JP7046342B1 - Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing - Google Patents

Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing Download PDF

Info

Publication number
JP7046342B1
JP7046342B1 JP2021088277A JP2021088277A JP7046342B1 JP 7046342 B1 JP7046342 B1 JP 7046342B1 JP 2021088277 A JP2021088277 A JP 2021088277A JP 2021088277 A JP2021088277 A JP 2021088277A JP 7046342 B1 JP7046342 B1 JP 7046342B1
Authority
JP
Japan
Prior art keywords
molding die
pressure
pressure medium
lid
upper molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021088277A
Other languages
Japanese (ja)
Other versions
JP2022181363A (en
Inventor
隆太郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021088277A priority Critical patent/JP7046342B1/en
Application granted granted Critical
Publication of JP7046342B1 publication Critical patent/JP7046342B1/en
Publication of JP2022181363A publication Critical patent/JP2022181363A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Press Drives And Press Lines (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

【課題】静水圧加圧法において被処理物が圧力媒体で汚染しないという乾式法の利点を活かしつつ、湿式法のように精密に全方位から方向性なく均等に圧縮できる静水圧加圧装置を提供する。【解決手段】高圧容器の本体1と蓋2に、下部と上部で勘合する一対の伸縮性材料の成形型を固定して設置し、被処理物を底付き円筒形状の下部成形型の凹部に収納する。第1の工程で蓋の下降に伴ってテーパ状のガイド機構により遠隔操作で円柱状の上部成形型7を下部成形型4の凹部に挿入し、第2の工程で蓋の下降中に両方の成形型の間の空間の大気を真空排気して両成形型を皺入りなく密着させ、第3の工程で蓋と本体を密着する際に上部成形型内の圧力媒体6を絞り出し、第4の工程で上部成形型の内面全面と下部成形型の外面全面を液絡した同じ圧力媒体で同時に静水圧加圧することにより、被処理物を精密に全方位から方向性なく圧縮する。【選択図】図1PROBLEM TO BE SOLVED: To provide a hydrostatic pressure pressurizing device capable of precisely and evenly compressing from all directions as in a wet method while taking advantage of a dry method in which an object to be treated is not contaminated with a pressure medium in the hydrostatic pressure pressurizing method. do. SOLUTION: A molding mold of a pair of elastic materials to be fitted at a lower part and an upper part is fixedly installed on a main body 1 and a lid 2 of a high-pressure container, and an object to be processed is placed in a concave portion of a cylindrical lower molding mold with a bottom. Store. In the first step, the columnar upper molding die 7 is remotely inserted into the recess of the lower molding die 4 by a tapered guide mechanism as the lid is lowered, and in the second step, both are being lowered while the lid is lowered. The atmosphere in the space between the molding dies is vacuum exhausted so that the two molding dies are brought into close contact with each other without wrinkles. In the process, the entire inner surface of the upper molding die and the entire outer surface of the lower molding die are simultaneously pressurized with hydrostatic pressure by the same pressure medium entwined, thereby precisely compressing the object to be processed from all directions without directionality. [Selection diagram] Fig. 1

Description

本発明は、液体状の流体である圧力媒体に被処理物が非接触な状態で静水圧加圧する処理装置において、高圧容器内の被処理物が精密に方向性なく均等な圧力で静水圧加圧できる処理装置に関するものである。 The present invention is a processing device that pressurizes a pressure medium, which is a liquid fluid, with hydrostatic pressure in a state where the object to be treated is in non-contact state. It relates to a processing device that can be pressed.

被処理物をゴム袋のような変形抵抗の少ない成形モールドの中に密封して液体の圧力媒体中に沈めて液圧を加えると、処理品表面は一様にその液圧に等しい加圧力を受けて、方向性なく圧縮される。静水圧加圧装置は、このパスカルの原理を応用したものであり、その多くは冷間等方圧加圧装置(CIP装置)と呼ばれている。この静水圧加圧法(CIP成形法)は、粉体が充填される成形モールドと圧力を伝達する圧力媒体との関係により、湿式法と乾式法との2種類に分けられる。湿式法は、高圧容器外で成形モールドである蓋付きのゴム型に粉体等の被処理物を充填して密封した後、高圧容器内の圧力媒体中に直接浸漬し、成形モールドの外面に一様な等方圧を作用させて成形する。乾式法は高圧容器内部に圧力媒体をシールするために組み込まれた加圧ゴム型を介して圧力を伝達し、成形ゴム型内部に充填された粉体等の被処理物を成形する。乾式法は圧力の作用する方向により、周・軸加圧法式と周加圧式との2種類に区別されている。周・軸加圧式は帽子状の加圧ゴム型を用いて、ゴム型の外周面法線方向と上面軸方向とから加圧(以下、「周+1軸方向加圧」と呼ぶ)される。周加圧式では円筒状の加圧ゴム型が用いられるため、ゴム型の外周面法線方向のみの加圧(以下、「周方向加圧」と呼ぶ)となる。(非特許文献1等参照) When the object to be treated is sealed in a molding mold with low deformation resistance such as a rubber bag and submerged in a liquid pressure medium to apply hydraulic pressure, the surface of the treated product uniformly applies a pressing force equal to the hydraulic pressure. Received and compressed without directionality. Hydrostatic pressure pressurizing devices apply this Pascal's principle, and most of them are called cold isotropic pressurizing devices (CIP devices). This hydrostatic pressure method (CIP molding method) is classified into two types, a wet method and a dry method, depending on the relationship between the molding mold filled with powder and the pressure medium for transmitting pressure. In the wet method, a rubber mold with a lid, which is a molding mold, is filled with an object to be treated such as powder outside the high-pressure container, sealed, and then directly immersed in a pressure medium inside the high-pressure container to be placed on the outer surface of the molding mold. Molding is performed by applying a uniform isotropic pressure. In the dry method, pressure is transmitted through a pressurized rubber mold incorporated to seal the pressure medium inside the high-pressure container, and an object to be treated such as powder filled inside the molded rubber mold is molded. The dry method is divided into two types, the circumferential / shaft pressurization method and the peripheral pressurization method, depending on the direction in which the pressure acts. In the circumferential / shaft pressurization type, a hat-shaped pressurized rubber mold is used to pressurize the rubber mold from the normal direction of the outer peripheral surface and the axial direction of the upper surface (hereinafter referred to as "peripheral + axial pressurization"). Since a cylindrical pressurized rubber mold is used in the peripheral pressure type, the pressure is applied only in the normal direction of the outer peripheral surface of the rubber mold (hereinafter referred to as "circumferential pressure"). (Refer to Non-Patent Document 1 etc.)

湿式法は粉末の充填、加圧、処理品の取り出し等の過程で液体状の圧力媒体に触れ、圧力媒体を除去する手間がかかり、被処理物が圧力媒体で汚染する可能性がある。そのため大量生産には向かず、複雑形状や大型製品の多品種少量生産や試作研究に限って利用されている。
乾式法では、周・軸加圧式の場合は外周面法線方向と上面軸方向、周加圧式の場合は外周面法線方向のみの加圧となるため、全方位から完全に方向性なく圧縮されていない。流体的な性質のある被処理物の場合には成形体に等方的な圧力を作用させることができるため、安息角が小さい粉体に限って利用されている。安息角が大きな粉体や鋳造物等の成形品並びに硬質材料成形用のアンビル等の組立品の静水圧加圧には、この方法は使えない。なお、現代の産業界では取り扱う被処理物を限ることで、外周面法線方向のみの加圧となる周加圧式が多用されている。何故ならば、周加圧式では粉末の充填、加圧、処理品の取り出しを液体状の圧力媒体に触れずに行えるため、自動化が容易で大量生産に適しているためである。周加圧式で使用される装置は乾式冷間等方圧加圧装置(乾式CIP装置)と呼ばれている。(特許文献1参照)
In the wet method, it takes time and effort to remove the pressure medium by touching the liquid pressure medium in the process of filling the powder, pressurizing, taking out the processed product, etc., and the object to be treated may be contaminated with the pressure medium. Therefore, it is not suitable for mass production, and is used only for high-mix low-volume production and prototype research of complex shapes and large products.
In the dry method, the pressure is applied only in the normal direction of the outer peripheral surface and the axial direction of the upper surface in the case of the circumferential / axial pressurization type, and in the case of the peripheral pressurization type, the pressure is applied only in the normal direction of the outer peripheral surface. It has not been. In the case of an object to be treated having fluid properties, an isotropic pressure can be applied to the molded body, so that it is used only for powders having a small angle of repose. This method cannot be used for hydrostatic pressure pressurization of molded products such as powders and castings having a large angle of repose and assemblies such as anvils for molding hard materials. In modern industry, by limiting the objects to be handled, the peripheral pressure type that pressurizes only in the normal direction of the outer peripheral surface is often used. This is because the peripheral pressure method allows the filling of powder, pressurization, and removal of the processed product without touching the liquid pressure medium, so that automation is easy and suitable for mass production. The device used in the peripheral pressurization type is called a dry cold isotropic pressure pressurizing device (dry CIP device). (See Patent Document 1)

変形例として、上記の湿式法の成形モールドである蓋付きのゴム型を、硬質ゴム媒体で満たした上記の乾式CIP装置に収納し、圧力媒体で汚染しない乾式の利点を活かしつつ、全方位から完全に方向性なく圧縮できる方法がないかが模索されている。しかし、特許文献2で開示されたゴム型において、型本体の凹部へ成形材料を充填後、凹部の連通孔内へ蓋体の嵌合突起を嵌め込んで密閉しても、嵌合突起の下端部(上方へ球面状に凹んだ部分)内へ成形材料を充填することは出来ないとされている。これをさらに改良して特許文献3で開示されたゴム型は、ゴム型内のキャビティ(成形室)を真球ではなく縦長の卵型の形状とし、中央余長部を設けて上下の凹凸部を半球状とすることで課題の解決を図ったが、実用には至っていない。また、静水圧加圧法との用語の下では圧力媒体は少なくとも流体(液体と気体)に限られるので、この方法のように固体の硬質ゴムを圧力媒体としたものは、その段階で方向性なく圧縮するという静水圧加圧法とは言えない。すなわち、従来技術では、圧力媒体での汚染がない乾式システムで、全方位から完全に方向性なく圧縮される静水圧加圧法は具現化されていない。 As a modification, the rubber mold with a lid, which is the molding mold of the wet method, is housed in the dry CIP device filled with a hard rubber medium, and while taking advantage of the dry type that is not contaminated by the pressure medium, from all directions. There is a search for a method that can be compressed completely without direction. However, in the rubber mold disclosed in Patent Document 2, even if the fitting protrusion of the lid is fitted into the communication hole of the recess after the molding material is filled in the recess of the mold body and sealed, the lower end of the fitting protrusion is closed. It is said that the molding material cannot be filled in the portion (the portion recessed upward in a spherical shape). In the rubber mold disclosed in Patent Document 3 by further improving this, the cavity (molding chamber) in the rubber mold is not a true sphere but a vertically long egg shape, and a central extra length portion is provided to provide upper and lower uneven portions. We tried to solve the problem by making it hemispherical, but it has not been put into practical use. Also, under the term hydrostatic pressure method, the pressure medium is limited to at least fluids (liquid and gas), so a solid hard rubber pressure medium like this method has no direction at that stage. It cannot be said that it is a hydrostatic pressure method of compressing. That is, the prior art has not embodied a hydrostatic pressure pressurization method in which the dry system is completely non-directionally compressed from all directions in a dry system that is not contaminated with a pressure medium.

小泉光恵、西原正夫編著「等方加圧技術」日刊工業新聞社、1988年4月13日、p.33-65"Isotropic Pressurization Technology" edited by Mitsue Koizumi and Masao Nishihara, Nikkan Kogyo Shimbun, April 13, 1988, p. 33-65

特開2005-205427公報JP-A-2005-205427 実公平5-34871号公報Jitsufuku No. 5-34871 Gazette 特開2011-251336号公報Japanese Unexamined Patent Publication No. 2011-251336 特開2020-046047号公報Japanese Unexamined Patent Publication No. 2020-046047

従来技術である静水圧加圧方法の湿式法では全方位から完全に方向性なく圧縮される可能性があるが、被処理物の充填、加圧、処理品の取り出し等の過程で液体状の流体である圧力媒体に触れ、圧力媒体を除去する手間がかかり、被処理物等が圧力媒体で汚染する。一方、乾式法では、圧力媒体で汚染はしないが、全方位から方向性なく圧縮していないため、安息角が小さい粉体に限って利用されている。
現状は乾式法または湿式法の二者択一であり、両者の特徴を兼ね備えた処理装置は考案されていない。すなわち、乾式法のように圧力媒体での汚染がないため自動化が容易で、かつ、湿式法のように全方位から精密に方向性なく圧縮される静水圧加圧法は考案されていない。
In the wet method of the hydrostatic pressure pressurization method, which is a conventional technique, there is a possibility that the pressure is completely non-directional from all directions. It takes time and effort to touch the pressure medium which is a fluid and remove the pressure medium, and the object to be treated or the like is contaminated with the pressure medium. On the other hand, in the dry method, although it is not contaminated with a pressure medium, it is not compressed in a non-directional manner from all directions, so that it is used only for powders having a small angle of repose.
At present, there is an alternative between the dry method and the wet method, and a processing device having the characteristics of both methods has not been devised. That is, unlike the dry method, there is no contamination with the pressure medium, so automation is easy, and unlike the wet method, the hydrostatic pressure pressurization method, in which compression is performed precisely from all directions without directionality, has not been devised.

本発明は、圧力媒体を除去する手間がなく、被処理物が圧力媒体で汚染しないため自動化が容易という乾式法の利点を活かしつつ、湿式法のように精密に全方位から方向性なく圧縮できる静水圧加圧装置を提供することを目的とする。 The present invention takes advantage of the dry method, which eliminates the trouble of removing the pressure medium and is easy to automate because the object to be processed is not contaminated by the pressure medium, and can be compressed precisely from all directions without direction as in the wet method. It is an object of the present invention to provide a hydrostatic pressure pressurizing device.

前記目的を達成するために、本発明は次の手段を講じた。なお、本明細書の以降では特に断りがない限り、圧力媒体は液体状の流体を指すものとする。 In order to achieve the above object, the present invention has taken the following measures. In the following specification, unless otherwise specified, the pressure medium refers to a liquid fluid.

従来技術の乾式法では、被処理物を周方向加圧ないし周+1軸方向加圧しているので、精密に全方位から方向性なく圧縮できないのは明らかである。精密に全方位から方向性なく圧縮できる静水圧加圧とするには、従来技術の湿式法のように全方位から圧縮する必要がある。しかし、被処理物の充填、加圧、処理品の取り出し等の過程で液体状の流体である圧力媒体に触れることなく、圧力媒体を除去する手間がなく、被処理物が圧力媒体で汚染することはない処理(以下、「乾式処理」と呼ぶ)を実現するには、上記の湿式法のように被処理物をゴム袋のような変形抵抗の少ない成形モールドの中に密封して液体の圧力媒体中に沈めて液圧を加える訳にはいかない。上記の加圧ゴム型に相当する加圧モールドを介して被処理物を外周面法線方向と下面軸方向に加えて上面軸方向からも加圧(以下、「周+2軸方向加圧」と呼ぶ)する必要がある。 In the dry method of the prior art, since the object to be processed is pressurized in the circumferential direction or in the circumferential + 1 axial direction, it is clear that the object cannot be compressed precisely from all directions without directionality. In order to obtain hydrostatic pressure that can be compressed precisely from all directions without directionality, it is necessary to compress from all directions as in the conventional wet method. However, there is no need to remove the pressure medium without touching the pressure medium, which is a liquid fluid, in the process of filling, pressurizing, and taking out the processed product, and the material to be treated is contaminated with the pressure medium. In order to realize a treatment that does not occur (hereinafter referred to as "dry treatment"), the object to be treated is sealed in a molding mold with low deformation resistance such as a rubber bag as in the above wet method, and the liquid is liquid. It cannot be submerged in a pressure medium to apply hydraulic pressure. The object to be treated is applied in the normal direction of the outer peripheral surface and the axial direction of the lower surface through the pressure mold corresponding to the above-mentioned pressurized rubber mold, and is also pressurized from the axial direction of the upper surface (hereinafter, "peripheral + biaxially pressed"). Need to call).

乾式処理で周+2軸方向加圧とするには、従来の周・軸加圧式で加圧できていない部位に圧力媒体で上面軸方向から加圧できる独立したゴム袋のようなバルーンを配置し、本体の圧力媒体と同期させて加圧すれば良いことは直ぐに思い付く。しかし、精密にバルーンの位置決めができなければ全部位が密着せず、被処理物との局所的な接触が起こり、コーナー部等に静水圧加圧できない部位が残る。また、バルーン自体が折り重なる皺入りになり、非均等な加圧となる上に、バルーン自体が加圧に伴い破れてしまう可能性がある。乾式処理で精密に方向性なく圧縮できる静水圧加圧を実現するには、この1)位置決めと2)密着と皺入りの課題を解決する必要がある。また、可動部が多数生じて、圧力媒体を出し入れするバルーンには、3)大気から圧力媒体に気泡やボイドが入らない対策も必要である。
本発明では、上述の外周面法線方向と下面軸方向および上面軸方向からの2つの加圧モールドの構造を考案し、第1の工程で1)位置決めの課題を解決し、第2の工程で2)密着と皺入りの課題を解決し、第3の工程で3)大気から圧力媒体に気泡やボイドが入らない対策となる手段を考案した。
In order to apply pressure in the circumferential + biaxial direction by dry processing, a balloon like an independent rubber bag that can be pressurized from the upper surface axial direction with a pressure medium is placed in the part that cannot be pressurized by the conventional peripheral / axial pressurization type. , I immediately come up with the idea that pressurization should be performed in synchronization with the pressure medium of the main body. However, if the balloon cannot be positioned accurately, all the parts will not come into close contact with each other, local contact with the object to be processed will occur, and some parts that cannot be hydrostatically pressurized will remain in the corners and the like. In addition, the balloon itself may be folded and wrinkled, resulting in non-uniform pressurization, and the balloon itself may be torn due to the pressurization. In order to realize hydrostatic pressure pressurization that can be compressed precisely and without direction by dry processing, it is necessary to solve the problems of 1) positioning and 2) adhesion and wrinkling. In addition, for balloons that have many moving parts and move the pressure medium in and out, it is necessary to take measures to prevent bubbles and voids from entering the pressure medium from the atmosphere.
In the present invention, the above-mentioned two pressure mold structures from the outer peripheral surface normal direction, the lower surface axial direction, and the upper surface axial direction are devised, and in the first step, 1) the problem of positioning is solved, and the second step. In 2) the problems of adhesion and wrinkling were solved, and in the third step, 3) a means was devised to prevent bubbles and voids from entering the pressure medium from the atmosphere.

上記の帽子状の加圧ゴム型に相当する外周面法線方向と下面軸方向からの加圧モールドは、位置を固定するために、従来の乾式CIP装置の成形ゴム型と同様の手法で高圧容器の本体側に固定する。これは、上方に開口部がある底付き中空円筒形状であって、凹部に被処理物を収納する形状とする。また、上記のバルーンに相当する上面軸方向からの加圧モールドは、容易に位置決めできるように高圧容器の蓋の下面に円柱状の容器を固定する。なお、本明細書の以降の項では、本体に固定する外周面法線方向と下面軸方向の加圧モールドを「下部成形型」と呼び、蓋の下面に固定する上面軸方向からの加圧モールドを「上部成形型」と呼ぶ。上部成形型と下部成形型は下部と上部で勘合する一対の伸縮性材料の成形型であり、接触する部位を被処理物の外形形状に沿う形状に加工したものである。下部成形型は上方に開口部がある底付きの円筒形状であり、凹部に被処理物を収納する。上部成形型は円柱状の圧力媒体を内包する容器であり、この凹部に勘合する。
上記の乾式処理で精密に全方位から方向性なく圧縮できる静水圧加圧を行うためには、両成形型中にあって見えない位置にある被処理物と下部成形型と上部成形型を遠隔操作で位置決めをする第1の工程と、皺入りなくぴったりと密着させる第2の工程と、気泡やボイドなく上部成形型に圧力媒体を充填する第3の工程と、上部成形型の内面全面と下部成形型の外面全面を同時に静水圧加圧する第4の工程が必要となる。
The pressure mold from the normal direction of the outer peripheral surface and the axial direction of the lower surface, which corresponds to the above-mentioned hat-shaped pressure rubber mold, has a high pressure in the same manner as the molded rubber mold of the conventional dry CIP device in order to fix the position. Fix it to the main body side of the container. This is a hollow cylindrical shape with a bottom having an opening at the top, and has a shape in which the object to be processed is stored in the recess. Further, in the pressure mold from the upper surface axial direction corresponding to the above balloon, the columnar container is fixed to the lower surface of the lid of the high pressure container so that it can be easily positioned. In the following sections of this specification, the pressure mold in the normal direction of the outer peripheral surface and the axial direction of the lower surface to be fixed to the main body is referred to as a "lower molding mold", and the pressure is applied from the axial direction of the upper surface to be fixed to the lower surface of the lid. The mold is called an "upper mold". The upper molding die and the lower molding die are a pair of elastic material molding dies that are fitted at the lower part and the upper part, and the contacted portion is processed into a shape that conforms to the outer shape of the object to be treated. The lower molding die has a bottomed cylindrical shape with an opening at the top, and the object to be processed is stored in the recess. The upper molding die is a container containing a columnar pressure medium, and fits into this recess.
In order to perform hydrostatic pressure pressurization that can be precisely compressed from all directions without direction by the above dry processing, the object to be processed, the lower molding mold and the upper molding mold that are invisible in both molding dies are remotely separated. The first step of positioning by operation, the second step of closely adhering without wrinkles, the third step of filling the upper molding die with the pressure medium without bubbles or voids, and the entire inner surface of the upper molding die. A fourth step of simultaneously pressurizing the entire outer surface of the lower molding die with hydrostatic pressure is required.

第1の工程では、見えない位置にある被処理物と下部成形型と上部成形型を遠隔操作で位置決めをする。これは、高圧容器の蓋締めするために蓋を下降させる段階で、自動的に位置決めされる。すなわち、第1の工程で蓋の下降に伴い、上部成形型は高さ方向の中心位置より下部にあるテーパ状のガイド機構により下部成形型の内壁でガイドされながら、遠隔で自動的に下部成形型の凹部に挿入される。 In the first step, the object to be processed, the lower molding die, and the upper molding die, which are invisible, are positioned by remote control. It is automatically positioned at the stage of lowering the lid to tighten the lid of the high pressure vessel. That is, as the lid is lowered in the first step, the upper molding die is automatically and remotely molded while being guided by the inner wall of the lower molding die by a tapered guide mechanism below the center position in the height direction. Inserted into the recess of the mold.

第2の工程では、高圧容器の本体と蓋を密着させる前に、蓋の下降を途中で一旦止めて、下部成形型と上部成形型との間の空間の大気の真空引きを行う。被処理物の外形形状に沿う形状に加工された伸縮性のある下部成形型と上部成形型は、真空吸引に伴って主に上部成形型の方が伸びることで被処理物を両者で挟み込む形で皺なくぴったりと密着させる。 In the second step, before the main body of the high-pressure container and the lid are brought into close contact with each other, the lowering of the lid is temporarily stopped in the middle, and the air in the space between the lower molding die and the upper molding die is evacuated. The elastic lower molding die and upper molding die processed into a shape that conforms to the outer shape of the object to be processed are such that the upper forming die is mainly stretched with vacuum suction to sandwich the object to be processed. Make sure it fits snugly without wrinkles.

第3の工程では、第2の工程の真空吸引により伸びて引っ張られた状態で被処理物にぴったりと密着している上部成形型の内側に、気泡やボイドを混入させることなく重力を利用して静かに圧力媒体を送入して満たす。その後、蓋の下降を再開し、高圧容器の本体と蓋を密着する際に上部成形型中から絞り出される圧力媒体を回収することで、上部成形型中の圧力媒体は過不足なく満たされた状態となる。なお、この段階まで、蓋に固定される上部成形型は、加圧ポンプ等の加圧機構とは切り離されている。 In the third step, gravity is used without mixing air bubbles or voids inside the upper molding die that is stretched and pulled by the vacuum suction of the second step and is in close contact with the object to be treated. Gently feed in and fill the pressure medium. After that, the lowering of the lid was restarted, and the pressure medium squeezed out from the upper molding mold was collected when the main body of the high-pressure container and the lid were brought into close contact with each other, so that the pressure medium in the upper molding mold was filled without excess or deficiency. It becomes a state. Until this stage, the upper molding die fixed to the lid is separated from the pressurizing mechanism such as the pressurizing pump.

第4の工程では、蓋の下面に固定されている上部成形型の圧力媒体の配管経路は切替え操作により加圧ポンプ等の加圧機構に接続し、加圧機構を稼働させて上部成形型と高圧容器の本体側、すなわち上部成形型の内面全面と下部成形型の外面全面を液絡している同じ圧力媒体で同時に静水圧加圧することにより、周方向と上下の2軸方向から被処理物の静水圧加圧処理を行う。 In the fourth step, the piping path of the pressure medium of the upper molding type fixed to the lower surface of the lid is connected to the pressure mechanism such as a pressure pump by a switching operation, and the pressure mechanism is operated to form the upper molding type. By simultaneously pressurizing the main body side of the high-pressure container, that is, the entire inner surface of the upper molding die and the entire outer surface of the lower molding die with the same pressure medium that is liquid-entangled, hydrostatic pressure is applied to the object to be processed from the circumferential direction and the upper and lower biaxial directions. Perform hydrostatic pressure pressurization treatment.

本発明により乾式法のように被処理物が圧力媒体等で汚染することなく自動化が容易な乾式処理により、湿式法のように全方位から精密に方向性なく圧縮できる静水圧加圧装置が具現化される。これにより従来では乾式CIP装置で取扱いが出来なかった安息角が大きな粉体や、鋳造物等の成形品、並びに、硬質材料成形用のアンビル等の組立品を迅速に大量に静水圧加圧処理できる。以って、当該技術の産業分野への利用に多大な寄与をなしうるものである。 According to the present invention, a hydrostatic pressure pressurizing device capable of compressing from all directions precisely and without directionality like a wet method is realized by a dry process that can be easily automated without contaminating the object to be treated with a pressure medium or the like as in the dry method. Be made. As a result, a large amount of powder with a large angle of repose, which could not be handled by a dry CIP device in the past, molded products such as castings, and assemblies such as anvils for molding hard materials can be quickly and pressure-treated under hydrostatic pressure. can. Therefore, it can make a great contribution to the use of the technology in the industrial field.

図1は本発明の処理装置の全ての構成を示すための説明図である。FIG. 1 is an explanatory diagram for showing all the configurations of the processing apparatus of the present invention. 図2は本発明のa.上部成形型と蓋およびb.下部成形型と本体の基本的な構造と、第1の工程のテーパ状のガイド機構の構成の説明図である。FIG. 2 shows a. It is explanatory drawing of the structure of the upper molding die and a lid, b. the basic structure of a lower molding die and a main body, and the tapered guide mechanism of the first step. 図3は本発明の第2の工程の準備段階での処理装置の構成の説明図である。FIG. 3 is an explanatory diagram of the configuration of the processing apparatus in the preparatory stage of the second step of the present invention. 図4は図3に続いて蓋と本体を密着させる前の、蓋の下降を一旦止めた状態での処理装置の操作の説明図である。FIG. 4 is an explanatory diagram of the operation of the processing device in a state where the lowering of the lid is temporarily stopped before the lid and the main body are brought into close contact with each other following FIG. 図5は本発明の第2の工程の改良案となる貫通伸縮チューブを設置した処理装置の準備段階での説明図である。FIG. 5 is an explanatory diagram at the preparatory stage of the processing apparatus in which the penetrating telescopic tube is installed, which is an improvement plan of the second step of the present invention. 図6は図5に続いて蓋と本体が殆ど密着した状態の説明図である。上部成形型の下端部は被処理物に接触し、テーパの切り欠き空間を埋める方向に変形する。FIG. 6 is an explanatory diagram of a state in which the lid and the main body are almost in close contact with each other, following FIG. The lower end of the upper molding mold comes into contact with the object to be processed and deforms in the direction of filling the notched space of the taper. 図7は高圧容器の蓋の下面に固定して取付けた上部成形型の形状(a.中空円筒型、b.2分割型、c.3分割型、d.4分割型)の説明図である。FIG. 7 is an explanatory diagram of the shape of the upper molded mold (a. Hollow cylinder type, b.2 split type, c.3 split type, d.4 split type) fixedly attached to the lower surface of the lid of the high pressure container. .. 図8は本発明の第3の工程の処理装置において、蓋と本体を密着させた直後の段階での圧力媒体と重力式圧力媒体調整槽の状態と操作を示した説明図である。絞り出された圧力媒体は重力式圧力媒体調整槽で回収されている。FIG. 8 is an explanatory diagram showing the state and operation of the pressure medium and the gravity type pressure medium adjusting tank at the stage immediately after the lid and the main body are brought into close contact with each other in the processing apparatus of the third step of the present invention. The squeezed pressure medium is collected in the gravity type pressure medium adjusting tank. 図9は加圧機構を動作させた段階での、高圧容器内での圧力媒体6による圧力の釣り合い状態を示す説明図である。FIG. 9 is an explanatory diagram showing a balanced state of pressure by the pressure medium 6 in the high pressure container at the stage where the pressurizing mechanism is operated.

以下、本発明の実施の形態を、図面に基づき説明する。図中に示すバルブは、黒色で塗りつぶされたものは閉状態を示し、白抜きのものは開状態を示す、なお、ここに示す処理装置は単なる例示であって、本発明を限定することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As for the valves shown in the figure, those filled with black indicate a closed state, and those shown in white indicate an open state. The processing apparatus shown here is merely an example and limits the present invention. Not intended.

本発明の処理装置の基本的な構成を図1で説明する。図1の通り、この処理装置は、高圧容器の本体1、蓋2の中に下部と上部で勘合する一対の伸縮性の材料の成形型である下部成形型4と上部成形型7があり、その中に挟み込まれる形で被処理物3が収納される。
下部成形型4は、上部に開口部がある底付き中空円筒形状である。また、下部成形型4は高圧容器の本体1の内壁に上方の開口部より凹部を大気に露出して固定されている。凹部には外部から操作して被処理物3を設置する。上部成形型7は円柱状の圧力媒体を内包する容器であって、高圧容器の蓋2の下面に上部成形型取付け治具5を介して固定されている。
加圧機構16により圧力媒体6は加圧される。圧力媒体6の注入口として、高圧容器の本体1には下部圧媒パイプ10がバルブ18を介して接続される。また、蓋2を貫通して上部成形型7にはバルブ17を介して上部圧媒パイプ9が接続される。これにより、被処理物3は下部成形型4と上部成形型7を介した乾式処理により圧力媒体6で加圧することが出来る。
上部成形型7と下部成形型4の間の空間の大気を真空吸引する真空ポンプ11がバルブ19を介して設置される。上部成形型7の鉛直方法の高さより上方には上部成形型7の中に圧力媒体6を供給または補充する重力式圧力媒体調整槽15がバルブ21を介して設置される。また、各々の配管系統に大気開放管12と圧媒大気開放管14が設置されている。
本発明の処理装置の構成ではどの部位も、圧力媒体6が大気に曝露されることはない。
The basic configuration of the processing apparatus of the present invention will be described with reference to FIG. As shown in FIG. 1, this processing apparatus has a lower molding die 4 and an upper molding die 7 which are a pair of elastic material molding molds that are fitted at the lower part and the upper part in the main body 1 and the lid 2 of the high-pressure container. The object to be processed 3 is stored so as to be sandwiched therein.
The lower molding die 4 has a hollow cylindrical shape with a bottom having an opening at the upper part. Further, the lower molding die 4 is fixed to the inner wall of the main body 1 of the high-pressure container by exposing the recess to the atmosphere from the upper opening. The object to be processed 3 is installed in the recess by operating from the outside. The upper molding die 7 is a container containing a columnar pressure medium, and is fixed to the lower surface of the lid 2 of the high-pressure container via the upper molding die mounting jig 5.
The pressure medium 6 is pressurized by the pressurizing mechanism 16. A lower pressure medium pipe 10 is connected to the main body 1 of the high pressure container as an injection port of the pressure medium 6 via a valve 18. Further, the upper pressure medium pipe 9 is connected to the upper molding die 7 through the lid 2 via the valve 17. As a result, the object 3 to be treated can be pressurized by the pressure medium 6 by the dry-type treatment via the lower molding die 4 and the upper molding die 7.
A vacuum pump 11 that evacuates the atmosphere in the space between the upper molding die 7 and the lower molding die 4 is installed via a valve 19. Above the height of the vertical method of the upper molding die 7, a gravity type pressure medium adjusting tank 15 for supplying or replenishing the pressure medium 6 in the upper molding die 7 is installed via a valve 21. Further, an atmospheric opening pipe 12 and a pressure medium opening pipe 14 are installed in each piping system.
In the configuration of the processing apparatus of the present invention, the pressure medium 6 is not exposed to the atmosphere at any part.

本発明の第1の工程を図2で説明する。図2は本発明の下部成形型と上部成形型の基本的な構造と、第1の工程のテーパ状のガイド機構の構成の説明図である。
図2では、a.は上部成形型7と蓋2の関係、b.は下部成形型4と本体1の関係を示す。上部成形型7は上部成形型取付け治具5を介して、蓋2の下面に固定されている。下部成形型4は開口部を上方に向けて本体1に固定されている。上部成形型7の外径は、挿入時の干渉を避けるため、下部成形型4の内径よりも数ミリメートル小さい。また、上部成形型7の長さh1は、下部成形型4の被処理物の充填層を除いた長さh3よりも数センチメートル長い寸法に延長する。上部成形型7の外面には、高さ方向の中心位置より下方のから下端部にかけてテーパを付している。このテーパの下端面からの長さはh2で、テーパを付したことによる下端面の片面の切り欠きの幅の寸法がTである。テーパを付した外面は、蓋2の下降に伴って、下部成形型4の内壁と接触し、下部成形型4の底付き円筒の中央の方に向かって上部成形型7をガイドしながら押し込んでいく。これに伴い、上部成形型7は自動的に下部成形型4と中心軸が一致する状態(同心状態)になる。これをテーパ状のガイド機構と呼ぶ。このガイド機構を動作させるために、伸縮性のある上部成形型7はその形状をある程度保っておらねばならず、上部成形型7の内部の圧力媒体6は圧力のある満杯状態ではないがその形状を保てるだけの量、すなわち内包する圧力媒体6の質量により上部成形型7の外形が維持される量が満たされている状態とする。
また、図2のc.とd.は球形の上部成形型7と下部成形型4の形状例を示す。図2のd.では安息角が大きな粉末状の被処理物3の例を示している。被処理物3の上部は、安息角が大きな台形状となっているが、上部成形型7が押し込まれると共に台形状の山が崩され、上部成形型7の下端の半球形の型枠に馴染んで球形になる。
さらに、図2のe.とf.は正八面体の上部成形型7と下部成形型4の形状例を示す。図2のf.では鋳造品等の固体の被処理物3の例を示している。対象が粉末状ではなく鋳造品等の固体である場合は、非対象形状でも鋳造欠陥の圧密による除去はでき、図2のe.とf.のような全対象形状の型枠を用いなくても良い。
全対象形状の球形、正八面体の場合、下端面の片面の切り欠きの幅の寸法がTは、図2のc.とe.に示す位置となる。
The first step of the present invention will be described with reference to FIG. FIG. 2 is an explanatory diagram of the basic structure of the lower molding die and the upper molding die of the present invention, and the configuration of the tapered guide mechanism in the first step.
In FIG. 2, a. Is the relationship between the upper molding die 7 and the lid 2, b. Shows the relationship between the lower molding die 4 and the main body 1. The upper molding die 7 is fixed to the lower surface of the lid 2 via the upper molding die mounting jig 5. The lower molding die 4 is fixed to the main body 1 with the opening facing upward. The outer diameter of the upper mold 7 is several millimeters smaller than the inner diameter of the lower mold 4 to avoid interference during insertion. Further, the length h1 of the upper molding die 7 is extended to a dimension several centimeters longer than the length h3 excluding the packed layer of the object to be treated of the lower molding die 4. The outer surface of the upper molding die 7 is tapered from below the center position in the height direction to the lower end portion. The length of this taper from the lower end surface is h2, and the dimension of the width of the notch on one side of the lower end surface due to the taper is T. The tapered outer surface comes into contact with the inner wall of the lower forming die 4 as the lid 2 descends, and the upper forming die 7 is pushed toward the center of the bottomed cylinder of the lower forming die 4 while being guided. go. Along with this, the upper molding die 7 automatically becomes a state (concentric state) in which the central axis coincides with the lower molding die 4. This is called a tapered guide mechanism. In order to operate this guide mechanism, the elastic upper forming die 7 must maintain its shape to some extent, and the pressure medium 6 inside the upper forming die 7 is not in a full state with pressure, but its shape. The amount that can maintain the outer shape of the upper molding die 7 is satisfied by the amount that can be maintained, that is, the mass of the contained pressure medium 6.
In addition, c. And d. Shows an example of the shape of the spherical upper molding die 7 and the lower molding die 4. D. of FIG. The following shows an example of a powdered object 3 having a large angle of repose. The upper part of the object 3 has a trapezoidal shape with a large angle of repose, but as the upper molding die 7 is pushed in, the trapezoidal peak collapses and becomes familiar with the hemispherical formwork at the lower end of the upper molding die 7. Becomes spherical.
Further, e. And f. Shows a shape example of the upper molding die 7 and the lower molding die 4 of the regular octahedron. F. of FIG. Shows an example of a solid object 3 such as a cast product. When the object is not a powder but a solid such as a cast product, the casting defect can be removed by consolidation even in the non-object shape. And f. It is not necessary to use the formwork of all target shapes such as.
In the case of a spherical octahedron of all target shapes, the dimension of the width of the notch on one side of the lower end surface is T, which is the c.I. And e. It becomes the position shown in.

本発明の第2の工程を図3と図4、さらにこれを発展させた形態を図5と図6で説明する。図3は本発明の第2の工程の準備段階での処理装置の構成の説明図である。
図3の通り、下部成形型4の凹部に被処理物3を収納した後に、蓋締めのために蓋2の下降操作を行う。なお、この段階で高圧容器の本体1の中、すなわち、下部成形型4の外側の領域は、圧力媒体6で満たされている。なお、図3では被処理物3の比重は、圧力媒体6の比重よりも数倍は大きいとの前提であり、被処理物3が浮くことはないとしている。もし被処理物3の比重が小さい場合は、本体1に圧力媒体6は満たさずに抜いておく。
The second step of the present invention will be described with reference to FIGS. 3 and 4, and further developed forms thereof will be described with reference to FIGS. 5 and 6. FIG. 3 is an explanatory diagram of the configuration of the processing apparatus in the preparatory stage of the second step of the present invention.
As shown in FIG. 3, after the object 3 to be processed is stored in the recess of the lower molding die 4, the lid 2 is lowered to tighten the lid. At this stage, the inside of the main body 1 of the high-pressure container, that is, the outer region of the lower molding die 4, is filled with the pressure medium 6. In addition, in FIG. 3, it is assumed that the specific gravity of the object to be processed 3 is several times larger than the specific gravity of the pressure medium 6, and the object to be processed 3 does not float. If the specific gravity of the object to be processed 3 is small, the pressure medium 6 is not filled in the main body 1 and is removed.

図4は図3に続いて蓋と本体を密着させる前の段階で、蓋の下降を一旦止めた状態での処理装置の操作の説明図である。なお、この段階の圧力媒体6の配管系統では、高圧容器の本体1と接続する下部圧媒パイプ10のバルブ18、および、蓋2を介して上部成形型7に接続する上部圧媒パイプ9のバルブ17は、両方共に閉じており、加圧機構16と切り離されている。真空ポンプ11に至る配管のバルブ19は開けており、大気開放管に至る配管のバルブ20は閉じている。
図4の通り、蓋2の下降と共に、後述のテーパ状のガイド機構により自動的に上部成形型7が下部成形型4の上部の開口部に挿入される。蓋2の下面が本体1と上面と同じ高さになる直前の、図4に相当する高さで蓋2の下降を一旦止める。ここで樹脂材料と接着テープ等の間隙密閉治具8を取り付け、本体1と蓋2の隙間から上部成形型7と下部成形型4の間の被処理物3の上部の空間の大気を真空ポンプ11により真空吸引を開始する。本体1と蓋2の隙間はすきま嵌めとなっているが、本体1と蓋2の隙間を介して上部成形型7の側面部を押し下げて柔軟性のある吸引管や半割り管等を差し込んでも良い。また、真空吸引に並行して、図4の位置から蓋2の下降を再開し、蓋2が本体1とほぼ密着する状態とする。真空吸引に伴い、真空圧で伸びた上部成形型7がその空間を埋めることで上部成形型7と下部成形型4が皺入りすることなくぴったり密着する。両方の成形型をぴったりと空隙なく密着させた後に、間隙密閉治具8や吸引管等を除去し、蓋2の下降を再開し、高圧容器の本体1と蓋2を密着させる。また、真空排気の後に、真空ポンプ11に至る配管のバルブ19は閉じる。これにより、被処理物3の全ての外表面を隙間や皺入りなく両方の成形型で挟み込むことができる。
FIG. 4 is an explanatory diagram of the operation of the processing device in a state where the lowering of the lid is temporarily stopped at the stage before the lid and the main body are brought into close contact with each other following FIG. In the piping system of the pressure medium 6 at this stage, the valve 18 of the lower pressure medium pipe 10 connected to the main body 1 of the high pressure container and the upper pressure medium pipe 9 connected to the upper molding die 7 via the lid 2. Both valves 17 are closed and separated from the pressurizing mechanism 16. The valve 19 of the pipe leading to the vacuum pump 11 is open, and the valve 20 of the pipe leading to the atmospheric open pipe is closed.
As shown in FIG. 4, as the lid 2 is lowered, the upper molding die 7 is automatically inserted into the upper opening of the lower molding die 4 by the tapered guide mechanism described later. Immediately before the lower surface of the lid 2 becomes the same height as the main body 1 and the upper surface, the lowering of the lid 2 is temporarily stopped at the height corresponding to FIG. Here, a gap sealing jig 8 such as a resin material and an adhesive tape is attached, and a vacuum pump is applied to the atmosphere in the space above the object 3 between the upper molding die 7 and the lower molding die 4 from the gap between the main body 1 and the lid 2. Vacuum suction is started by 11. The gap between the main body 1 and the lid 2 is a clearance fit, but even if the side surface of the upper molding die 7 is pushed down through the gap between the main body 1 and the lid 2, a flexible suction tube, a half-split tube, or the like is inserted. good. Further, in parallel with the vacuum suction, the lowering of the lid 2 is restarted from the position shown in FIG. 4, and the lid 2 is brought into a state of being substantially in close contact with the main body 1. With the vacuum suction, the upper molding die 7 stretched by the vacuum pressure fills the space, so that the upper molding die 7 and the lower molding die 4 are in close contact with each other without wrinkling. After the two moldings are brought into close contact with each other without any gaps, the gap sealing jig 8 and the suction pipe are removed, the lid 2 is restarted to descend, and the main body 1 and the lid 2 of the high-pressure container are brought into close contact with each other. Further, after the vacuum exhaust, the valve 19 of the pipe leading to the vacuum pump 11 is closed. As a result, all the outer surfaces of the object 3 to be treated can be sandwiched between both molding dies without gaps or wrinkles.

上記した下部成形型4および上部成形型7の伸縮性の材料には、被処理物3の質量や形状から要求される引張強度や伸びに応じて、天然ゴム、イソプレンゴム、ニトリルゴム、ネオプレン、ウレタンゴム、シリコーンゴム、フッ素ゴム等が使用される。 The elastic materials of the lower molding die 4 and the upper molding die 7 include natural rubber, isoprene rubber, nitrile rubber, neoprene, depending on the tensile strength and elongation required from the mass and shape of the object 3 to be treated. Urethane rubber, silicone rubber, fluororubber, etc. are used.

次に本発明の第2の工程の図3と図4を発展させた構成を図5と図6および図7で説明する。図5は蓋3と上部成形型7の中央に貫通伸縮チューブ13を設置した処理装置の準備段階での説明図である。
図5では、図3と図4の基本的な構成に加えて、上部成形型7の中央には蓋8を貫通して可撓性(微弾性とも言う)材料の貫通伸縮チューブ13が設置されている。すなわち、貫通伸縮チューブ13は上部成形型7を貫通して上部成形型7の下端に管の下端面が出ている。なお、この管の下端面は本体1と蓋2を密着した際に被処理物と接触しないように貫通伸縮チューブ13の長さまたは差し込みの高さを調整する。
Next, the configuration which is an extension of FIGS. 3 and 4 of the second step of the present invention will be described with reference to FIGS. 5, 6 and 7. FIG. 5 is an explanatory diagram at the preparatory stage of the processing apparatus in which the penetrating telescopic tube 13 is installed in the center of the lid 3 and the upper molding die 7.
In FIG. 5, in addition to the basic configurations of FIGS. 3 and 4, a penetrating telescopic tube 13 made of a flexible (also referred to as slightly elastic) material is installed in the center of the upper molding die 7 so as to penetrate the lid 8. ing. That is, the penetrating telescopic tube 13 penetrates the upper molding die 7 and the lower end surface of the tube protrudes from the lower end of the upper molding die 7. The lower end surface of this tube adjusts the length of the penetrating telescopic tube 13 or the height of insertion so that the lower end surface of the tube does not come into contact with the object to be processed when the main body 1 and the lid 2 are in close contact with each other.

図6は図5に続いて蓋と本体を密着させる少し前の段階での処理装置の説明図である。第2の工程に着手する段階でのバルブの開閉状況は図4で説明したものと同じである。図6では、図4で蓋2の下降を一旦停止するとした位置を超えて、蓋2を下降させている。
第1の工程で示した通り、上部成形型の高さ(円筒側面の鉛直方向の長さ)を数cm延長させているため、この位置では上部成形型の下端部は既に被処理物に接触しており、下端部が変形した上部成形型がテーパの切り欠き空間を埋めている。
貫通伸縮チューブ13を追加した構成の場合は、図4の間隙密閉治具8等を設置する必要がないため、図6の位置まで下降を継続させることができる。処理時間を短縮するために、図4の蓋2の下降時の停止位置から真空ポンプ11を稼働させて真空吸引を開始しても構わない。また、間隙密閉治具8等を設置する作業の手間も省けるため、この発展させた構成は図4の基本的な構成よりも処理時間を短縮することが可能である。
この図6の真空吸引は、図4と同様に蓋2の下降と並行して行う。真空ポンプ11を稼働させ、貫通伸縮チューブ13を介して下部成形型4と上部成形型7の間隙の大気を真空吸引により放出する。同時に被処理物3内に残留する大気も真空吸引により放出する。蓋2の下降の途中で貫通伸縮チューブ13を僅かに引き抜き、貫通伸縮チューブ13の差し込み高さを調整しても良い。残留する大気を真空吸引することで、下部成形型4と上部成形型7の間隙はなくなり、真空圧で伸びた上部成形型7等がその空間を埋めることで両者が皺入りすることなくぴったり密着する。貫通伸縮チューブ13は真空圧により中空管の形状が僅かに変形するが内部の流体の流通を保っている。最終的には圧力媒体で加圧された際には形状を保てずに閉塞するが、除圧後には形状が元に復帰する。また、真空排気後のバルブの開閉操作は図4で説明した通りである。これにより、被処理物3の全ての外表面を隙間なく両方の成形型で挟み込むことができる。
FIG. 6 is an explanatory diagram of the processing apparatus at a stage shortly before the lid and the main body are brought into close contact with each other following FIG. The opening / closing state of the valve at the stage of starting the second step is the same as that described in FIG. In FIG. 6, the lid 2 is lowered beyond the position where the lowering of the lid 2 is temporarily stopped in FIG.
As shown in the first step, the height of the upper molding die (the length in the vertical direction of the side surface of the cylinder) is extended by several cm, so that the lower end of the upper molding die is already in contact with the object to be treated at this position. An upper molding die with a deformed lower end fills the notched space of the taper.
In the case of the configuration in which the penetrating telescopic tube 13 is added, it is not necessary to install the gap sealing jig 8 and the like in FIG. 4, so that the descent can be continued to the position shown in FIG. In order to shorten the processing time, the vacuum pump 11 may be operated from the stop position when the lid 2 of FIG. 4 is lowered to start vacuum suction. Further, since the labor of installing the gap sealing jig 8 and the like can be saved, this developed configuration can shorten the processing time as compared with the basic configuration of FIG.
The vacuum suction of FIG. 6 is performed in parallel with the lowering of the lid 2 as in FIG. The vacuum pump 11 is operated, and the atmosphere in the gap between the lower molding die 4 and the upper molding die 7 is discharged by vacuum suction through the penetrating telescopic tube 13. At the same time, the atmosphere remaining in the object 3 to be treated is also released by vacuum suction. The penetrating telescopic tube 13 may be slightly pulled out during the lowering of the lid 2 to adjust the insertion height of the penetrating telescopic tube 13. By vacuum-sucking the remaining atmosphere, the gap between the lower molding die 4 and the upper molding die 7 disappears, and the upper molding die 7 or the like extended by vacuum pressure fills the space so that the two are in close contact with each other without wrinkling. do. The shape of the hollow tube of the penetrating telescopic tube 13 is slightly deformed by the vacuum pressure, but the flow of the fluid inside is maintained. Eventually, when pressurized with a pressure medium, it closes without maintaining its shape, but after decompression, its shape returns to its original shape. Further, the valve opening / closing operation after vacuum exhaust is as described with reference to FIG. As a result, all the outer surfaces of the object 3 to be treated can be sandwiched between both molding dies without any gaps.

図7は高圧容器の蓋の下面に取付ける上部成形型7の形状の説明図である。図5と図6の上部成形型7には貫通伸縮チューブ13を貫通させる必要がある。円柱状の風船のような上部成形型に接合加工して貫通伸縮チューブ13を貫通させても構わないが、その加工には手間を要するし、接合した部位は損傷しやすいため耐久性の問題が生じる。上部成形型7と貫通伸縮チューブ13とは特に一体型とする必要はなく、上部成形型7の中央に鉛直方向の小さな穴が常に開いた形状でも構わない。すなわち、図7のa.に示す通り、上部成形型7の形状は、円柱状ではなく小さな穴のある中空円筒形でも良い。さらに、上部成形型7の下端面は被処理物3の上面に則する形状とする。被処理物3の上面の形状への追随性を高めるには分割型の方がより良い。従って、高圧容器の蓋2の下面に取付ける上部成形型7の形状は、a.中空円筒型、b.2分割型、c.3分割型、d.4分割型が考えられる。なお、上部成形型7は4分割以上の分割数としても構わない。上部成形型7は、被処理物3の被処理物3の上面の形状により、図7のa.からd.のどれを選択するかを決める。上部成形型7の下端面と下部成形型4の凹部の底面の形状を、可能な限り被処理物3の形状に則したものとすれば、それに伴い静水圧加圧による加圧方向はより完全な等方圧となる。 FIG. 7 is an explanatory diagram of the shape of the upper molding die 7 attached to the lower surface of the lid of the high-pressure container. It is necessary to penetrate the penetrating telescopic tube 13 through the upper molding die 7 of FIGS. 5 and 6. It is possible to join the upper molding mold such as a columnar balloon to penetrate the penetrating telescopic tube 13, but the processing requires time and effort, and the joined portion is easily damaged, so there is a problem of durability. Occurs. The upper molding die 7 and the penetrating telescopic tube 13 do not have to be integrally formed, and a shape in which a small hole in the vertical direction is always opened in the center of the upper molding die 7 may be used. That is, a. As shown in the above, the shape of the upper molding die 7 may be a hollow cylindrical shape having small holes instead of a cylindrical shape. Further, the lower end surface of the upper molding die 7 has a shape conforming to the upper surface of the object 3 to be processed. The split type is better in order to improve the followability to the shape of the upper surface of the object 3 to be processed. Therefore, the shape of the upper molding die 7 attached to the lower surface of the lid 2 of the high-pressure container is a. Hollow cylinder type, b. 2-split type, c. 3-split type, d. A 4-split type can be considered. The upper molding die 7 may be divided into 4 or more parts. The upper molding die 7 has a. From d. Decide which one to choose. If the shape of the lower end surface of the upper molding die 7 and the bottom surface of the concave portion of the lower molding die 4 conforms to the shape of the object to be treated 3 as much as possible, the pressurizing direction by hydrostatic pressure pressurization is more complete. It becomes an isotropic pressure.

なお、図2で説明の通り上部成形型7の全ての形状の場合でその外径は、下部成形型4の内径よりも数ミリメートルという僅かに小さな寸法とする。但し、この上部成形型7の外径を僅かに小さくすることより減少する体積は、圧力媒体6の加圧による伸縮材料の伸びにより増加する体積よりも小さくする必要がある。
また、上部成形型7の下端部の外径は、テーパ状のガイド機構を付すために更に数~10センチメートル小さな寸法となっており、上部成形型7の中央下部から下端部にかけて傾斜(テーパ)が付されている。後述の実施例4によれば、上部成形型の直径が10cmから40cmまで、高さが12cmから54cmまでの場合で、テーパを付したことによる下端部での片面の切り欠きの幅は1.2~5.3cmと小さな寸法となっている。なお、テーパ状のガイド機構は多少丸みをおびていても構わない。
一方、上部成形型7の長さ(高さ)は下部成形型4および被処理物3ときっちりと嵌め合うための必要長より数センチメートル長く延長した寸法とする。この寸法を長くすることにより増加する体積は、後述するガイド機構を設けたことによる容積の減少を補償する。後述の実施例4によれば、同上の場合で上部成形型の高さ(円筒側面の鉛直方向の長さ)の延長は1~6cmとなっている。
As described in FIG. 2, in the case of all the shapes of the upper molding die 7, the outer diameter thereof is slightly smaller than the inner diameter of the lower molding die 4 by several millimeters. However, the volume reduced by slightly reducing the outer diameter of the upper molding die 7 needs to be smaller than the volume increased by the elongation of the elastic material due to the pressurization of the pressure medium 6.
Further, the outer diameter of the lower end portion of the upper molding die 7 is further reduced by several to 10 centimeters in order to attach a tapered guide mechanism, and is inclined (tapered) from the lower center to the lower end portion of the upper molding die 7. ) Is attached. According to Example 4 described later, when the diameter of the upper molding die is from 10 cm to 40 cm and the height is from 12 cm to 54 cm, the width of the notch on one side at the lower end due to the taper is 1. It has a small size of 2 to 5.3 cm. The tapered guide mechanism may be slightly rounded.
On the other hand, the length (height) of the upper molding die 7 is set to be several centimeters longer than the required length for fitting the lower molding die 4 and the object to be processed 3 tightly. The volume increased by increasing this dimension compensates for the decrease in volume due to the provision of the guide mechanism described later. According to Example 4 described later, in the same case, the extension of the height of the upper molding die (the length in the vertical direction of the side surface of the cylinder) is 1 to 6 cm.

次に本発明の第3の工程を図8で説明する。図8は図5の構成の処理装置が図6の段階を経た後に、蓋2と本体1を密着させた直後の段階での圧力媒体6と重力式圧力媒体調整槽15の相関を示す説明図である。上部成形型7の形状は、図7のa.からd.のいずれか1つである。
図8は上部成形型7と下部成形型4の間の空間の大気を真空吸引する最終の段階であり、蓋2を介して上部成形型7接続する上部圧媒パイプ9は、バルブ17が閉で加圧ポンプ等の加圧機構16と切り離されている。上部成形型7は前段の第2の工程で、真空圧により伸びて引っ張られ、その内部に追加して流体を吸引できる状況にある。ここで重力式圧力媒体調整槽15と接続する配管のバルブ21と圧媒大気開放バルブ22を開けることにより、上部成形型7に圧力媒体6が供給され、大気圧と重力で載荷される。これにより、残留空気なく、また、大気から気泡・ボイド等を混入させることなく上部成形型7内を圧力媒体6で満たすことができる。
次に高圧容器の蓋2をさらに下降させて本体1に完全に密着させる。上部成形型7に満たされた圧力媒体6は、上部成形型7と下部成形型4が密着する際に上部成形型7から数10~数100立方センチメートルという僅かな量が絞り出される。これにより、上部成形型7は内部の圧力媒体6の圧力に押される形で被処理物3と下部成形型4に皺入りなく完全に密着する。絞り出された圧力媒体6は、上部成形型7の鉛直方法の高さより上方に設置した重力式圧力媒体調整槽15で回収される。上部成形型7の内部の圧力媒体6の圧力は重力式圧力媒体調整槽15の設置高さで調整できる。蓋の密着に伴って圧力媒体6が絞り出された後に重力式圧力媒体調整槽15に至るバルブ21と圧媒大気開放管14に至る配管の圧媒大気開放バルブ22は閉じる。
Next, the third step of the present invention will be described with reference to FIG. FIG. 8 is an explanatory diagram showing the correlation between the pressure medium 6 and the gravity type pressure medium adjusting tank 15 at the stage immediately after the processing apparatus having the configuration of FIG. 5 has passed through the steps of FIG. 6 and immediately after the lid 2 and the main body 1 are brought into close contact with each other. Is. The shape of the upper molding die 7 is as shown in FIG. 7 a. From d. It is any one of.
FIG. 8 shows the final stage of vacuum suctioning the atmosphere in the space between the upper molding die 7 and the lower molding die 4, and the valve 17 of the upper pressure medium pipe 9 connected to the upper molding die 7 via the lid 2 is closed. It is separated from the pressurizing mechanism 16 such as a pressurizing pump. In the second step of the previous stage, the upper molding die 7 is stretched and pulled by the vacuum pressure, and is in a state where it can be added to the inside and suck the fluid. Here, by opening the valve 21 of the pipe connected to the gravity type pressure medium adjusting tank 15 and the pressure medium opening valve 22, the pressure medium 6 is supplied to the upper molding die 7 and loaded by atmospheric pressure and gravity. As a result, the inside of the upper molding die 7 can be filled with the pressure medium 6 without residual air and without mixing air bubbles, voids and the like from the atmosphere.
Next, the lid 2 of the high-pressure container is further lowered to completely adhere to the main body 1. The pressure medium 6 filled in the upper molding die 7 is squeezed out from the upper molding die 7 in a small amount of several tens to several hundreds cubic centimeters when the upper molding die 7 and the lower molding die 4 are in close contact with each other. As a result, the upper molding die 7 is pushed by the pressure of the internal pressure medium 6 and completely adheres to the object 3 to be processed and the lower molding die 4 without wrinkles. The squeezed pressure medium 6 is collected by the gravity type pressure medium adjusting tank 15 installed above the height of the vertical method of the upper molding die 7. The pressure of the pressure medium 6 inside the upper molding die 7 can be adjusted by the installation height of the gravity type pressure medium adjusting tank 15. After the pressure medium 6 is squeezed out due to the close contact of the lid, the valve 21 leading to the gravity type pressure medium adjusting tank 15 and the pressure medium opening valve 22 of the pipe leading to the pressure medium opening pipe 14 are closed.

次に本発明の第4の工程を図9で説明する。なお、この段階では、圧力媒体6の配管系統は、高圧容器の本体1と接続する下部圧媒パイプ10のバルブ18、および、蓋2を介して上部成形型7接続する上部圧媒パイプ9のバルブ17は開け、加圧ポンプ等の加圧機構16と接続する。また、大気開放管12に至る配管の大気開放バルブ20は開ける。
蓋2は締結ボルトやプレスフレーム等の蓋締結具により本体1と蓋締結する。その後に加圧機構16を稼働させて所定の処理圧力まで圧力媒体6を加圧し、上部成形型7の内面全面と下部成形型4の外面全面を同時に同じ圧力媒体6を送入して加圧することにより被処理物3を静水圧加圧処理する。なお、本発明の基本的な構成の範囲では、能動的に加熱操作を行う機構は含まない。
Next, the fourth step of the present invention will be described with reference to FIG. At this stage, the piping system of the pressure medium 6 is the valve 18 of the lower pressure medium pipe 10 connected to the main body 1 of the high pressure container, and the upper pressure medium pipe 9 connected to the upper molding die 7 via the lid 2. The valve 17 is opened and connected to a pressurizing mechanism 16 such as a pressurizing pump. Further, the atmosphere opening valve 20 of the pipe leading to the atmosphere opening pipe 12 is opened.
The lid 2 is lid-fastened to the main body 1 by a lid fastener such as a fastening bolt or a press frame. After that, the pressurizing mechanism 16 is operated to pressurize the pressure medium 6 to a predetermined processing pressure, and the same pressure medium 6 is simultaneously sent to pressurize the entire inner surface of the upper molding die 7 and the outer surface of the lower molding die 4. As a result, the object to be treated 3 is subjected to hydrostatic pressure pressure treatment. It should be noted that, within the scope of the basic configuration of the present invention, a mechanism for actively performing a heating operation is not included.

図9には圧力媒体6により力が加わっている大きさと向きを矢印で示しており、加圧機構を動作させた段階での高圧容器内での圧力媒体6による圧力の釣り合い状態を示している。図9に示される通り、高圧容器内では圧力媒体6の加圧により、力の釣り合いと不釣り合いが生じている。同時に同じ圧力媒体6を送入して加圧しているので、上部成形型7と下部成形型4の間の力は両者の伸縮性の材料の薄い膜を介して釣り合っており、この薄い膜が動くことや破れることはない。被処理物3は、全方位から同じ力で完全に方向性なく圧縮される。高圧容器の本体1と蓋2は、それぞれの表面積に応じた力で圧力媒体6から押されており、高圧容器と蓋と蓋締結具の強度により、これを支持している。 In FIG. 9, the magnitude and direction in which the force is applied by the pressure medium 6 are indicated by arrows, and the balanced state of the pressure by the pressure medium 6 in the high pressure container at the stage when the pressurizing mechanism is operated is shown. .. As shown in FIG. 9, the pressure of the pressure medium 6 causes the force to be balanced and unbalanced in the high-pressure container. Since the same pressure medium 6 is sent in and pressurized at the same time, the forces between the upper molding die 7 and the lower molding die 4 are balanced through the thin film of the elastic material of both, and this thin film is formed. It does not move or tear. The object 3 to be processed is completely non-directionally compressed with the same force from all directions. The main body 1 and the lid 2 of the high-pressure container are pushed from the pressure medium 6 by a force corresponding to their respective surface areas, and are supported by the strength of the high-pressure container, the lid, and the lid fastener.

図1~図9の高圧容器の本体1と蓋2は、1基の円筒形の容器を縦置きしたものを示した。しかし、これは一例として示したものであり、複数基の高圧容器の本体と蓋を連結させても構わない。 The main body 1 and the lid 2 of the high-pressure container of FIGS. 1 to 9 show one cylindrical container placed vertically. However, this is shown as an example, and the main body and the lid of a plurality of high-pressure containers may be connected to each other.

高圧容器の蓋を下降させる方法には、小規模な一軸圧縮プレスや油圧または電動ピストン装置または電動ホイストやチェーンブロック等を用いる。蓋の取り付け精度を高めるために、架台を固定した一軸圧縮プレスや油圧または電動ピストン装置が好ましい。
また、本体と蓋を密着後に本体と蓋を締結する方法は、プレスフレーム方式、蓋締結ボルト締め方式、荷重載荷方式等があるが、そのいずれでも構わない。
As a method of lowering the lid of the high-pressure container, a small-scale uniaxial compression press, a hydraulic or electric piston device, an electric hoist, a chain block, or the like is used. In order to improve the mounting accuracy of the lid, a uniaxial compression press with a fixed pedestal or a hydraulic or electric piston device is preferable.
Further, as a method of fastening the main body and the lid after the main body and the lid are in close contact with each other, there are a press frame method, a lid fastening bolt tightening method, a load loading method and the like, but any of them may be used.

圧力媒体の加圧機構は、油圧または電動ピストン加圧装置、電動ポンプ装置等の装置が数多く市販されており、型式はいずれのものでも構わない。高い圧力領域で一定の圧力制御を求める場合は、油圧または電動ピストン加圧装置が多く利用されている。最高使用圧力は油圧ピストン加圧装置では700MPa、電動ポンプ装置だけでも100MPaに達するものもある。なお、図1、図6~図9では、油圧ピストン加圧装置の例を示している。 As the pressurizing mechanism of the pressure medium, a large number of devices such as a hydraulic or electric piston pressurizing device and an electric pump device are commercially available, and any type may be used. When constant pressure control is required in a high pressure region, hydraulic or electric piston pressurizing devices are often used. The maximum working pressure may reach 700 MPa for hydraulic piston pressurizing devices and 100 MPa for electric pump devices alone. Note that FIGS. 1 and 6 to 9 show an example of a hydraulic piston pressurizing device.

本発明の圧力媒体は液体状の流体としている。温度200°C以下での静水圧加圧には通常は水が用いられるが、被処理物が単純な形状であれば水を圧力媒体とすることで問題ない。被処理物の形状が複雑である場合、それに必要な形状追随性より、表面張力や粘度が低い圧力媒体が求められる。圧力媒体の具体的な液体名の例とその密度等の物性を表1に示す。 The pressure medium of the present invention is a liquid fluid. Water is usually used for hydrostatic pressure pressurization at a temperature of 200 ° C. or lower, but if the object to be treated has a simple shape, there is no problem in using water as a pressure medium. When the shape of the object to be processed is complicated, a pressure medium having low surface tension and viscosity is required because of the shape followability required for the shape. Table 1 shows an example of a specific liquid name of the pressure medium and physical properties such as its density.

表1の通り、メチルアルコールは、表面張力や粘度が低い圧力媒体となる。メチルアルコール、エチルアルコール等は比較的大きく熱膨張するので圧力媒体の温度管理が重要である。なお、シリコーンオイルは表面張力が全般に低い圧力媒体であるが、分子量や重合度および重合時に導入する置換基の種類(メチル系・フェニル系等)により幅広い粘度(動粘度)の多種多様な製品があり、用途に応じてそれらを選定する。本発明の用途の場合は低粘度のジメチルシリコーンオイル等を使用することが好ましい。但し、高圧下では全般に液体状の流体の粘度は高くなるので、その取扱いには注意が必要である。また、低粘度のジメチルシリコーンオイルは圧力による圧縮率が大きく、350MPaの圧力下で、約15%の容積収縮を起こすので、高圧下での取扱いには注意が必要である。 As shown in Table 1, methyl alcohol is a pressure medium having low surface tension and viscosity. Since methyl alcohol, ethyl alcohol, etc. undergo relatively large thermal expansion, it is important to control the temperature of the pressure medium. Silicone oil is a pressure medium with a generally low surface tension, but a wide variety of products with a wide range of viscosities (kinematic viscosities) depending on the molecular weight, degree of polymerization, and types of substituents (methyl-based, phenyl-based, etc.) introduced during polymerization. There are, and they are selected according to the application. In the case of the application of the present invention, it is preferable to use low-viscosity dimethyl silicone oil or the like. However, since the viscosity of a liquid fluid generally increases under high pressure, care must be taken when handling it. In addition, low-viscosity dimethylsilicone oil has a large compressibility due to pressure and causes volume shrinkage of about 15% under a pressure of 350 MPa, so care must be taken when handling it under high pressure.

表1

Figure 0007046342000002
注)上表は常圧下で温度20°Cでの物性値 Table 1
Figure 0007046342000002
Note) The above table shows the physical properties at a temperature of 20 ° C under normal pressure.

本発明で使用する伸縮材料による上部成形型と下部成形型は、従来のCIP装置用の帽子状の加圧ゴム型やスリーブ状のゴム型と同様の方法で製造する。すなわち、単品生産の場合は、天然ゴム、ネオプレンゴム、シリコーンゴム、ウレタンゴム等の原料をゴム枠に充填し、ランマー等で均一に叩いて充填密度を安定させた後に熱処理炉で焼成している。大量生産の場合は、金型への射出成形や、タイヤのような金型へのホットプレス成型も考えられる。本発明の上部成形型と下部成形型に使用する伸縮材料の候補となるゴムの種類と引張強さ、伸び等の機械的性質を表2に示す。 The upper mold and the lower mold made of the elastic material used in the present invention are manufactured by the same method as the hat-shaped pressure rubber mold and the sleeve-shaped rubber mold for the conventional CIP device. That is, in the case of single product production, raw materials such as natural rubber, neoprene rubber, silicone rubber, and urethane rubber are filled in a rubber frame, and the rubber frame is uniformly tapped to stabilize the filling density and then fired in a heat treatment furnace. .. In the case of mass production, injection molding into a mold or hot press molding into a mold such as a tire can be considered. Table 2 shows the types of rubber that are candidates for the elastic material used for the upper molding die and the lower molding die of the present invention, and the mechanical properties such as tensile strength and elongation.

伸びの大きい天然ゴム、イソプレンゴム、ニトリルゴム、ネオプレン、ウレタンゴム等を選定する。また、被処理物の形状に突起がある場合は、引張強さが大きい天然ゴム、ニトリルゴム、ウレタンゴム等を選定する。
また、これらの伸縮材料をテーパ状のガイド機構のある上部成形型と下部成形型に使用するため、これらの成形型の表面粗度は滑らかである方がより良い。表面粗度を滑らかにするには、上記の製造法のうち、金型成形となる射出成形やホットプレス成型が好ましい。
さらに、ニトリルゴム、エチレン・プロピレンゴム、シリコーンゴム、フッ素ゴム(バイトン)等の潤滑性の良い材料を使用するのが良い。成形型の表面にポリテトラフルオロエチレン(PTFE)等のゴム用潤滑被膜を利用しても良い。
Select natural rubber, isoprene rubber, nitrile rubber, neoprene, urethane rubber, etc., which have high elongation. If the shape of the object to be treated has protrusions, select natural rubber, nitrile rubber, urethane rubber, etc., which have high tensile strength.
Further, since these elastic materials are used for the upper molding die and the lower molding die having the tapered guide mechanism, it is better that the surface roughness of these molding dies is smooth. In order to smooth the surface roughness, among the above-mentioned manufacturing methods, injection molding or hot press molding, which is mold molding, is preferable.
Further, it is preferable to use a material having good lubricity such as nitrile rubber, ethylene / propylene rubber, silicone rubber, and fluororubber (biton). A rubber lubricating film such as polytetrafluoroethylene (PTFE) may be used on the surface of the mold .

表2

Figure 0007046342000003
Table 2
Figure 0007046342000003

本発明の上部成形型は、中央下部から下端部にかけて外面にテーパを付した前記のテーパ状のガイド機構を設置する必要がある。見えない場所への遠隔操作に必要なガイド機構について一般性のある規格等はない。ここでは切削工具を目視せずにアームを使って工具格納庫から工具を取り出し自動交換しながら切削加工を進めるマシニングセンタのツールシャンク規格である、JIS B6101(2004)を参考にしながら、上部成形型の中央下部から下端部にかけて外面にテーパの形状と寸法を検討した。JIS B6101のツールシャンクのテーパは呼び番号が30~80の間で10種類があり、基準寸法であるテーパの太い側の直径D1が31.75mmから254mmについて規定している。なお、呼び番号すなわち直径D1に係わらずテーパ部分の傾斜は7/24テーパと画一である。なお、7/24テーパとは、テーパ部分の長さが24mmごとに直径が7mm減るという意味である。そのため、このツールシャンクは、7/24テーパシャンクと呼ばれている。従って、呼び番号が80(直径D1が254mm)の場合で、テーパ部分の全長が240mmであれば、細い側の直径D2は184mmとD1の7割程度になる。ここで仮に上部成形型の長さ(高さ)をテーパ部分の全長とすると、その下端部の直径はあまりにも小さくなり、かなりの密着しない大きな面積が生じることとなり、成形型として用を成さないものとなってしまう。但し、この規格はあくまでも、回転部分は必ず円筒形で小さな直径である切削工具をマシニングセンタが自動交換する際の規格であり、用途の異なる上部成形型の場合はそのままを踏襲する必要はない。 In the upper molding die of the present invention, it is necessary to install the tapered guide mechanism having a tapered outer surface from the lower center to the lower end. There is no general standard for the guide mechanism required for remote control to invisible places. Here, while referring to JIS B6101 (2004), which is a tool shank standard for machining centers, where cutting tools are taken out from the tool storage using an arm without looking at the cutting tools and automatically replaced to proceed with cutting, the center of the upper molding die. The shape and dimensions of the taper on the outer surface from the bottom to the bottom were examined. There are 10 types of taper of the tool shank of JIS B6101 with a nominal number between 30 and 80, and the diameter D1 on the thick side of the taper, which is the standard dimension, is specified for 31.75 mm to 254 mm. The inclination of the tapered portion is uniform with the 7/24 taper regardless of the nominal number, that is, the diameter D1. The 7/24 taper means that the diameter of the tapered portion is reduced by 7 mm for every 24 mm. Therefore, this tool shank is called a 7/24 taper shank. Therefore, when the nominal number is 80 (diameter D1 is 254 mm) and the total length of the tapered portion is 240 mm, the diameter D2 on the narrow side is 184 mm, which is about 70% of D1. Here, assuming that the length (height) of the upper molding die is the total length of the tapered portion, the diameter of the lower end portion thereof becomes too small, and a large area that does not adhere to each other is generated, which makes it useful as a molding die. It will be nothing. However, this standard is a standard when the machining center automatically replaces a cutting tool whose rotating part is always cylindrical and has a small diameter, and it is not necessary to follow the standard for upper molding dies for different purposes.

上部成形型の場合は、マシニングセンタの切削工具のように切削時の回転力を伝える必要はなく、目的は見えない場所への遠隔操作に必要なガイド機構である。また、ガイドが必要なのは上部成形型の下端部のみであり、高さ方向の中心位置より上部は関係しない。そのため、テーパ状のガイド機構としてテーパを設置けるのは上部成形型の中央下部から下端部にかけて外面に限るものとする。しかしながら、見えない場所への遠隔操作により型合わせすることはマシニングセンタも同様の操作であるため、7/24テーパは踏襲することとする。
これにより、具体的には上部成形型の長さ(高さ)のうち、下端部から3分の1の長さの外面に7/24テーパを付する。試算例として表3には、想定した上部成形型の外径(d1)、高さ(h1)について、図7のaで示した各部位の寸法表示h2、d2、Tについて試算した結果を示す。なお、h2は7/24テーパを付す部分の高さ(円筒側面の鉛直方向の長さ)、d2は上部成形型の下端面の直径、Tは7/24テーパを付したことによる片面の切り欠きの幅の寸法、すなわち、d1からd2を差し引いたものを2で割った数値(T=(d1-d2)/2)を示す。なお、7/24テーパを付す部分の高さh2は、上部成形型の高さh1の下部3分の1とした。
表3によれば、円筒側面の鉛直方向の長さh2はh1の下部3分の1の高さの範囲とすれば、上部成形型の外径が10cmから40cmまでの場合で、JIS規格の7/24テーパを付したことによる下端部での片面の切り欠きの幅の寸法Tは1.2~5.3cmとなった。すなわち、合理的に実現可能なテーパ状のガイド機構を設ける場合の上部成形型の下端部での片面の切り欠きの幅の寸法Tは、5.3センチメートル以下である。
In the case of the upper molding type, it is not necessary to transmit the rotational force at the time of cutting unlike the cutting tool of the machining center, and the purpose is a guide mechanism necessary for remote control to an invisible place. Further, the guide is required only at the lower end of the upper molding die, and the upper part from the center position in the height direction is irrelevant. Therefore, the taper can be installed as a tapered guide mechanism only on the outer surface from the lower center to the lower end of the upper molding die. However, since the machining center is also operated by remote control to an invisible place, the 7/24 taper will be followed.
As a result, specifically, the outer surface having a length of one-third from the lower end portion of the length (height) of the upper molding die is tapered by 7/24. As an example of trial calculation, Table 3 shows the results of trial calculations for the dimensional displays h2, d2, and T of each part shown in FIG. 7a with respect to the assumed outer diameter (d1) and height (h1) of the upper molding die. .. In addition, h2 is the height of the portion to which the 7/24 taper is attached (the length in the vertical direction of the side surface of the cylinder), d2 is the diameter of the lower end surface of the upper molding die, and T is the cutting of one side due to the 7/24 taper. The dimension of the width of the notch, that is, the value obtained by subtracting d2 from d1 and dividing by 2 (T = (d1-d2) / 2) is shown. The height h2 of the portion to be tapered on 7/24 was set to the lower third of the height h1 of the upper molding die.
According to Table 3, if the vertical length h2 of the side surface of the cylinder is within the height range of the lower third of h1, the outer diameter of the upper molding mold is from 10 cm to 40 cm, and the JIS standard is used. The dimension T of the width of the notch on one side at the lower end due to the 7/24 taper was 1.2 to 5.3 cm. That is, the dimension T of the width of the notch on one side at the lower end of the upper molding mold when a rationally feasible tapered guide mechanism is provided is 5.3 cm or less.

表3では欄外の注1に、高さ延長後の例1-1から高さ延長前の例1-2の実効容積Vを引いた例1の容積差を表記した。同様に注2、注3、注4に、例2、例3、例4の容積差を表記した。上記では上部成形型の下部にガイド機構を設置することにより減少する体積は、上部成形型の高さ(円筒側面の鉛直方向の長さ)を僅かに数cm長くすることで増加する体積で補償できると述べた。表3およびその欄外の注1~注4の数値によれば、以下のことが言える。
例1の上部成形型の外径が100mmの場合は、テーパ状のガイド機構の設置により減少した圧力媒体の容積V2が91cmであるのに対して、上部成形型の高さh1を1.4cm長くすることで、増加する実効容積は注1の92cmと大きい。
例2の上部成形型の外径が200mmの場合は、同様にV2が731cmであるのに対して、上部成形型の高さh1を2.8cm長くすることで、増加する実効容積は注2の734cmと大きい。
例3の上部成形型の外径が300mmの場合は、同様にV2が2,467cmであるのに対して、上部成形型の高さh1を4.2cm長くすることで、増加する実効容積は注3の2,479cmと大きい。
例4の上部成形型の外径が400mmの場合は、同様にV2が5,847cmであるのに対して、上部成形型の高さh1を5.6cm長くすることで、増加する実効容積は注3の5,876cmと大きい。
すなわち、上部成形型の外径が10cmから40cmまで、高さが12cmから54cmまでの場合で、上部成形型の下部のテーパ状のガイド機構の設置により減少した圧力媒体の容積の補償するために上部成形型の延長する高さ(同上)は、1~6cmである。これは、圧力媒体の補給が仮に期待できないとしても、上部成形型の高さ(同上)を6センチメートル延長することで上部成形型内の圧力媒体が不足するという問題は生じないことを意味する。また、圧力媒体が不足することはないので、真空吸引時に伸縮材料の伸びが変形に追随できずに破断するという問題は生じない。
In Table 3, in Note 1 in the margin, the volume difference of Example 1 obtained by subtracting the effective volume V of Example 1-2 before height extension from Example 1-1 after height extension is shown. Similarly, Note 2, Note 3, and Note 4 indicate the volume difference between Example 2, Example 3, and Example 4. In the above, the volume that decreases by installing the guide mechanism at the bottom of the upper molding mold is compensated by the volume that increases by slightly increasing the height of the upper molding mold (the length in the vertical direction of the side surface of the cylinder) by a few centimeters. He said he could. According to the values in Table 3 and Note 1 to Note 4 in the margin, the following can be said.
When the outer diameter of the upper molding die of Example 1 is 100 mm, the volume V2 of the pressure medium reduced by the installation of the tapered guide mechanism is 91 cm 3 , whereas the height h1 of the upper molded die is 1. By increasing the length by 4 cm, the effective volume that increases is as large as 92 cm 3 in Note 1.
When the outer diameter of the upper molding die of Example 2 is 200 mm, V2 is 731 cm 3 in the same manner, whereas the effective volume increased by increasing the height h1 of the upper molded die by 2.8 cm is noted. It is as large as 734 cm 3 of 2.
When the outer diameter of the upper molding die of Example 3 is 300 mm, V2 is 2,467 cm 3 in the same manner, whereas the effective volume increased by increasing the height h1 of the upper molded die by 4.2 cm. Is as large as 2,479 cm 3 in Note 3.
When the outer diameter of the upper molding die of Example 4 is 400 mm, V2 is 5,847 cm 3 in the same manner, whereas the effective volume increased by increasing the height h1 of the upper molded die by 5.6 cm. Is as large as 5,876 cm 3 in Note 3.
That is, in the case where the outer diameter of the upper molding die is from 10 cm to 40 cm and the height is from 12 cm to 54 cm, in order to compensate for the volume of the pressure medium reduced by the installation of the tapered guide mechanism at the lower part of the upper molding die. The extended height of the upper molding die (same as above) is 1 to 6 cm. This means that even if replenishment of the pressure medium cannot be expected, extending the height of the upper mold (same as above) by 6 cm does not cause the problem of running out of pressure medium in the upper mold. .. Further, since the pressure medium is not insufficient, there is no problem that the elongation of the elastic material cannot follow the deformation and breaks during vacuum suction.

表3

Figure 0007046342000004
注)h2は、h1の下部3分の1の円筒側面の鉛直方向の長さとした Table 3
Figure 0007046342000004
Note) h2 is the vertical length of the side surface of the cylinder in the lower third of h1.

また、表3では、下部のガイド機構を設置したことによる、上部成形型の容積(cm3)の変化とその減少率を算出した結果を付記した。ここで、V1は上部成形型の外径寸法より算出した円筒形の容積、V2はガイド機構を設置したことにより円筒形より減少した容積、Vはガイド機構を設置した上部成形型の実効容積の数値(V=V1-V2)を示す。なお、Sはガイド機構の設置に伴う上部成形型の容積の減少率(%)を示す。 In addition, in Table 3, the results of calculating the change in the volume (cm 3 ) of the upper molding die and the rate of decrease due to the installation of the lower guide mechanism are added. Here, V1 is the volume of the cylinder calculated from the outer diameter of the upper molding mold, V2 is the volume reduced from the cylinder by installing the guide mechanism, and V is the effective volume of the upper molding mold in which the guide mechanism is installed. A numerical value (V = V1-V2) is shown. In addition, S shows the reduction rate (%) of the volume of the upper molding die with the installation of a guide mechanism.

本発明の貫通伸縮チューブは上部成形型を貫通する可撓性(微弾性とも言う)材料の管としている。貫通伸縮チューブはその固有の強度により、真空吸引の際は真空圧により中空管の形状が僅かに変形するが内部の流体の流通を保つことができる。また、圧力媒体で静水圧加圧された際にはあえて形状を保たないように配慮している。すなわち、その場で静水圧加圧に従って中空管の内部空間を閉塞することにより、上部成形型に静水圧に反するような方向の力が加わらないように配慮している。但し、折れつぶれ防止用の補強材にSUS316等の金属線材を使っているものは、貫通伸縮チューブが破損した際に上部成形型を破損する可能性があるため除外する。これにより静水圧加圧時に貫通伸縮チューブが上部成形型の伸縮材料を損傷することはない。また、静水圧加圧を除圧した後には貫通伸縮チューブがもつ本来の機械的特性により形状が元に復帰する。これにより、圧力媒体の静水圧加圧が損なわれることはない。可撓性チューブの例を特許文献4に示す。具体的な製品例としては、トヨックス工業製のハイブリッドトヨシリコーンホースHTSI(耐熱温度130°C、内径12.7~38.1mm、主材質: シリコーンゴム、補強材: ポリエステル糸・耐熱特殊樹脂)等である。 The penetrating telescopic tube of the present invention is a tube made of a flexible (also referred to as slightly elastic) material that penetrates the upper molding die. Due to its inherent strength, the penetrating telescopic tube can maintain the flow of fluid inside, although the shape of the hollow tube is slightly deformed by the vacuum pressure during vacuum suction. In addition, care is taken not to maintain the shape when hydrostatic pressure is applied with a pressure medium. That is, by closing the internal space of the hollow tube according to the hydrostatic pressure pressurization on the spot, consideration is given so that a force in a direction contrary to the hydrostatic pressure is not applied to the upper molding die. However, those using a metal wire such as SUS316 as a reinforcing material for preventing crushing are excluded because the upper forming mold may be damaged when the penetrating telescopic tube is damaged. As a result, the penetrating telescopic tube does not damage the stretchable material of the upper molded mold when pressurized with hydrostatic pressure. Further, after depressurizing the hydrostatic pressure, the shape is restored to the original shape due to the original mechanical characteristics of the penetrating telescopic tube. As a result, the hydrostatic pressure of the pressure medium is not impaired. An example of a flexible tube is shown in Patent Document 4. Specific product examples include hybrid Toyo silicone hose HTSI manufactured by Toyox Co., Ltd. (heat resistant temperature 130 ° C, inner diameter 12.7 to 38.1 mm, main material: silicone rubber, reinforcing material: polyester thread, heat resistant special resin), etc. Is.

上記では機能や構造を説明するために、周+2軸加圧式として帽子状の加圧ゴム型に相当する下部成形型に、工夫を施した上部成形型を遠隔操作で位置決めし、皺入りなくぴったりと密着させ、気泡やボイドなく圧力媒体を充填する方法を示した。一方、現状、産業界で多用されているのは周加圧式として円筒状の加圧ゴム型を使用した乾式CIP装置である。乾式CIP装置の多くは下蓋を取外し、下方に処理品を取り出している。
本発明でも下方に処理品を取り出す構成の処理装置とすることは可能である。すなわち、上記の下部成形型と上部成形型を鉛直方向に180°入れ替えた構成とし、被処理物の収納と製品の取り出しを下蓋に固定した成形型により行うことができる。または、帽子状の加圧ゴム型に相当する下部成形型ではなく、円筒状の加圧ゴム型を使用して下蓋には単純に円筒形の成形型を固定し、製品の取り出し時のみに開閉することで、本発明の構成で下方に処理品を取り出すことができる。なお、この場合は被処理物の収納は上蓋に固定した成形型を利用するので下蓋に固定した成形型には上述した工夫は必要ない。
In the above, in order to explain the function and structure, the upper molding mold with ingenuity is remotely positioned on the lower molding mold equivalent to the hat-shaped pressure rubber mold as a peripheral + 2-axis pressure type, and it fits perfectly without wrinkles. The method of filling the pressure medium without bubbles or voids was shown. On the other hand, at present, what is often used in the industrial world is a dry CIP device that uses a cylindrical pressurized rubber mold as a peripheral pressure type. In many dry CIP devices, the lower lid is removed and the processed product is taken out downward.
Even in the present invention, it is possible to use a processing device having a configuration in which the processed product is taken out downward. That is, the lower molding die and the upper molding die are interchanged 180 ° in the vertical direction, and the object to be processed can be stored and the product can be taken out by the molding die fixed to the lower lid. Alternatively, use a cylindrical pressure rubber mold instead of the lower molding mold that corresponds to the hat-shaped pressure rubber mold, and simply fix the cylindrical mold to the lower lid only when taking out the product. By opening and closing, the processed product can be taken out downward according to the configuration of the present invention. In this case, since the molding die fixed to the upper lid is used for storing the object to be processed, the above-mentioned ingenuity is not required for the molding die fixed to the lower lid.

1.高圧容器
2.蓋
3.被処理物
4.下部成形型
5.上部成形型取付け治具
6.圧力媒体
7.上部成形型
8.間隙密閉治具
9.上部圧媒パイプ
10.下部圧媒パイプ
11.真空ポンプ
12.大気開放管
13.貫通伸縮チューブ
14.圧媒大気開放管
15.重力式圧力媒体調整槽
16.加圧機構
17.上部圧媒バルブ
18.下部圧媒バルブ
19.真空ポンプバルブ
20.大気開放バルブ
21.圧媒調整槽バルブ
22.圧媒大気開放バルブ
1. 1. High pressure container 2. Cover 3. Object to be processed 4. Lower molding mold 5. Upper molding mold mounting jig 6. Pressure medium 7. Top molding mold 8. Gap sealing jig 9. Upper pressure medium pipe 10. Lower pressure medium pipe 11. Vacuum pump 12. Atmospheric open pipe 13. Penetrating telescopic tube 14. Pressure medium open tube to the atmosphere 15. Gravity pressure medium adjustment tank 16. Pressurizing mechanism 17. Upper pressure medium valve 18. Lower pressure medium valve 19. Vacuum pump valve 20. Atmospheric release valve 21. Pressure medium adjustment tank valve 22. Pressure medium open valve

Claims (9)

高圧容器内に被処理物を収納して液体状の流体である圧力媒体により静水圧加圧する処理装置であって、
高圧容器内に下部と上部で勘合する一対の伸縮性材料の成形型があり、
上部成形型は高圧容器の蓋の下面に固定して取付けられた円柱状の容器であって、
上部成形型には圧力媒体の注入配管と圧力媒体を回収する容器への配管が接続されており、
下部成形型は凹部に被処理物を収納した上方に開口部がある底付き中空円筒形状であって、高圧容器の本体の内壁に固定して取付けられており、
高圧容器の本体には圧力媒体の注入配管が接続されており、
下部成形型は凹部に被処理物を収納した後に、
上部成形型内に形状を保てる質量の圧力媒体を予め満たし、
高圧容器の蓋締めの際に上部成形型の下部のテーパ状のガイド機構により遠隔操作で上部成形型を下部成形型中に挿入しながら蓋を下降させる第1の工程と、
蓋と本体を密着する直前に上部成形型と下部成形型の間の空間の大気を真空吸引することにより両方の成形型を密着させると共に重力を利用して静かに圧力媒体を送入して満たす第2の工程と、
蓋の下降を再開して蓋と本体を密着する際に上部成形型内の圧力媒体を絞り出すことで鉛直方法の上方に設置した容器で回収する第3の工程と、
蓋を締結後に上部成形型の内面全面と下部成形型の外面全面を液絡している同じ圧力媒体で同時に静水圧加圧する第4の工程により、
被処理物を圧力媒体に非接触な状態で、大気から圧力媒体に気泡やボイドを混入させることなく、均等な圧力で静水圧加圧できることを特徴とする処理装置
A processing device that stores an object to be processed in a high-pressure container and pressurizes it with hydrostatic pressure using a pressure medium that is a liquid fluid.
Inside the high-pressure container, there is a pair of elastic material molding dies that fit at the bottom and top.
The upper molding mold is a columnar container fixedly attached to the lower surface of the lid of the high-pressure container.
The upper molding mold is connected to the pressure medium injection pipe and the pipe to the container that collects the pressure medium.
The lower molding mold is a hollow cylindrical shape with a bottom that has an opening above which the object to be processed is stored in the recess, and is fixedly attached to the inner wall of the main body of the high-pressure container.
A pressure medium injection pipe is connected to the main body of the high-pressure container.
After storing the object to be treated in the recess, the lower molding mold is used.
Pre-fill the upper mold with a pressure medium of mass that can maintain its shape.
The first step of lowering the lid while inserting the upper molding die into the lower molding die by remote control by the tapered guide mechanism at the lower part of the upper molding die when closing the lid of the high-pressure container.
Immediately before the lid and the main body are brought into close contact with each other, the air in the space between the upper molding die and the lower molding die is vacuum-sucked to bring both molding dies into close contact with each other , and the pressure medium is gently sent in and filled by using gravity. The second step and
The third step of recovering in a container installed above the vertical method by squeezing out the pressure medium in the upper molding mold when the lid is restarted to descend and the lid and the main body are brought into close contact with each other.
After fastening the lid, the entire inner surface of the upper molding die and the entire outer surface of the lower molding die are simultaneously pressurized with hydrostatic pressure using the same pressure medium that is liquid-entangled by the fourth step.
A treatment device characterized in that it is possible to pressurize hydrostatic pressure at a uniform pressure without mixing air bubbles or voids from the atmosphere into the pressure medium while the object to be treated is not in contact with the pressure medium.
請求項1に記載の処理装置において、前記上部成形型の高さ方向の中心位置より下部のみにJIS規格の7/24テーパの構造に基づくテーパ状のガイド機構を設けた処理装置。 The processing apparatus according to claim 1, wherein a tapered guide mechanism based on a JIS standard 7/24 taper structure is provided only below the center position in the height direction of the upper molding die. 請求項1に記載の処理装置において、前記上部成形型の下端部のテーパ状の前記ガイド機構による片面の切り欠きの幅の寸法が5.3センチメートル以下である処理装置。
The processing apparatus according to claim 1 , wherein the dimension of the width of the notch on one side by the tapered guide mechanism at the lower end of the upper molding die is 5.3 cm or less.
請求項1に記載の処理装置において、前記上部成形型の下部のテーパ状の前記ガイド機構の設置により減少した圧力媒体の容積を補償するために、はめ合いの必要長から延長する上部成形型の高さが1センチメートル以上で6センチメートル以下である処理装置。
In the processing apparatus according to claim 1, the upper molding die is extended from the required length of fitting in order to compensate for the volume of the pressure medium reduced by the installation of the tapered guide mechanism below the upper molding die. A processing device with a height of 1 cm or more and 6 cm or less.
請求項1に記載の処理装置において、前記高圧容器の蓋の下面に取付けた前記上部成形型の形状は、中空円筒型、縦割り状の2分割型、同・3分割型、または、同・4分割型である処理装置。
In the processing apparatus according to claim 1, the shape of the upper molded mold attached to the lower surface of the lid of the high-pressure container is a hollow cylindrical type, a vertically divided two-divided type, the same / three-divided type, or the same. A processing device that is a 4-split type.
請求項1に記載の処理装置において、前記成形型の伸縮性材料は、天然ゴム、イソプレンゴム、ニトリルゴム、エチレン・プロピレンゴム、ネオプレン、または、ウレタンゴムを用いた処理装置。
In the processing apparatus according to claim 1, the molding type elastic material is a processing apparatus using natural rubber, isoprene rubber, nitrile rubber, ethylene / propylene rubber, neoprene, or urethane rubber.
請求項1に記載の処理装置において、前記第1の工程から前記第2の工程に至る高圧容器の蓋を下降させる操作に並行して、真空吸引を行うことができる処理装置。
The processing apparatus according to claim 1 , wherein vacuum suction can be performed in parallel with the operation of lowering the lid of the high-pressure container from the first step to the second step.
請求項1に記載の処理装置の前記第3の工程において、前記上部成形型の鉛直方法の高さよりも上方に設置した容器から前記圧力媒体を重力で供給することにより、前記上部成形型内部を残留空気なく前記圧力媒体で満たすことができる処理装置。
In the third step of the processing apparatus according to claim 1, the inside of the upper molding die is formed by supplying the pressure medium by gravity from a container installed above the height of the vertical method of the upper molding die. A processing device that can be filled with the pressure medium without residual air.
請求項1に記載の処理装置において、前記下部成形型は底付き中空円筒形状ではなく円筒状の加圧ゴム型とし、新たに下蓋に固定した円柱状の成形型を加えることにより、鉛直方法の下方に処理品の取り出しができる処理装置。
In the processing apparatus according to claim 1, the lower molding die is not a hollow cylindrical shape with a bottom but a cylindrical pressurized rubber mold, and a cylindrical molding die newly fixed to the lower lid is added to perform a vertical method. A processing device that can take out processed products below.
JP2021088277A 2021-05-26 2021-05-26 Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing Active JP7046342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088277A JP7046342B1 (en) 2021-05-26 2021-05-26 Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088277A JP7046342B1 (en) 2021-05-26 2021-05-26 Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing

Publications (2)

Publication Number Publication Date
JP7046342B1 true JP7046342B1 (en) 2022-04-04
JP2022181363A JP2022181363A (en) 2022-12-08

Family

ID=81256615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088277A Active JP7046342B1 (en) 2021-05-26 2021-05-26 Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing

Country Status (1)

Country Link
JP (1) JP7046342B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237103A (en) * 1985-08-10 1987-02-18 株式会社フジクラ Hydrostatic molding equipment and method
JPH09122992A (en) * 1995-10-31 1997-05-13 Ngk Insulators Ltd Dry process isostatic pressure molding device and dry process isostatic pressure molding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237103A (en) * 1985-08-10 1987-02-18 株式会社フジクラ Hydrostatic molding equipment and method
JPH09122992A (en) * 1995-10-31 1997-05-13 Ngk Insulators Ltd Dry process isostatic pressure molding device and dry process isostatic pressure molding method

Also Published As

Publication number Publication date
JP2022181363A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP7074553B2 (en) Controlling force on different parts of the surface of an object using bladder
CN110431104B (en) Emptying device for viscous materials and related method
JP2004247120A (en) Electrolyte liquid injection method and electrolyte liquid injection device
TW201318091A (en) Device for filling metal
US20240042403A1 (en) High-temperature-high-pressure processing unit by solvent application of pressure
CN109383063B (en) Using flexible walls to control the application of force to different parts of an object surface
JP7046342B1 (en) Hydrostatic pressure pressurizing device that can uniformly pressurize by dry processing
JP2879833B2 (en) Processing system
US3313871A (en) Method and apparatus for hydrostatically compacting metal powders
US20200017353A1 (en) Device for evacuating a container having pasty liquid
US3523148A (en) Isostatic pressure transmitting apparatus and method
US3051567A (en) Method and apparatus for making powdered metal articles
US3986870A (en) Method of manufacturing bodies by pressure sintering of powder
JP5385050B2 (en) Double acting forging method and double acting forging device
JP2000102825A (en) Method and device for pipe molding
JP5854430B2 (en) FRP manufacturing apparatus and FRP manufacturing method
JP2004216450A (en) Forming die for wet hydrostatic press forming and wet hydrostatic press forming method using the same
JPH09169301A (en) Stuffing method of molding
JPH1036903A (en) Method for filling powder in vacuum
JP2774683B2 (en) High pressure processing equipment
KR20010077864A (en) Method and apparatus for packing material
JP3197473B2 (en) Dry isostatic pressing apparatus and dry isostatic pressing method
KR101319768B1 (en) Vacuum evacuating head
KR101647212B1 (en) Pressure forming apparatus and method of the same
JP2013086169A (en) Sealing structure, sealing method, casting system using the same, and casting method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7046342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250