JP7047503B2 - A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body. - Google Patents

A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body. Download PDF

Info

Publication number
JP7047503B2
JP7047503B2 JP2018047751A JP2018047751A JP7047503B2 JP 7047503 B2 JP7047503 B2 JP 7047503B2 JP 2018047751 A JP2018047751 A JP 2018047751A JP 2018047751 A JP2018047751 A JP 2018047751A JP 7047503 B2 JP7047503 B2 JP 7047503B2
Authority
JP
Japan
Prior art keywords
sintered body
boron nitride
cubic boron
compound
cbn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018047751A
Other languages
Japanese (ja)
Other versions
JP2019156692A (en
Inventor
雄一郎 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2018047751A priority Critical patent/JP7047503B2/en
Publication of JP2019156692A publication Critical patent/JP2019156692A/en
Application granted granted Critical
Publication of JP7047503B2 publication Critical patent/JP7047503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、立方晶窒化硼素焼結体、及び、立方晶窒化硼素焼結体を有する工具に関する。 The present invention relates to a cubic boron nitride sintered body and a tool having a cubic boron nitride sintered body.

工具に使用される立方晶窒化硼素(cBN)焼結体は、立方晶窒化硼素と結合相を含む。一般的に、結合相の材料の一部には、Alが使用される。結合相の材料にAlが使用されると、Alが酸化することによって原料粉の表面に吸着している酸素が除去されるため、焼結反応を促進することができる。 The cubic boron nitride (cBN) sintered body used in the tool contains a cubic boron nitride and a bonded phase. Generally, Al is used as a part of the material of the bonding phase. When Al is used as the material of the bonded phase, oxygen adsorbed on the surface of the raw material powder is removed by oxidizing Al, so that the sintering reaction can be promoted.

従来のcBN焼結体は、結合相の材料として、Ti化合物およびAl化合物を含む材料を用いていた。そのため、従来のcBN焼結体の焼結過程では、Al、AlN、及びTiBが反応により生成していた。 In the conventional cBN sintered body, a material containing a Ti compound and an Al compound was used as the material of the bonded phase. Therefore, in the sintering process of the conventional cBN sintered body, Al 2 O 3 , Al N, and TiB 2 were generated by the reaction.

また、従来のcBN焼結体では、cBN粒子の周囲にTiBの層が生成していた。このため、結合相全体に含まれるTiの比率よりも、cBN粒子の周囲に存在するTiの比率が大きくなっており、結合相の均一性が阻害されていた。 Further, in the conventional cBN sintered body, a layer of TiB 2 is formed around the cBN particles. Therefore, the ratio of Ti present around the cBN particles is larger than the ratio of Ti contained in the entire bound phase, and the uniformity of the bound phase is impaired.

例えば、特許文献1には、立方晶窒化硼素粒子と結合相とを含む立方晶窒化硼素焼結体を少なくとも刃先に有する工具が開示されている。特許文献1に開示された工具において、立方晶窒化硼素焼結体は、立方晶窒化硼素粒子を40~70体積%含む。結合相は、第1成分と第2成分とを含む。第1成分は、TiCであり、第2成分は、TiBおよびAlBのいずれか一方または両方である。第1成分の(200)面のX線回折強度をI、第2成分の(101)面のX線回折強度をIとしたとき、Iは、立方晶窒化硼素焼結体において立方晶窒化硼素粒子を除く全成分のX線回折強度中最大であり、かつ0.01≦I/I≦0.1を満たす。 For example, Patent Document 1 discloses a tool having at least a cubic boron nitride sintered body including cubic boron nitride particles and a bonded phase at the cutting edge. In the tool disclosed in Patent Document 1, the cubic boron nitride sintered body contains 40 to 70% by volume of cubic boron nitride particles. The bound phase comprises a first component and a second component. The first component is TiC and the second component is either or both of TiB 2 and AlB 2 . When the X-ray diffraction intensity of the (200) plane of the first component is I 1 and the X-ray diffraction intensity of the (101) plane of the second component is I 2 , I 1 is cubic in the cubic boron nitride sintered body. It is the highest among the X-ray diffraction intensities of all the components except the boron crystallized boron particles, and satisfies 0.01 ≤ I 2 / I 1 ≤ 0.1.

国際公開第2012/053375号International Publication No. 2012/0533375

従来のcBN焼結体を用いた工具は、熱伝導率に劣るAlおよび機械的強度に劣るAlNを過剰に含むため、耐欠損性が不十分であった。また、鉄との耐反応性に劣るTiBを過剰に含むため、耐摩耗性が不十分であった。 Tools using conventional cBN sintered bodies have insufficient chipping resistance because they contain an excess of Al2O3 , which is inferior in thermal conductivity, and AlN, which is inferior in mechanical strength. In addition, the wear resistance was insufficient because TiB 2 , which is inferior in reactivity with iron, was excessively contained.

また、従来のcBN焼結体を用いた工具は、cBN粒子の周囲にTi比率の大きい領域が存在しており、この領域が結合相の均一性を阻害していた。 Further, in the conventional tool using the cBN sintered body, a region having a large Ti ratio exists around the cBN particles, and this region hinders the uniformity of the bonded phase.

さらに、従来のcBN焼結体を用いた工具は、結合相の材料に鉄との耐反応性に劣る炭化チタン(TiC)や炭窒化チタン(TiCN)を使用する場合があり、耐摩耗性が不十分であった。 Further, a tool using a conventional cBN sintered body may use titanium carbide (TiC) or titanium carbonitride (TiCN), which is inferior in reactivity with iron, as the material of the bonded phase, and the wear resistance is high. It was inadequate.

例えば、特許文献1に開示された立方晶窒化硼素焼結体は、結合相中にTiCを多く含むため、鉄との耐反応性に劣り、耐摩耗性が不十分であった。また、cBN粒子の周囲に存在するTiBの割合が高いため、耐摩耗性が不十分であった。 For example, the cubic boron nitride sintered body disclosed in Patent Document 1 contains a large amount of TiC in the bonded phase, and therefore has poor reactivity with iron and insufficient wear resistance. Moreover, since the proportion of TiB 2 present around the cBN particles is high, the wear resistance is insufficient.

したがって、従来のcBN焼結体を用いた工具は、反応摩耗の進行によって工具に欠損が生じることがあり、工具寿命が短いという問題があった。 Therefore, the conventional tool using the cBN sintered body has a problem that the tool may be chipped due to the progress of reaction wear and the tool life is short.

本発明は、耐摩耗性及び耐欠損性を向上させることにより、工具寿命を長くすることのできる立方晶窒化硼素焼結体および立方晶窒化硼素焼結体を有する工具を提供することを目的とする。 It is an object of the present invention to provide a tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body capable of prolonging the tool life by improving wear resistance and fracture resistance. do.

本発明の要旨は、以下の通りである。
(1)立方晶窒化硼素と結合相とを含む立方晶窒化硼素焼結体であって、
前記立方晶窒化硼素の含有量は、60体積%以上80体積%以下であり、
前記結合相の含有量は、20体積%以上40体積%以下であり、
前記結合相は、Al化合物と、Ti化合物とを含み、
前記Ti化合物は、Tiの窒化物を主に含み、
前記Al化合物は、Alの酸化物、窒化物、及び硼化物からなる群より選ばれる少なくとも1種の化合物を含み、
前記Al化合物の含有量は、0体積%を超え5体積%未満であり、
前記立方晶窒化硼素焼結体の断面において、下記式(1)で表される条件を満たす、立方晶窒化硼素焼結体。
0.80≦A/B≦1.20 ・・・(1)
(式(1)中、Aは、前記立方晶窒化硼素と前記結合相との界面の長さに対する、前記立方晶窒化硼素と前記Al化合物との界面の長さの割合を表す。Bは、前記結合相の含有量に対する、前記Al化合物の含有量の割合を表す。)
The gist of the present invention is as follows.
(1) A cubic boron nitride sintered body containing a cubic boron nitride and a bonded phase.
The content of the cubic boron nitride is 60% by volume or more and 80% by volume or less.
The content of the bound phase is 20% by volume or more and 40% by volume or less.
The bonded phase contains an Al compound and a Ti compound.
The Ti compound mainly contains a nitride of Ti,
The Al compound contains at least one compound selected from the group consisting of oxides, nitrides, and borides of Al.
The content of the Al compound is more than 0% by volume and less than 5% by volume.
A cubic boron nitride sintered body that satisfies the condition represented by the following formula (1) in the cross section of the cubic boron nitride sintered body.
0.80 ≤ A / B ≤ 1.20 ... (1)
(In the formula (1), A represents the ratio of the length of the interface between the cubic boron nitride and the Al compound to the length of the interface between the cubic boron nitride and the bonded phase. It represents the ratio of the content of the Al compound to the content of the bound phase.)

(2)前記Al化合物の含有量は、1体積%以上4体積%以下である、(1)に記載の立方晶窒化硼素焼結体。 (2) The cubic boron nitride sintered body according to (1), wherein the content of the Al compound is 1% by volume or more and 4% by volume or less.

(3)前記Al化合物は、Alを含む、(1)または(2)に記載の立方晶窒化硼素焼結体。 (3) The cubic boron nitride sintered body according to (1) or (2), wherein the Al compound contains Al 2 O 3 .

(4)前記Ti化合物は、Tiの硼化物をさらに含む、(1)から(3)のうちいずれかに記載の立方晶窒化硼素焼結体。 (4) The cubic boron nitride sintered body according to any one of (1) to (3), wherein the Ti compound further contains a Boride of Ti.

(5)前記Tiの硼化物は、TiBであり、
前記立方晶窒化硼素の(200)面のX線回折強度をIcBN(200)、前記TiB の(100)面のX線回折強度をITiB2(100)としたとき、ITiB2(100)/IcBN(200)≦0.20である、(4)に記載の立方晶窒化硼素焼結体。
(5) The Boride of Ti is TiB 2 .
When the X-ray diffraction intensity of the (200) plane of the cubic boron nitride is I cBN (200) and the X-ray diffraction intensity of the (100) plane of the TiB 2 is I TiB2 (100) , it is I TiB2 (100). / I cBN (200) ≤ 0.20, the cubic boron nitride sintered body according to (4).

(6)前記Ti化合物は、Tiの炭化物とTiの炭窒化物を含まない、(1)から(5)のうちいずれかに記載の立方晶窒化硼素焼結体。 (6) The cubic boron nitride sintered body according to any one of (1) to (5), wherein the Ti compound does not contain a carbide of Ti and a carbonitride of Ti.

(7)前記Al化合物は、AlNを含み、
前記立方晶窒化硼素の(200)面のX線回折強度をIcBN(200)、前記AlNの(100)面のX線回折強度をIAlN(100)としたとき、IAlN(100)/IcBN(200)≦0.20を満たす、(1)から(6)のうちいずれかに記載の立方晶窒化硼素焼結体。
(7) The Al compound contains AlN and contains AlN.
When the X-ray diffraction intensity of the (200) plane of the cubic boron nitride is I cBN (200) and the X-ray diffraction intensity of the (100) plane of the AlN is I AlN (100) , I AlN (100) /. I cBN (200) The cubic boron nitride sintered body according to any one of (1) to (6), which satisfies ≤0.20.

(8)前記立方晶窒化硼素焼結体の上に形成された被覆層を備える、(1)から(7)のうちいずれかに記載の立方晶窒化硼素焼結体。 (8) The cubic boron nitride sintered body according to any one of (1) to (7), comprising a coating layer formed on the cubic boron nitride sintered body.

(9)前記被覆層が、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とからなる、(8)に記載の立方晶窒化硼素焼結体。 (9) The coating layer is composed of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al and Si, and C, N, O and B. The cubic boron nitride sintered body according to (8), which comprises at least one element selected from the group.

(10)前記被覆層が、単層、または、2層以上を含む積層構造を有する、(8)または(9)に記載の立方晶窒化硼素焼結体。 (10) The cubic boron nitride sintered body according to (8) or (9), wherein the coating layer has a single layer or a laminated structure including two or more layers.

(11)前記被覆層全体の平均厚さが、1.0μm以上5.0μm以下である、(8)から(10)のうちいずれかに記載の立方晶窒化硼素焼結体。 (11) The cubic boron nitride sintered body according to any one of (8) to (10), wherein the average thickness of the entire coating layer is 1.0 μm or more and 5.0 μm or less.

(12)(1)から(11)のうちいずれかに記載の立方晶窒化硼素焼結体を有する工具。 (12) A tool having the cubic boron nitride sintered body according to any one of (1) to (11).

本発明によれば、耐摩耗性及び耐欠損性を向上させることにより、工具寿命を長くすることのできる立方晶窒化硼素焼結体および立方晶窒化硼素焼結体を有する工具を提供することができる。 According to the present invention, it is possible to provide a tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body capable of prolonging the tool life by improving wear resistance and fracture resistance. can.

実施例2のcBN焼結体の断面組織のSEM写真である。It is an SEM photograph of the cross-sectional structure of the cBN sintered body of Example 2.

以下、本発明の実施形態について説明する。
本実施形態の立方晶窒化硼素焼結体は、立方晶窒化硼素と結合相とを含む。立方晶窒化硼素(cBN)の含有量は、60体積%以上80体積%以下である。結合相の含有量は、20体積%以上40体積%以下である。
Hereinafter, embodiments of the present invention will be described.
The cubic boron nitride sintered body of the present embodiment contains a cubic boron nitride and a bonded phase. The content of cubic boron nitride (cBN) is 60% by volume or more and 80% by volume or less. The content of the bound phase is 20% by volume or more and 40% by volume or less.

cBNの含有量が60体積%未満の場合、結合相の割合が高くなるため、cBN焼結体の機械的強度が低下し、cBN焼結体を用いた工具の耐欠損性が低くなる。一方、cBNの含有量が80体積%を超える場合、鉄との耐反応性に劣るcBNの割合が高くなるため、cBN焼結体の耐摩耗性が低くなる。なお、cBNおよび結合相の含有量(体積%)は、cBN焼結体の任意の断面をSEMで撮影し、撮影したSEM写真を市販の画像解析ソフトで解析することで求めることができる。 When the content of cBN is less than 60% by volume, the ratio of the bonded phase is high, so that the mechanical strength of the cBN sintered body is lowered and the fracture resistance of the tool using the cBN sintered body is lowered. On the other hand, when the content of cBN exceeds 80% by volume, the proportion of cBN which is inferior in reactivity with iron is high, so that the wear resistance of the cBN sintered body is low. The content (% by volume) of cBN and the bonded phase can be obtained by taking an arbitrary cross section of the cBN sintered body with an SEM and analyzing the taken SEM photograph with commercially available image analysis software.

cBNの平均粒径は、1.5μm以上4.5μm以下であることが好ましい。cBNの平均粒径が1.5μm未満であると、熱伝導率が低下することにより、cBN焼結体の耐欠損性が低下する場合がある。cBNの平均粒径が4.5μmを超えると、結合相の幅が厚くなり、cBN焼結体の耐欠損性が低下する場合がある。cBNの平均粒径は、2.0μm以上4.0μm以下であるとさらに好ましい。 The average particle size of cBN is preferably 1.5 μm or more and 4.5 μm or less. If the average particle size of cBN is less than 1.5 μm, the thermal conductivity may decrease and the fracture resistance of the cBN sintered body may decrease. When the average particle size of cBN exceeds 4.5 μm, the width of the bonded phase becomes thick and the fracture resistance of the cBN sintered body may decrease. The average particle size of cBN is more preferably 2.0 μm or more and 4.0 μm or less.

本実施形態のcBN焼結体において、結合相は、Ti化合物と、Al化合物とを含む。
Ti化合物は、Tiの窒化物を主に含む。ここでいう「主に含む」とは、Ti化合物の全部または大部分がTiの窒化物であることを意味する。より具体的には、Ti化合物の(200)面のX線回折におけるピーク位置(2θ)が42.4°以上42.8°以下の場合は、Ti化合物が主にTiの窒化物を含むといえる。Ti化合物の(200)面のX線回折において41.7°以上42.8°以下の範囲に複数のピークを確認することができる場合は、42.4°以上42.8°以下の範囲に最高のピークが存在する場合に、Ti化合物が主にTiの窒化物を含むといえる。
また、Ti化合物は、Tiの炭化物及びTiの炭窒化物を含まないことが好ましい。
In the cBN sintered body of the present embodiment, the bonded phase contains a Ti compound and an Al compound.
The Ti compound mainly contains a nitride of Ti. The term "mainly contained" as used herein means that all or most of the Ti compound is a nitride of Ti. More specifically, when the peak position (2θ) in the X-ray diffraction of the (200) plane of the Ti compound is 42.4 ° or more and 42.8 ° or less, the Ti compound mainly contains the nitride of Ti. I can say. If multiple peaks can be confirmed in the range of 41.7 ° or more and 42.8 ° or less in the X-ray diffraction of the (200) plane of the Ti compound, the range should be 42.4 ° or more and 42.8 ° or less. It can be said that the Ti compound mainly contains the nitride of Ti when the highest peak is present.
Further, it is preferable that the Ti compound does not contain a carbide of Ti and a carbonitride of Ti.

Al化合物は、Alの酸化物、窒化物、及び硼化物からなる群より選ばれる少なくとも1種の化合物を含む。Al化合物の含有量は、cBN焼結体全体に対して、0体積%を超え5体積%未満である。なお、Al化合物の含有量(体積%)は、cBN焼結体の任意の断面をSEMで撮影し、撮影したSEM写真を市販の画像解析ソフトで解析することで求めることができる。 The Al compound contains at least one compound selected from the group consisting of oxides, nitrides, and borides of Al. The content of the Al compound is more than 0% by volume and less than 5% by volume with respect to the entire cBN sintered body. The content (% by volume) of the Al compound can be obtained by taking an arbitrary cross section of the cBN sintered body with an SEM and analyzing the taken SEM photograph with commercially available image analysis software.

結合相の材料にAlが含まれていると、Alが酸化することによって原料粉(cBN及びTiの窒化物を含む粉末)の表面に吸着している酸素が除去されるため、焼結反応が促進される。しかし、結合相の材料に含まれるAlが多すぎると、余剰のAlが窒素と反応してAlNが生成する。そして、AlNの窒素源はBNおよびTiNであるため、Nを奪われたTiとBが反応してTiBが生成する。つまり、反応の順番としては、まず結合相内に不可避的に存在する酸素量に応じてAlが生成する。次に、余剰のAlが窒素と反応して、AlNが生成する。AlNが生成する際にNを奪われたTiとBが反応して、TiBが生成する。 When Al is contained in the material of the bonded phase, oxygen adsorbed on the surface of the raw material powder (powder containing cBN and Ti nitride) is removed by the oxidation of Al, so that the sintering reaction occurs. Be promoted. However, if the amount of Al contained in the material of the bonded phase is too large, the excess Al reacts with nitrogen to form AlN. Since the nitrogen sources of AlN are BN and TiN, Ti and B deprived of N react with each other to generate TiB 2 . That is, as for the order of the reaction, Al 2 O 3 is first generated according to the amount of oxygen inevitably present in the bound phase. Next, the surplus Al reacts with nitrogen to generate AlN. When AlN is produced, Ti and B deprived of N react with each other to generate TiB 2 .

上述した通り、AlNは機械的強度に劣るため、cBN焼結体にAlNが多く含まれると、耐欠損性が低下してしまう。また、TiBは鉄との耐反応性に劣るため、cBN焼結体にTiBが多く含まれると、耐摩耗性が低下してしまう。 As described above, since AlN is inferior in mechanical strength, if the cBN sintered body contains a large amount of AlN, the fracture resistance is lowered. Further, since TiB 2 is inferior in reactivity with iron, if the cBN sintered body contains a large amount of TiB 2 , the wear resistance is lowered.

本発明者は、上記の知見に基づき、各種の実験を行った。その結果、Al化合物の含有量が0体積%を超え5体積%未満であると、cBN焼結体の耐摩耗性及び耐欠損性が顕著に高まることを発見し、本発明を完成させた。Al化合物のより好ましい含有量は、1体積%以上4体積%以下である。 The present inventor conducted various experiments based on the above findings. As a result, it was discovered that when the content of the Al compound is more than 0% by volume and less than 5% by volume, the wear resistance and the fracture resistance of the cBN sintered body are remarkably enhanced, and the present invention has been completed. A more preferable content of the Al compound is 1% by volume or more and 4% by volume or less.

cBN焼結体にAl化合物が含まれないと、原料粉末の表面に吸着している酸素が除去されないため、焼結反応が促進されない。この場合、cBN粒子間の結合力が弱くなるため、cBN焼結体の耐欠損性が低くなる。 If the cBN sintered body does not contain the Al compound, the oxygen adsorbed on the surface of the raw material powder is not removed, so that the sintering reaction is not promoted. In this case, since the bonding force between the cBN particles is weakened, the fracture resistance of the cBN sintered body is lowered.

一方、cBN焼結体に含まれるAl化合物が5体積%以上になると、熱伝導率に劣るAlおよび機械的強度に劣るAlNの含有量が多くなるため、cBN焼結体の耐欠損性が低くなる。特に、cBN焼結体にAlNが含まれている場合は、Al化合物の含有量が過剰であると考えられる。 On the other hand, when the Al compound contained in the cBN sintered body is 5% by volume or more, the contents of Al 2 O 3 inferior in thermal conductivity and Al N inferior in mechanical strength increase, so that the cBN sintered body has a defect resistance. The sex becomes low. In particular, when the cBN sintered body contains AlN, it is considered that the content of the Al compound is excessive.

cBN焼結体の結合相に含まれるAl化合物の例として、Al、AlN、硼化アルミニウムなどを挙げることができる。 Examples of the Al compound contained in the bonded phase of the cBN sintered body include Al2O3 , AlN, and aluminum boride.

cBN焼結体の結合相に含まれるTi化合物の例として、Tiの窒化物、TiBなどを挙げることができる。Ti化合物は、Tiの窒化物を主に含む。したがって、結合相に含まれるTi化合物の大部分が、Tiの炭化物及びTiの炭窒化物と比較して鉄との耐反応性に優れるTiの窒化物によって構成されるため、cBN焼結体の耐摩耗性を向上させることができる。 Examples of the Ti compound contained in the bonded phase of the cBN sintered body include Ti nitride and TiB 2 . The Ti compound mainly contains a nitride of Ti. Therefore, since most of the Ti compounds contained in the bonded phase are composed of the carbide of Ti and the nitride of Ti which is superior in the reactivity resistance with iron as compared with the carbide of Ti, the cBN sintered body Abrasion resistance can be improved.

本実施形態のcBN焼結体は、原料粉の表面に吸着している酸素を除去するのに必要最小限のAlを含み、余剰のAlをほとんど含まない。このため、Alが窒素と反応して結合相中にAlNが生成することを抑制できる。その結果、結合相中にTiBが生成することも抑制できる。 The cBN sintered body of the present embodiment contains the minimum amount of Al necessary for removing oxygen adsorbed on the surface of the raw material powder, and contains almost no excess Al. Therefore, it is possible to suppress Al from reacting with nitrogen to form AlN in the bound phase. As a result, it is possible to suppress the formation of TiB 2 in the bound phase.

本実施形態のcBN焼結体は、結合相に含まれるAl以外の反応生成物の量が極めて少ないため、結合相の断面組織が均一となっている。具体的には、立方晶窒化硼素焼結体の断面において、下記式(1)で表される条件を満たす。 In the cBN sintered body of the present embodiment, the amount of reaction products other than Al 2 O 3 contained in the bonded phase is extremely small, so that the cross-sectional structure of the bonded phase is uniform. Specifically, the cross section of the cubic boron nitride sintered body satisfies the condition represented by the following formula (1).

0.80≦A/B≦1.20 ・・・(1)
(式(1)中、Aは、立方晶窒化硼素と結合相との界面の長さに対する、立方晶窒化硼素とAl化合物との界面の長さの割合を表す。Bは、結合相の含有量に対する、Al化合物の含有量の割合を表す。)
0.80 ≤ A / B ≤ 1.20 ... (1)
(In the formula (1), A represents the ratio of the length of the interface between the cubic boron nitride and the Al compound to the length of the interface between the cubic boron nitride and the bonded phase, and B represents the content of the bonded phase. Represents the ratio of the content of the Al compound to the amount.)

式(1)において、Aは、cBN粒子の周囲における、結合相に含まれるAlの割合を表している。Bは、結合相全体に含まれるAlの割合を表している。したがって、A/Bは、結合相に含まれるAl化合物及びTi化合物の偏在の指標となる。A/Bが1に近いほど、cBN粒子周辺の反応生成物層が少なく、結合相の組織が均一であると考えられる。 In formula (1), A represents the proportion of Al contained in the bound phase around the cBN particles. B represents the ratio of Al contained in the entire bonded phase. Therefore, A / B is an index of uneven distribution of Al compound and Ti compound contained in the bonded phase. It is considered that the closer the A / B is to 1, the smaller the reaction product layer around the cBN particles, and the more uniform the structure of the bound phase.

A/Bが0.80よりも小さい場合は、cBN粒子の周囲にTi化合物が偏在している。A/Bが1.20よりも大きい場合は、cBN粒子の周囲にAl化合物が偏在している。いずれの場合でも、結合相の組織の均一性が阻害されるため、cBN焼結体の耐欠損性が低下する。 When A / B is smaller than 0.80, Ti compounds are unevenly distributed around the cBN particles. When A / B is larger than 1.20, the Al compound is unevenly distributed around the cBN particles. In either case, the uniformity of the structure of the bound phase is impaired, so that the defect resistance of the cBN sintered body is lowered.

0.8≦A/B≦1.2である場合、結合相の組織が均一となるため、cBN焼結体の耐欠損性が高くなる。A/Bは、より好ましくは0.80≦A/B≦1.10を満たし、さらに好ましくは0.88≦A/B≦1.04を満たす。 When 0.8 ≦ A / B ≦ 1.2, the structure of the bonded phase becomes uniform, so that the fracture resistance of the cBN sintered body becomes high. A / B more preferably satisfies 0.80 ≦ A / B ≦ 1.10, and more preferably 0.88 ≦ A / B ≦ 1.04.

なお、A及びBの値は、cBN焼結体の任意の断面をSEMで撮影し、撮影したSEM写真を市販の画像解析ソフトを用いて解析することで求めることができる。 The values of A and B can be obtained by taking an arbitrary cross section of the cBN sintered body with an SEM and analyzing the taken SEM photograph using commercially available image analysis software.

本実施形態のcBN焼結体は、cBNの(200)面のX線回折強度をIcBN(200)、TiBの(100)面のX線回折強度をITiB2(100)としたとき、ITiB2(100)/IcBN(200)≦0.20を満たすことが好ましい。ITiB2(100)/IcBN(200)が0.20を超える場合、鉄との耐反応性に劣るTiBの含有量が過剰となるため、cBN焼結体の耐摩耗性が低くなり、好ましくない。 In the cBN sintered body of the present embodiment, when the X-ray diffraction intensity of the (200) plane of cBN is I cBN (200) and the X-ray diffraction intensity of the (100) plane of TiB 2 is I TiB2 (100) . It is preferable to satisfy I TiB2 (100) / I cBN (200) ≦ 0.20. When I TiB2 (100) / I cBN (200) exceeds 0.20, the content of TiB2, which is inferior in reactivity with iron, becomes excessive, so that the wear resistance of the cBN sintered body becomes low. Not preferred.

cBNの(200)面のX線回折強度は、市販のX線回折装置を用いて、Cu-Kα線を用いた2θ/θ法により測定することができる。2θの測定範囲は、例えば、50.1°~50.8°である。 The X-ray diffraction intensity of the (200) plane of cBN can be measured by the 2θ / θ method using Cu—Kα rays using a commercially available X-ray diffractometer. The measurement range of 2θ is, for example, 50.1 ° to 50.8 °.

TiBの(100)面のX線回折強度は、市販のX線回折装置を用いて、Cu-Kα線を用いた2θ/θ法により測定することができる。2θの測定範囲は、例えば、33.7°~34.4°である。 The X-ray diffraction intensity of the (100) plane of TiB 2 can be measured by the 2θ / θ method using Cu—Kα rays using a commercially available X-ray diffractometer. The measurement range of 2θ is, for example, 33.7 ° to 34.4 °.

また、本実施形態のcBN焼結体は、cBNの(200)面のX線回折強度をIcBN(200)、AlNの(100)面のX線回折強度をIAlN(100)としたとき、IAlN(100)/IcBN(200)≦0.20を満たすことが好ましい。IAlN(100)/IcBN(200)が0.20を超える場合、cBN焼結体に機械的強度に劣るAlNが多く含まれるため、耐欠損性が低下してしまう。 Further, in the cBN sintered body of the present embodiment, when the X-ray diffraction intensity of the (200) plane of cBN is I cBN (200) and the X-ray diffraction intensity of the (100) plane of AlN is I AlN (100) . , I AlN (100) / I cBN (200) ≤ 0.20 is preferably satisfied. When I AlN (100) / I cBN (200) exceeds 0.20, the cBN sintered body contains a large amount of AlN having inferior mechanical strength, so that the fracture resistance is lowered.

AlNの(100)面のX線回折強度は、市販のX線回折装置を用いて、Cu-Kα線を用いた2θ/θ法により測定することができる。2θの測定範囲は、例えば、32.9°~33.6°である。 The X-ray diffraction intensity of the (100) plane of AlN can be measured by the 2θ / θ method using Cu—Kα rays using a commercially available X-ray diffractometer. The measurement range of 2θ is, for example, 32.9 ° to 33.6 °.

本実施形態のcBN焼結体は、不純物を不可避的に含有してもよい。不純物の例としては、原料粉末に含まれるリチウムなどが挙げられる。通常、不可避的不純物の含有量は、cBN焼結体全体に対して1質量%以下である。したがって、不可避的不純物が、cBN焼結体の特性値に影響を及ぼすことはほとんどない。 The cBN sintered body of the present embodiment may inevitably contain impurities. Examples of impurities include lithium contained in raw material powder. Usually, the content of unavoidable impurities is 1% by mass or less with respect to the entire cBN sintered body. Therefore, unavoidable impurities have little effect on the characteristic values of the cBN sintered body.

cBN焼結体の表面に、被覆層が形成されてもよい。被覆層が形成されることによって、cBN焼結体の耐摩耗性がさらに向上する。被覆層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とを含むことが好ましい。また、被覆層は、単層でもよく、2層以上を含む積層構造を有してもよい。被覆層がこのような構造を有する場合、cBN焼結体の耐摩耗性が向上する。 A coating layer may be formed on the surface of the cBN sintered body. By forming the coating layer, the wear resistance of the cBN sintered body is further improved. The coating layer is selected from the group consisting of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al and Si, and the group consisting of C, N, O and B. It is preferable to contain at least one element thereof. Further, the covering layer may be a single layer or may have a laminated structure including two or more layers. When the coating layer has such a structure, the wear resistance of the cBN sintered body is improved.

被覆層を形成する化合物の例として、TiN、TiC、TiCN、TiAlN、TiSiN、及び、CrAlNなどを挙げることができる。被覆層は、組成が異なる複数の層を交互に積層した構造を有してもよい。この場合、各層の平均の厚みは、例えば5nm以上500nm以下である。 Examples of the compound forming the coating layer include TiN, TiC, TiCN, TiAlN, TiSiN, CrAlN and the like. The coating layer may have a structure in which a plurality of layers having different compositions are alternately laminated. In this case, the average thickness of each layer is, for example, 5 nm or more and 500 nm or less.

被覆層全体の平均厚さは、1.0μm以上5.0μm以下であることが好ましい。被覆層全体の平均厚さが1.0μm未満である場合、耐摩耗性が低下する。被覆層全体の平均厚さが5.0μmを超える場合、耐欠損性が低下する。 The average thickness of the entire coating layer is preferably 1.0 μm or more and 5.0 μm or less. If the average thickness of the entire coating layer is less than 1.0 μm, the wear resistance is lowered. When the average thickness of the entire coating layer exceeds 5.0 μm, the fracture resistance is lowered.

本実施形態のcBN焼結体は、耐摩耗性及び耐欠損性に優れるため、切削工具や耐摩耗工具として使用されると好ましく、その中でも切削工具として使用されると好ましい。本実施形態のcBN焼結体は、焼結金属用切削工具や鋳鉄用切削工具として使用されるとさらに好ましい。本実施形態のcBN焼結体を切削工具や耐摩耗工具として用いた場合、従来よりも工具寿命を延長することができる。 Since the cBN sintered body of the present embodiment is excellent in wear resistance and fracture resistance, it is preferable to use it as a cutting tool or a wear resistant tool, and among them, it is preferable to use it as a cutting tool. The cBN sintered body of the present embodiment is more preferably used as a cutting tool for sintered metal or a cutting tool for cast iron. When the cBN sintered body of the present embodiment is used as a cutting tool or a wear-resistant tool, the tool life can be extended as compared with the conventional case.

本実施形態のcBN焼結体は、例えば、以下の方法によって製造することができる。
原料粉末として、cBN粉末と、Al粉末と、Ti化合物粉末とを準備する。準備した原料粉末を混合し、超硬合金製ボールと溶媒とパラフィンとともにボールミル用シリンダーに入れて混合する。混合した原料粉末をZr製の高融点金属カプセル内に充填し、粉末の表面に吸着している水分及び酸素を除去するため、カプセルを開放したまま真空熱処理を行う。次に、カプセルを密封し、カプセルに充填されている原料粉末を高圧で焼結させる。高圧焼結の条件は、例えば、圧力:4.0~6.0GPa、温度:1200~1400℃、焼結時間:15分以下である。
The cBN sintered body of the present embodiment can be produced, for example, by the following method.
As raw material powder, cBN powder, Al powder, and Ti compound powder are prepared. The prepared raw material powder is mixed, placed in a cylinder for a ball mill together with a cemented carbide ball, a solvent and paraffin, and mixed. The mixed raw material powder is filled in a refractory metal capsule made of Zr, and vacuum heat treatment is performed with the capsule open in order to remove water and oxygen adsorbed on the surface of the powder. Next, the capsule is sealed and the raw material powder filled in the capsule is sintered at high pressure. The conditions for high-pressure sintering are, for example, pressure: 4.0 to 6.0 GPa, temperature: 1200 to 1400 ° C., and sintering time: 15 minutes or less.

また、本実施形態のcBN焼結体をレーザーカット加工機などにより所定の形状に加工して、cBN焼結体を備えた切削工具または耐摩耗工具を製造することができる。 Further, the cBN sintered body of the present embodiment can be processed into a predetermined shape by a laser cutting machine or the like to manufacture a cutting tool or a wear resistant tool provided with the cBN sintered body.

また、本実施形態のcBN焼結体の表面に、従来から知られているCVD法またはPVD法によって被覆層を形成することにより、被覆層を備えたcBN焼結体を製造することができる。 Further, by forming a coating layer on the surface of the cBN sintered body of the present embodiment by a conventionally known CVD method or PVD method, a cBN sintered body having a coating layer can be manufactured.

以下、本発明の実施例について詳細に説明する。
[原料粉末の調製]
立方晶窒化硼素(cBN)粉末、TiN粉末、TiC粉末、TiCN粉末、及びAl粉末を、以下の表1に示す比率で混合した。cBN粉末の平均粒径は、3.0μmである。TiN、TiC、及びTiCN粉末の平均粒径は、1.0μmである。Al粉末の平均粒径は、0.5μmである。なお、原料粉末の平均粒径は、米国材料試験協会(ASTM)規格B330に記載のフィッシャー法(Fisher Sub-Sieve Sizer(FSSS))により測定されたものである。
Hereinafter, examples of the present invention will be described in detail.
[Preparation of raw material powder]
Cubic boron nitride (cBN) powder, TiN powder, TiC powder, TiCN powder, and Al powder were mixed in the ratios shown in Table 1 below. The average particle size of the cBN powder is 3.0 μm. The average particle size of TiN, TiC, and TiCN powder is 1.0 μm. The average particle size of the Al powder is 0.5 μm. The average particle size of the raw material powder was measured by the Fisher Sub-Sieve Sizer (FSSS) described in ASTM Standard B330.

Figure 0007047503000001
Figure 0007047503000001

[原料粉末の混合]
原料粉末を、超硬合金製ボールとヘキサン溶媒とパラフィンとともにボールミル用のシリンダーに入れてさらに混合した。ボールミルで混合した原料粉末を、Zr製の高融点金属カプセル内に充填し、粉末の表面に吸着している水分及び酸素を除去するため、カプセルを開放したまま真空熱処理を行った。
[Mixing of raw material powder]
The raw material powder was placed in a cylinder for a ball mill together with a cemented carbide ball, a hexane solvent and paraffin, and further mixed. The raw material powder mixed by the ball mill was filled in a refractory metal capsule made of Zr, and vacuum heat treatment was performed with the capsule open in order to remove water and oxygen adsorbed on the surface of the powder.

[高圧焼結]
その後、カプセルを密封し、カプセルに充填されている原料粉末を高圧で焼結させた。その際、cBN焼結体の結合相中に過剰な反応生成物が含まれないようにするために、高圧焼結を短時間だけ行った。高圧焼結の条件は、表1に記載の通りである。
[High pressure sintering]
Then, the capsule was sealed and the raw material powder filled in the capsule was sintered at high pressure. At that time, high-pressure sintering was performed only for a short time in order to prevent excessive reaction products from being contained in the bonded phase of the cBN sintered body. The conditions for high-pressure sintering are as shown in Table 1.

[SEM画像による分析]
高圧焼結によって得られたcBN焼結体の組成を分析した。具体的には、cBN焼結体の断面組織の反射電子像をSEMによって5,000~20,000倍程度で撮影し、撮影した写真の画像解析を行うことによって、cBN、Ti化合物およびAl化合物の含有率(体積%)を求めた。
[Analysis by SEM image]
The composition of the cBN sintered body obtained by high pressure sintering was analyzed. Specifically, a backscattered electron image of the cross-sectional structure of the cBN sintered body is photographed by SEM at a magnification of about 5,000 to 20,000 times, and the photographed photograph is image-analyzed to obtain a cBN, Ti compound and an Al compound. Content rate (% by volume) was determined.

また、cBN焼結体の断面組織のSEM写真を市販の画像解析ソフトを用いて解析することによって、A/Bを求めた。ここで、Aは、cBNと結合相との界面の長さに対する、cBNとAl化合物との界面の長さの割合を表す。Bは、結合相の含有量に対する、Al化合物の含有量の割合を表す。 Further, the A / B was obtained by analyzing the SEM photograph of the cross-sectional structure of the cBN sintered body using commercially available image analysis software. Here, A represents the ratio of the length of the interface between the cBN and the Al compound to the length of the interface between the cBN and the bonded phase. B represents the ratio of the content of the Al compound to the content of the bound phase.

図1は、実施例2で得られたcBN焼結体の断面組織をSEMによって10、000倍で撮影した写真である。図1において、黒色の部分が、cBNである。濃灰色の部分が、Al化合物である。淡灰色の部分が、Ti化合物である。各部分の組成は、SEMに付属するエネルギー分散形X線分光器(EDS)を用いて特定した。 FIG. 1 is a photograph of the cross-sectional structure of the cBN sintered body obtained in Example 2 taken by SEM at a magnification of 10,000. In FIG. 1, the black portion is cBN. The dark gray part is the Al compound. The light gray part is the Ti compound. The composition of each moiety was identified using an energy dispersive X-ray spectrometer (EDS) attached to the SEM.

[X線回折(XRD)による分析]
高圧焼結によって得られたcBN焼結体の結合相中に含まれる反応生成物をXRDによって分析した。AlNの生成量は、cBNの(200)面とAlNの(100)面のピーク強度比率IAlN(100)/IcBN(200)で評価した。TiBの生成量は、cBNの(200)面とTiBの(100)面のピーク強度比率ITiB2(100)/IcBN(200)で評価した。
[Analysis by X-ray diffraction (XRD)]
The reaction products contained in the bonded phase of the cBN sintered body obtained by high pressure sintering were analyzed by XRD. The amount of AlN produced was evaluated by the peak intensity ratio I AlN (100) / I cBN (200) between the (200) plane of cBN and the (100) plane of AlN. The amount of TiB 2 produced was evaluated by the peak intensity ratio I TiB2 (100) / I cBN (200) between the (200) plane of cBN and the (100) plane of TiB 2 .

Ti化合物の種類の同定には(200)面のピークを使用した。ピーク位置が41.7°以上42.1°未満の場合は、Ti化合物はTiCであると見なした。ピーク位置が42.1°以上42.3°以下の場合は、Ti化合物はTiCNであると見なした。ピーク位置が42.4°以上42.8°以下の場合は、Ti化合物はTiNであると見なした。 The (200) plane peak was used to identify the type of Ti compound. When the peak position was 41.7 ° or more and less than 42.1 °, the Ti compound was considered to be TiC. When the peak position was 42.1 ° or more and 42.3 ° or less, the Ti compound was considered to be TiCN. When the peak position was 42.4 ° or more and 42.8 ° or less, the Ti compound was considered to be TiN.

cBN焼結体の組成及びSEM及びXRDによる分析結果を、以下の表2に示す。 The composition of the cBN sintered body and the analysis results by SEM and XRD are shown in Table 2 below.

Figure 0007047503000002
Figure 0007047503000002

実施例1~9及び比較例1~7で得られたcBN焼結体を、ISO規格CNGA120408で定められたインサート形状の切削工具に加工した。得られた切削工具を用いて、下記の摩耗試験及び欠損試験を行った。その結果を表3に示す。 The cBN sintered bodies obtained in Examples 1 to 9 and Comparative Examples 1 to 7 were processed into a cutting tool having an insert shape defined by ISO standard CNGA120408. The following wear test and defect test were performed using the obtained cutting tool. The results are shown in Table 3.

[摩耗試験]
被削材:SCM415焼入れ鋼、
被削材形状:丸棒、φ80mm×200mm、
加工方法:外径旋削、
切削速度:150m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
クーラント:使用、
評価項目:切削工具が欠損、または逃げ面の摩耗幅が0.15mmに至ったときを工具寿命とし、工具寿命までの加工時間を測定した。
[Abrasion test]
Work Material: SCM415 Hardened Steel,
Work material shape: Round bar, φ80 mm x 200 mm,
Processing method: outer diameter turning,
Cutting speed: 150m / min,
Feed: 0.15 mm / rev,
Notch: 0.15 mm,
Coolant: use,
Evaluation item: When the cutting tool was defective or the wear width of the flank reached 0.15 mm, the tool life was defined, and the machining time until the tool life was measured.

[欠損試験]
被削材:SCM415焼入れ鋼、
被削材形状:丸棒(溝入り)、φ80mm×200mm、
加工方法:外径旋削、
切削速度:150m/min、
送り:0.15mm/rev、
切り込み:0.15mm、
クーラント:使用、
評価項目:切削工具が欠損、または逃げ面の摩耗幅が0.15mmに至ったときを工具寿命とし、工具寿命までの加工時間を測定した。
[Defective test]
Work Material: SCM415 Hardened Steel,
Work material shape: Round bar (grooved), φ80 mm x 200 mm,
Processing method: outer diameter turning,
Cutting speed: 150m / min,
Feed: 0.15 mm / rev,
Notch: 0.15 mm,
Coolant: use,
Evaluation item: When the cutting tool was defective or the wear width of the flank reached 0.15 mm, the tool life was defined, and the machining time until the tool life was measured.

Figure 0007047503000003
Figure 0007047503000003

表3に示す結果から分かる通り、実施例1~9のcBN焼結体は、比較例1~7のcBN焼結体よりも耐摩耗性及び耐欠損性に優れており、工具寿命が長かった。 As can be seen from the results shown in Table 3, the cBN sintered bodies of Examples 1 to 9 were superior in wear resistance and fracture resistance to the cBN sintered bodies of Comparative Examples 1 to 7, and had a longer tool life. ..

次に、実施例4~7で得られたcBN焼結体の表面に、アークイオンプレーティング法により、被覆層を形成した。被覆層の組成及び平均厚さは、以下の表4に示す通りである。 Next, a coating layer was formed on the surface of the cBN sintered body obtained in Examples 4 to 7 by the arc ion plating method. The composition and average thickness of the coating layer are as shown in Table 4 below.

被覆層を形成した際の条件は、以下の通りである。
[イオンボンバードメント処理の条件]
基材の温度:500℃
圧力:2.7PaのArガス雰囲気
電圧:-400V
電流:40A
時間:30分
The conditions when the coating layer is formed are as follows.
[Conditions for ion bombardment treatment]
Base material temperature: 500 ° C
Pressure: 2.7 Pa Ar gas Atmospheric voltage: -400V
Current: 40A
Time: 30 minutes

[被覆層形成条件]
基材の温度:500℃
圧力:3.0Paの窒素(N)ガス雰囲気(窒化物層)、または3.0Paの窒素(N)ガスとアセチレンガス(C)ガスとの混合ガス雰囲気(炭窒化物層)
電圧:-60V
電流:120A
[Covering layer formation conditions]
Base material temperature: 500 ° C
Pressure: 3.0 Pa nitrogen (N 2 ) gas atmosphere (nitride layer) or 3.0 Pa nitrogen (N 2 ) gas and acetylene gas (C 2 H 2 ) gas mixed gas atmosphere (carbonitride layer) )
Voltage: -60V
Current: 120A

表面に被覆層が形成された実施例10~29のcBN焼結体を用いて、上記で説明した摩耗試験及び欠損試験を行った。その結果を表4に示す。 The wear test and the defect test described above were performed using the cBN sintered bodies of Examples 10 to 29 having a coating layer formed on the surface. The results are shown in Table 4.

Figure 0007047503000004

Figure 0007047503000005
Figure 0007047503000004

Figure 0007047503000005

表4に示す結果から分かる通り、その表面に被覆層が形成されたcBN焼結体(実施例10~29)は、被覆層が形成されていないcBN焼結体(実施例4~7)よりも耐摩耗性及び耐欠損性に優れており、工具寿命が長かった。 As can be seen from the results shown in Table 4, the cBN sintered bodies (Examples 10 to 29) having a coating layer formed on the surface thereof are from the cBN sintered bodies (Examples 4 to 7) having no coating layer formed. Also has excellent wear resistance and chipping resistance, and the tool life was long.

Claims (12)

立方晶窒化硼素と結合相とを含む立方晶窒化硼素焼結体であって、
前記立方晶窒化硼素の含有量は、60体積%以上80体積%以下であり、
前記結合相の含有量は、20体積%以上40体積%以下であり、
前記結合相は、Al化合物と、Ti化合物とを含み、
前記Ti化合物は、Tiの窒化物を主に含み、
前記Al化合物は、Alの酸化物、窒化物、及び硼化物からなる群より選ばれる少なくとも1種の化合物を含み、
前記Al化合物の含有量は、0体積%を超え5体積%未満であり、
前記立方晶窒化硼素焼結体の断面において、下記式(1)で表される条件を満たす、立方晶窒化硼素焼結体。
0.80≦A/B≦1.20 ・・・(1)
(式(1)中、Aは、前記立方晶窒化硼素と前記結合相との界面の長さに対する、前記立方晶窒化硼素と前記Al化合物との界面の長さの割合を表す。Bは、前記結合相の含有量(体積%)に対する、前記Al化合物の含有量(体積%)の割合を表す。)
A cubic boron nitride sintered body containing a cubic boron nitride and a bonded phase.
The content of the cubic boron nitride is 60% by volume or more and 80% by volume or less.
The content of the bound phase is 20% by volume or more and 40% by volume or less.
The bonded phase contains an Al compound and a Ti compound.
The Ti compound mainly contains a nitride of Ti,
The Al compound contains at least one compound selected from the group consisting of oxides, nitrides, and borides of Al.
The content of the Al compound is more than 0% by volume and less than 5% by volume.
A cubic boron nitride sintered body that satisfies the condition represented by the following formula (1) in the cross section of the cubic boron nitride sintered body.
0.80 ≤ A / B ≤ 1.20 ... (1)
(In the formula (1), A represents the ratio of the length of the interface between the cubic boron nitride and the Al compound to the length of the interface between the cubic boron nitride and the bonded phase. The ratio of the content (% by volume ) of the Al compound to the content (% by volume ) of the bonded phase is shown.)
前記Al化合物の含有量は、1体積%以上4体積%以下である、請求項1に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to claim 1, wherein the content of the Al compound is 1% by volume or more and 4% by volume or less. 前記Al化合物は、Alを含む、請求項1または請求項2に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to claim 1 or 2, wherein the Al compound contains Al 2 O 3 . 前記Ti化合物は、Tiの硼化物をさらに含む、請求項1から請求項3のうちいずれか1項に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to any one of claims 1 to 3, wherein the Ti compound further contains a Boride of Ti. 前記Tiの硼化物は、TiBであり、
前記立方晶窒化硼素の(200)面のX線回折強度をIcBN(200)、前記TiB の(100)面のX線回折強度をITiB2(100)としたとき、ITiB2(100)/IcBN(200)≦0.20である、請求項4に記載の立方晶窒化硼素焼結体。
The Boride of Ti is TiB 2 and
When the X-ray diffraction intensity of the (200) plane of the cubic boron nitride is I cBN (200) and the X-ray diffraction intensity of the (100) plane of the TiB 2 is I TiB2 (100) , it is I TiB2 (100). / I cBN (200) ≤ 0.20, the cubic boron nitride sintered body according to claim 4.
前記Ti化合物は、Tiの炭化物とTiの炭窒化物を含まない、請求項1から請求項5のうちいずれか1項に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to any one of claims 1 to 5, wherein the Ti compound does not contain a carbide of Ti and a carbonitride of Ti. 前記Al化合物は、AlNを含み、
前記立方晶窒化硼素の(200)面のX線回折強度をIcBN(200)、前記AlNの(100)面のX線回折強度をIAlN(100)としたとき、IAlN(100)/IcBN(200)≦0.20を満たす、請求項1から請求項6のうちいずれか1項に記載の立方晶窒化硼素焼結体。
The Al compound contains AlN and contains
When the X-ray diffraction intensity of the (200) plane of the cubic boron nitride is I cBN (200) and the X-ray diffraction intensity of the (100) plane of the AlN is I AlN (100) , I AlN (100) /. I cBN (200) The cubic boron nitride sintered body according to any one of claims 1 to 6, which satisfies ≤0.20.
前記立方晶窒化硼素焼結体の上に形成された被覆層を備える、請求項1から請求項7のうちいずれか1項に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to any one of claims 1 to 7, further comprising a coating layer formed on the cubic boron nitride sintered body. 前記被覆層が、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、AlおよびSiからなる群より選ばれる少なくとも1種の元素と、C、N、OおよびBからなる群より選ばれる少なくとも1種の元素とからなる、請求項8に記載の立方晶窒化硼素焼結体。 The coating layer is composed of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al and Si, and the group consisting of C, N, O and B. The cubic boron nitride sintered body according to claim 8, which comprises at least one element selected. 前記被覆層が、単層、または、2層以上を含む積層構造を有する、請求項8または請求項9に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to claim 8 or 9, wherein the coating layer has a single layer or a laminated structure including two or more layers. 前記被覆層全体の平均厚さが、1.0μm以上5.0μm以下である、請求項8から請求項10のうちいずれか1項に記載の立方晶窒化硼素焼結体。 The cubic boron nitride sintered body according to any one of claims 8 to 10, wherein the average thickness of the entire coating layer is 1.0 μm or more and 5.0 μm or less. 請求項1から請求項11のうちいずれか1項に記載の立方晶窒化硼素焼結体を有する工具。 The tool having the cubic boron nitride sintered body according to any one of claims 1 to 11.
JP2018047751A 2018-03-15 2018-03-15 A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body. Active JP7047503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047751A JP7047503B2 (en) 2018-03-15 2018-03-15 A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047751A JP7047503B2 (en) 2018-03-15 2018-03-15 A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body.

Publications (2)

Publication Number Publication Date
JP2019156692A JP2019156692A (en) 2019-09-19
JP7047503B2 true JP7047503B2 (en) 2022-04-05

Family

ID=67994438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047751A Active JP7047503B2 (en) 2018-03-15 2018-03-15 A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body.

Country Status (1)

Country Link
JP (1) JP7047503B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908798B2 (en) * 2019-07-18 2021-07-28 住友電気工業株式会社 Cubic boron nitride sintered body
WO2021010476A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic crystal boron nitride sintered body
EP4000779A4 (en) * 2019-07-18 2022-09-14 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered compact
US11377390B2 (en) * 2019-12-16 2022-07-05 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
JP7453344B2 (en) 2020-03-27 2024-03-19 京セラ株式会社 Coated tools and cutting tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050997A (en) 2006-09-27 2009-03-12 Kyocera Corp Cutting tool
WO2012053375A1 (en) 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 Tool comprising sintered cubic boron nitride
WO2015060320A1 (en) 2013-10-22 2015-04-30 株式会社タンガロイ Cubic boron nitride sintered body, and coated cubic boron nitride sintered body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3743984B2 (en) * 1994-08-01 2006-02-08 住友電気工業株式会社 Composite high hardness material for tools
JPH0891936A (en) * 1994-09-29 1996-04-09 Kyocera Corp Sintered material of boron nitride of cubic system
JPH08126903A (en) * 1994-10-31 1996-05-21 Mitsubishi Materials Corp Cutting tool made of cubic boron nitride super high pressure sintered material excellent in wear resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050997A (en) 2006-09-27 2009-03-12 Kyocera Corp Cutting tool
WO2012053375A1 (en) 2010-10-19 2012-04-26 住友電工ハードメタル株式会社 Tool comprising sintered cubic boron nitride
WO2015060320A1 (en) 2013-10-22 2015-04-30 株式会社タンガロイ Cubic boron nitride sintered body, and coated cubic boron nitride sintered body

Also Published As

Publication number Publication date
JP2019156692A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP7047503B2 (en) A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body.
JP6634647B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP5664795B2 (en) Cubic boron nitride sintered body
WO2013172095A1 (en) Cutting tool made from cubic boron nitride-based sintered material
EP2420483B1 (en) Cubic boron nitride sintered compact and coated cubic boron nitride sintered compact
JP6843096B2 (en) A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body
JP5594568B2 (en) Cutting tool made of cubic boron nitride based ultra high pressure sintered material and cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JP2007136655A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel
JP4191663B2 (en) Composite high hardness material for tools
JP7467860B2 (en) Coated Tools
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP7235200B2 (en) Cemented carbide and cutting tools
JP7336062B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP7400692B2 (en) Cubic boron nitride sintered body and tool having cubic boron nitride sintered body
CN117326873A (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
WO2022230182A1 (en) Cutting tool
US20240067574A1 (en) Cubic boron nitride sintered body
JP2024055371A (en) Cubic boron nitride sintered body
JP2005248265A (en) Coated cemented carbide member
WO2017199752A1 (en) Tool
JP2005206912A (en) Coated-cemented carbide member
JP2019115956A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7047503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150