JP7041275B2 - How to make electrolytic copper - Google Patents

How to make electrolytic copper Download PDF

Info

Publication number
JP7041275B2
JP7041275B2 JP2020541325A JP2020541325A JP7041275B2 JP 7041275 B2 JP7041275 B2 JP 7041275B2 JP 2020541325 A JP2020541325 A JP 2020541325A JP 2020541325 A JP2020541325 A JP 2020541325A JP 7041275 B2 JP7041275 B2 JP 7041275B2
Authority
JP
Japan
Prior art keywords
copper
electrolytic
concentration
anode
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020541325A
Other languages
Japanese (ja)
Other versions
JPWO2020050418A1 (en
Inventor
邦男 渡辺
惇貴 佐渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pan Pacific Copper Co Ltd
Original Assignee
Pan Pacific Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pan Pacific Copper Co Ltd filed Critical Pan Pacific Copper Co Ltd
Publication of JPWO2020050418A1 publication Critical patent/JPWO2020050418A1/en
Application granted granted Critical
Publication of JP7041275B2 publication Critical patent/JP7041275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/02Electrodes; Connections thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は電気銅の製造方法に関する。 The present invention relates to a method for producing electrolytic copper.

一般に、銅の電解採取は、鉱石等の原料から銅を溶液中に浸出させ、これを電解的に金属に還元する銅電解精製によって電気銅とするものである。より具体的には、鉱石等の原料を精製して粗銅を作製し、これをアノードとして用いて電解液中で電解精製する。 In general, copper electrowinning involves leaching copper into a solution from a raw material such as ore and electrolytically reducing it to a metal to obtain electrolytic copper. More specifically, raw materials such as ore are refined to produce blister copper, which is used as an anode for electrolytic refining in an electrolytic solution.

近年、電子機器等のリサイクル品(主にスクラップ銅)を銅の電解採取の原料とし、当該リサイクル品から銅を回収するニーズが高まっている(特許文献1)。 In recent years, there has been an increasing need to recover copper from recycled products such as electronic devices (mainly scrap copper) as a raw material for electrolytic sampling of copper (Patent Document 1).

特開2009-287096号公報Japanese Unexamined Patent Publication No. 2009-287096

一般に銅電解精製においてアノードとして使用する粗銅には砒素、ビスマス、アンチモン、ニッケル等の不純物が含まれており、これらの不純物は電解液中に溶出する。 Generally, blister copper used as an anode in copper electrorefining contains impurities such as arsenic, bismuth, antimony, and nickel, and these impurities are eluted in the electrolytic solution.

粗銅(アノード)中に不純物として含まれるアンチモンは電解の際に電解液中で浮遊スライムであるSb25を形成してしまう。このアンチモン由来の浮遊スライムが電解液中で形成されるとカソードに付着してしまう。アンチモン由来の浮遊スライムがカソードに付着すると、アンチモンが電気銅に取り込まれて電気銅の品位が低下する問題が生じる。また、カソードの表面に浮遊スライムが付着するため、カソード表面にこぶの起点が生じてしまう。電解を続けるとカソード上に付着した浮遊スライム起点部位に電流が集中し、アノードへ電着物が伸びていき、ショートの原因となるおそれがあり、電気銅の製造効率が低下してしまう。Antimony contained as an impurity in the blister copper (anode) forms Sb 2 O 5 which is a floating slime in the electrolytic solution during electrolysis. When this antimony-derived floating slime is formed in the electrolytic solution, it adheres to the cathode. When the floating slime derived from antimony adheres to the cathode, there arises a problem that antimony is taken up by the electrolytic copper and the quality of the electrolytic copper is deteriorated. In addition, since floating slime adheres to the surface of the cathode, a hump starting point is generated on the surface of the cathode. If electrolysis is continued, the current concentrates on the starting point of the floating slime adhering to the cathode, the electrodeposition extends to the anode, which may cause a short circuit, and the production efficiency of electrolytic copper decreases.

特にリサイクル品を原料とする場合、アノードとして使用する粗銅中のアンチモンの濃度が高い傾向にあるため、電流密度が高い領域での操業に於いては、上記のような電気銅の製造効率の低下がより大きな問題となる。 In particular, when recycled products are used as raw materials, the concentration of antimony in the blister copper used as the anode tends to be high, so that the production efficiency of electrolytic copper as described above decreases in operations in the region where the current density is high. Becomes a bigger problem.

そこで、本発明はアノードとして使用する粗銅中のアンチモンの濃度が高くても製造効率が良好となる電気銅の製造方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a method for producing electrolytic copper, which has good production efficiency even if the concentration of antimony in the blister copper used as an anode is high.

本発明者は、上記の課題を解決するために検討を重ねたところ、銅電解精製における電解液中のアンチモン濃度を制御することで、アノードとして使用する粗銅中のアンチモンの濃度が高くても電気銅の製造効率が良好となることを見出した。 As a result of repeated studies to solve the above problems, the present inventor has found that by controlling the antimony concentration in the electrolytic solution in copper electrolytic refining, electricity can be obtained even if the concentration of antimony in the blister copper used as an anode is high. It has been found that the production efficiency of copper is improved.

上記の知見を基礎として完成した本発明は、一側面において、Sbを含む粗銅をアノードとして用い、電解液中のSb濃度を0.25g/L以下に保持しながら電解を行う工程を含み、前記アノード中のSb濃度が200ppm以上であり、前記電解における電流密度が300~360A/m 2 であり、前記電解における下記式で規定される電流効率が96%以上である電気銅の製造方法である。
電流効率(%)=(生成された電気銅量/理論電気銅量)×100
The present invention completed on the basis of the above findings includes, on one aspect, a step of performing electrolysis while using blister copper containing Sb as an anode and maintaining the Sb concentration in the electrolytic solution at 0.25 g / L or less. A method for producing electrolytic copper in which the Sb concentration in the anode is 200 ppm or more, the current density in the electrolysis is 300 to 360 A / m 2 , and the current efficiency specified by the following formula in the electrolysis is 96% or more . be.
Current efficiency (%) = (amount of generated electrolytic copper / theoretical amount of electrolytic copper) x 100

本発明の電気銅の製造方法は一実施形態において、前記電解液が硫酸銅水溶液である。 In one embodiment of the method for producing electrolytic copper of the present invention, the electrolytic solution is an aqueous solution of copper sulfate.

本発明によれば、アノードとして使用する粗銅中のアンチモンの濃度が高くても製造効率が良好となる電気銅の製造方法を提供することが可能となる。 According to the present invention, it is possible to provide a method for producing electrolytic copper in which the production efficiency is good even if the concentration of antimony in the blister copper used as an anode is high.

実施例1に係る電流効率-アノード中Sb品位のグラフである。It is a graph of the current efficiency-Sb quality in an anode which concerns on Example 1. FIG. 比較例1に係る電流効率-アノード中Sb品位のグラフである。It is a graph of the current efficiency-Sb quality in an anode which concerns on Comparative Example 1.

以下に、本発明に係る電気銅の製造方法の実施形態を詳細に説明する。
<アノード>
本発明に係る電気銅の製造方法における電解精製に使用されるアノードは、典型的には、転炉工程で得られる銅品位93~99質量%程度、或いは、97~99質量%の粗銅を酸化製錬、還元処理をした後に鋳造したものであり、通常は板状である。
Hereinafter, embodiments of the method for producing electrolytic copper according to the present invention will be described in detail.
<Anode>
The anode used for electrolytic refining in the method for producing electrolytic copper according to the present invention typically oxidizes blister copper having a copper grade of about 93 to 99% by mass or 97 to 99% by mass obtained in a converter step. It is cast after being smelted and reduced, and is usually plate-shaped.

当該アノードの粗銅にはSbが不純物として含まれている。本発明に係る電気銅の製造方法では、粗銅中のSb濃度が高くても電気銅の製造効率が良好となるため、粗銅中のSb濃度は、例えば、200ppm以上、270ppm以上、または350ppm以上であってもよい。また、粗銅中にはNi、As、Bi、Sb等の不純物が含まれていてもよい。 The blister copper of the anode contains Sb as an impurity. In the method for producing electrolytic copper according to the present invention, the production efficiency of electrolytic copper is good even if the Sb concentration in blister copper is high. Therefore, the Sb concentration in blister copper is, for example, 200 ppm or more, 270 ppm or more, or 350 ppm or more. There may be. Further, the blister copper may contain impurities such as Ni, As, Bi and Sb.

<カソード>
本発明に係る電気銅の製造方法における電解精製に使用されるカソードとしては、限定的ではないが、種板を使用する方法の他、ステンレス板を使用してその表面に銅を電着させるパーマネントカソード法(PC法)と呼ばれる方式によるものが挙げられる。パーマネントカソードの材料としては特に制限はないが、電解液に対して不溶性であることからチタンやステンレスを用いるのが一般的であり、コストが安価で済むことからステンレスを用いるのが好ましい。ステンレスとしては特に制限はなく、マルテンサイト系ステンレス鋼、フェライト系ステンレス鋼、オーステナイト系ステンレス鋼、オーステナイト・フェライト二相ステンレス鋼、及び析出硬化ステンレス鋼の何れを用いてもよい。
<Cathode>
The cathode used for electrolytic refining in the method for producing electrolytic copper according to the present invention is not limited, but is a permanent that uses a seed plate or a stainless steel plate to electrodeposit copper on the surface thereof. A method called a cathode method (PC method) can be mentioned. The material of the permanent cathode is not particularly limited, but titanium or stainless steel is generally used because it is insoluble in the electrolytic solution, and stainless steel is preferably used because the cost is low. The stainless steel is not particularly limited, and any of martensite-based stainless steel, ferrite-based stainless steel, austenite-based stainless steel, austenite-ferrite two-phase stainless steel, and precipitation-hardened stainless steel may be used.

<電解液>
本発明に係る電気銅の製造方法では、銅の電解精製を行うため、硫酸系電解液を使用することができ、例えば硫酸銅水溶液を電解液として用いることが好ましい。限定的ではないが、一般には、硫酸濃度は120~220g/L、Cuイオン濃度は40~60g/Lの範囲にある。典型的には、硫酸濃度は160~180g/L、Cuイオン濃度は45~55g/Lの範囲にある。
<Electrolytic solution>
In the method for producing electrolytic copper according to the present invention, a sulfuric acid-based electrolytic solution can be used for electrolytic refining of copper, and it is preferable to use, for example, an aqueous solution of copper sulfate as the electrolytic solution. Although not limited, the sulfuric acid concentration is generally in the range of 120 to 220 g / L and the Cu ion concentration is in the range of 40 to 60 g / L. Typically, the sulfuric acid concentration is in the range of 160-180 g / L and the Cu ion concentration is in the range of 45-55 g / L.

銅の電解精製を行う場合には、一般的に、電解液中に添加剤が添加される。添加剤は、陰極板における銅の析出状態改善等のために用いられる。例えば、有機物系の添加剤としては、ニカワ、ゼラチン、リグニン(パルプ廃液)などのように保護コロイドを形成するような添加剤と、チオ尿素やアロインのような官能基を有する有機物などが共用される。一般に、析出の際の活性化分極は添加剤によって増加し、分極を大きくすることで均一電着性が向上するので、析出金属は緻密で表面が均一なものを得ることができる。 When electrolytic refining of copper is performed, an additive is generally added to the electrolytic solution. The additive is used for improving the precipitation state of copper in the cathode plate. For example, as organic-based additives, additives that form protective colloids such as glue, gelatin, and lignin (pulp waste liquid) and organic substances having functional groups such as thiourea and aloin are shared. To. In general, the activated polarization at the time of precipitation is increased by the additive, and the uniform electrodeposition property is improved by increasing the polarization, so that the precipitated metal can be obtained as a dense metal having a uniform surface.

<電解精製>
工業的な電気銅製造プロセスにおいては、カソードとアノードとが複数(例えば、各40~60枚)装入された電解槽が複数設置されており、銅電解液が電解槽に連続的に供給され、オーバーフローにより連続的に排出される。
<Electrorefining>
In an industrial electrolytic cell manufacturing process, a plurality of electrolytic cells in which a plurality of cathodes and anodes (for example, 40 to 60 sheets each) are charged are installed, and a copper electrolytic solution is continuously supplied to the electrolytic cells. , Is continuously discharged due to overflow.

本発明の電気銅の製造方法では、電解精製において、電解液中のSb濃度を0.25g/L以下に保持しながら電解を行う。このように電解液中のSb濃度を0.25g/L以下に保持することで、電解液の液抵抗増加による電圧上昇を抑制することができ、消費電力が減少し、電気銅の製造効率が上がる。また、アンチモンの浮遊スライムの形成を抑制することができ、その結果電気銅の電着不良を抑制することができ、電気銅の製造効率が良好となる。
特に、増産目的で電流密度を通常より上げる必要がある場合、リサイクル原料が増えるとSb品位が高くなり電流効率が悪くなるが、本発明によれば電解液中のSb濃度を0.25g/L以下に保持しながら電解を行うため、このような状況下における電解によっても電気銅の製造効率が良好となる。
In the method for producing electrolytic copper of the present invention, in electrolytic refining, electrolysis is performed while keeping the Sb concentration in the electrolytic solution at 0.25 g / L or less. By keeping the Sb concentration in the electrolytic solution at 0.25 g / L or less in this way, it is possible to suppress the voltage rise due to the increase in the liquid resistance of the electrolytic solution, reduce the power consumption, and improve the production efficiency of electrolytic copper. Go up. In addition, the formation of floating slime of antimony can be suppressed, and as a result, poor electrodeposition of electrolytic copper can be suppressed, and the production efficiency of electrolytic copper becomes good.
In particular, when it is necessary to raise the current density more than usual for the purpose of increasing production, the Sb quality becomes higher and the current efficiency deteriorates as the number of recycled raw materials increases. However, according to the present invention, the Sb concentration in the electrolytic solution is 0.25 g / L. Since the electrolysis is performed while holding the voltage below, the production efficiency of electrolytic copper is improved even by the electrolysis under such a situation.

本発明の電気銅の製造方法では、電解精製において、電解液中のSb濃度を0.22g/L以下に保持しながら電解を行うのが好ましく、0.20g/L以下に保持しながら電解を行うのがより好ましい。このように制御することで電気銅表面のコブが発生する可能性が低減し、表面が平滑な電気銅を安定して製造することができる。 In the method for producing electrolytic copper of the present invention, in electrolytic refining, it is preferable to perform electrolysis while keeping the Sb concentration in the electrolytic solution at 0.22 g / L or less, and electrolysis is performed while keeping the Sb concentration at 0.20 g / L or less. It is more preferable to do so. By controlling in this way, the possibility that bumps on the surface of the electrolytic copper are generated is reduced, and electrolytic copper having a smooth surface can be stably produced.

本発明の電気銅の製造方法では、電解精製において、電流密度は特に限定するものでは無く、例えば300~360A/m2とすることができる。In the method for producing electrolytic copper of the present invention, the current density is not particularly limited in the electrolytic refining, and can be, for example, 300 to 360 A / m 2 .

電解精製における電解液中のSb濃度の制御手段としては、電解液から不純物を除去する一般的な方法を用いることができる。例として、キレート樹脂を用いた方法によるSb濃度の制御を説明する。具体的には、キレート樹脂を充填した樹脂塔内に電解液を通液し、キレート樹脂に電解液中のSbを吸着させる。吸着工程が終了後に塩酸を通液して樹脂に吸着したSbを溶離する。溶離液中に溶解したSbは消石灰で中和後脱水し、キレート中和滓として系外に除去する。キレート樹脂にSbを吸着させた後の電解液は、Sb除去後の電解液として本発明の電気銅の製造方法の電解精製における電解液として使用することができる。電解時の電解液のSb濃度をモニターしておき、必要であれば上記のようにSbの除去を行うことで、電解液中のSb濃度を0.25g/L以下に保持しながら電解を行うことができる。 As a means for controlling the Sb concentration in the electrolytic solution in electrolytic refining, a general method for removing impurities from the electrolytic solution can be used. As an example, control of the Sb concentration by a method using a chelate resin will be described. Specifically, the electrolytic solution is passed through a resin tower filled with a chelate resin, and Sb in the electrolytic solution is adsorbed on the chelate resin. After the adsorption step is completed, hydrochloric acid is passed through the solution to elute the Sb adsorbed on the resin. Sb dissolved in the eluent is neutralized with slaked lime, dehydrated, and removed from the system as a chelate neutralizing residue. The electrolytic solution after adsorbing Sb on the chelate resin can be used as the electrolytic solution after removing Sb as the electrolytic solution in the electrolytic refining method of the method for producing electrolytic copper of the present invention. By monitoring the Sb concentration of the electrolytic solution at the time of electrolysis and removing Sb as described above if necessary, electrolysis is performed while keeping the Sb concentration in the electrolytic solution at 0.25 g / L or less. be able to.

本発明の電気銅の製造方法では、電解における下記式で規定される電流効率が96%以上であるのが好ましい。
電流効率(%)=(生成された電気銅量/理論電気銅量)×100
このような構成により、アノードとして使用する粗銅中のSb濃度が270ppm以上という高い濃度において、高電流密度下における電解によっても電気銅の製造効率がより良好となる。また、扱う銅原料の許容度(すなわち、銅原料に含まれるSbという電気銅生産の阻害元素の許容量)を大きくしながらも銅の需要に合わせた電気銅の増産が可能となる。当該電流効率は96%以上であるのがより好ましく、96.5%以上であるのが更により好ましく、97%以上であるのが更により好ましい。
In the method for producing electrolytic copper of the present invention, it is preferable that the current efficiency specified by the following formula in electrolysis is 96% or more.
Current efficiency (%) = (amount of generated electrolytic copper / theoretical amount of electrolytic copper) x 100
With such a configuration, when the Sb concentration in the blister copper used as the anode is as high as 270 ppm or more, the production efficiency of electrolytic copper becomes better even by electrolysis under a high current density. In addition, it is possible to increase the production of electrolytic copper in accordance with the demand for copper while increasing the allowable amount of the copper raw material to be handled (that is, the allowable amount of Sb, which is an inhibitory element of electrolytic copper production contained in the copper raw material). The current efficiency is more preferably 96% or more, further preferably 96.5% or more, and even more preferably 97% or more.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Examples of the present invention are shown below together with comparative examples, but these examples are provided for a better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例1)
銅品位99質量%の板状の粗銅をアノードとし、ステンレス板をカソードとして、以下の条件により電解液中で電解分解を行った。
・アノードの粗銅中のSb濃度(Sb品位):160~270ppm
・電解液の組成:銅40~60g/L、ニッケル15.5~17.0g/L、硫酸:120~220g/L、砒素:3~10g/L、アンチモン:0.23~0.25g/L、ビスマス:0.1~0.5g/L
・電流密度:320~322A/m2
(Example 1)
A plate-shaped blister copper having a copper grade of 99% by mass was used as an anode, and a stainless steel plate was used as a cathode, and electrolytic decomposition was carried out in an electrolytic solution under the following conditions.
-Sb concentration (Sb grade) in blister copper of the anode: 160 to 270 ppm
-Composition of electrolytic solution: copper 40 to 60 g / L, nickel 15.5 to 17.0 g / L, sulfuric acid: 120 to 220 g / L, arsenic: 3 to 10 g / L, antimony: 0.25 to 0.25 g / L. L, bismuth: 0.1-0.5 g / L
-Current density: 320 to 322 A / m 2

電解液中のSb濃度はモニターしておき、電解中は常にSb濃度が0.25g/L以下に保持されるように制御した。具体的には、必要なときに電解液を取り出して、実施形態でも述べたキレート樹脂法でSb成分を除去し、Sb濃度が減少した電解液を再び使用することで、電解液のSb濃度が0.25g/L以下に保持されるように制御した。 The Sb concentration in the electrolytic solution was monitored, and controlled so that the Sb concentration was always maintained at 0.25 g / L or less during the electrolysis. Specifically, the Sb concentration of the electrolytic solution is increased by taking out the electrolytic solution when necessary, removing the Sb component by the chelate resin method described in the embodiment, and using the electrolytic solution having a reduced Sb concentration again. It was controlled to be maintained at 0.25 g / L or less.

また、電解によってカソードに生成した電気銅を採取し、下記式に基づいて電流効率(%)を算出した。
電流効率(%)=(生成された電気銅量/理論電気銅量)×100
Further, the electrolytic copper generated at the cathode by electrolysis was collected, and the current efficiency (%) was calculated based on the following formula.
Current efficiency (%) = (amount of generated electrolytic copper / theoretical amount of electrolytic copper) x 100

(比較例1)
銅品位99質量%の板状の粗銅をアノードとし、ステンレス板をカソードとして、以下の条件により電解液中で電解分解を行った。
・アノードの粗銅中のSb濃度(Sb品位):200~240ppm
・電解液の組成:銅40~60g/L、ニッケル15.5~17.0g/L、硫酸:120~220g/L、砒素:3~10g/L、アンチモン:0.26~0.29g/L、ビスマス:0.1~0.5g/L
・電流密度:320~322A/m2
(Comparative Example 1)
A plate-shaped blister copper having a copper grade of 99% by mass was used as an anode, and a stainless steel plate was used as a cathode, and electrolytic decomposition was carried out in an electrolytic solution under the following conditions.
-Sb concentration (Sb grade) in blister copper of the anode: 200 to 240 ppm
-Composition of electrolytic solution: copper 40 to 60 g / L, nickel 15.5 to 17.0 g / L, sulfuric acid: 120 to 220 g / L, arsenic: 3 to 10 g / L, antimony: 0.26 to 0.29 g / L, bismuth: 0.1-0.5 g / L
-Current density: 320 to 322 A / m 2

電解液中のSb濃度はモニターしておき、電解中は常にSb濃度が0.26g/L以上に保持されるように制御した。
また、実施例1と同様にして電流効率を算出した。
The Sb concentration in the electrolytic solution was monitored, and controlled so that the Sb concentration was always maintained at 0.26 g / L or more during the electrolysis.
In addition, the current efficiency was calculated in the same manner as in Example 1.

実施例1及び比較例1の評価結果を図1、2に示す。図1は実施例1に係る電解液中のSb濃度0.23~0.25g/Lにおける、電流効率-アノード中Sb品位のグラフである。より具体的には、図1における電流効率は、表1に示すように、アノード中Sb品位ごとの平均電流効率を示す。図2は比較例1に係る電解液中のSb濃度0.26~0.29g/Lにおける電流効率-アノード中Sb品位のグラフである。 The evaluation results of Example 1 and Comparative Example 1 are shown in FIGS. 1 and 2. FIG. 1 is a graph of current efficiency-Sb quality in anode at an Sb concentration of 0.23 to 0.25 g / L in the electrolytic solution according to Example 1. More specifically, the current efficiency in FIG. 1 indicates the average current efficiency for each Sb grade in the anode, as shown in Table 1. FIG. 2 is a graph of current efficiency at an Sb concentration of 0.26 to 0.29 g / L in the electrolytic solution according to Comparative Example 1-Sb quality in the anode.

Figure 0007041275000001
Figure 0007041275000001

このように、実施例1はSbを含む粗銅をアノードとして用い、電解液中のSb濃度を0.25g/L以下に保持しながら電解を行うことで、アノード中Sb品位が200ppmを超えても電流効率に変化はなく、270ppm以上と高くても操業期間の平均電流効率が96%以上と良好であった。また、製造した電気銅にSbが形成したSS(懸濁物質)起因のコブの発生はなかった。
一方、比較例1はSbを含む粗銅をアノードとして用い、電解液中のSb濃度を0.25g/Lを超えて保持しながら電解を行った場合であるが、アノード中Sb品位が高くなるほど電流効率が悪化する傾向となり、試験結果から得られる回帰直線を外挿した場合に、アノード中Sb品位が200ppm以上の場合に電流効率が低下する傾向がみられ、270ppm以上と高い場合、電流効率が96%を下回る結果となった。
As described above, in Example 1, blister copper containing Sb is used as an anode, and electrolysis is performed while keeping the Sb concentration in the electrolytic solution at 0.25 g / L or less, so that even if the Sb quality in the anode exceeds 200 ppm. There was no change in the current efficiency, and even if it was as high as 270 ppm or more, the average current efficiency during the operating period was as good as 96% or more. In addition, no bumps were generated due to SS (suspended solids) formed by Sb on the produced electrolytic copper.
On the other hand, Comparative Example 1 is a case where blister copper containing Sb is used as an anode and electrolysis is performed while maintaining the Sb concentration in the electrolytic solution in excess of 0.25 g / L. The higher the Sb quality in the anode, the higher the current. The efficiency tends to deteriorate, and when the regression line obtained from the test results is extrapolated, the current efficiency tends to decrease when the Sb quality in the anode is 200 ppm or more, and when it is as high as 270 ppm or more, the current efficiency tends to decrease. The result was less than 96%.

Claims (2)

Sbを含む粗銅をアノードとして用い、電解液中のSb濃度を0.25g/L以下に保持しながら電解を行う工程を含み、
前記アノード中のSb濃度が200ppm以上であり、
前記電解における電流密度が300~360A/m 2 であり、
前記電解における下記式で規定される電流効率が96%以上である電気銅の製造方法。
電流効率(%)=(生成された電気銅量/理論電気銅量)×100
It includes a step of performing electrolysis while keeping the Sb concentration in the electrolytic solution at 0.25 g / L or less by using blister copper containing Sb as an anode.
The Sb concentration in the anode is 200 ppm or more, and the concentration is 200 ppm or more.
The current density in the electrolysis is 300 to 360 A / m 2 , and the current density is 300 to 360 A / m 2.
A method for producing electrolytic copper in which the current efficiency specified by the following formula in the electrolysis is 96% or more .
Current efficiency (%) = (amount of generated electrolytic copper / theoretical amount of electrolytic copper) x 100
前記電解液が硫酸銅水溶液である請求項1に記載の電気銅の製造方法。 The method for producing electrolytic copper according to claim 1, wherein the electrolytic solution is an aqueous solution of copper sulfate.
JP2020541325A 2018-09-07 2019-09-06 How to make electrolytic copper Active JP7041275B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018167957 2018-09-07
JP2018167957 2018-09-07
PCT/JP2019/035274 WO2020050418A1 (en) 2018-09-07 2019-09-06 Method for producing electrolytic copper

Publications (2)

Publication Number Publication Date
JPWO2020050418A1 JPWO2020050418A1 (en) 2021-05-13
JP7041275B2 true JP7041275B2 (en) 2022-03-23

Family

ID=69723207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020541325A Active JP7041275B2 (en) 2018-09-07 2019-09-06 How to make electrolytic copper

Country Status (3)

Country Link
JP (1) JP7041275B2 (en)
CN (1) CN112654736B (en)
WO (1) WO2020050418A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231363A (en) 2006-03-01 2007-09-13 Nikko Kinzoku Kk Process for electrolytic refining of copper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE347999B (en) * 1970-05-28 1972-08-21 Boliden Ab
FI57619C (en) * 1977-10-11 1980-09-10 Outokumpu Oy FOERFARANDE FOER SELEKTIVT AVLAEGSNANDE AV VISMUT OCH ANTIMON UR ELEKTROLYT SPECIELLT VID ELEKTROLYTISK RENING AV KOPPAR
CN1028658C (en) * 1992-12-02 1995-05-31 北京有色金属研究总院 Technology of purifying copper electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231363A (en) 2006-03-01 2007-09-13 Nikko Kinzoku Kk Process for electrolytic refining of copper

Also Published As

Publication number Publication date
JPWO2020050418A1 (en) 2021-05-13
WO2020050418A1 (en) 2020-03-12
CN112654736A (en) 2021-04-13
CN112654736B (en) 2024-01-16

Similar Documents

Publication Publication Date Title
US8308932B2 (en) Method of recovering valuable metals from IZO scrap
CN109485023B (en) Method for recovering tellurium from copper-tellurium-containing waste liquid
CN106757179B (en) A kind of process of cupric electrolysis tail washings purification decopper(ing) removal of impurities
CN101608336A (en) A kind of method that realizes electric plating sludge resource
JP2013147686A (en) Method of producing bismuth anode for use in electrolytic refining
JP7041275B2 (en) How to make electrolytic copper
JP6816076B2 (en) How to make electrolytic copper
JP6172526B2 (en) Adjustment method of copper concentration of chlorine leachate in nickel chlorine leaching process
WO2019107287A1 (en) Method for producing electrolytic copper
JP5471735B2 (en) Method for removing tin and thallium and method for purifying indium
JP2008106348A (en) Method of separating and recovering zinc
JP2019070171A (en) Method for managing copper electrolyte and method for producing electrolytic copper
AU735636B2 (en) Polyacrylic acid additives for copper electrorefining and electrowinning
CN102888624A (en) Method for producing superfine zinc powder by performing cyclone electrolyzing on zinc-containing alkali liquor
JP6358161B2 (en) Method for producing indium metal
CN110923467A (en) Method for recycling lead from waste lead-acid battery
JP7089862B2 (en) Copper electrorefining method
JP7022332B2 (en) Copper removal electrolytic treatment method, copper removal electrolytic treatment equipment
JP6453743B2 (en) Method for electrolytic purification of lead using sulfamic acid bath
JP2017214612A (en) Electrolytic refining method for copper
JP2005187833A (en) Electrolytic refining method for metal
WO2024078938A2 (en) Additive-free cu electrowinning
CN113564637A (en) Method for electrolyzing high-arsenic anode plate at low current density
JP4952203B2 (en) Method for preventing formation of floating slime in electrolytic copper refining
CN117210877A (en) Method for reducing silver content in cathode copper and electrolytic copper material prepared by method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220310

R151 Written notification of patent or utility model registration

Ref document number: 7041275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350