JP7044343B2 - Joint structure - Google Patents

Joint structure Download PDF

Info

Publication number
JP7044343B2
JP7044343B2 JP2017124475A JP2017124475A JP7044343B2 JP 7044343 B2 JP7044343 B2 JP 7044343B2 JP 2017124475 A JP2017124475 A JP 2017124475A JP 2017124475 A JP2017124475 A JP 2017124475A JP 7044343 B2 JP7044343 B2 JP 7044343B2
Authority
JP
Japan
Prior art keywords
steel
steel pipe
width
square
square steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017124475A
Other languages
Japanese (ja)
Other versions
JP2019007245A (en
Inventor
達彦 前田
将児 爰野
賢二 山▲崎▼
武史 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2017124475A priority Critical patent/JP7044343B2/en
Publication of JP2019007245A publication Critical patent/JP2019007245A/en
Application granted granted Critical
Publication of JP7044343B2 publication Critical patent/JP7044343B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、仕口部構造に関する。 The present invention relates to a joint structure.

下記特許文献1には、互いに直交する梁の成の違いや段差に対応するための、鉄筋コンクリート柱と鉄骨梁との接合部構造が示されている。この接合部構造では、同方向に延設された鉄骨梁同士を定着用金具で連結している。 The following Patent Document 1 shows a joint structure of a reinforced concrete column and a steel frame beam in order to cope with a difference in the formation of beams orthogonal to each other and a step. In this joint structure, steel beams extending in the same direction are connected to each other by fixing metal fittings.

特開平6-240759号公報Japanese Unexamined Patent Publication No. 6-240759

しかし、上記特許文献1の定着用金具では、同方向に延設された鉄骨梁に段差を設けて柱に接合することは難しい。 However, in the fixing metal fitting of Patent Document 1, it is difficult to provide a step on the steel beam extending in the same direction and join it to the column.

本発明は上記事実を考慮して、鉄骨梁の取付け高さを自由に設定できる接合部構造を提供することを目的とする。 In view of the above facts, an object of the present invention is to provide a joint structure in which the mounting height of a steel beam can be freely set.

請求項1の仕口部構造は、鉄筋コンクリート柱に埋設され、1枚の鋼板をロール成形により角型に加工して、又は、4枚の鋼板の端部を溶接して組立てて形成された角型鋼管と、前記角型鋼管の上下方向の寸法より梁せいが小さく形成されると共に、前記角型鋼管の一側面にそれぞれ接合され、少なくとも1つが他より取付け高さが異なる複数の鉄骨梁と、を備えた仕口部構造であって、前記複数の鉄骨梁は、それぞれ、前記角型鋼管の幅より10mm小さい幅以上、かつ、前記角型鋼管の幅より10mm大きい幅以内の梁幅とされている。 The joint structure of claim 1 is a square formed by embedding in a reinforced concrete beam and processing one steel plate into a square shape by roll forming or welding the ends of four steel pipes . A type steel pipe and a plurality of steel beams having a beam beam smaller than the vertical dimension of the square steel pipe and joined to one side surface of the square steel pipe, and at least one having a different mounting height than the other. The plurality of steel beams have a width equal to or more than 10 mm smaller than the width of the square steel pipe and a width within 10 mm larger than the width of the square steel pipe, respectively. Has been done.

請求項1の仕口部構造によると、鉄筋コンクリート柱に埋設された角型鋼管に、複数の鉄骨梁が接合されている。これらの鉄骨梁の梁幅は角型鋼管の幅とほぼ等しいため、鉄骨梁と、角型鋼管において鉄骨梁が接合された側面と交わる側面と、の間で軸力を伝達できる。また、鉄骨梁が角型鋼管の側面の幅方向中央部のみに接合される場合と比較して、鉄骨梁が接合された側面が面外変形しにくい。これにより、鉄骨梁の取付け高さを自由に設定しても、それぞれの鉄骨梁に作用する軸力を処理することができる。
一態様の仕口部構造は、鉄筋コンクリート柱に埋設され、鋼板を用いて形成された角型鋼管と、前記角型鋼管の一側面に接合され、前記角型鋼管の幅より10mm小さい幅以上、かつ、前記角型鋼管の幅より10mm大きい幅以内の梁幅とされた複数の鉄骨梁と、を備え、前記鉄骨梁のうち、少なくとも1つは他の前記鉄骨梁と取付け高さが異なる。
請求項2の仕口部構造は、前記鉄骨梁は、梁幅が前記角型鋼管の幅と等しい。
一態様の仕口部構造は、鉄筋コンクリート柱に埋設された角型鋼管と、前記角型鋼管の側面に接合され、梁幅が前記角型鋼管の幅と等しい複数の鉄骨梁と、を備え、前記鉄骨梁のうち、少なくとも1つは他の前記鉄骨梁と取付け高さが異なる。
According to the joint structure of claim 1, a plurality of steel beams are joined to a square steel pipe embedded in a reinforced concrete column. Since the beam width of these steel beams is substantially equal to the width of the square steel pipe, axial force can be transmitted between the steel beam and the side surface of the square steel pipe where the steel beam is joined and intersects. Further, as compared with the case where the steel beam is joined only to the central portion in the width direction of the side surface of the square steel pipe, the side surface to which the steel beam is joined is less likely to be out-of-plane deformation. As a result, even if the mounting height of the steel beam is freely set, the axial force acting on each steel beam can be processed.
One aspect of the joint structure is a square steel pipe embedded in a reinforced concrete column and joined to one side surface of the square steel pipe, having a width 10 mm smaller than the width of the square steel pipe or more. Moreover, a plurality of steel beams having a width within 10 mm larger than the width of the square steel pipe are provided, and at least one of the steel beams has a different mounting height from the other steel beams.
In the joint structure of claim 2, the width of the steel frame beam is equal to the width of the square steel pipe.
One aspect of the joint structure comprises a square steel pipe embedded in a reinforced concrete column and a plurality of steel beams joined to the side surface of the square steel pipe and having a beam width equal to the width of the square steel pipe. At least one of the steel beams has a different mounting height from the other steel beams.

請求項3の仕口部構造は、前記角型鋼管は、4枚の鋼板を溶接して組立てられている。 In the joint structure of claim 3 , the square steel pipe is assembled by welding four steel plates.

請求項3の仕口部構造によると、角型鋼管が4枚の鋼板を溶接して組立てられているため、角型鋼管の角部はロール成形品のような曲線に沿う形状には形成されず尖って形成される。このため鉄骨梁の梁幅を、角型鋼管の幅と一致させることができる。
これにより、角部に曲面を備えた角型鋼管と比較して、鉄骨梁と、鉄骨梁が接合された板材に溶接された板材と、の間で軸力を伝達しやすい。
請求項4の仕口部構造は、前記鉄筋コンクリート柱における前記角型鋼管の埋設部分では、フープ筋が前記鉄骨梁のウェブを貫通せず、前記ウェブに沿って前記鉄筋コンクリート柱の中心側へ折り曲げられている。
According to the joint structure of claim 3 , since the square steel pipe is assembled by welding four steel plates, the corners of the square steel pipe are formed in a shape along a curve like a roll-formed product. It is formed sharply. Therefore, the beam width of the steel beam can be matched with the width of the square steel pipe.
This makes it easier to transmit axial force between the steel beam and the plate welded to the plate to which the steel beam is joined, as compared to a square steel pipe having curved surfaces at the corners.
In the joint structure of claim 4 , in the embedded portion of the square steel pipe in the reinforced concrete column, the hoop bar does not penetrate the web of the steel beam and is bent toward the center of the reinforced concrete column along the web. ing.

請求項5の仕口部構造は、前記角型鋼管は内ダイヤフラムを備えていない。 In the joint structure of claim 5 , the square steel pipe does not have an inner diaphragm.

請求項5の仕口部構造によると、角型鋼管は内ダイヤフラムを備えていないため、コンクリートを充填しやすい。このため内ダイヤフラムを備えた角型鋼管を用いる場合と比較して仕口部を施工し易い。 According to the joint structure of claim 5 , since the square steel pipe does not have an inner diaphragm, it is easy to fill concrete. Therefore, it is easier to construct the joint portion as compared with the case of using a square steel pipe provided with an inner diaphragm.

本発明に係る仕口部構造によると、鉄骨梁の取付け高さを自由に設定できる。 According to the joint structure according to the present invention, the mounting height of the steel beam can be freely set.

本発明の第1実施形態に係る仕口部構造を示した、図3における1-1線断面図である。FIG. 3 is a sectional view taken along line 1-1 in FIG. 3, showing a joint structure according to the first embodiment of the present invention. 本発明の第1実施形態に係る仕口部構造を示した、図3における2-2線断面図である。It is a cross-sectional view taken along line 2-2 in FIG. 3 which showed the structure of the joint part which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る仕口部構造を示した平断面図である。It is a plan sectional view which showed the connection part structure which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る仕口部構造において鉄骨梁の端部に曲げモーメントが作用した状態を示す斜視図である。It is a perspective view which shows the state which the bending moment acted on the end portion of the steel frame beam in the joint part structure which concerns on 1st Embodiment of this invention. (A)は本発明の第2実施形態に係る仕口部構造を示した平断面図であり、(B)は角型鋼管の角部を示した拡大平断面図である。(A) is a plan sectional view which showed the joint structure which concerns on 2nd Embodiment of this invention, and (B) is an enlarged plan sectional view which showed the corner | corner of a square steel pipe. 比較例に係る仕口部構造において鉄骨梁の端部に曲げモーメントが作用した状態を示す斜視図である。It is a perspective view which shows the state which the bending moment acted on the end part of the steel frame beam in the joint part structure which concerns on a comparative example.

[第1実施形態]
(仕口部構造)
本発明の実施形態に係る仕口部構造は、図1、図2に示すように、鉄筋コンクリート製の柱12に、H型鋼で形成された複数の鉄骨梁22、24、26、28が接合する仕口部10に適用される接合構造である。なお、以下の説明において、鉄骨梁22、24、26、28を総称して鉄骨梁20と称する場合がある。
[First Embodiment]
(Joint structure)
In the joint structure according to the embodiment of the present invention, as shown in FIGS. 1 and 2, a plurality of steel beams 22, 24, 26, 28 made of H-shaped steel are joined to a column 12 made of reinforced concrete. It is a joint structure applied to the joint portion 10. In the following description, the steel beam 22, 24, 26, 28 may be collectively referred to as the steel beam 20.

(角型鋼管)
仕口部10には、角型鋼管30が埋設されている。角型鋼管30は、図3に示すように4枚の鋼板32、34、36、38を溶接して組立てた組立て鋼材であり、角型鋼管30の4つの角部30Eはそれぞれ、例えばロール成形品のような曲線に沿う形状には形成されず、尖って形成されている。
(Square steel pipe)
A square steel pipe 30 is embedded in the joint portion 10. As shown in FIG. 3, the square steel pipe 30 is an assembled steel material assembled by welding four steel plates 32, 34, 36, and 38, and each of the four corner portions 30E of the square steel pipe 30 is, for example, roll-formed. It is not formed into a shape that follows a curve like a product, but is formed sharply.

角型鋼管30は、断面形状が幅W1の略正方形とされており、外側面にはそれぞれ角型鋼管30の長さより梁せいが小さい鉄骨梁22、24、26、28が溶接されている。鉄骨梁22、24、26、28のフランジ幅W2は角型鋼管30の幅W1と等しく形成されている(幅W1=幅W2)。これにより、鋼板32、36(鉄骨梁24が溶接された鋼板34に直交して接合する鋼板)の面内方向に沿った中心線L上に、フランジの端部24FEが配置される。 The square steel pipe 30 has a substantially square cross-sectional shape with a width W1, and steel beams 22, 24, 26, and 28 having a smaller beam length than the length of the square steel pipe 30 are welded to the outer surfaces thereof. The flange width W2 of the steel beam 22, 24, 26, 28 is formed to be equal to the width W1 of the square steel pipe 30 (width W1 = width W2). As a result, the end portion 24FE of the flange is arranged on the center line L along the in-plane direction of the steel plates 32 and 36 (steel plates to which the steel beam 24 is joined orthogonally to the welded steel plate 34).

また、角型鋼管30は柱12の中央に配置され、内部にはダイヤフラム(内ダイヤフラム)が形成されておらず、柱12を形成するコンクリートが充填されている。 Further, the square steel pipe 30 is arranged in the center of the column 12, and the diaphragm (inner diaphragm) is not formed inside, but the concrete forming the column 12 is filled.

(鉄骨梁)
鉄骨梁22、24、26、28は、それぞれ角型鋼管30に対する取付け高さが以下の通りとされている。
(Steel beam)
The mounting heights of the steel beam 22, 24, 26, and 28 with respect to the square steel pipe 30 are as follows.

図1に示すように、互いに延設方向が等しい(X方向に沿う)鉄骨梁22と鉄骨梁26とは、それぞれの上フランジの取付け高さが異なり、それぞれの下フランジの取付け高さも異なっている。また図2に示すように、鉄骨梁22、26と直交する方向(Y方向)に沿って延設された鉄骨梁24と鉄骨梁28とは、それぞれの上フランジの取付け高さは等しいが、それぞれの下フランジの取付け高さが異なっている。 As shown in FIG. 1, the steel beam 22 and the steel beam 26 having the same extension direction (along the X direction) have different mounting heights of the upper flanges and different lower flanges. There is. Further, as shown in FIG. 2, the steel beam 24 and the steel beam 28 extending along the direction (Y direction) orthogonal to the steel beams 22 and 26 have the same mounting height of the upper flanges, but the mounting heights of the upper flanges are the same. The mounting height of each lower flange is different.

このように、本実施形態において「取付け高さが異なる」とは、互いに等しい方向に延設された2つの鉄骨梁において、鉄骨梁22、26のように上フランジ及び下フランジの双方の取付け高さが異なる場合(図1)、鉄骨梁24、28のように上フランジ及び下フランジの何れか一方の取付け高さが異なる場合(図2)、の何れの場合も含む。換言すると、「取付け高さが等しい」とは2つの鉄骨梁の梁せいが等しく、さらに上フランジの取付け高さ、及び下フランジの取付け高さの双方が等しい場合を指す。 As described above, in the present embodiment, "different mounting heights" means that the mounting heights of both the upper flange and the lower flange are different as in the steel beam 22 and 26 in the two steel beams extending in the same direction. The case where the mounting heights are different (FIG. 1) and the mounting heights of either the upper flange or the lower flange are different as in the steel frame beams 24 and 28 (FIG. 2) are included. In other words, "equal mounting height" means that the beam lengths of the two steel beams are equal, and both the mounting height of the upper flange and the mounting height of the lower flange are equal.

なお、互いに直交する方向へ延設された2つの鉄骨梁については、鉄骨梁26(X方向)、鉄骨梁28(Y方向)のように角型鋼管30への取付け高さは等しくてもよいし、鉄骨梁26(X方向)、鉄骨梁22(Y方向)のように取付け高さは異なっていてもよい。 For the two steel beams extending in the directions orthogonal to each other, the mounting heights to the square steel pipes 30 may be the same, such as the steel beam 26 (X direction) and the steel beam 28 (Y direction). However, the mounting height may be different, such as the steel beam 26 (X direction) and the steel beam 22 (Y direction).

また、鉄骨梁22、24、26、28は同一の仕口部10に接合する梁である。つまり、本実施形態において「取付け高さが異なる」鉄骨梁は、同一の仕口部10に接合される各鉄骨梁のことであり、異なる階に形成された2つの仕口部や、異なる柱に形成された2つの仕口部に接合される鉄骨梁のことではない。 Further, the steel frame beams 22, 24, 26, and 28 are beams joined to the same joint portion 10. That is, in the present embodiment, the steel beam having "different mounting height" is each steel beam joined to the same joint 10, and two joints formed on different floors or different columns. It is not a steel beam that is joined to the two joints formed in.

(作用・効果)
図4には、角型鋼管30、鉄骨梁24、28が示されており、柱12の鉄筋コンクリート部分、鉄骨梁22、26については説明の便宜上図示が省略されている。
(Action / effect)
FIG. 4 shows a square steel pipe 30, a steel frame beam 24, 28, and the reinforced concrete portion of the column 12, the steel frame beam 22, 26 is omitted for convenience of explanation.

本発明の実施形態に係る仕口部構造によると、図4に示すように例えば鉄骨梁24の端部に下向きの曲げモーメントMが作用したとき、鉄骨梁24の上フランジ24FUには角型鋼管30を引っ張る方向の軸力N1が作用する。また鉄骨梁24の下フランジ24FDには角型鋼管30を圧縮する方向の軸力N2が作用する。 According to the joint structure according to the embodiment of the present invention, as shown in FIG. 4, when a downward bending moment M acts on the end of the steel beam 24, for example, a square steel pipe is applied to the upper flange 24FU of the steel beam 24. Axial force N1 in the direction of pulling 30 acts. Further, an axial force N2 in the direction of compressing the square steel pipe 30 acts on the lower flange 24FD of the steel frame beam 24.

軸力N1によって、鉄骨梁24が接合された角型鋼管30の鋼板34は面外方向に引張力を受けるが、本実施形態に係る仕口部構造においては、鋼板34の面外変形が抑制される。 The steel plate 34 of the square steel pipe 30 to which the steel beam 24 is joined receives a tensile force in the out-of-plane direction due to the axial force N1, but the out-of-plane deformation of the steel plate 34 is suppressed in the joint structure according to the present embodiment. Will be done.

すなわち、角型鋼管30の幅W1が鉄骨梁24の上フランジ24FUの幅W2と等しいため、上フランジ24FUの幅方向端部24FEUが鋼板34を引っ張った際に、鋼板34に接合された鋼板32、36がこの引張力に抵抗する(抵抗力Re1)。これにより鋼板34の面外変形が抑制される。 That is, since the width W1 of the square steel pipe 30 is equal to the width W2 of the upper flange 24FU of the steel frame beam 24, the steel plate 32 joined to the steel plate 34 when the widthwise end portion 24FEU of the upper flange 24FU pulls the steel plate 34. , 36 resist this tensile force (resistance force Re1). As a result, out-of-plane deformation of the steel plate 34 is suppressed.

同様に軸力N2によって、鉄骨梁24が接合された角型鋼管30の鋼板34は面外方向に圧縮力を受けるが、本実施形態に係る仕口部構造においては、鋼板34の面外変形が抑制される。 Similarly, the steel plate 34 of the square steel pipe 30 to which the steel beam 24 is joined receives a compressive force in the out-of-plane direction due to the axial force N2, but in the joint structure according to the present embodiment, the steel plate 34 is out-of-plane deformation. Is suppressed.

すなわち、角型鋼管30の幅W1が鉄骨梁24の下フランジ24FDの幅W2と等しいため、下フランジ24FDの幅方向端部24FEDが鋼板34を圧縮した際に、鋼板34に接合された鋼板32、36がこの圧縮力に抵抗する(抵抗力Re2)。これにより鋼板34の面外変形が抑制される。 That is, since the width W1 of the square steel pipe 30 is equal to the width W2 of the lower flange 24FD of the steel frame beam 24, the steel plate 32 joined to the steel plate 34 when the widthwise end portion 24FED of the lower flange 24FD compresses the steel plate 34. , 36 resist this compressive force (resistive force Re2). As a result, out-of-plane deformation of the steel plate 34 is suppressed.

このように、鉄骨梁24から角型鋼管30に対して作用する軸力N1、N2に対して、鋼板32、36が抵抗することにより鋼板34の面外変形が抑制される。これにより仕口部10においては、鉄骨梁24の軸力を処理できる。 In this way, the steel plates 32 and 36 resist the axial forces N1 and N2 acting on the square steel pipe 30 from the steel beam 24, so that the out-of-plane deformation of the steel plate 34 is suppressed. As a result, the joint portion 10 can process the axial force of the steel frame beam 24.

鉄骨梁24と同じ方向(Y方向)に延設された鉄骨梁28についても同様に、鉄骨梁28から角型鋼管30に対して作用する軸力に対して、鋼板32、36が抵抗することにより鋼板38の面外変形が抑制される。これにより仕口部10においては、鉄骨梁28の軸力を処理できる。 Similarly, for the steel beam 28 extending in the same direction (Y direction) as the steel beam 24, the steel plates 32 and 36 resist the axial force acting from the steel beam 28 on the square steel pipe 30. As a result, out-of-plane deformation of the steel plate 38 is suppressed. As a result, the joint portion 10 can process the axial force of the steel frame beam 28.

すなわち、仕口部10において角型鋼管30は、同じ方向(Y方向)に延設された2つの梁(鉄骨梁24、28)の取付け高さが異なるが、それぞれの鉄骨梁の軸力を処理できる。同様に角型鋼管30は、同じ方向(X方向)に延設された2つの梁(鉄骨梁22、26)の取付け高さが異なる(図1参照)が、それぞれの梁の軸力を処理できる。 That is, in the joint portion 10, the square steel pipe 30 has two beams (steel beams 24 and 28) extending in the same direction (Y direction) having different mounting heights, but the axial force of each steel beam is different. Can be processed. Similarly, in the square steel pipe 30, the mounting heights of the two beams (steel frames 22 and 26) extended in the same direction (X direction) are different (see FIG. 1), but the axial force of each beam is processed. can.

また、本実施形態においては、鉄骨梁20の軸力を処理できるため、角型鋼管30の内部をダイヤフラム(内ダイヤフラム)で補強しなくてもよい。このため角型鋼管30の内部にコンクリートを充填しやすく、施工性がよい。 Further, in the present embodiment, since the axial force of the steel frame beam 20 can be processed, it is not necessary to reinforce the inside of the square steel pipe 30 with a diaphragm (inner diaphragm). Therefore, it is easy to fill the inside of the square steel pipe 30 with concrete, and the workability is good.

これに対し図6に示す比較例に係る仕口部構造100では、角型鋼管30の幅W1は鉄骨梁240の上フランジ240FU及び下フランジ240FDの幅W3より大きい。また、角型鋼管30の内壁間の幅W4も、幅W3より小さい。さらに鉄骨梁240は、角型鋼管30の幅方向の中央部に接合されている。鉄骨梁280は鉄骨梁240とフランジの幅が等しく、取付け高さが異なっている。 On the other hand, in the joint structure 100 according to the comparative example shown in FIG. 6, the width W1 of the square steel pipe 30 is larger than the width W3 of the upper flange 240FU and the lower flange 240FD of the steel frame beam 240. Further, the width W4 between the inner walls of the square steel pipe 30 is also smaller than the width W3. Further, the steel beam 240 is joined to the central portion in the width direction of the square steel pipe 30. The steel beam 280 has the same flange width as the steel beam 240, and the mounting height is different.

仕口部構造100においては、鉄骨梁240の端部に軸力N1、N2が作用した際に、鋼板34はこれらの軸力N1、N2に抵抗する一方、鋼板32、36は鉄骨梁240の上フランジ240FU及び下フランジ240FDの幅方向外側に位置するため、これらの軸力N1、N2に抵抗しにくく、鋼板34は面外変形しやすい。このため仕口部構造100における角型鋼管30は、鉄骨梁240の軸力を処理しにくい。 In the joint structure 100, when the axial forces N1 and N2 act on the ends of the steel beam 240, the steel plate 34 resists these axial forces N1 and N2, while the steel plates 32 and 36 are the steel beam 240. Since the upper flange 240FU and the lower flange 240FD are located outside in the width direction, it is difficult to resist these axial forces N1 and N2, and the steel plate 34 is easily deformed out of the plane. Therefore, the square steel pipe 30 in the joint structure 100 is difficult to handle the axial force of the steel beam 240.

なお、柱12において角型鋼管30の埋設部分では、図3に示すように、フープ筋14が鉄骨梁22、24、26、28のウェブを貫通せず、これらのウェブに沿って柱12の中心側へ折り曲げられている。このため、ウェブに貫通孔を形成する必要がない。 As shown in FIG. 3, in the buried portion of the square steel pipe 30 in the column 12, the hoop bar 14 does not penetrate the webs of the steel beam 22, 24, 26, 28, and the column 12 is formed along these webs. It is bent toward the center. Therefore, it is not necessary to form a through hole in the web.

これに対して、一本のフープ筋をこれらのウェブへ貫通させる場合、鉄骨梁22、24、26、28はそれぞれ角型鋼管30に対する取り付け高さが異なるため、貫通孔の位置(例えば下フランジから測定した位置)は鉄骨梁22、24、26、28毎に異なる。このため鉄骨梁22、24、26、28の加工に手間がかかる。 On the other hand, when one hoop bar is penetrated through these webs, the steel beam 22, 24, 26, and 28 have different attachment heights to the square steel pipe 30, so that the position of the through hole (for example, the lower flange) is different. The position measured from) is different for each of the steel beams 22, 24, 26, and 28. Therefore, it takes time and effort to process the steel beams 22, 24, 26, and 28.

[第2実施形態]
第1実施形態における角型鋼管30は、4枚の鋼板32、34、36、38を溶接して組立てられた組立て鋼材とされているが、第2実施形態における角型鋼管40は、図5(A)に示すように1枚の鋼板をロール成形により角型に加工した成形鋼材である。このため角型鋼管40の4つの角部40Eはそれぞれ曲線に沿う形状に形成される。また、角部40Eに挟まれた部分は、平坦に形成される(平面部40T)。
[Second Embodiment]
The square steel pipe 30 in the first embodiment is an assembled steel material assembled by welding four steel plates 32, 34, 36, 38, but the square steel pipe 40 in the second embodiment is shown in FIG. As shown in (A), it is a molded steel material obtained by processing one steel plate into a square shape by roll forming. Therefore, each of the four corner portions 40E of the square steel pipe 40 is formed in a shape along a curved line. Further, the portion sandwiched between the corner portions 40E is formed flat (flat surface portion 40T).

図5(B)に示すように、角型鋼管40の幅W5は、2つの角部40Eにおける曲率半径Rと、平面部40Tの幅W6との合計に等しい(W5=2R+W6)。また、鉄骨梁22、24、26、28の幅W2は平面部40Tの幅W6に等しい(W2=W6)。 As shown in FIG. 5B, the width W5 of the square steel pipe 40 is equal to the sum of the radius of curvature R at the two corner portions 40E and the width W6 of the flat surface portion 40T (W5 = 2R + W6). Further, the width W2 of the steel beam 22, 24, 26, 28 is equal to the width W6 of the flat surface portion 40T (W2 = W6).

すなわち、本発明における「梁幅が前記角型鋼管の幅とほぼ等しい」とは、第1実施形態のように鉄骨梁22、24、26、28の幅W2と角型鋼管30の幅W1とが等しい(一致する)場合(幅W2=幅W1)の他、第2実施形態のように角部40Eが曲面状に形成された角型鋼管40における平面部40Tの幅W6と、鉄骨梁22、24、26、28の幅W2とが等しい場合(幅W2=幅W6)を含む。 That is, "the beam width is substantially equal to the width of the square steel pipe" in the present invention means the width W2 of the steel frame beams 22, 24, 26, 28 and the width W1 of the square steel pipe 30 as in the first embodiment. In addition to the case where they are equal (match) (width W2 = width W1), the width W6 of the flat surface portion 40T in the square steel pipe 40 in which the square portion 40E is formed into a curved surface as in the second embodiment and the steel frame beam 22. , 24, 26, 28 include the case where the width W2 is equal to (width W2 = width W6).

さらに、鉄骨梁22、24、26、28の幅W2は、この幅W1、W6に施工誤差等を考慮して10mm以内の寸法を加えた(又は減じた)幅が含まれる(幅W1-10mm≦幅W2≦幅W1+10mm、又は、幅W6-10mm≦幅W2≦幅W6+10mm)。 Further, the width W2 of the steel beam 22, 24, 26, 28 includes a width (width W1-10 mm) obtained by adding (or reducing) a dimension within 10 mm to the widths W1 and W6 in consideration of construction errors and the like. ≤ width W2 ≤ width W1 + 10 mm, or width W6-10 mm ≤ width W2 ≤ width W6 + 10 mm).

このような実施形態においても、例えば鉄骨梁28に作用する軸力N3は、角部40Eに沿って、鉄骨梁28が接合された面と交わる面へ伝達されるため、角型鋼管40において鉄骨梁28が接合された面と交わる面は、軸力N3に抵抗することができる(抵抗力Re3)。 Even in such an embodiment, for example, the axial force N3 acting on the steel frame beam 28 is transmitted along the corner portion 40E to the surface where the steel frame beam 28 intersects the joined surface, so that the steel frame in the square steel pipe 40 The surface where the beam 28 intersects the bonded surface can resist the axial force N3 (resistance force Re3).

第2実施形態においてその他の構成は第1実施形態と同様であり説明を省略する。 In the second embodiment, the other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

なお、第1実施形態において、角型鋼管30は柱12の仕口部10のみに埋設されているが、本発明の実施形態はこれに限らない。例えば角型鋼管30を柱12と同様の長さで形成し、柱12の全体に埋設してもよい。この場合、柱12の強度を強くすることができる。第2実施形態における角型鋼管40についても同様である。 In the first embodiment, the square steel pipe 30 is embedded only in the joint portion 10 of the column 12, but the embodiment of the present invention is not limited to this. For example, the square steel pipe 30 may be formed to have the same length as the column 12 and may be embedded in the entire column 12. In this case, the strength of the pillar 12 can be increased. The same applies to the square steel pipe 40 in the second embodiment.

また、第1実施形態における鉄骨梁20は、鉄骨梁20が架け渡される2つの角型鋼管30の間で継ぎ目なく形成されているが、本発明の実施形態はこれに限らない。たとえば鉄骨梁20の端部と中央部とを分けて形成し、ボルト接合してもよい。このようにすれば、角型鋼管30と鉄骨梁20の端部を接合した状態で、柱12を形成するコンクリートを工場で打設し、柱12をプレキャストコンクリート部材として形成できる。これにより現場でのコンクリート打設作業を軽減できる。第2実施形態における鉄骨梁20についても同様である。 Further, the steel frame beam 20 in the first embodiment is seamlessly formed between two square steel pipes 30 over which the steel frame beam 20 is bridged, but the embodiment of the present invention is not limited to this. For example, the end portion and the central portion of the steel frame beam 20 may be formed separately and bolted. By doing so, the concrete forming the column 12 can be cast at the factory in a state where the end portions of the square steel pipe 30 and the steel frame beam 20 are joined, and the column 12 can be formed as a precast concrete member. This can reduce the concrete placing work at the site. The same applies to the steel beam 20 in the second embodiment.

また、第1実施形態において、X方向に沿う2つの梁(鉄骨梁22、26)と、Y方向に沿う2つの梁(鉄骨梁24、28)とは、何れも取付け高さが異なるが、本発明の実施形態はこれに限らず、X方向に沿う2つの梁、Y方向に沿う2つの梁の何れか1組の高さが異なればよい。 Further, in the first embodiment, the two beams (steel beams 22 and 26) along the X direction and the two beams (steel beams 24 and 28) along the Y direction are both different in mounting height. The embodiment of the present invention is not limited to this, and any one set of two beams along the X direction and two beams along the Y direction may have different heights.

例えば図2に示すようにY方向における鉄骨梁24、28の取付け高さが異なっていれば、図1に示す鉄骨梁22の取付け高さを、図1に2点鎖線で示す鉄骨梁22Aのように鉄骨梁26と等しくしてもよい。すなわち、本実施形態においては、角型鋼管30に接合される鉄骨梁22、24、26、28のうち、少なくとも1つの鉄骨梁の取付け高さが他と異なるものであればよい。 For example, if the mounting heights of the steel beam 24 and 28 in the Y direction are different as shown in FIG. 2, the mounting height of the steel beam 22 shown in FIG. 1 is shown by the two-dot chain line in FIG. It may be equal to the steel beam 26 as described above. That is, in the present embodiment, the mounting height of at least one of the steel beam 22, 24, 26, 28 joined to the square steel pipe 30 may be different from the others.

さらに、鉄骨梁22、24、26、28の梁せいは、いずれも角型鋼管30の長さより小さく形成されているが、本発明の実施形態はこれに限らない。例えば、梁せいが角型鋼管30の長さと等しい鉄骨梁を用いた場合でも、その他の鉄骨梁のうち少なくとも1本の梁せいが角型鋼管30の長さより小さければよい。 Further, the beams of the steel frames 22, 24, 26, and 28 are all formed to be smaller than the length of the square steel pipe 30, but the embodiment of the present invention is not limited to this. For example, even when a steel beam having a beam length equal to the length of the square steel pipe 30 is used, it is sufficient that at least one of the other steel frames has a beam length smaller than the length of the square steel pipe 30.

このように、第1実施形態における仕口部構造によれば、取り付け高さが異なる鉄骨梁の数にかかわらず、角型鋼管30は鉄骨梁の軸力を負担できる。第2実施形態の角型鋼管40においても同様である。 As described above, according to the joint structure in the first embodiment, the square steel pipe 30 can bear the axial force of the steel beam regardless of the number of steel beams having different mounting heights. The same applies to the square steel pipe 40 of the second embodiment.

また、第1実施形態においては、図3に示すように、フープ筋14が鉄骨梁22、24、26、28のウェブを貫通していないが、本発明の実施形態はこれに限らない。例えば鉄骨梁22、24、26、28のウェブに貫通孔を形成し、平面視で一本に繋がったフープ筋をこれらの貫通孔に通して柱主筋16の周りに配置してもよい。これにより柱主筋16の拘束効果を高め、柱12のひび割れや変形を抑制できる。 Further, in the first embodiment, as shown in FIG. 3, the hoop muscle 14 does not penetrate the web of the steel frame beams 22, 24, 26, 28, but the embodiment of the present invention is not limited to this. For example, through holes may be formed in the webs of the steel beams 22, 24, 26, and 28, and hoop bars connected to each other in a plan view may be passed through these through holes and arranged around the column main bar 16. As a result, the restraining effect of the column main bar 16 can be enhanced, and cracks and deformation of the column 12 can be suppressed.

なお、これらのフープ筋14または平面視で一本に繋がったフープ筋は、角型鋼管30の端部付近において、他の部分より細かいピッチで配置することができる。このようにすれば、鉄骨梁22、24、26、28から角型鋼管30へ曲げモーメントが作用した際の、柱12のひび割れや変形を抑制できる。第2実施形態のフープ筋14においても同様である。 It should be noted that these hoop bars 14 or the hoop bars connected to one in a plan view can be arranged in the vicinity of the end portion of the square steel pipe 30 at a finer pitch than the other portions. By doing so, it is possible to suppress cracking and deformation of the column 12 when a bending moment acts from the steel beam 22, 24, 26, 28 to the square steel pipe 30. The same applies to the hoop muscle 14 of the second embodiment.

12 柱(鉄筋コンクリート柱)
20(22、24、26、28) 鉄骨梁
30、40 角型鋼管
32、34、36、38 鋼板
12 columns (reinforced concrete columns)
20 (22, 24, 26, 28) Steel beam 30, 40 Square steel pipe 32, 34, 36, 38 Steel plate

Claims (5)

鉄筋コンクリート柱に埋設され、1枚の鋼板をロール成形により角型に加工して、又は、4枚の鋼板の端部を溶接して組立てて形成された角型鋼管と、
前記角型鋼管の上下方向の寸法より梁せいが小さく形成されると共に、前記角型鋼管の一側面にそれぞれ接合され、少なくとも1つが他より取付け高さが異なる複数の鉄骨梁と、を備えた仕口部構造であって
前記複数の鉄骨梁は、それぞれ、前記角型鋼管の幅より10mm小さい幅以上、かつ、前記角型鋼管の幅より10mm大きい幅以内の梁幅とされている、仕口部構造。
A square steel pipe embedded in a reinforced concrete column and formed by rolling one steel plate into a square shape or welding the ends of four steel plates to form a square steel pipe.
A beam beam is formed smaller than the vertical dimension of the square steel pipe, and at least one is provided with a plurality of steel beams joined to one side surface of the square steel pipe and having a different mounting height than the other. It is a joint structure ,
Each of the plurality of steel frame beams has a beam width that is 10 mm smaller than the width of the square steel pipe and within 10 mm larger than the width of the square steel pipe.
前記鉄骨梁は、梁幅が前記角型鋼管の幅と等しい、請求項1に記載の仕口部構造。 The joint structure according to claim 1, wherein the steel beam has a beam width equal to the width of the square steel pipe. 前記角型鋼管は、4枚の鋼板を溶接して組立てられている、請求項1又は2に記載の仕口部構造。 The joint structure according to claim 1 or 2 , wherein the square steel pipe is assembled by welding four steel plates. 前記鉄筋コンクリート柱における前記角型鋼管の埋設部分では、フープ筋が前記鉄骨梁のウェブを貫通せず、前記ウェブに沿って前記鉄筋コンクリート柱の中心側へ折り曲げられている、請求項1~の何れか1項に記載の仕口部構造。 3 . The joint structure according to item 1. 前記角型鋼管は内ダイヤフラムを備えていない、請求項1~4の何れか1項に記載の仕口部構造。
The joint structure according to any one of claims 1 to 4, wherein the square steel pipe does not have an inner diaphragm.
JP2017124475A 2017-06-26 2017-06-26 Joint structure Active JP7044343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124475A JP7044343B2 (en) 2017-06-26 2017-06-26 Joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124475A JP7044343B2 (en) 2017-06-26 2017-06-26 Joint structure

Publications (2)

Publication Number Publication Date
JP2019007245A JP2019007245A (en) 2019-01-17
JP7044343B2 true JP7044343B2 (en) 2022-03-30

Family

ID=65028525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124475A Active JP7044343B2 (en) 2017-06-26 2017-06-26 Joint structure

Country Status (1)

Country Link
JP (1) JP7044343B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257159A (en) 1999-03-11 2000-09-19 Shimizu Corp Column-beam connecting structure
JP2003278273A (en) 2002-03-27 2003-10-02 Shimizu Corp Connection-section structure of steel structure
US20090038263A1 (en) 2005-09-29 2009-02-12 Bernard Douet Composite pillar for junction connections on constructions and building frames

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527925Y2 (en) * 1974-01-31 1977-02-19
JPS6134404Y2 (en) * 1980-04-08 1986-10-07
JPS59157001U (en) * 1983-04-07 1984-10-22 住友金属工業株式会社 Connection fittings for square steel pipes for columns and beam steel frames
JPH067122Y2 (en) * 1984-06-19 1994-02-23 鹿島建設株式会社 Reinforcement structure of beam-column joint
JP2706827B2 (en) * 1989-10-20 1998-01-28 株式会社竹中工務店 Hoop reinforcement arrangement method of beam joint of reinforced concrete column including at least column main reinforcement, hoop reinforcement, etc.
JP2972962B2 (en) * 1990-10-31 1999-11-08 清水建設株式会社 Connection structure
JP2897511B2 (en) * 1992-02-13 1999-05-31 株式会社大林組 Column / beam joint structure with mixed structure
JP2784332B2 (en) * 1995-04-28 1998-08-06 ナショナル住宅産業株式会社 Beam support column

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257159A (en) 1999-03-11 2000-09-19 Shimizu Corp Column-beam connecting structure
JP2003278273A (en) 2002-03-27 2003-10-02 Shimizu Corp Connection-section structure of steel structure
US20090038263A1 (en) 2005-09-29 2009-02-12 Bernard Douet Composite pillar for junction connections on constructions and building frames

Also Published As

Publication number Publication date
JP2019007245A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP4649360B2 (en) Seismic joint structure and construction method thereof
TWI433981B (en) Composite steel sheet pile and steel plate pile wall using the combined steel sheet pile
TWI495776B (en) Joint Structure of Steel Reinforced Concrete Column and Steel Bone Beam
JP2018009410A (en) Pillar beam joint structure
JP6535704B2 (en) Column-beam frame
JP2006144535A (en) Joint structure of column and beam
JP3830767B2 (en) Continuous girder for bridge
JP7044343B2 (en) Joint structure
KR101879034B1 (en) Bracket and joint structure of column and beam using same
JP7070890B2 (en) Joint structure
JP6954222B2 (en) Construction method of beam end joint structure and beam end joint structure
JP5532852B2 (en) Steel pipe concrete pillar
JP6508866B2 (en) Column-beam frame
KR101554206B1 (en) Structure for connecting steel plate concrete walls of different thickness
JP6818456B2 (en) Pillar connection structure
JP6390360B2 (en) Structure and method for joining reinforced concrete beam and steel pipe column
KR101154121B1 (en) Steel built up beam and steel concrete composite beam using the same
JP6174984B2 (en) Steel beam
JP5134228B2 (en) Joint between steel pipe column and flat slab
JP7377186B2 (en) Joint structure of steel braces with H-shaped cross section, mixed frame of reinforced concrete columns and steel beams
JP7291001B2 (en) Brace structure
JP7095836B2 (en) Building structure
JP7453937B2 (en) steel beam
JP7127244B2 (en) Seismic reinforcement structure
JP5843419B2 (en) Outer frame with eccentric column beam joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220310

R150 Certificate of patent or registration of utility model

Ref document number: 7044343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150