JP7048470B2 - Measurement and calibration equipment - Google Patents

Measurement and calibration equipment Download PDF

Info

Publication number
JP7048470B2
JP7048470B2 JP2018188683A JP2018188683A JP7048470B2 JP 7048470 B2 JP7048470 B2 JP 7048470B2 JP 2018188683 A JP2018188683 A JP 2018188683A JP 2018188683 A JP2018188683 A JP 2018188683A JP 7048470 B2 JP7048470 B2 JP 7048470B2
Authority
JP
Japan
Prior art keywords
measurement
detection unit
traveling body
traveling
straight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018188683A
Other languages
Japanese (ja)
Other versions
JP2020056734A (en
Inventor
諭史 谷本
芳隆 金澤
太郎 松尾
宏和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Technical Development Corp
Original Assignee
Toyota Technical Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Technical Development Corp filed Critical Toyota Technical Development Corp
Priority to JP2018188683A priority Critical patent/JP7048470B2/en
Publication of JP2020056734A publication Critical patent/JP2020056734A/en
Application granted granted Critical
Publication of JP7048470B2 publication Critical patent/JP7048470B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、計測校正装置に関し、特に車載用の速度及び距離の計測装置を校正するための校正装置に関する。 The present invention relates to a measurement and calibration device, and more particularly to a calibration device for calibrating an in-vehicle speed and distance measurement device.

車両の速度の基準を計測としては、車両を例えば40km/hの一定速度に維持し、当該速度のまま50mの校正用の所定区間内を直進走行することにより、基準となる速度計測を実施する校正方法があった。 As a standard for measuring the speed of the vehicle, the standard speed is measured by maintaining the vehicle at a constant speed of, for example, 40 km / h and traveling straight in a predetermined section for calibration of 50 m at that speed. There was a calibration method.

当該計測において、実際に乗用車等の車両を運転するため、運転手ごとのばらつきが生じていた。また、毎回の計測において常に規定の速度を維持することは難しい。計測用のテストコースであるとしても、まっすぐに走行することは容易ではない。さらに、環境要因による影響も無視できない。このようなことから、総じて実際の乗用車を用いた計測では、個々の計測ごとに再現性が伴わないことが生じている。 In the measurement, since a vehicle such as a passenger car is actually driven, there is a variation among drivers. In addition, it is difficult to always maintain the specified speed in each measurement. Even if it is a test course for measurement, it is not easy to drive straight. Furthermore, the effects of environmental factors cannot be ignored. For this reason, in general, in actual measurement using a passenger car, reproducibility does not accompany each individual measurement.

そこで、実際の車両の位置、移動距離等の計測精度を高めるべく、測位衛星から送信されるGPSデータにより補正する技術が提案されている(特許文献1、特許文献2参照)。しかしながら、これらの特許文献に開示の装置、方法であっても、現実の車両を露天下において走行させることに変わりはなく、本質的に、前述の問題点を克服するには至っていない。 Therefore, in order to improve the measurement accuracy of the actual vehicle position, moving distance, etc., a technique for correcting by GPS data transmitted from a positioning satellite has been proposed (see Patent Document 1 and Patent Document 2). However, even with the devices and methods disclosed in these patent documents, there is no change in running an actual vehicle in the open air, and essentially, the above-mentioned problems have not been overcome.

特開2016-170124号公報Japanese Unexamined Patent Publication No. 2016-170124 特開2007-57242号公報Japanese Unexamined Patent Publication No. 2007-57242

このようなことから、乗用車等を実際に走行させて速度及び距離を計測する機器を校正する手法の代替となるより正確かつ簡便であり、再現性の高い計測の手法が求められている。特に、今後乗用車等の自動運転においては、正確な車両走行を実現する必要性から、基準となる校正手法の重要性はよりいっそう高まっている。 For these reasons, there is a demand for a more accurate, simpler, and more reproducible measurement method that can be used as an alternative to the method of calibrating a device that actually runs a passenger car or the like to measure speed and distance. In particular, in the future automatic driving of passenger cars and the like, the importance of the standard calibration method is further increasing due to the need to realize accurate vehicle driving.

本発明は上述の点に鑑みなされたものであり、従前の乗用車等による実際の走行に依存した校正から脱却し、簡便ながらも精度良く、再現性に優れた速度の計測と校正を実現する計測校正装置を提供する。 The present invention has been made in view of the above points, and is a measurement that realizes speed measurement and calibration with excellent reproducibility while being simple but accurate, by breaking away from the calibration depending on the actual driving by the conventional passenger car or the like. Provide a calibration device.

すなわち、本発明の第1の態様の計測校正装置は、直線状に配される直線レール部と、直線レール部の直線性を検知する直線検知部と、直線レール部上を走行する走行体と、走行体が、直線レール部の第1計測端部と、第1計測端部の反対側の第2計測端部を通過したことを検知する走行検知部と、第1計測端部及び第2計測端部の2点間の基準距離を検知する距離検知部と、を備えることを特徴とする。 That is, the measurement and calibration device according to the first aspect of the present invention includes a linear rail portion arranged in a straight line, a linear detection unit for detecting the linearity of the linear rail portion, and a traveling body traveling on the straight rail portion. , A traveling detection unit that detects that the traveling body has passed the first measurement end portion of the straight rail portion, the second measurement end portion on the opposite side of the first measurement end portion, the first measurement end portion, and the second measurement end portion. It is characterized by including a distance detecting unit that detects a reference distance between two points at the measurement end.

第2の態様の計測校正装置は、直線レール部の水平を検知する第1水平検知部と、直線レール部と直交するレール直交方向の水平を検知する第2水平検知部が備えられることを特徴とする。 The measurement and calibration device of the second aspect is characterized by being provided with a first horizontal detection unit that detects the horizontality of the straight rail portion and a second horizontal detection unit that detects the horizontality in the direction orthogonal to the rail orthogonal to the straight rail portion. And.

第3の態様の計測校正装置は、走行検知部に走行体の速度を計測する計測演算部が接続されることを特徴とする。 The measurement calibration device of the third aspect is characterized in that a measurement calculation unit for measuring the speed of the traveling body is connected to the travel detection unit.

第4の態様の計測校正装置は、走行体を走行させるモータ部が直線レール部の第1計測端部または第2計測端部に備えられ、直線レール部に近接してベルト部が架設され、モータ部の回転がベルト部に伝達されて走行体が直線レール部上を走行することを特徴とする。 In the measurement and calibration device of the fourth aspect, the motor portion for traveling the traveling body is provided at the first measurement end portion or the second measurement end portion of the straight rail portion, and the belt portion is erected in the vicinity of the straight rail portion. The rotation of the motor portion is transmitted to the belt portion, and the traveling body travels on the straight rail portion.

第5の態様の計測校正装置は、直線レール部が平行な2本のレール部からなり、平行な2本のレール部上を前記走行体が走行することを特徴とする。 The measurement and calibration device of the fifth aspect is characterized in that the linear rail portion is composed of two rail portions parallel to each other, and the traveling body travels on the two parallel rail portions.

第6の態様の計測校正装置は、走行検知部における走行体の走行の検知が光電センサを介した検知であることを特徴とする。 The measurement and calibration device of the sixth aspect is characterized in that the detection of the travel of the traveling body in the traveling detection unit is the detection via the photoelectric sensor.

本発明の計測校正装置によると、直線状に配される直線レール部と、直線レール部の直線性を検知する直線検知部と、直線レール部上を走行する走行体と、走行体が、直線レール部の第1計測端部と、第1計測端部の反対側の第2計測端部を通過したことを検知する走行検知部と、第1計測端部及び第2計測端部の2点間の基準距離を検知する距離検知部とを備えるため、人の運転による乗用車等による実際の走行に依存した校正手法から脱却し、簡便ながらも精度良く、再現性に優れた速度の計測と校正を実現することができる。 According to the measurement and calibration device of the present invention, a straight rail portion arranged in a straight line, a straight line detection unit for detecting the linearity of the straight rail portion, a traveling body traveling on the straight rail portion, and a traveling body are in a straight line. Two points, a traveling detection unit that detects that the rail portion has passed the first measurement end portion, the second measurement end portion on the opposite side of the first measurement end portion, and the first measurement end portion and the second measurement end portion. Since it is equipped with a distance detection unit that detects the reference distance between the lines, it breaks away from the calibration method that relies on actual driving by a passenger car driven by a person, and it is simple but accurate, and speed measurement and calibration with excellent reproducibility. Can be realized.

第1実施形態の計測校正装置の全体斜視図である。It is an overall perspective view of the measurement calibration apparatus of 1st Embodiment. 第1計測端部近傍の走行体の走行検知状態を示す上面図である。It is a top view which shows the traveling detection state of the traveling body near the 1st measurement end portion. 第2計測端部近傍の走行体の走行検知状態を示す上面図である。It is a top view which shows the traveling detection state of the traveling body near the 2nd measurement end portion.

実施形態の計測校正装置1では、図1の全体斜視図に示されるように、直線状に配される直線レール部10(直動レール)と、この上を走行する走行体2が備えられる。そこで、走行体2が所定距離(2点間距離)を走行する際に要した時間から、走行体2の走行速度が求められる。当該計測校正装置1から把握されるように、走行体2が長尺の直線レール部10上の走行検知部23の2点間の走行を繰り返すことにより、比較的単純な構成でありながらも容易かつ簡便に速度の計測が可能である。そのため、実際の車両の運転に伴う走行速度のばらつきの問題は生じにくい。そこで、計測校正装置1を利用して車載用の速度計等の機器の校正精度は高められる。 As shown in the overall perspective view of FIG. 1, the measurement and calibration device 1 of the embodiment includes a linear rail portion 10 (linear rail) arranged in a straight line, and a traveling body 2 traveling on the straight rail portion 10. Therefore, the traveling speed of the traveling body 2 can be obtained from the time required for the traveling body 2 to travel a predetermined distance (distance between two points). As can be grasped from the measurement and calibration device 1, the traveling body 2 repeats traveling between two points of the traveling detection unit 23 on the long straight rail unit 10, so that the traveling body 2 has a relatively simple configuration but is easy. Moreover, the speed can be easily measured. Therefore, the problem of variation in running speed due to actual driving of the vehicle is unlikely to occur. Therefore, the calibration accuracy of a device such as an in-vehicle speedometer is improved by using the measurement calibration device 1.

当該実施形態の直線レール部10は2本のレール部11,12から構成される。2本のレール部11,12が配置されることにより、走行体2の走行時、走行体2の左右方向のぶれは解消されるため走行は安定する。直線レール部10(レール部11,12)は、14ないし16mの全長である。レール部11及び12は平行に配置される。直線レール部10(レール部11,12)は、公知の鋼材により形成される。直線レール部10の両端部分(両端部分の近傍)は、その一側となる第1計測端部21と、第1計測端部21とは逆の他側(反対側)の第2計測端部22となる。 The straight rail portion 10 of the embodiment is composed of two rail portions 11 and 12. By arranging the two rail portions 11 and 12, when the traveling body 2 is traveling, the movement of the traveling body 2 in the left-right direction is eliminated, so that the traveling is stable. The straight rail portion 10 (rail portions 11, 12) has a total length of 14 to 16 m. The rail portions 11 and 12 are arranged in parallel. The straight rail portion 10 (rail portions 11, 12) is formed of a known steel material. Both end portions (near both end portions) of the straight rail portion 10 are the first measurement end portion 21 on one side thereof and the second measurement end portion on the other side (opposite side) opposite to the first measurement end portion 21. It becomes 22.

第1計測端部21は直線レール部10の一方の端部領域であり、走行検知部23の一方である第1走行検知部24が設置される。第2計測端部22は直線レール部10の他方の端部領域であり、走行検知部23の他方である第2走行検知部25が設置される。 The first measurement end portion 21 is one end region of the straight rail portion 10, and the first travel detection unit 24, which is one of the travel detection units 23, is installed. The second measurement end portion 22 is the other end region of the straight rail portion 10, and the second travel detection unit 25, which is the other end of the travel detection unit 23, is installed.

図示の実施形態では、直線検知部15は直線レール部10の第1計測端部21の近傍に設置される。直線検知部15は直線レール部10(個々のレール部11,12)の直線性を検知する。具体的には、レーザー墨出し器が直線検知部15として好ましく用いられる。直線検知部15とレール方向反射ミラー(図示せず)との間にレーザー光が照射される。そして、レーザー光の直下の個々のレール部11,12の長さ方向の歪み、ずれがレーザー光を基準に補正される。 In the illustrated embodiment, the straight line detection unit 15 is installed in the vicinity of the first measurement end 21 of the straight rail unit 10. The straight line detection unit 15 detects the linearity of the straight rail unit 10 (individual rail units 11 and 12). Specifically, a laser marking device is preferably used as the straight line detection unit 15. Laser light is emitted between the straight line detection unit 15 and the rail direction reflection mirror (not shown). Then, the distortion and deviation in the length direction of the individual rail portions 11 and 12 directly under the laser beam are corrected with reference to the laser beam.

さらに、直線レール部10の設置時の歪みは直線検知部15による直線方向に加え他の方向についても補正される。具体的には、第1水平検知部31と第2水平検知部36が備えられる。第1水平検知部31は直線レール部10(2本のレール部11,12)の長さ方向の水平を検知する。第2水平検知部36は直線レール部10(2本のレール部11,12)と直交するレール直交方向の水平を検知する。 Further, the distortion at the time of installation of the straight rail portion 10 is corrected not only in the linear direction by the linear detection unit 15 but also in other directions. Specifically, a first horizontal detection unit 31 and a second horizontal detection unit 36 are provided. The first horizontal detection unit 31 detects the horizontality of the straight rail unit 10 (two rail units 11, 12) in the length direction. The second horizontal detection unit 36 detects the horizontal in the rail orthogonal direction orthogonal to the straight rail unit 10 (two rail units 11 and 12).

第1水平検知部31としては、公知のXY軸ステージ、αβ軸ゴニオステージ等の検知器が用いられる。一般的には、レーザー距離計32と反射板33が組み合わせられる。第1水平検知部31により、直線レール部10自体の水平の調整、レール部11とレール部12の相互間の幅(平行)の調整、さらには、長さの調整も行われる。第2水平検知部36としては、水平調整器が用いられる。第2水平検知部36は、直線レール部10(2本のレール部11,12)の直下に敷かれた複数の枕木13のそれぞれに設置される。 As the first horizontal detection unit 31, a known detector such as an XY-axis stage or an αβ-axis goniometer stage is used. Generally, the laser rangefinder 32 and the reflector 33 are combined. The first horizontal detection unit 31 adjusts the horizontality of the straight rail unit 10 itself, adjusts the width (parallel) between the rail unit 11 and the rail unit 12, and further adjusts the length. As the second horizontal detection unit 36, a horizontal adjuster is used. The second horizontal detection unit 36 is installed on each of the plurality of sleepers 13 laid directly under the straight rail portion 10 (two rail portions 11, 12).

実施形態の例から把握されるように、直線レール部10の2本のレール部11,12に関する、直線性、平行具合、設置時の水平具合の調整が可能となる。特に、直線レール部10の2本のレール部11,12を屋内または屋外に計測場所に設置する際の設置の誤差の解消に役立つ。 As can be seen from the example of the embodiment, it is possible to adjust the linearity, the parallelism, and the horizontal condition at the time of installation with respect to the two rail portions 11 and 12 of the straight rail portion 10. In particular, it is useful for eliminating installation errors when the two rail portions 11 and 12 of the straight rail portion 10 are installed indoors or outdoors at the measurement location.

走行体2は、直線レール部10の2本のレール部11,12の直上に載置される。走行体2には、適宜の車輪(図示せず)等が設けられ、走行体2は摺動抵抗なくレール部11,12上の第1計測端部21(第1走行検知部24)と第2計測端部22(第2走行検知部25)の2点間を走行(通過)する。 The traveling body 2 is placed directly above the two rail portions 11 and 12 of the straight rail portion 10. The traveling body 2 is provided with appropriate wheels (not shown) and the like, and the traveling body 2 has a first measurement end portion 21 (first traveling detection unit 24) and a second on the rail portions 11 and 12 without sliding resistance. 2 Travels (passes) between two points of the measurement end 22 (second travel detection unit 25).

走行体2の走行に際しては、走行体2自体にモータを搭載して自走させてもよい。実施形態は自走方式ではなく、モータ部40は直線レール部10の外部に設置される。図2の上面図から理解されるように、モータ部40は直線レール部10の第1計測端部21側、さらには、直線検知部15(レーザー墨出し器)の外側に設置されている。むろん、モータ部40の設置は第2計測端部22側としてもよい。モータ部40は公知の直流モータであり、ギア変速器41が組み合わせられる。また、エンコーダ(図示せず)もモータ部40に適式に接続される。 When the traveling body 2 is traveling, a motor may be mounted on the traveling body 2 itself to allow the traveling body 2 to run by itself. The embodiment is not a self-propelled system, and the motor unit 40 is installed outside the straight rail unit 10. As can be understood from the top view of FIG. 2, the motor unit 40 is installed on the side of the first measurement end 21 of the linear rail unit 10 and further on the outside of the linear detection unit 15 (laser marking device). Of course, the motor unit 40 may be installed on the second measurement end 22 side. The motor unit 40 is a known DC motor, and a gear transmission 41 is combined with the motor unit 40. An encoder (not shown) is also properly connected to the motor unit 40.

走行動力の伝達に際しては、ベルト部42が用いられる。ベルト部42はタイミングベルトであり、直線レール部10に近接して架設される。図2に示されるように、第1計測端部21側のベルト部42はギア変速器41に架設される。図3に示されるように、第2計測端部22側のベルト部42はプーリ43に架設される。図2及び図3の図示のとおり、ベルト部42は、レール部11,12の内側に循環可能に架設される。走行体2の下部にベルト接続部3が備えられ、ベルト接続部3を介してベルト部42に接続される。そこで、モータ部40の回転により、ベルト部42は移動する。ベルト部42の移動に伴いベルト接続部3も移動する。結果、ベルト接続部3が設けられている走行体2はレール部11、12に沿って走行する。 The belt portion 42 is used for transmitting the traveling power. The belt portion 42 is a timing belt and is erected in the vicinity of the straight rail portion 10. As shown in FIG. 2, the belt portion 42 on the side of the first measurement end portion 21 is installed on the gear transmission 41. As shown in FIG. 3, the belt portion 42 on the second measurement end portion 22 side is erected on the pulley 43. As shown in FIGS. 2 and 3, the belt portion 42 is circulated inside the rail portions 11 and 12. A belt connecting portion 3 is provided at the lower portion of the traveling body 2, and is connected to the belt portion 42 via the belt connecting portion 3. Therefore, the belt portion 42 moves due to the rotation of the motor portion 40. As the belt portion 42 moves, the belt connecting portion 3 also moves. As a result, the traveling body 2 provided with the belt connecting portion 3 travels along the rail portions 11 and 12.

走行体2の走行態様は、加速、減速、定常(等速、定速)であり、種々の速度設定が可能である。こうして、走行体2は直線レール部10の上を第1計測端部21側から第2計測端部22側へ、また、第2計測端部22側から第1計測端部21側へ走行できる。走行体2の走行方向の変換はモータ部40における回転方向の逆転により容易である。計測に際し、走行体2は、例えば、40km/hの速度に設定され走行する。 The traveling mode of the traveling body 2 is acceleration, deceleration, and steady state (constant speed, constant speed), and various speed settings are possible. In this way, the traveling body 2 can travel on the straight rail portion 10 from the first measurement end portion 21 side to the second measurement end portion 22 side, and from the second measurement end portion 22 side to the first measurement end portion 21 side. .. The change of the traveling direction of the traveling body 2 is easy due to the reversal of the rotating direction in the motor unit 40. At the time of measurement, the traveling body 2 is set to, for example, a speed of 40 km / h and travels.

走行体2が直線レール部10(2本のレール部11,12)上を走行する際の走行体2の検知には、走行検知部23が用いられる。図示の実施形態では、第1走行検知部24は第1水平検知部31と一体化され、第2走行検知部25も第1水平検知部31と一体化されている。第1走行検知部24には、ステージ37が備えられ、このステージ37上に距離及び通過の基準となる基準線26が設けられる。同様に、第2走行検知部25にも、ステージ38が備えられ、このステージ38上にも距離及び通過の基準となる基準線26が設けられる。そして、走行体2には光電センサ50が備えられる。 The traveling detection unit 23 is used to detect the traveling body 2 when the traveling body 2 travels on the straight rail portions 10 (two rail portions 11 and 12). In the illustrated embodiment, the first travel detection unit 24 is integrated with the first horizontal detection unit 31, and the second travel detection unit 25 is also integrated with the first horizontal detection unit 31. The first travel detection unit 24 is provided with a stage 37, and a reference line 26 as a reference for distance and passage is provided on the stage 37. Similarly, the second travel detection unit 25 is also provided with a stage 38, and a reference line 26 as a reference for distance and passage is also provided on the stage 38. The traveling body 2 is provided with a photoelectric sensor 50.

走行体2の光電センサ50が基準線26を通過する都度、電気信号の変化が検知される。結果、走行体2の通過の時刻及び時間差が検知される。なお、光電センサの発光素子と受光素子は、走行体2と走行検知部23のいずれとしても良い。光電センサを用いるため、鋭敏かつ正確な検知が可能である。走行検知部23(第1走行検知部24及び第2走行検知部25)には計測演算部6が接続される。走行検知部23における光電センサ50を介した通過検知の信号は、信号線7を通じて計測演算部6に送信される。そこで、計測演算部6において、走行体2の通過の通過時刻、距離から速度が算出される。計測演算部6には、公知のパーソナルコンピュータ等が使用される。 Each time the photoelectric sensor 50 of the traveling body 2 passes through the reference line 26, a change in the electric signal is detected. As a result, the passing time and time difference of the traveling body 2 are detected. The light emitting element and the light receiving element of the photoelectric sensor may be either the traveling body 2 or the traveling detecting unit 23. Since a photoelectric sensor is used, sensitive and accurate detection is possible. A measurement calculation unit 6 is connected to the travel detection unit 23 (first travel detection unit 24 and second travel detection unit 25). The passage detection signal via the photoelectric sensor 50 in the travel detection unit 23 is transmitted to the measurement calculation unit 6 through the signal line 7. Therefore, in the measurement calculation unit 6, the speed is calculated from the passing time and the distance of the passage of the traveling body 2. A known personal computer or the like is used for the measurement calculation unit 6.

そこで、第1計測端部21及び第2計測端部22の2点間の正確な距離が検知される。これにより、走行検知部23の第1走行検知部24と第2走行検知部25の間の正確な距離が計測される。図示では、距離検知部27は第1計測端部21に設置されるレーザー距離計である。そして、第2計測端部22にレーザー距離計に対応する反射板28が設置される。第1計測端部21からレーザー光が照射され、反射板28により反射される。そして、反射されたレーザー光を第1計測端部21に設けられた受光素子により受光する。レーザー光の出射から受光までに要した時間により、第1計測端部21のレーザー光の出射口と反射板28との間の距離は検知される。 Therefore, an accurate distance between the two points of the first measurement end 21 and the second measurement end 22 is detected. As a result, the accurate distance between the first travel detection unit 24 and the second travel detection unit 25 of the travel detection unit 23 is measured. In the figure, the distance detection unit 27 is a laser range finder installed at the first measurement end unit 21. Then, a reflector 28 corresponding to the laser rangefinder is installed at the second measurement end 22. Laser light is irradiated from the first measurement end 21 and reflected by the reflector 28. Then, the reflected laser light is received by the light receiving element provided at the first measurement end portion 21. The distance between the laser beam emission port of the first measurement end 21 and the reflector 28 is detected by the time required from the emission of the laser beam to the light reception.

これより、図2及び図3の平面時を用い、第1走行検知部24と第2走行検知部25における走行体2の通過検知について説明する。図2では、ベルト部42が紙面の矢印D1の向きに移動し、これに連動して走行体2も紙面の矢印D2の向きに走行している。図示では、当該走行体2の光電センサ50が第1走行検知部24のステージ37上の基準線26を通過した瞬間を示している。走行体2の通過時の電気信号の変化は信号線7により計測演算部6に送信される。なお、計測演算部6への送信は図示の有線に加えて無線送信とすることもできる。 From this, the passage detection of the traveling body 2 in the first traveling detection unit 24 and the second traveling detection unit 25 will be described with reference to the plane time of FIGS. 2 and 3. In FIG. 2, the belt portion 42 moves in the direction of the arrow D1 on the paper surface, and in conjunction with this, the traveling body 2 also travels in the direction of the arrow D2 on the paper surface. In the figure, the moment when the photoelectric sensor 50 of the traveling body 2 passes the reference line 26 on the stage 37 of the first traveling detecting unit 24 is shown. The change in the electric signal when the traveling body 2 passes is transmitted to the measurement calculation unit 6 by the signal line 7. The transmission to the measurement calculation unit 6 may be wireless transmission in addition to the wired transmission shown in the figure.

図3においても、ベルト部42が紙面の矢印D1の向きに移動し、これに連動して走行体2も紙面の矢印D2の向きに走行している。図示では、これから走行体2の光電センサ50が第2走行検知部25のステージ38上の基準線26を通過しようとして接近しつつある瞬間である。この後、光電センサ50が基準線26を通過すると、走行体2の通過が検知される。 Also in FIG. 3, the belt portion 42 moves in the direction of the arrow D1 on the paper surface, and in conjunction with this, the traveling body 2 also travels in the direction of the arrow D2 on the paper surface. In the figure, it is the moment when the photoelectric sensor 50 of the traveling body 2 is approaching to pass the reference line 26 on the stage 38 of the second traveling detection unit 25. After that, when the photoelectric sensor 50 passes through the reference line 26, the passage of the traveling body 2 is detected.

第1走行検知部24の基準線26と第2走行検知部25の基準線26との間の距離は正確に計測されている。そこで、当該基準線同士の2点間の通過時刻または時間差が取得され速度が求められる。走行条件を変えながら走行体2の走行を繰り返すことにより、基準との比較可能なデータが収集される。このように、走行体2を高精度かつ微調整された直線レール部10上を走行させることにより、正確な速度データが取得できるため、実際の車両走行を用いた速度計測に見られるような、種々のばらつき発生等の問題は解消される。 The distance between the reference line 26 of the first travel detection unit 24 and the reference line 26 of the second travel detection unit 25 is accurately measured. Therefore, the passing time or time difference between the two points of the reference lines is acquired and the speed is obtained. By repeating the running of the traveling body 2 while changing the running conditions, data comparable to the reference is collected. In this way, by running the traveling body 2 on the straight rail portion 10 with high accuracy and fine adjustment, accurate speed data can be acquired, so that speed measurement using actual vehicle traveling can be obtained. Problems such as the occurrence of various variations are solved.

本発明の計測校正装置は、比較的簡便な構成の装置しながらも、例えば車載用の速度計等の機器を校正することができる。このことから、既存の車両走行に依存した計測に代替するとして有望である。 Although the measurement and calibration device of the present invention has a relatively simple configuration, it can calibrate a device such as an in-vehicle speedometer. From this, it is promising as an alternative to the existing measurement depending on the vehicle running.

1 計測校正装置
2 走行体
3 ベルト接続部
6 計測演算部
7 信号線
10 直線レール部
11,12 レール部
13 枕木
15 直線検知部
21 第1計測端部
22 第2計測端部
23 走行検知部
24 第1走行検知部
25 第2走行検知部
26 基準線
27 距離検知部
28 反射板
31 第1水平検知部
32 レーザー距離計
33 反射板
36 第2水平検知部
37,38 ステージ
40 モータ部
41 ギア変速器
42 ベルト部
50 光電センサ
1 Measurement and calibration device 2 Traveling body 3 Belt connection part 6 Measurement calculation unit 7 Signal line 10 Straight rail part 11, 12 Rail part 13 Sleepers 15 Straight line detection unit 21 1st measurement end 22 2nd measurement end 23 Travel detection unit 24 1st running detector 25 2nd running detector 26 Reference line 27 Distance detector 28 Reflector 31 1st horizontal detector 32 Laser rangefinder 33 Reflector 36 2nd horizontal detector 37, 38 Stage 40 Motor section 41 Gear shift Instrument 42 Belt part 50 Photoelectric sensor

Claims (6)

速度及び距離を計測する車載機器を校正するための計測校正装置であって、
直線状に配される直線レール部と、
前記直線レール部の直線性を検知する直線検知部と、
前記直線レール部上を走行する走行体と、
前記走行体が、前記直線レール部の第1計測端部と、前記第1計測端部の反対側の第2計測端部を通過したことを検知する走行検知部と
前記第1計測端部及び前記第2計測端部の2点間の基準距離を検知する距離検知部と、
を備え
前記走行体に前記車載機器が設置される
とを特徴とする計測校正装置。
A measurement and calibration device for calibrating in-vehicle devices that measure speed and distance.
Straight rails arranged in a straight line and
A straight line detection unit that detects the linearity of the straight rail unit,
A traveling body traveling on the straight rail portion and
The traveling detection unit for detecting that the traveling body has passed the first measurement end of the straight rail portion, the second measurement end on the opposite side of the first measurement end, the first measurement end, and the first measurement end. A distance detection unit that detects a reference distance between two points at the second measurement end, and a distance detection unit.
Equipped with
The in-vehicle device is installed on the traveling body.
A measurement and calibration device characterized by this.
前記直線レール部の水平を検知する第1水平検知部と、
前記直線レール部と直交するレール直交方向の水平を検知する第2水平検知部が備えられる請求項1に記載の計測校正装置。
The first horizontal detection unit that detects the horizontality of the straight rail unit,
The measurement and calibration device according to claim 1, further comprising a second horizontal detection unit that detects horizontality in a rail orthogonal direction orthogonal to the straight rail unit.
前記走行検知部に前記走行体の速度を計測する計測演算部が接続される請求項1または2に記載の計測校正装置。 The measurement calibration device according to claim 1 or 2, wherein a measurement calculation unit for measuring the speed of the traveling body is connected to the travel detection unit. 前記走行体を走行させるモータ部が前記直線レール部の前記第1計測端部または前記第2計測端部に備えられ、前記直線レール部に近接してベルト部が架設され、前記モータ部の回転が前記ベルト部に伝達されて前記走行体が前記直線レール部上を走行する請求項1ないし3のいずれか1項に記載の計測校正装置。 A motor portion for traveling the traveling body is provided at the first measurement end portion or the second measurement end portion of the straight rail portion, a belt portion is erected in the vicinity of the straight rail portion, and the motor portion rotates. The measurement and calibration device according to any one of claims 1 to 3, wherein is transmitted to the belt portion and the traveling body travels on the straight rail portion. 前記直線レール部が平行な2本のレール部からなり、前記平行な2本のレール部上を前記走行体が走行する請求項1ないし4のいずれか1項に記載の計測校正装置。 The measurement and calibration device according to any one of claims 1 to 4, wherein the straight rail portion is composed of two parallel rail portions, and the traveling body travels on the two parallel rail portions. 前記走行検知部における前記走行体の走行の検知が光電センサを介した検知である請求項1ないし5のいずれか1項に記載の計測校正装置。
The measurement and calibration device according to any one of claims 1 to 5, wherein the travel detection of the traveling body in the traveling detection unit is detection via a photoelectric sensor.
JP2018188683A 2018-10-03 2018-10-03 Measurement and calibration equipment Active JP7048470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188683A JP7048470B2 (en) 2018-10-03 2018-10-03 Measurement and calibration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188683A JP7048470B2 (en) 2018-10-03 2018-10-03 Measurement and calibration equipment

Publications (2)

Publication Number Publication Date
JP2020056734A JP2020056734A (en) 2020-04-09
JP7048470B2 true JP7048470B2 (en) 2022-04-05

Family

ID=70107074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188683A Active JP7048470B2 (en) 2018-10-03 2018-10-03 Measurement and calibration equipment

Country Status (1)

Country Link
JP (1) JP7048470B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955370B2 (en) 2006-11-24 2012-06-20 富士通フロンテック株式会社 Management program and management system
CN103863358A (en) 2014-03-12 2014-06-18 中铁四局集团电气化工程有限公司 Axle counter installation test detector
CN104627187A (en) 2015-01-30 2015-05-20 上海富欣智能交通控制有限公司 Speed-measuring function test platform for vehicle-mounted system for measuring speed based on speed sensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5246701B2 (en) * 1972-09-28 1977-11-26
JPH081444Y2 (en) * 1993-12-28 1996-01-17 財団法人鉄道総合技術研究所 Orbital shape measuring device
JP3210589B2 (en) * 1996-11-25 2001-09-17 島津理化器械株式会社 Universal trolley experimental device
JP5846480B2 (en) * 2011-10-04 2016-01-20 シンフォニアテクノロジー株式会社 Control parameter setting method for vehicle collision test apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955370B2 (en) 2006-11-24 2012-06-20 富士通フロンテック株式会社 Management program and management system
CN103863358A (en) 2014-03-12 2014-06-18 中铁四局集团电气化工程有限公司 Axle counter installation test detector
CN104627187A (en) 2015-01-30 2015-05-20 上海富欣智能交通控制有限公司 Speed-measuring function test platform for vehicle-mounted system for measuring speed based on speed sensor

Also Published As

Publication number Publication date
JP2020056734A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
US8256582B2 (en) Methods and devices for surveying elevator hoistways
US10309763B2 (en) Rail position measurement device
PT2450865E (en) Mobile control devices and methods for vehicles
US7681443B2 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
US20190285729A1 (en) Automatic calibration of a vehicle radar sensor
US20110208476A1 (en) Method and apparatus for determining geometrical dimensions of a wheel
CN103115581A (en) Multifunctional rail measuring system and method thereof
CN104929024A (en) Road surface evenness detector and road surface evenness measuring method
GB2419759A (en) Laser scanning surveying and measuring system
CN107257759B (en) Determine the positioning device and method of rail guided vehicles, especially rail vehicle position
EP0575327A1 (en) A method and an apparatus for measuring curvature and crossfall of ground surfaces.
JP4915800B2 (en) Conveyor rail wear inspection device
CN109440612B (en) Road flatness detection equipment
JP2002188910A (en) Traveling type road surface shape measuring device
EP1203928A1 (en) Road surface roughness measuring device
ITTO20100720A1 (en) SYSTEM AND METHOD OF MEASURING THE ROUGHNESS OF A ROAD SURFACE
CN106405535B (en) Train speed detection device and train speed detection method
CN109668515B (en) Train wheel set size dynamic detection system and detection method
JP7048470B2 (en) Measurement and calibration equipment
KR20180056850A (en) Apparatus and method for automatic measuring train rail
JP4735079B2 (en) Tire dynamic contact shape measurement method
US4353068A (en) Method for calibrating beam emitter type speed sensor for railroad rolling stock
US20230237766A1 (en) Speed And Slip Determinations For A Vehicle Using Optical Flow Technology
JP2005077096A (en) Apparatus and method for measuring creeping of rail and reference target installation method
KR20050118384A (en) Stopping system and method for railroad vehicle using magnetic pattern

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150