からの熱で生活部門が暑くなったということはなかった。従来の生活と同じように生活することができた。
If a heat conductive plate is attached, the scorching heat of midsummer may enter the ceiling and raise the temperature of the living space, but the heat has the property of rising, so it is not diffused much downward . For example, in a boiling water type bath, even if the upper part of the hot water is hot, the lower part is water, which is also proved. Heat accumulates in the upper part of metal and concrete, just like in water, so unless the air in the attic is agitated, the effect on the lower part is small.
On August 15, 2020, after Obon, it was the season when the midsummer day ended in Hokkaido, but the heat from the roof did not heat up the living sector throughout this summer. I was able to live the same way as I used to.

熱伝導板の施工は、トタン屋根のほかシート防水の屋根にも施工することができる。屋根の形状では、無落雪の屋根、落雪屋根にも施工することができる。落雪屋根の場合は、軒天部分の施工は更に研究しなければならない。また、屋根裏暖房をいれれば、人の住んでいない 建物の屋根 などにも施工することができる。 The heat conductive plate can be installed not only on tin roofs but also on sheet waterproof roofs. With the roof shape, it can be applied to snow-free roofs and snow-fall roofs. In the case of a snow-fall roof, the construction of the eaves must be further studied. Also, if you turn on the attic heating, no one will live in it. Building roof It can also be installed in such places.

屋根積雪の重さは、1立法メートルあたり、0.5tにも及ぶのであり、我が家の1階部分の屋根は、2階屋根からの雪が吹きおろすのでうずたかく溜まり多い時は2m近くにまで達していた。屋根の面積は30平方メートル程(改造前)あるので、積雪平均1.5メートルとすると、雪の重量は20tにも及ぶと思われる。この重さは建物に悪弊を及ぼすので、雪下ろしをするか溶融する必要がある。 The weight of snow on the roof is as much as 0.5 tons per cubic meter, and the roof on the first floor of my house is blown down by the snow from the roof on the second floor, so when there is a lot of itching, it reaches nearly 2 m. rice field. The area of the roof is about 30 square meters (before remodeling), so if the average snowfall is 1.5 meters, the weight of snow will be as much as 20 tons. This weight is harmful to the building and needs to be snowed down or melted.

屋根の積雪量を検知するセンサーを取り付けて、これが設定した積雪以上の雪を検知すると、ヒーターの電源が入るようにして置けば、屋根の積雪量は自動的に設定の積雪量にすることができる。屋根上に積雪センサーを取り付ける方法は、電子的コントロールであるから、どこかにヒーター等を取り付けてこの熱を屋根裏に導き、この発熱をコントロールすることになる。
部屋のガラリを手動で開閉しても、ある程度の融雪コントロールは可能と思われるが、その熱が融雪にどの程度通用するかは、今後の実験によって決める。
If you install a sensor that detects the amount of snow on the roof and detect snow that exceeds the set amount of snow, the heater can be turned on, and the amount of snow on the roof can be automatically set to the set amount of snow. can. Since the method of mounting the snow sensor on the roof is electronic control, a heater or the like is mounted somewhere to guide this heat to the attic and control this heat generation.
Even if the room louver is opened and closed manually, it seems possible to control the snowmelt to some extent, but how much the heat can be applied to the snowmelt will be decided by future experiments.

最近の石狩地方の場合は、無落雪屋根の屋上の雪は、風で吹き飛ばされて、屋上にはちょうど良い程度しか残っていない家が多い。それでこの地方では、軒天の結氷を防止するだけで良い。しかし、大雪地域や我が家の1階部分のような環境にある屋根では、溶融が必要である。 In the recent Ishikari region, the snow on the rooftop with no snowfall roof is blown away by the wind, and many houses have just the right amount of snow left on the rooftop. So in this region, all you have to do is prevent the eaves from freezing. However, melting is necessary for roofs in environments such as heavy snowfall areas and the first floor of our house.

以上に述べたように、この発明は、屋根の結氷、積雪を人手によらずに自動的に屋根裏からコントロールして、M型屋根の屋根裏にとどまる熱を利用することにより、樋付近の結氷を防ぎ、屋根の積雪を溶融する発明である。これは、従来には無かった結氷防止、融雪の発想に基づくものである。
この工事は簡単で、費用も少なく、耐久性はほぼ家の寿命と同じくらい長持ちする。それ故、屋根トタンを張り替えるような場合でも、熱伝導板は張り替える必要がない。結氷の防止、屋根雪の溶融に必要なエネルギーは少なく、2酸化炭素の発生も少ない。加えるにメンテナンスも不要(屋根裏のヒーティングをしない場合)なので、省エネ社会の要請にも応え、高齢化社会の生活安定に寄与するものである。屋根防水層の下に熱伝導板を付加するだけで、屋根の外観は以前と変わらず、屋根の下の生活は夏も冬も従来と変わらず、特にエネルギーは必要とせず、それで屋根雪が溶ける。本発明は、そのような素晴らしい発明である。
As described above, the present invention automatically controls the freezing and snow accumulation of the roof from the attic without manpower, and utilizes the heat remaining in the attic of the M-shaped roof to prevent the freezing near the gutter. It is an invention to prevent and melt the snow on the roof. This is based on the idea of preventing freezing and melting snow, which was not possible in the past.
This construction is easy, inexpensive, and durable, almost as long as the life of the house. Therefore, even if the roof tin is replaced, the heat conductive plate does not need to be replaced. Less energy is required to prevent freezing and melting roof snow, and less carbon dioxide is generated. In addition, maintenance is not required (when the attic is not heated), so it meets the demands of an energy-saving society and contributes to the stability of life in an aging society. Just by adding a heat conductive plate under the roof waterproof layer, the appearance of the roof is the same as before, the life under the roof is the same as before in summer and winter, no energy is required, and the roof snow melts. .. The present invention is such a wonderful invention.

この発明によって家が建築されれば、建物の耐久性が増し、雨漏れが少なくなるので、家に住む人にも安心感を与える。また屋根からツララや氷の塊が落ちてきて、下を歩く人に被害を与えることも少なくなるので、歩行者に安心感を与え、ひいては民心の平安にもつながる。さらに、豪雪地方では、屋根からの雪下ろしをしなければならないが、本発明によって、屋根の雪下しの必要がなくなるで、雪下ろしで誤って屋根から転落する事故も少なくなる。 If a house is built by the present invention, the durability of the building will be increased and the amount of rain leakage will be reduced, which will give a sense of security to the people who live in the house. In addition, icicles and lumps of ice will fall from the roof and cause less damage to people walking underneath, giving pedestrians a sense of security and eventually leading to peace of mind. Further, in heavy snowfall regions, it is necessary to remove snow from the roof, but the present invention eliminates the need to remove snow from the roof and reduces accidents in which the roof accidentally falls off the roof.

熱伝導板による凍結防止等の施工にあたっては、その地域の気候風土の状態、また個々の家の所在する場所の状況、日当たりの状態など特定の条件が複雑に絡み合っているので、個々の住宅の立地、屋根の形状、住人の生活態様等の条件をよく勘案して施工法を決めなければならない。 When constructing anti-freezing with a heat conductive plate, specific conditions such as the condition of the climate of the area, the condition of the place where each house is located, and the condition of sunlight are intricately intertwined, so each house has its own condition. The construction method must be decided by carefully considering the conditions such as the location, the shape of the roof, and the living style of the inhabitants.

従来から屋根は、過酷な自然をそのまま受け入れて、結氷、積雪に耐えていた。本発明はそのような「静的な屋根」を、屋根のトタンに熱エネルギーを与えることにより、屋根自体が能動的に自然の諸問題を解決する、いわゆる「動的な屋根」に変えるものである。
我が国は、これからますますの高齢化社会になるのであるから、雪下ろしの事故等も増えると思われる。また異常気象による、大量の降雪や極低温になる可能性もあるので、それに備えるためにも本発明は極めて有用なものである。
以上に説明したとおり、この発明は、現在社会が希求する発明と思われる。
Traditionally, roofs have accepted the harsh nature as it is and have withstood freezing and snowfall. The present invention transforms such a "static roof" into a so-called "dynamic roof" in which the roof itself actively solves natural problems by applying thermal energy to the tin of the roof. be.
As Japan will become an aging society in the future, it is expected that the number of accidents such as snowfall will increase. Further, since there is a possibility that a large amount of snowfall or extremely low temperature may occur due to abnormal weather, the present invention is extremely useful for preparing for it.
As explained above, this invention seems to be an invention currently sought after by society.

熱伝導板の効果を項目別に書く。
1 軒天結氷を防止し、屋根上の積雪を溶融する
2 熱伝導板だけの場合は、設備費は低廉で、経済性に優れている
3 工事は容易で、施工に特別な技術を必要としない
4 メンテナンス不要で、家の寿命と同じくらい長持ちする(ヒーター不使用の場合)
5 屋根裏の滞留熱を利用するので、維持費は不要である(ヒーター不使用の場合)
6 雨漏りが著しく少なくなるので、住人に安心感を与える
7 室内に雨漏りの染みが少なくなる
8 生活の暖房熱を屋根裏に導入して、屋根の積雪を溶融することができる
9 住宅に関する信頼感が高まる
10 ヒーターを使えば、屋根上積雪の溶融が効率的にできる、またヒーターも廉価である
11 屋根裏に供給する熱は、密閉空間なので効率よく使用され経済的である
12 屋根裏を温めると、生活室内から上部に逃げる熱が少なくなり、生活部分も暖かくなり、その分生活の暖房費が少なくなる
13 熱伝導板は屋根防水層の下に敷設されているので、屋根の外観は従来の屋根と変わらない
14 屋根の軒などから氷や雪の落下が少ないので、これによる人身事故は少ない
15 屋根の雪下ろしが不用なので、屋根からの転落事故が少なくなる
16 屋根雪による事故が少なくなるので、医療費の低減に寄与する
17 雪下ろしの人件費削減になる
18 屋根上の積雪が一定量にコントロールされているので、トップヘビーのために受ける、地震などによる建物の被害も少なくなる
19 屋根の上に一定量の積雪があると、家の断熱に寄与する
20 本発明は、トタン屋根、シート防水の屋根等にも機能する
21 屋根、建物が長持ちするので国の富が豊かになる
22 融雪エネルギーの大部分は、生活暖房の予熱であり、省エネ効果が大きい
23 安全かつ高耐久性があり住宅を長持ちさせ、経済性に優れている
24 大部分の時間は特別なエネルギーを必要としないので、融雪による2酸化炭素の排出は無い
Write the effect of the heat conductive plate for each item.
1 Prevents freezing from the roof and melts the snow on the roof. 2 If only the heat conductive plate is used, the equipment cost is low and the economy is excellent. 3 The construction is easy and requires special technology. No 4 Maintenance-free and lasts as long as the life of the house (when no heater is used)
5 No maintenance fee is required because the heat accumulated in the attic is used (when the heater is not used).
6 Remarkably reduces rain leaks, giving residents a sense of security 7 Less stains of rain leaks in the room 8 Introducing the heating heat of daily life into the attic to melt the snow on the roof 9 Confidence in the house 10 If a heater is used, the snow on the roof can be melted efficiently, and the heater is also inexpensive. 11 The heat supplied to the attic is an enclosed space, so it is used efficiently and economically.
12 When the attic is warmed, less heat escapes from the living room to the upper part, the living part becomes warmer, and the heating cost for living is reduced accordingly. 13 The heat conductive plate is laid under the roof waterproof layer, so the roof The appearance of the roof is the same as that of the conventional roof. 14 Since there is less ice and snow falling from the eaves of the roof, there are few accidents resulting in injury or death.
15 Since it is not necessary to remove the snow from the roof, the number of accidents that fall from the roof is reduced. 16 The number of accidents caused by roof snow is reduced, which contributes to the reduction of medical expenses. Because it is controlled, the damage to the building due to earthquakes etc. due to the top heavy is reduced. 19 If there is a certain amount of snow on the roof, it contributes to the heat insulation of the house. 20 The present invention is a totan roof, a sheet. It also functions as a waterproof roof, etc. 21 Roofs and buildings last a long time, which enriches the country's wealth 22 Most of the snow melting energy is preheating of living heating, which has a large energy saving effect 23 Safe and highly durable Prolongs the life of the house and is economical 24 Most of the time does not require special energy, so there is no carbon dioxide emission due to snow melting

M型屋根を屋根横樋に対し直角に、垂直カットした屋根の一部展開図Partial development of a roof with an M-shaped roof cut vertically at right angles to the roof horizontal trough は熱伝導板の原型略図Is a schematic diagram of the heat conductive plate は熱伝導板を屋根上から取り付けるために切込みを入れて開いた図Is an open view with a notch to attach the heat transfer plate from the roof 屋根裏換気を行っている屋根の略図Schematic of a roof with attic ventilation 屋根裏換気行わない屋根の略図Schematic of a roof without attic ventilation 上り母屋方式の屋根の垂直断面図、工事初めの段階Vertical cross-section of the roof of the ascending purlin system, the beginning of construction 上り母屋方式の屋根の断面図、熱伝導板2枚目以降の工事Cross-sectional view of the roof of the ascending purlin method, construction of the second and subsequent heat conductive plates 上り母屋方式の熱伝導版略図Schematic diagram of the heat conduction plate of the ascending purlin method

(図1)
1 屋根トタン
2 防水シート
3、13、14 熱伝導板
4、12、19 発泡スチロール系断熱材
5 野地板
6 垂木
7 グラスウール
8 吹き込みグラスウール
9 天井
10 谷コイル(樋)
11 母屋
(Fig. 1)
1 Roof tin 2 Waterproof sheet 3, 13, 14 Heat conduction board 4, 12, 19 Styrofoam insulation 5 Field board 6 Rafters 7 Glass wool 8 Blown glass wool 9 Ceiling 10 Valley coil (gutter)
11 purlin

(図2)(図3)
15 熱伝導
16 垂木を通すための穴
17 折り曲げ点
18 熱伝導板を屋根上から通すための切り込み
19 空気の移動を容易にする開口(通気穴)
(Fig. 2) (Fig. 3)
15 Heat conduction plate
16 Holes for passing rafters 17 Bending points 18 Notches for passing heat conductive plates from the roof 19 Openings (vent holes) that facilitate the movement of air

(図4)(図5)
1 屋根上面
2 壁
3 屋根上の積雪
4 断熱層
5 天井
6 通気口(入り口)
7 通気口(出口)
8 通気
9 谷コイル(樋)
10 結氷するところ
11、13 屋根裏
12 湿度調整の排気パイプ
(Fig. 4) (Fig. 5)
1 Roof top surface 2 Walls 3 Roof snow cover 4 Insulation layer 5 Ceiling 6 Vents (entrance)
7 Ventilation port (exit)
8 Ventilation 9 Valley coil (gutter)
10 Where it freezes 11, 13 Attic 12 Humidity control exhaust pipe

(面6)(図7)(図8)
1 従来の屋根母屋
2 上り母屋
3 野地板
3a 左側2段目の野地板
4 発泡スチロール系の断熱材
4a 左側2段目の発泡スチロール系断熱材
5、6 最初に取り付ける熱伝導板
7、8 屋根水流に対し順目に施工する場合の熱伝導板
9 屋根水流に対し逆目に施工する場合の熱伝導板
10 上り母屋方式に使用する熱伝導板
11 空気の移動を容易にするための開口 (通気穴)
12 上り母屋を通す切りこみ
(Surface 6) (Fig. 7) (Fig. 8)
1 Conventional roof purlin
2 Uphill purlin
3 Field board
3a Left side second stage field board
4 Styrofoam insulation
4a Styrofoam insulation material for the second stage on the left side
5, 6 Heat conduction plate to be installed first
7 and 8 Heat conduction plate when constructing in order for roof water flow
9 Heat conduction plate when constructing in the opposite direction to the roof water flow
10 Heat conduction plate used for the ascending purlin method
11 Aperture to facilitate the movement of air (Ventilation hole)
12 Cut through the ascending purlin

Claims (1)

住宅の屋根裏に滞留する生活余熱、自然に屋根裏に取り込まれる太陽熱・大気熱、及び発熱装置から屋根裏に導入する熱を、屋根裏空間から野地板及び屋根上断熱材を貫通せしめ折り曲げて屋根 面に敷設し、屋根裏部分の下部に、結露水処理のための樋を取り付けた熱伝導板を介して、屋根上の防水層に伝えることにより、屋根上の結氷を防止し、屋根上積雪を溶融するとともに、屋根裏熱伝導板下部に取り付けた樋により、結露水流路を形成し、樋の末端を屋根竪樋本管に接続せしめて、熱伝導板に付着する屋根裏結露水の処理を行う、屋根の建築工法。 Living residual heat that stays in the attic of a house, solar heat and atmospheric heat that are naturally taken into the attic,And from the heat generatorThe heat introduced into the attic is transferred from the attic space.Field board and roof insulationPenetrateSesame,Bendroof Up Lay on the surface,A gutter for treating dew condensation is attached to the bottom of the attic.Communicating to the waterproof layer on the roof through the heat conductive plateBy, Prevents freezing on the roofdeath,Melting snow on the roofAt the same time, the dew condensation water flow path is formed by the gutter attached to the lower part of the attic heat conduction plate, and the end of the gutter is connected to the roof gutter main pipe and adheres to the heat conduction plate.Attic condensationWaterprocessI do,Roof construction method.
JP2020066291A 2019-03-26 2020-03-13 A construction method that uses a heat conductive plate to prevent the roof from freezing with waste heat from heating and melts the snow on the roof. Active JP7054083B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019075925 2019-03-26
JP2019075925 2019-03-26

Publications (2)

Publication Number Publication Date
JP2020165301A JP2020165301A (en) 2020-10-08
JP7054083B2 true JP7054083B2 (en) 2022-04-19

Family

ID=72717288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020066291A Active JP7054083B2 (en) 2019-03-26 2020-03-13 A construction method that uses a heat conductive plate to prevent the roof from freezing with waste heat from heating and melts the snow on the roof.

Country Status (1)

Country Link
JP (1) JP7054083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7155215B2 (en) 2020-09-30 2022-10-18 利昌工業株式会社 Method for producing molded article, method for producing molded article and composition containing microfibrillated cellulose

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220322A (en) 1999-01-29 2000-08-08 Ig Tech Res Inc House
JP2000274020A (en) 1999-03-26 2000-10-03 Ig Tech Res Inc House
JP3168806U (en) 2011-04-15 2011-06-30 株式会社ツタ Snow melting equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5875824U (en) * 1981-11-16 1983-05-23 住友軽金属工業株式会社 Snow melt water freezing prevention device for snow-free roofs
JPS62268451A (en) * 1986-05-13 1987-11-21 小出 勝夫 Ventilating board for roof
JPH1082210A (en) * 1996-06-18 1998-03-31 Hidaka Kogyo Kk Snow-melting roof device in galvanized sheet iron roof structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000220322A (en) 1999-01-29 2000-08-08 Ig Tech Res Inc House
JP2000274020A (en) 1999-03-26 2000-10-03 Ig Tech Res Inc House
JP3168806U (en) 2011-04-15 2011-06-30 株式会社ツタ Snow melting equipment

Also Published As

Publication number Publication date
JP2020165301A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
Thorpe Sustainable home refurbishment: The Earthscan expert guide to retrofitting homes for efficiency
Hensley et al. Improving energy efficiency in historic buildings
JP7054083B2 (en) A construction method that uses a heat conductive plate to prevent the roof from freezing with waste heat from heating and melts the snow on the roof.
Bartok Energy Conservation for Commercial Greenhouses (NRAES 3)
Pierre et al. Thermal performance of green roof panels in sub-zero temperatures
JP6989837B2 (en) Strengthen attic insulation without ventilating the attic of the house. In addition, as an integrated heat insulating layer including snow on the roof, it is a construction method that enhances the heat insulation of the roof part and discharges moisture and heat by means of PVC pipes that pass from the attic to the roof.
Mackinlay et al. Roof design in regions of snow and cold
JP5379758B2 (en) Double roof extension structure and energy-saving roof or snow-melting roof using it
Grange et al. Roof-snow behavior and ice-dam prevention in residential housing
Racusin Essential building science: understanding energy and moisture in high performance house design
Awwad et al. Study of different pitched roof types
Guyer et al. An Introduction to Roofing Systems
Костин et al. Construction of window and door openings, roofs
JPS6337613Y2 (en)
SALANDRO Cold Climate Considerations.
Nielsen et al. Snow and freezing water on roofs
Dickson Guide to Closing and Conditioning Ventilated Crawlspaces
Traister Home inspection handbook
Dell et al. Performance Concerns with Wood Frame Attics
Bureau HOMES
RU111868U1 (en) PEDAL ROOF BUILDING WITH A DEVICE FOR PREVENTING THE FORMATION OF Icicles, NALEDIA AND SNOW ROOFS
Center et al. Literature Review of the Impact and Need for Attic Ventilation in Florida Homes
Herbert Can Roofs Breathe?
Kamruzzaman Pathway to a sustainable building: JM and SKB at Stockholm Royal Seaport: With focus on energy efficiency; technical design of roof, wall, window, basement and adaptability with climate change.
Probert et al. Design and performance of roofs

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220317

R150 Certificate of patent or registration of utility model

Ref document number: 7054083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150