JP7042191B2 - Thin film manufacturing method, photomultiplier tube manufacturing method - Google Patents

Thin film manufacturing method, photomultiplier tube manufacturing method Download PDF

Info

Publication number
JP7042191B2
JP7042191B2 JP2018151582A JP2018151582A JP7042191B2 JP 7042191 B2 JP7042191 B2 JP 7042191B2 JP 2018151582 A JP2018151582 A JP 2018151582A JP 2018151582 A JP2018151582 A JP 2018151582A JP 7042191 B2 JP7042191 B2 JP 7042191B2
Authority
JP
Japan
Prior art keywords
thin film
base material
curved surface
carbon nanotubes
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151582A
Other languages
Japanese (ja)
Other versions
JP2020027728A (en
Inventor
健太朗 三好
弘 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2018151582A priority Critical patent/JP7042191B2/en
Publication of JP2020027728A publication Critical patent/JP2020027728A/en
Application granted granted Critical
Publication of JP7042191B2 publication Critical patent/JP7042191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、薄膜の製造方法、光電子増倍管の製造方法に関する。 The present invention relates to a method for producing a thin film and a method for producing a photomultiplier tube.

カーボンナノチューブを含む薄膜は、産業上の種々の用途に利用可能である。カーボンナノチューブを含む薄膜の用途の一例として、光電子増倍管がある。光電子増倍管には光感度に優れることが求められる(特許文献1)。 Thin films containing carbon nanotubes can be used for various industrial applications. An example of an application for a thin film containing carbon nanotubes is a photomultiplier tube. The photomultiplier tube is required to have excellent photosensitivity (Patent Document 1).

特許文献1にはカーボンナノチューブを含有する中間層を備える光電子放射用陰極が記載されている。特許文献1に記載の光電子放射用陰極は、分光感度特性等の改善を目的としている。ところが、特許文献1では中間層の光の透過性について何ら検討がなされていない。そのため、特許文献1に記載の光電子放射用陰極にあっては、光感度に改善の余地がある。 Patent Document 1 describes a cathode for photoelectron emission including an intermediate layer containing carbon nanotubes. The cathode for photoelectron emission described in Patent Document 1 is intended to improve the spectral sensitivity characteristics and the like. However, in Patent Document 1, no study has been made on the light transmission of the intermediate layer. Therefore, there is room for improvement in the photosensitivity of the photoelectron emitting cathode described in Patent Document 1.

光透過率の向上を目的として、カーボンナノチューブ層を有する透明導電膜が提案されている(特許文献2)。特許文献2ではカーボンナノチューブ層が、カーボンナノチューブを分散させた溶液を塗布することよって形成されている。
ところが、特許文献2では基板等の平面にカーボンナノチューブ層を設けており、円筒管等の曲面を有する基材にカーボンナノチューブを含む薄膜を設けることについて何ら検討がなされていない。そして、特許文献2では基板の表面領域の一部を任意に選択し、選択した一部の表面領域に対して均一にカーボンナノチューブ層を設けることについて何ら検討されていない。
A transparent conductive film having a carbon nanotube layer has been proposed for the purpose of improving the light transmittance (Patent Document 2). In Patent Document 2, the carbon nanotube layer is formed by applying a solution in which carbon nanotubes are dispersed.
However, in Patent Document 2, a carbon nanotube layer is provided on a flat surface of a substrate or the like, and no study has been made on providing a thin film containing carbon nanotubes on a substrate having a curved surface such as a cylindrical tube. Further, Patent Document 2 does not study at all about arbitrarily selecting a part of the surface region of the substrate and uniformly providing the carbon nanotube layer on the selected part of the surface region.

透光性の曲面を有する容器の内側に薄膜を設ける方法として、金属を蒸着して金属膜を形成する方法が知られている(特許文献3)。特許文献3には、容器の内側にスリットを有するマスクを設けて金属を蒸着することが記載されている。
しかし、光電子増倍管のように曲面を有する基材の内壁の一部分にカーボンナノチューブを均一に塗布することは、基材の形状の制約及びマスキング技術の制約があるため困難である。不均一に塗布されたカーボンナノチューブを含む薄膜にあっては、導電性が低下するおそれがある。
As a method of providing a thin film inside a container having a translucent curved surface, a method of depositing a metal to form a metal film is known (Patent Document 3). Patent Document 3 describes that a mask having a slit is provided inside the container to deposit metal.
However, it is difficult to uniformly apply carbon nanotubes to a part of the inner wall of a base material having a curved surface such as a photomultiplier tube because of restrictions on the shape of the base material and restrictions on masking technology. A thin film containing non-uniformly coated carbon nanotubes may have reduced conductivity.

特開2001-202873号公報Japanese Unexamined Patent Publication No. 2001-202873 特開2009-211978号公報Japanese Unexamined Patent Publication No. 2009-211978 特開2005-203280号公報Japanese Unexamined Patent Publication No. 2005-203280

本発明は、カーボンナノチューブを含む薄膜を曲面の任意の一部分に均一に成膜でき、透光性及び導電性に優れる薄膜が得られる薄膜の製造方法を提供することを課題とする。 An object of the present invention is to provide a method for producing a thin film capable of uniformly forming a thin film containing carbon nanotubes on an arbitrary part of a curved surface and obtaining a thin film having excellent translucency and conductivity.

すなわち、本発明は以下の構成を備える。
[1] カーボンナノチューブを含む薄膜を製造する方法であって、薄膜が設けられる曲面を含む内壁を有し、透明である筒状の基材に、前記曲面以外の前記内壁と密着するとともに前記曲面以外の前記内壁を覆う被覆部材を装着し、前記曲面の表面にカーボンナノチューブを含む分散液を添加し、筒状の前記基材の中心軸と直交する方向を回転の軸方向として前記基材を回転させて、前記曲面の表面を前記分散液で被覆し、前記分散液を乾燥させ、前記被覆部材を前記基材から分離する、薄膜の製造方法。
[2] 前記分散液のカーボンナノチューブの含有量が、前記分散液100質量%に対し0.008~0.04質量%であり、カーボンナノチューブの繊維長が、5~250μmである、[1]の薄膜の製造方法。
[3] 前記基材を回転させる際の回転数が、2000~4000rpmである、[1]又は[2]の薄膜の製造方法。
[4] 前記被覆部材がシート状である、[1]~[3]のいずれかの薄膜の製造方法。
[5] 前記被覆部材が、前記内壁に対して2.4N/cm以上の吸着能を有する磁石である、[1]~[4]のいずれかの薄膜の製造方法。
[6] 筒状の前記基材の内部空間に対して前記曲面が露出している開口部が、前記内壁と前記曲面との境界に沿って前記被覆部材に形成されている、[1]~[5]のいずれかの薄膜の製造方法。
[7] カーボンナノチューブを含む薄膜が設けられた曲面を有する光電子増倍管の製造方法であって、前記基材の表面に薄膜を設ける際に、[1]~[6]のいずれかの薄膜の製造方法で前記基材の曲面に薄膜を製造する、光電子増倍管の製造方法。
That is, the present invention has the following configurations.
[1] A method for producing a thin film containing carbon nanotubes, which has an inner wall including a curved surface on which the thin film is provided, and is in close contact with the inner wall other than the curved surface and the curved surface on a transparent tubular base material. A covering member covering the inner wall other than the above is attached, a dispersion liquid containing carbon nanotubes is added to the surface of the curved surface, and the base material is provided with the direction orthogonal to the central axis of the cylindrical base material as the axial direction of rotation. A method for producing a thin film, which comprises rotating the surface of the curved surface with the dispersion liquid, drying the dispersion liquid, and separating the covering member from the base material.
[2] The content of carbon nanotubes in the dispersion liquid is 0.008 to 0.04% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is 5 to 250 μm. [1] Method for manufacturing thin films.
[3] The method for producing a thin film according to [1] or [2], wherein the rotation speed when rotating the base material is 2000 to 4000 rpm.
[4] The method for producing a thin film according to any one of [1] to [3], wherein the covering member is in the form of a sheet.
[5] The method for producing a thin film according to any one of [1] to [4], wherein the covering member is a magnet having an adsorption ability of 2.4 N / cm 2 or more with respect to the inner wall.
[6] An opening in which the curved surface is exposed with respect to the internal space of the tubular base material is formed in the covering member along the boundary between the inner wall and the curved surface, [1] to The method for producing any of the thin films of [5].
[7] A method for manufacturing a photomultiplier tube having a curved surface provided with a thin film containing carbon nanotubes, which is any one of [1] to [6] when the thin film is provided on the surface of the substrate. A method for manufacturing a photomultiplier tube, which manufactures a thin film on the curved surface of the base material by the manufacturing method of.

本発明によれば、カーボンナノチューブを含む薄膜を曲面の任意の一部分に均一に成膜でき、透光性及び導電性に優れる薄膜が得られる。 According to the present invention, a thin film containing carbon nanotubes can be uniformly formed on an arbitrary part of a curved surface, and a thin film having excellent translucency and conductivity can be obtained.

本発明を適用した一実施形態に係る薄膜の製造方法で使用する回転装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the rotating apparatus used in the manufacturing method of the thin film which concerns on one Embodiment to which this invention is applied. 図1の回転装置が有する回転台の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the rotary table which the rotary apparatus of FIG. 1 has. 本発明を適用した一実施形態に係る薄膜の製造方法で使用する基材の構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of the base material used in the manufacturing method of the thin film which concerns on one Embodiment to which this invention was applied. 本発明を適用した一実施形態に係る薄膜の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the thin film which concerns on one Embodiment to which this invention is applied. 本発明を適用した一実施形態に係る薄膜の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the thin film which concerns on one Embodiment to which this invention is applied. 本発明を適用した一実施形態に係る薄膜の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the thin film which concerns on one Embodiment to which this invention is applied. 本発明を適用した一実施形態に係る薄膜の製造方法を説明するための模式図である。It is a schematic diagram for demonstrating the manufacturing method of the thin film which concerns on one Embodiment to which this invention is applied.

以下、本発明を適用した一実施形態の薄膜の製造方法及び光電子増倍管の製造方法について、図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
本明細書において数値範囲を示す「~」は、その前後に記載された数値が下限値及び上限値として含まれることを意味する。
Hereinafter, a method for producing a thin film and a method for producing a photomultiplier tube according to an embodiment to which the present invention is applied will be described in detail with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. do not have.
In the present specification, "-" indicating a numerical range means that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.

<薄膜の製造方法>
本実施形態の薄膜の製造方法は、カーボンナノチューブを含む薄膜を製造する方法である。
図1は、本実施形態の薄膜の製造方法で使用する回転装置の構成の一例を示す模式図である。本実施形態の薄膜の製造方法では、回転台2を有する回転装置1を用いる。
<Thin film manufacturing method>
The method for producing a thin film of the present embodiment is a method for producing a thin film containing carbon nanotubes.
FIG. 1 is a schematic view showing an example of the configuration of a rotating device used in the method for manufacturing a thin film of the present embodiment. In the method for producing a thin film of the present embodiment, a rotary device 1 having a rotary table 2 is used.

図1に示すように、回転装置1は回転部3の中央に回転台2を有する。回転部3は回転装置1の上面1aを鉛直下方に掘り込むように形成されている凹部である。回転部3は底面4と外壁5とを有する。底面4は、回転装置1の上面1aより下方に位置する平面である。外壁5は、円周状の壁面であり、底面4に対して直交するように形成されている。そして、外壁5は回転部3の周囲の外周壁であり、回転部3の周囲を区画する壁面である。
回転台2は、回転部3の中央に固定された回転軸6の第1の端部に固定されている。回転軸6の第2の端部は図示略の回転機と接続されている。そして回転軸6は底面4と直交する向きに維持され、図示略の回転機により鉛直方向を回転の軸方向として回転可能である。
As shown in FIG. 1, the rotating device 1 has a rotary table 2 in the center of the rotating portion 3. The rotating portion 3 is a recess formed so as to dig vertically downward the upper surface 1a of the rotating device 1. The rotating portion 3 has a bottom surface 4 and an outer wall 5. The bottom surface 4 is a flat surface located below the upper surface 1a of the rotating device 1. The outer wall 5 is a circumferential wall surface, and is formed so as to be orthogonal to the bottom surface 4. The outer wall 5 is an outer peripheral wall around the rotating portion 3, and is a wall surface that partitions the periphery of the rotating portion 3.
The rotary table 2 is fixed to the first end portion of the rotary shaft 6 fixed to the center of the rotary portion 3. The second end of the rotating shaft 6 is connected to a rotating machine (not shown). The rotation axis 6 is maintained in a direction orthogonal to the bottom surface 4, and can be rotated with the vertical direction as the axis direction of rotation by a rotary machine (not shown).

図2は、回転装置1が有する回転台2の構成の一例を示す模式図である。図2に示すように、回転台2は設置面2aを有する。設置面2aの形状は、後述の基材を設置し、基材を固定できる形態であれば特に限定されない。本実施形態では設置面2aは、円筒の内壁面であるともいえる。円筒の内壁面は、例えば、円筒を円筒の軸方向と平行な平面によって切断することで形成できる。
設置面2aには後述の基材を固定するための複数の吸引口2bが形成されている。設置面2aに基材が静置された状態で、例えば真空に近い圧力まで吸引口2bを介して基材を吸引することで、回転台2に基材を固定できる。
回転台2の材料は、磁石と高い親和性を示す鉄等の金属材料が好ましい。
FIG. 2 is a schematic diagram showing an example of the configuration of the rotary table 2 included in the rotary device 1. As shown in FIG. 2, the rotary table 2 has an installation surface 2a. The shape of the installation surface 2a is not particularly limited as long as the base material described later can be placed and the base material can be fixed. In this embodiment, the installation surface 2a can be said to be the inner wall surface of the cylinder. The inner wall surface of the cylinder can be formed, for example, by cutting the cylinder with a plane parallel to the axial direction of the cylinder.
A plurality of suction ports 2b for fixing the base material described later are formed on the installation surface 2a. The base material can be fixed to the rotary table 2 by sucking the base material through the suction port 2b to a pressure close to vacuum, for example, with the base material standing still on the installation surface 2a.
The material of the rotary table 2 is preferably a metal material such as iron, which has a high affinity with magnets.

図3は、本実施形態の薄膜の製造方法で使用する基材7の構成の一例を示す模式図である。図3に示すように、基材7は、曲面Sを含む内壁7aと端面7bと開口面7cとを有する。そして、基材7は透明であり、筒状である。内壁7aは筒状の基材7の内壁面であり、基材7の内側に形成された曲面である。曲面Sは、内壁7aの一部である。曲面Sにはカーボンナノチューブを含む薄膜が設けられる。
端面7bは筒状の基材7の第1の端部に配置されている閉塞面である。そして、開口面7cは筒状の基材7の第2の端部に配置されている開口面である。
本実施形態では、基材7の材料はガラスである。つまり本実施形態では、基材7はガラス製の円筒管であるともいえる。ただし、基材7の形状及び材料は、発明の効果が損なわれない範囲であれば特に限定されない。
FIG. 3 is a schematic diagram showing an example of the configuration of the base material 7 used in the method for producing a thin film of the present embodiment. As shown in FIG. 3, the base material 7 has an inner wall 7a including a curved surface S, an end surface 7b, and an opening surface 7c. The base material 7 is transparent and has a cylindrical shape. The inner wall 7a is an inner wall surface of the tubular base material 7, and is a curved surface formed inside the base material 7. The curved surface S is a part of the inner wall 7a. A thin film containing carbon nanotubes is provided on the curved surface S.
The end surface 7b is a closed surface arranged at the first end portion of the tubular base material 7. The opening surface 7c is an opening surface arranged at the second end of the tubular base material 7.
In this embodiment, the material of the base material 7 is glass. That is, in the present embodiment, it can be said that the base material 7 is a cylindrical tube made of glass. However, the shape and material of the base material 7 are not particularly limited as long as the effects of the invention are not impaired.

図4~図7は、本実施形態の薄膜の製造方法を説明するための模式図である。
図4に示すように、まず、本実施形態の薄膜の製造方法では、基材7に被覆部材8を装着する。被覆部材8は、曲面S以外の基材7の内壁と密着するとともに曲面S以外の基材7の内壁を覆う部材である。
本実施形態では、被覆部材8はシート状である。シート状の被覆部材8は基材7の内壁の形状に合わせて密着させやすい。
4 to 7 are schematic views for explaining the method for manufacturing the thin film of the present embodiment.
As shown in FIG. 4, first, in the thin film manufacturing method of the present embodiment, the covering member 8 is attached to the base material 7. The covering member 8 is a member that adheres to the inner wall of the base material 7 other than the curved surface S and covers the inner wall of the base material 7 other than the curved surface S.
In the present embodiment, the covering member 8 is in the form of a sheet. The sheet-shaped covering member 8 can be easily brought into close contact with the shape of the inner wall of the base material 7.

本実施形態では、被覆部材8は内壁7aに対して2.4N/cm以上の吸着能を有する磁石である。被覆部材8の吸着能は、基材7の形状及び材料に合わせて適宜変更可能である。被覆部材8が2.4N/cm以上の吸着能を有する磁石であると、基材7と被覆部材8との間に後述の分散液が漏れにくくなる。吸着能の上限値は特に限定されない。例えば、4.6N/cm以下とすることができる。 In the present embodiment, the covering member 8 is a magnet having an adsorption capacity of 2.4 N / cm 2 or more with respect to the inner wall 7a. The adsorptive capacity of the covering member 8 can be appropriately changed according to the shape and material of the base material 7. When the covering member 8 is a magnet having an adsorption capacity of 2.4 N / cm 2 or more, the dispersion liquid described later is less likely to leak between the base material 7 and the covering member 8. The upper limit of the adsorption capacity is not particularly limited. For example, it can be 4.6 N / cm 2 or less.

図4に示すように本実施形態では、被覆部材8に開口部8aが形成されている。開口部8aは、被覆部材8が基材7に装着された状態で、筒状の基材7の内部空間に対して曲面Sが露出している部分である。そして、被覆部材8が基材7に装着された状態において、開口部8aの外縁は基材7の内壁と曲面Sとの境界に沿っている。 As shown in FIG. 4, in the present embodiment, the covering member 8 is formed with an opening 8a. The opening 8a is a portion where the curved surface S is exposed with respect to the internal space of the tubular base material 7 in a state where the covering member 8 is attached to the base material 7. Then, in a state where the covering member 8 is attached to the base material 7, the outer edge of the opening 8a is along the boundary between the inner wall of the base material 7 and the curved surface S.

被覆部材8が基材7に装着されていない状態においては、開口部8aの形状及び開口部8aの形成位置は特に限定されない。開口部8aは、曲面Sの形状及び曲面Sの位置を決定するための主要な構成である。そのため、被覆部材8における開口部8aの形状及び開口部8aの形成位置を任意に変更することで、基材7の内壁7a上の領域の一部を任意に選択し、選択した一部の領域に薄膜を設けることができる。 When the covering member 8 is not attached to the base material 7, the shape of the opening 8a and the formation position of the opening 8a are not particularly limited. The opening 8a is a main configuration for determining the shape of the curved surface S and the position of the curved surface S. Therefore, by arbitrarily changing the shape of the opening 8a and the formation position of the opening 8a in the covering member 8, a part of the region on the inner wall 7a of the base material 7 is arbitrarily selected, and a part of the selected region is selected. A thin film can be provided on the surface.

図5に示すように本実施形態では、開口部8aが曲面Sを介して回転台2(設置面2a)と接するように、基材7を回転台2(設置面2a)に固定する。ここで、筒状の基材7の中心軸の方向と回転軸6の方向とが直交するように、基材7を設置面2aに固定する。固定の際には、吸引口2bを介して基材7を吸引してもよい。
そして本実施形態では、図5に示すように、基材7の端面7bを保護する吸収材9を基材7の端面7b側に配置してもよい。これにより基材7を回転させた際に、基材の端面7bの表面に後述の分散液が滞留することを防止できる。
吸収材9としては、コットン等が例示される。ただし、吸収材9は後述の分散液を吸収できる形態であれば特に限定されない。
As shown in FIG. 5, in the present embodiment, the base material 7 is fixed to the rotary table 2 (installation surface 2a) so that the opening 8a is in contact with the rotary table 2 (installation surface 2a) via the curved surface S. Here, the base material 7 is fixed to the installation surface 2a so that the direction of the central axis of the tubular base material 7 and the direction of the rotation axis 6 are orthogonal to each other. At the time of fixing, the base material 7 may be sucked through the suction port 2b.
Then, in the present embodiment, as shown in FIG. 5, the absorbent material 9 that protects the end surface 7b of the base material 7 may be arranged on the end surface 7b side of the base material 7. This makes it possible to prevent the dispersion liquid described later from staying on the surface of the end face 7b of the base material when the base material 7 is rotated.
Examples of the absorbent material 9 include cotton and the like. However, the absorbent material 9 is not particularly limited as long as it can absorb the dispersion liquid described later.

次いで、本実施形態の薄膜の製造方法では、曲面Sの表面にカーボンナノチューブを含む分散液を添加する。分散液を添加する際には、添加される分散液が曲面Sを介して回転台2と接するように添加する。 Next, in the method for producing a thin film of the present embodiment, a dispersion liquid containing carbon nanotubes is added to the surface of the curved surface S. When the dispersion liquid is added, the dispersion liquid to be added is added so as to be in contact with the rotary table 2 via the curved surface S.

分散液に含まれるカーボンナノチューブの繊維長は5~250μmが好ましく、10~100μmがより好ましく、30~50μmがさらに好ましい。カーボンナノチューブの繊維長が5μm以上であると、カーボンナノチューブ同士の接点が生じやすく、導電性にさらに優れる薄膜が得られる傾向がある。カーボンナノチューブの繊維長が250μm以下であると、分散媒に対するカーボンナノチューブの分散性が優れ、相対的に少量のカーボンナノチューブによってカーボンナノチューブ同士の接点が生じる。そのため、薄膜の導電性がさらに保持されやすくなるとともに、薄膜が透光性にさらに優れる傾向がある。 The fiber length of the carbon nanotubes contained in the dispersion is preferably 5 to 250 μm, more preferably 10 to 100 μm, and even more preferably 30 to 50 μm. When the fiber length of the carbon nanotubes is 5 μm or more, contact points between the carbon nanotubes are likely to occur, and a thin film having further excellent conductivity tends to be obtained. When the fiber length of the carbon nanotubes is 250 μm or less, the dispersibility of the carbon nanotubes with respect to the dispersion medium is excellent, and contact points between the carbon nanotubes are generated by a relatively small amount of carbon nanotubes. Therefore, the conductivity of the thin film is more easily maintained, and the thin film tends to be more excellent in translucency.

分散液に含まれるカーボンナノチューブの直径は30nmが好ましい。カーボンナノチューブの直径が30nm以下であると、薄膜が透光性及び導電性にさらに優れる。
カーボンナノチューブの直径の下限値は特に限定されない。カーボンナノチューブの直径の下限値は、例えば、0.4nmとすることができる。
The diameter of the carbon nanotubes contained in the dispersion is preferably 30 nm. When the diameter of the carbon nanotube is 30 nm or less, the thin film is more excellent in translucency and conductivity.
The lower limit of the diameter of the carbon nanotube is not particularly limited. The lower limit of the diameter of the carbon nanotube can be, for example, 0.4 nm.

分散液のカーボンナノチューブの含有量は、分散液100質量%に対し0.008~0.04質量%が好ましく、0.01~0.03質量%がより好ましい。分散液のカーボンナノチューブの含有量が、0.008~0.04質量%であると、透光性及び導電性にさらに優れる薄膜が得られる傾向がある。 The content of carbon nanotubes in the dispersion is preferably 0.008 to 0.04% by mass, more preferably 0.01 to 0.03% by mass, based on 100% by mass of the dispersion. When the content of carbon nanotubes in the dispersion is 0.008 to 0.04% by mass, a thin film having further excellent translucency and conductivity tends to be obtained.

分散液における分散媒は特に限定されない。分散媒の具体例としては、メチルエチルケトン、アセトン、ジエチルケトン、メチルプロピルケトン、シクロヘキサノン等のケトン系溶媒;メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒;DMF(N,N-ジメチルホルムアミド)、エチレングリコール、水等の極性溶媒が例示される。ただし、分散媒はこれらの例示に限定されない。
分散液は分散剤を含んでもよい。分散剤の具体例としては、アクリル系分散剤等が例示される。ただし、分散剤はこれに限定されない。
The dispersion medium in the dispersion is not particularly limited. Specific examples of the dispersion medium include ketone solvents such as methyl ethyl ketone, acetone, diethyl ketone, methyl propyl ketone and cyclohexanone; alcohol solvents such as methanol, ethanol and isopropyl alcohol; DMF (N, N-dimethylformamide) and ethylene glycol. , Water and other polar solvents are exemplified. However, the dispersion medium is not limited to these examples.
The dispersion may contain a dispersant. Specific examples of the dispersant include an acrylic dispersant and the like. However, the dispersant is not limited to this.

本実施形態の薄膜の製造方法の好ましい態様においては、分散液のカーボンナノチューブの含有量が、分散液100質量%に対し0.008~0.04質量%であり、カーボンナノチューブの繊維長が、5~250μmである。
本実施形態の薄膜の製造方法のより好ましい態様においては、分散液のカーボンナノチューブの含有量が、分散液100質量%に対し0.01~0.03質量%であり、カーボンナノチューブの繊維長が、10~100μmである。
本実施形態の薄膜の製造方法のさらに好ましい態様においては、分散液のカーボンナノチューブの含有量が、分散液100質量%に対し0.01~0.03質量%であり、カーボンナノチューブの繊維長が、30~50μmである。
上述の各態様においては、透光性及び導電性の両方にさらに優れる薄膜が得られる傾向がある。
In a preferred embodiment of the method for producing a thin film of the present embodiment, the content of carbon nanotubes in the dispersion liquid is 0.008 to 0.04% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is increased. It is 5 to 250 μm.
In a more preferable embodiment of the method for producing a thin film of the present embodiment, the content of carbon nanotubes in the dispersion liquid is 0.01 to 0.03% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is high. It is 10 to 100 μm.
In a more preferable embodiment of the method for producing a thin film of the present embodiment, the content of carbon nanotubes in the dispersion liquid is 0.01 to 0.03% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is high. , 30-50 μm.
In each of the above aspects, there is a tendency to obtain a thin film that is even more excellent in both translucency and conductivity.

次いで、本実施形態の薄膜の製造方法では、筒状の基材7の中心軸と直交する方向を回転の軸方向として回転台2を回転させる。筒状の基材7は、基材7の中心軸の方向と回転軸6の方向とが直交するように、回転台2に固定されている。そのため、回転台2を回転させることで、基材7の中心軸と直交する方向を回転の軸方向として基材7を回転させることができる。 Next, in the method for manufacturing a thin film of the present embodiment, the rotary table 2 is rotated with the direction orthogonal to the central axis of the tubular base material 7 as the axis of rotation. The tubular base material 7 is fixed to the rotary table 2 so that the direction of the central axis of the base material 7 and the direction of the rotation axis 6 are orthogonal to each other. Therefore, by rotating the rotary table 2, the base material 7 can be rotated with the direction orthogonal to the central axis of the base material 7 as the axis of rotation.

本実施形態では、基材7を回転させる際の回転数は、2000~4000rpmが好ましく、2500~3500rpmがより好ましい。基材7を回転させる際の回転数が2000rpm以上であると、基材7の曲面Sの表面に分散液が均一に広がり、均一な薄膜が得られ、透光性にさらに優れる薄膜が得られる傾向がある。基材7を回転させる際の回転数が4000rpm以下であると、回転による基材7からの被覆部材8の脱離を防止でき、導電性にさらに優れる薄膜が得られる傾向がある。
基材7を回転させる際の回転時間は、5~60秒が好ましく、10~45秒がより好ましく、20~30秒がさらに好ましい。回転時間が5秒以上であると、基材7の曲面Sの表面に分散液が均一に広がり、均一な薄膜が得られる傾向がある。回転時間が60秒以下であると、薄膜の生産性がさらに優れる傾向がある。
In the present embodiment, the rotation speed when rotating the base material 7 is preferably 2000 to 4000 rpm, more preferably 2500 to 3500 rpm. When the rotation speed when rotating the base material 7 is 2000 rpm or more, the dispersion liquid spreads uniformly on the surface of the curved surface S of the base material 7, a uniform thin film can be obtained, and a thin film having further excellent translucency can be obtained. Tend. When the rotation speed when rotating the base material 7 is 4000 rpm or less, it is possible to prevent the covering member 8 from being detached from the base material 7 due to the rotation, and there is a tendency to obtain a thin film having further excellent conductivity.
The rotation time for rotating the base material 7 is preferably 5 to 60 seconds, more preferably 10 to 45 seconds, and even more preferably 20 to 30 seconds. When the rotation time is 5 seconds or more, the dispersion liquid spreads uniformly on the surface of the curved surface S of the base material 7, and a uniform thin film tends to be obtained. When the rotation time is 60 seconds or less, the productivity of the thin film tends to be further improved.

回転台2を回転させることで、曲面Sの表面はカーボンナノチューブを含む分散液で被覆される。同時に、曲面Sの表面に添加された分散液の一部は、回転に伴う遠心力によって基材7の開口面7cから外壁5に向かって飛散し、外壁5に付着する。そして、曲面Sの表面に添加された分散液の残部は、回転に伴う遠心力によって基材7の端面7b側に配置された吸収材9に向かって飛散し、吸収材9に付着する。これにより、基材7の端面7bへの分散液の付着を防止できる。 By rotating the rotary table 2, the surface of the curved surface S is covered with a dispersion liquid containing carbon nanotubes. At the same time, a part of the dispersion liquid added to the surface of the curved surface S scatters from the opening surface 7c of the base material 7 toward the outer wall 5 due to the centrifugal force accompanying the rotation, and adheres to the outer wall 5. Then, the remaining portion of the dispersion liquid added to the surface of the curved surface S scatters toward the absorbent material 9 arranged on the end surface 7b side of the base material 7 due to the centrifugal force accompanying the rotation, and adheres to the absorbent material 9. This makes it possible to prevent the dispersion liquid from adhering to the end surface 7b of the base material 7.

本実施形態の薄膜の製造方法の好ましい態様においては、基材7を回転させる際の回転数が2000~4000rpmであり、基材7を回転させる際の回転時間が5~60秒である。
本実施形態の薄膜の製造方法のより好ましい態様においては、基材7を回転させる際の回転数が2500~3500rpmであり、基材7を回転させる際の回転時間が10~45秒である。
本実施形態の薄膜の製造方法のさらに好ましい態様においては、基材7を回転させる際の回転数が2500~3500rpmであり、基材7を回転させる際の回転時間が20~30秒である。
上述の各態様においては、透光性及び導電性の両方にさらに優れる薄膜が得られる傾向がある。
In a preferred embodiment of the method for producing a thin film of the present embodiment, the rotation speed when rotating the base material 7 is 2000 to 4000 rpm, and the rotation time when rotating the base material 7 is 5 to 60 seconds.
In a more preferable embodiment of the method for producing a thin film of the present embodiment, the rotation speed when rotating the base material 7 is 2500 to 3500 rpm, and the rotation time when rotating the base material 7 is 10 to 45 seconds.
In a more preferable aspect of the method for producing a thin film of the present embodiment, the rotation speed when rotating the base material 7 is 2500 to 3500 rpm, and the rotation time when rotating the base material 7 is 20 to 30 seconds.
In each of the above aspects, there is a tendency to obtain a thin film that is even more excellent in both translucency and conductivity.

次いで、本実施形態の薄膜の製造方法では、曲面Sを被覆している分散液を乾燥させ、被覆部材8を基材7から分離する。ここで、曲面Sを被覆している分散液を乾燥させることで、カーボンナノチューブを含む薄膜Fが曲面Sに設けられる(図6参照)。そして、被覆部材8を基材7から分離することで、開口部8aが位置していた部分の内壁7a上の領域(すなわち、曲面S)にカーボンナノチューブを含む薄膜Fが形成される(図7参照)。 Next, in the method for producing a thin film of the present embodiment, the dispersion liquid covering the curved surface S is dried, and the covering member 8 is separated from the base material 7. Here, the thin film F containing the carbon nanotubes is provided on the curved surface S by drying the dispersion liquid covering the curved surface S (see FIG. 6). Then, by separating the covering member 8 from the base material 7, a thin film F containing carbon nanotubes is formed in a region (that is, a curved surface S) on the inner wall 7a of the portion where the opening 8a is located (FIG. 7). reference).

乾燥の際は、曲面Sを加熱してもよく、自然乾燥させてもよい。
分散媒の除去を主な目的とする場合、乾燥時間は、例えば、5分~1時間とすることができる。そして、乾燥温度は、例えば、25~100℃とすることができる。
分散液が分散剤を含む場合、曲面Sを加熱して分散剤を熱分解してもよい。分散剤を熱分解すると、薄膜Fが導電性にさらに優れる。曲面Sを加熱して分散剤を熱分化する場合、乾燥時間は、例えば、1~10時間とすることができる。そして、乾燥温度は、例えば、300~500℃とすることができる。
これらの乾燥条件は、単独で本実施形態の薄膜の製造方法に適用してもよく、それぞれを組み合わせて適用してもよい。そして、これらの乾燥条件は、カーボンナノチューブを含む分散液の添加量、カーボンナノチューブの含有量等に応じて適宜選択でき、特に限定されない。
At the time of drying, the curved surface S may be heated or may be naturally dried.
When the main purpose is to remove the dispersion medium, the drying time can be, for example, 5 minutes to 1 hour. The drying temperature can be, for example, 25 to 100 ° C.
When the dispersion liquid contains a dispersant, the curved surface S may be heated to thermally decompose the dispersant. When the dispersant is thermally decomposed, the thin film F is further excellent in conductivity. When the curved surface S is heated to thermally differentiate the dispersant, the drying time can be, for example, 1 to 10 hours. The drying temperature can be, for example, 300 to 500 ° C.
These drying conditions may be applied alone to the method for producing a thin film of the present embodiment, or may be applied in combination of each. These drying conditions can be appropriately selected depending on the amount of the dispersion liquid containing the carbon nanotubes added, the content of the carbon nanotubes, and the like, and are not particularly limited.

本実施形態の薄膜の製造方法の好ましい態様においては、分散液のカーボンナノチューブの含有量が、分散液100質量%に対し0.008~0.04質量%であり、カーボンナノチューブの繊維長が、5~250μmであり、基材7を回転させる際の回転数が2000~4000rpmである。
本実施形態の薄膜の製造方法のより好ましい態様においては、分散液のカーボンナノチューブの含有量が、分散液100質量%に対し0.01~0.03質量%であり、カーボンナノチューブの繊維長が、10~100μmであり、基材7を回転させる際の回転数が2500~3500rpmである。
本実施形態の薄膜の製造方法のさらに好ましい態様においては、分散液のカーボンナノチューブの含有量が、分散液100質量%に対し0.01~0.03質量%であり、カーボンナノチューブの繊維長が、30~50μmであり、基材7を回転させる際の回転数が2500~3500rpmである。
上述の各態様においては、透光性及び導電性の両方にさらに優れる薄膜が得られる傾向がある。
In a preferred embodiment of the method for producing a thin film of the present embodiment, the content of carbon nanotubes in the dispersion liquid is 0.008 to 0.04% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is increased. It is 5 to 250 μm, and the rotation speed when rotating the base material 7 is 2000 to 4000 rpm.
In a more preferable embodiment of the method for producing a thin film of the present embodiment, the content of carbon nanotubes in the dispersion liquid is 0.01 to 0.03% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is high. It is 10 to 100 μm, and the rotation speed when rotating the base material 7 is 2500 to 3500 rpm.
In a more preferable embodiment of the method for producing a thin film of the present embodiment, the content of carbon nanotubes in the dispersion liquid is 0.01 to 0.03% by mass with respect to 100% by mass of the dispersion liquid, and the fiber length of the carbon nanotubes is high. , 30 to 50 μm, and the rotation speed when rotating the base material 7 is 2500 to 3500 rpm.
In each of the above aspects, there is a tendency to obtain a thin film that is even more excellent in both translucency and conductivity.

(作用効果)
以上説明した本実施形態の薄膜の製造方法では、被覆部材を用いるため、カーボンナノチューブを含む薄膜を曲面の任意の一部分に成膜できる。そして、本実施形態の薄膜の製造方法では、曲面の表面に分散液を添加し、基材の中心軸と直交する方向を回転の軸方向として基材を回転させて曲面の表面を分散液で被覆するため、透光性及び導電性に優れる薄膜が得られる。
(Action effect)
In the method for producing a thin film of the present embodiment described above, since a covering member is used, a thin film containing carbon nanotubes can be formed on an arbitrary part of a curved surface. Then, in the method for producing a thin film of the present embodiment, a dispersion liquid is added to the surface of the curved surface, the base material is rotated with the direction orthogonal to the central axis of the base material as the axis of rotation, and the surface of the curved surface is covered with the dispersion liquid. For coating, a thin film having excellent translucency and conductivity can be obtained.

<光電子増倍管の製造方法>
本実施形態の光電子倍増管の製造方法では、カーボンナノチューブを含む薄膜が設けられた曲面を有する光電子増倍管を製造する。
本実施形態の光電子倍増管の製造方法では、基材の表面に薄膜を設ける際に、上述の本実施形態の薄膜の製造方法で、基材の曲面に薄膜を製造する。
<Manufacturing method of photomultiplier tube>
In the method for manufacturing a photomultiplier tube of the present embodiment, a photomultiplier tube having a curved surface provided with a thin film containing carbon nanotubes is manufactured.
In the method for manufacturing a photomultiplier tube of the present embodiment, when the thin film is provided on the surface of the base material, the thin film is manufactured on the curved surface of the base material by the above-mentioned method for manufacturing the thin film of the present embodiment.

(作用効果)
以上説明した本実施形態の光電子倍増管の製造方法では、上述の本実施形態の薄膜の製造方法で基材の曲面に薄膜を製造するため、透明性及び導電性に優れる薄膜を曲面に設けることができる。その結果、光感度に優れる光電子倍増管を製造できる。
(Action effect)
In the method for manufacturing a photoelectron doubling tube of the present embodiment described above, since the thin film is manufactured on the curved surface of the base material by the method for manufacturing the thin film of the present embodiment described above, a thin film having excellent transparency and conductivity is provided on the curved surface. Can be done. As a result, a photomultiplier tube with excellent photosensitivity can be manufactured.

以上、本発明のいくつかの実施形態を説明したが本発明はかかる特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。 Although some embodiments of the present invention have been described above, the present invention is not limited to such specific embodiments. In addition, the present invention may be added, omitted, replaced, or otherwise modified within the scope of the gist of the present invention described in the claims.

<検証実験>
以下、検証実験によって本発明を具体的に説明するが、本発明は以下の記載によっては限定されない。
<Verification experiment>
Hereinafter, the present invention will be specifically described by verification experiments, but the present invention is not limited to the following description.

(分散液の調製)
カーボンナノチューブを含む分散液は、カーボンナノチューブ4mgと分散媒であるエタノール:10gと、分散剤とを超音波ホモジナイザー(エスエムテー社製「UH-50」)を用いて30分間分散処理して調製した。
カーボンナノチューブとしては、下記のCNT1又はCNT2のいずれかを使用した。
CNT1:大陽日酸社製「SLグレード」、平均繊維長:250μm,平均直径:12nm。
CNT2:Nanocyl社製「NC7000」、平均繊維長:1.5μm,平均直径:9.5nm。
(Preparation of dispersion)
The dispersion liquid containing the carbon nanotubes was prepared by dispersing 4 mg of carbon nanotubes, 10 g of ethanol as a dispersion medium, and a dispersant for 30 minutes using an ultrasonic homogenizer (“UH-50” manufactured by SMT).
As the carbon nanotube, either CNT1 or CNT2 described below was used.
CNT1: "SL grade" manufactured by Taiyo Nippon Sanso, average fiber length: 250 μm, average diameter: 12 nm.
CNT2: "NC7000" manufactured by Nanocil, average fiber length: 1.5 μm, average diameter: 9.5 nm.

(光線透過率)
カーボンナノチューブを含む薄膜が設けられた内壁を有する基材を試料とした。試料を半分に割り、薄膜が設けられた部分の光線透過率をヘイズメーター(日本電色社製「NDH4000」)で測定した。光線透過率が85%以上である薄膜については、特に透光性に優れると判定し、後述の表1~4の透光性の欄に「◎」と記載した。光線透過率が75%以上85%未満である薄膜については、表1~4の透光性の欄に「〇」と記載した。
(Light transmittance)
A substrate having an inner wall provided with a thin film containing carbon nanotubes was used as a sample. The sample was divided in half, and the light transmittance of the portion provided with the thin film was measured with a haze meter (“NDH4000” manufactured by Nippon Denshoku Co., Ltd.). A thin film having a light transmittance of 85% or more was judged to be particularly excellent in translucency, and was described as "◎" in the translucency column of Tables 1 to 4 described later. For thin films having a light transmittance of 75% or more and less than 85%, "○" is described in the column of light transmittance in Tables 1 to 4.

(抵抗値)
カーボンナノチューブを含む薄膜が設けられた内壁を有する基材を試料とした。薄膜が設けられた部分の基材の内壁の表面の抵抗値をテスター(カスタム社製「CDM-09N」)で測定した。抵抗値が20.0×10kΩ未満である薄膜については、特に導電性に優れると判定し、表1~4の導電性の欄に「◎」と記載した。抵抗値が20.0×10kΩ以上40.0×10kΩ未満である薄膜については、表1~4の導電性の欄に「〇」と記載した。
(Resistance value)
A substrate having an inner wall provided with a thin film containing carbon nanotubes was used as a sample. The resistance value of the surface of the inner wall of the base material of the portion where the thin film was provided was measured with a tester (“CDM-09N” manufactured by Custom Co., Ltd.). A thin film having a resistance value of less than 20.0 × 10 3 kΩ was judged to be particularly excellent in conductivity, and “⊚” was described in the column of conductivity in Tables 1 to 4. For thin films having a resistance value of 20.0 × 10 3 kΩ or more and less than 40.0 × 10 3 kΩ, “◯” is described in the column of conductivity in Tables 1 to 4.

(検証例1)
基材として、一端面が閉塞面であり、他端面が開口面であるガラス製の円筒管(φ30mm,L65mm、厚さ2mm)を用意した。
被覆部材として、シート状のネオジムマグネットマスク(55mm×40mm×t1mm)を用意した。シート状のネオジムマグネットマスクは開口部を有する。開口部の開口面は、長辺:35mm、短辺:20mmの長方形状である。ネオジムマグネットマスクは、円筒管の内壁に対して2.4N/cmの吸着能を有する磁石である。
薄膜の製造に際しては、上述の回転装置1を使用した。
まず、円筒管にシート状のネオジムマグネットマスクを装着し、シート状のネオジムマグネットマスクを円筒管の内壁に密着させた。そして、開口面が曲面Sを介して回転台2と接するように、円筒管を回転台2の設置面2aに固定した。
次いで、開口面が位置する部分の円筒管の内壁にCNT1の分散液(CNT1の含有量:0.04質量%)を1cc添加し、回転数が3000rpmの条件下で30秒間、回転台2を回転させて円筒管を回転させて、開口面が位置する部分の円筒管の内壁の表面を分散液で被覆した。
次いで、円筒管を大気圧下、300℃にて5時間加熱処理をして分散液を乾燥させ、分散媒を除去し、分散剤を加熱分解し、カーボンナノチューブを含む検証例1の薄膜を製造した。薄膜は、円筒管の内壁の一部の領域(長辺:35mm、短辺:20mmの長方形状)に設けられていた。得られた薄膜について、光線透過率及び表面の抵抗値を測定した。結果を表1に示す。
(Verification example 1)
As a base material, a glass cylindrical tube (φ30 mm, L65 mm, thickness 2 mm) having one end surface as a closed surface and the other end surface having an opening surface was prepared.
A sheet-shaped neodymium magnet mask (55 mm × 40 mm × t1 mm) was prepared as a covering member. The sheet-shaped neodymium magnet mask has an opening. The opening surface of the opening is rectangular with a long side of 35 mm and a short side of 20 mm. The neodymium magnet mask is a magnet having an adsorption capacity of 2.4 N / cm 2 with respect to the inner wall of the cylindrical tube.
In manufacturing the thin film, the above-mentioned rotating device 1 was used.
First, a sheet-shaped neodymium magnet mask was attached to the cylindrical tube, and the sheet-shaped neodymium magnet mask was brought into close contact with the inner wall of the cylindrical tube. Then, the cylindrical tube was fixed to the installation surface 2a of the rotary table 2 so that the opening surface was in contact with the rotary table 2 via the curved surface S.
Next, 1 cc of a dispersion liquid of CNT1 (content of CNT1: 0.04% by mass) was added to the inner wall of the cylindrical tube where the opening surface is located, and the turntable 2 was placed on the turntable 2 for 30 seconds under the condition of a rotation speed of 3000 rpm. The cylindrical tube was rotated and the surface of the inner wall of the cylindrical tube at the portion where the opening surface was located was covered with the dispersion liquid.
Next, the cylindrical tube was heat-treated at 300 ° C. for 5 hours under atmospheric pressure to dry the dispersion, the dispersion medium was removed, the dispersant was thermally decomposed, and the thin film of Verification Example 1 containing carbon nanotubes was produced. did. The thin film was provided in a part of the inner wall of the cylindrical tube (long side: 35 mm, short side: 20 mm rectangular shape). For the obtained thin film, the light transmittance and the surface resistance value were measured. The results are shown in Table 1.

(検証例2~14)
表1~4に示すように成膜の条件を変更した以外は、検証例1と同様にして薄膜を製造した。得られた薄膜について、光線透過率及び表面の抵抗値を測定した。結果を表1~4に示す。なお、表1~4中「回転条件」の欄において例えば、「3000rpm,30s」と記載した場合、回転数が3000rpmの条件下で30秒間、回転台2を回転させたことを意味する。
(Verification Examples 2 to 14)
A thin film was produced in the same manner as in Verification Example 1 except that the film forming conditions were changed as shown in Tables 1 to 4. For the obtained thin film, the light transmittance and the surface resistance value were measured. The results are shown in Tables 1 to 4. In addition, for example, when "3000 rpm, 30 s" is described in the column of "rotation condition" in Tables 1 to 4, it means that the rotary table 2 was rotated for 30 seconds under the condition of the rotation speed of 3000 rpm.

Figure 0007042191000001
Figure 0007042191000001

Figure 0007042191000002
Figure 0007042191000002

Figure 0007042191000003
Figure 0007042191000003

Figure 0007042191000004
Figure 0007042191000004

検証例1~7で製造した薄膜は、透光性及び導電性の両方に特に優れていた。 The thin films produced in Verification Examples 1 to 7 were particularly excellent in both translucency and conductivity.

本発明の薄膜の製造方法によれば、カーボンナノチューブを含む薄膜を曲面の一部分に均一に成膜でき、透光性及び導電性に優れる薄膜を製造できる。本発明は、例えば、電子増倍管が有する光線の入射窓に、ガラスの高い透明度を維持したまま導電性を付与できる。そのため、本発明は、例えば、従来技術より高感度な光電子増倍管の製造に適用できる。 According to the method for producing a thin film of the present invention, a thin film containing carbon nanotubes can be uniformly formed on a part of a curved surface, and a thin film having excellent translucency and conductivity can be produced. INDUSTRIAL APPLICABILITY For example, the present invention can impart conductivity to an incident window of light rays included in a photomultiplier tube while maintaining high transparency of glass. Therefore, the present invention can be applied to, for example, the production of a photomultiplier tube having higher sensitivity than the prior art.

1…回転装置、2…回転台、3…回転部、4…底面、5…外壁、6…回転軸、7…基材、8…被覆部材、9…吸収材、S…曲面、F…薄膜 1 ... Rotating device, 2 ... Rotary table, 3 ... Rotating part, 4 ... Bottom surface, 5 ... Outer wall, 6 ... Rotating shaft, 7 ... Base material, 8 ... Covering member, 9 ... Absorbent, S ... Curved surface, F ... Thin film

Claims (7)

カーボンナノチューブを含む薄膜を製造する方法であって、
薄膜が設けられる曲面を含む内壁を有し、透明である筒状の基材に、前記曲面以外の前記内壁と密着するとともに前記曲面以外の前記内壁を覆う被覆部材を装着し、
前記曲面の表面にカーボンナノチューブを含む分散液を添加し、
筒状の前記基材の中心軸と直交する方向を回転の軸方向として前記基材を回転させて、前記曲面の表面を前記分散液で被覆し、
前記分散液を乾燥させ、前記被覆部材を前記基材から分離する、薄膜の製造方法。
A method for producing thin films containing carbon nanotubes.
A covering member that has an inner wall including a curved surface on which a thin film is provided and is in close contact with the inner wall other than the curved surface and covers the inner wall other than the curved surface is attached to a transparent tubular base material.
A dispersion liquid containing carbon nanotubes is added to the surface of the curved surface, and the dispersion liquid is added.
The base material is rotated with the direction orthogonal to the central axis of the cylindrical base material as the axis of rotation, and the surface of the curved surface is covered with the dispersion liquid.
A method for producing a thin film, wherein the dispersion liquid is dried and the covering member is separated from the base material.
前記分散液のカーボンナノチューブの含有量が、前記分散液100質量%に対し0.008~0.04質量%であり、カーボンナノチューブの繊維長が、5~250μmである、請求項1に記載の薄膜の製造方法。 The first aspect of claim 1, wherein the content of carbon nanotubes in the dispersion is 0.008 to 0.04% by mass with respect to 100% by mass of the dispersion, and the fiber length of the carbon nanotubes is 5 to 250 μm. Thin film manufacturing method. 前記基材を回転させる際の回転数が、2000~4000rpmである、請求項1又は2に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1 or 2, wherein the rotation speed when rotating the base material is 2000 to 4000 rpm. 前記被覆部材がシート状である、請求項1~3のいずれか一項に記載の薄膜の製造方法。 The method for producing a thin film according to any one of claims 1 to 3, wherein the covering member is in the form of a sheet. 前記被覆部材が、前記内壁に対して2.4N/cm以上の吸着能を有する磁石である、請求項1~4のいずれか一項に記載の薄膜の製造方法。 The method for producing a thin film according to any one of claims 1 to 4, wherein the covering member is a magnet having an adsorption ability of 2.4 N / cm 2 or more with respect to the inner wall. 筒状の前記基材の内部空間に対して前記曲面が露出している開口部が、前記内壁と前記曲面との境界に沿って前記被覆部材に形成されている、請求項1~5のいずれか一項に記載の薄膜の製造方法。 Any of claims 1 to 5, wherein an opening in which the curved surface is exposed with respect to the internal space of the tubular base material is formed in the covering member along a boundary between the inner wall and the curved surface. The method for producing a thin film according to item 1. カーボンナノチューブを含む薄膜が設けられた曲面を有する光電子増倍管の製造方法であって、
前記基材の表面に薄膜を設ける際に、請求項1~6のいずれか一項に記載の薄膜の製造方法で、前記基材の曲面に薄膜を製造する、光電子増倍管の製造方法。
A method for manufacturing a photomultiplier tube having a curved surface provided with a thin film containing carbon nanotubes.
A method for manufacturing a photomultiplier tube, wherein the thin film is manufactured on the curved surface of the base material by the method for manufacturing the thin film according to any one of claims 1 to 6 when the thin film is provided on the surface of the base material.
JP2018151582A 2018-08-10 2018-08-10 Thin film manufacturing method, photomultiplier tube manufacturing method Active JP7042191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151582A JP7042191B2 (en) 2018-08-10 2018-08-10 Thin film manufacturing method, photomultiplier tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151582A JP7042191B2 (en) 2018-08-10 2018-08-10 Thin film manufacturing method, photomultiplier tube manufacturing method

Publications (2)

Publication Number Publication Date
JP2020027728A JP2020027728A (en) 2020-02-20
JP7042191B2 true JP7042191B2 (en) 2022-03-25

Family

ID=69620285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151582A Active JP7042191B2 (en) 2018-08-10 2018-08-10 Thin film manufacturing method, photomultiplier tube manufacturing method

Country Status (1)

Country Link
JP (1) JP7042191B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166279A (en) 2006-12-27 2008-07-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission lamp and its manufacturing method
JP2014131960A (en) 2010-12-15 2014-07-17 National Institute Of Advanced Industrial & Technology Carbon nanotube aggregate, carbon nanotube aggregate having three-dimensional shape, and carbon nanotube molded article, composition and carbon nanotube dispersion using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817201B2 (en) * 2002-04-19 2006-09-06 Jsr株式会社 Conductive film forming composition, conductive film and method for forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166279A (en) 2006-12-27 2008-07-17 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Field emission lamp and its manufacturing method
JP2014131960A (en) 2010-12-15 2014-07-17 National Institute Of Advanced Industrial & Technology Carbon nanotube aggregate, carbon nanotube aggregate having three-dimensional shape, and carbon nanotube molded article, composition and carbon nanotube dispersion using the same

Also Published As

Publication number Publication date
JP2020027728A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
JP7042191B2 (en) Thin film manufacturing method, photomultiplier tube manufacturing method
Maindron et al. Defect analysis in low temperature atomic layer deposited Al2O3 and physical vapor deposited SiO barrier films and combination of both to achieve high quality moisture barriers
TW201701019A (en) Sample collection device and sample collection device array
CN104020152B (en) A kind of sandwich structure micron tube and its preparation method and application
JP6476545B2 (en) Fluorescent wheel for projector and light emitting device for projector
CN107649346A (en) PDMS combustion methods prepare method and the combustion chamber of super hydrophobic surface
US2369764A (en) Apparatus for forming optical wedges
EP3373048A1 (en) Optical member, image pickup apparatus, and method for manufacturing optical member
TWI333228B (en) Method of fabricating field emission display device and cathode plate thereof
JP2018515930A (en) Substrate processing apparatus disposed inside process chamber and method of operating the same
WO2018168347A1 (en) Method for manufacturing lens
JP2016191808A (en) Method of manufacturing lens with light shielding layer
CN106525539A (en) Manufacturing instrument for medical sputum smear
JP2008204872A (en) Transparent conductive film material and transparent laminate
Zhai et al. Biologically Inspired, Optical Waveguide with Isolation Layer Integrated Microlens Array for High‐Contrast Imaging
TWI674400B (en) Suspended particle impact plate and suspended particle size sampler
KR100895878B1 (en) Monolayer coating structure of cabon nanotubu and manufacturing methood threrof
TW201409011A (en) Specimen preparation for TEM
TWI498669B (en) X-ray mask structure and method for preparing the same
JP6091834B2 (en) Roll mold
CN114324290B (en) Preparation method of bionic-based super-hydrophobic integrated chip, SERS platform and application
TW201211192A (en) Method for coating adhesive on inner wall of venting hole in pellicle frame
TWI327735B (en) Anode device and method for making the same
JP3891757B2 (en) X-ray scintillator and method for manufacturing the same
WO2011093356A1 (en) Rotary mold for imprinting and production method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220314

R150 Certificate of patent or registration of utility model

Ref document number: 7042191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150