JP7033997B2 - Exposure equipment and manufacturing method of articles - Google Patents

Exposure equipment and manufacturing method of articles Download PDF

Info

Publication number
JP7033997B2
JP7033997B2 JP2018077797A JP2018077797A JP7033997B2 JP 7033997 B2 JP7033997 B2 JP 7033997B2 JP 2018077797 A JP2018077797 A JP 2018077797A JP 2018077797 A JP2018077797 A JP 2018077797A JP 7033997 B2 JP7033997 B2 JP 7033997B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
exposure
substrate
time
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018077797A
Other languages
Japanese (ja)
Other versions
JP2019184928A (en
Inventor
覚 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018077797A priority Critical patent/JP7033997B2/en
Priority to KR1020190038795A priority patent/KR102476743B1/en
Publication of JP2019184928A publication Critical patent/JP2019184928A/en
Application granted granted Critical
Publication of JP7033997B2 publication Critical patent/JP7033997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70833Mounting of optical systems, e.g. mounting of illumination system, projection system or stage systems on base-plate or ground
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、露光装置、および物品の製造方法に関する。 The present invention relates to an exposure apparatus and a method for manufacturing an article.

半導体露光装置は、異なる種類のパターンを有する原版を基板に転写する。高集積度の回路を作成するためには、解像性能だけでなく重ね合わせ精度を向上させることが不可欠である。 The semiconductor exposure apparatus transfers an original plate having different types of patterns to a substrate. In order to create a circuit with a high degree of integration, it is indispensable to improve not only the resolution performance but also the overlay accuracy.

従来、重ね合わせ精度を向上させるために、光学素子の位置を微調整する方法がとられている。光学素子の位置を調整する方法としては、大きく分けて以下の2通りがある。
(1)光学設計を満足する位置に各光学素子を位置決めする。
(2)露光装置の使用時における変動(露光による熱の影響、気圧変動の影響等)によって生じる収差等を打ち消す位置に、その都度修正しながら位置決めする。
Conventionally, in order to improve the superposition accuracy, a method of finely adjusting the position of the optical element has been adopted. There are roughly two methods for adjusting the position of the optical element as follows.
(1) Position each optical element at a position that satisfies the optical design.
(2) Positioning is performed while correcting each time to a position that cancels aberrations and the like caused by fluctuations during use of the exposure apparatus (effects of heat due to exposure, effects of atmospheric pressure fluctuations, etc.).

特許文献1には、光学素子の位置の調整を行うためのアクチュエータとして圧電素子を用いることが記載されている。 Patent Document 1 describes that a piezoelectric element is used as an actuator for adjusting the position of the optical element.

特開2005-175271号公報Japanese Unexamined Patent Publication No. 2005-175271

しかし近年では、精度向上の要求から、基板上のショット領域を露光した後、次のショット領域の露光を開始するまでの間に位置を微調整する必要がある。さらに、その調整量が大きくなる傾向もあり、それに伴って圧電素子の伸縮ストロークが延びることとなる。また、生産性向上の要求から、ショット領域への露光と次のショット領域への露光との間の時間間隔を短くする必要があり、それに伴って圧電素子の伸縮速度を速めることが求められている。 However, in recent years, due to the demand for improved accuracy, it is necessary to finely adjust the position between the exposure of the shot region on the substrate and the start of the exposure of the next shot region. Further, the adjustment amount tends to be large, and the expansion / contraction stroke of the piezoelectric element is extended accordingly. Further, in order to improve productivity, it is necessary to shorten the time interval between the exposure to the shot region and the exposure to the next shot region, and it is required to increase the expansion / contraction speed of the piezoelectric element accordingly. There is.

一方で、圧電素子はその全長を変化させる際に、両端にかかる電圧を変化させるが、伸縮速度が速まると、両端にかかる電圧の変化も大きくなる。一般に、単位時間あたりの電圧変化が大きいほど、圧電素子の疲労破壊が早まることが分かっている。 On the other hand, when the total length of the piezoelectric element is changed, the voltage applied to both ends is changed, but as the expansion / contraction speed increases, the change in the voltage applied to both ends also increases. In general, it is known that the larger the voltage change per unit time, the faster the fatigue fracture of the piezoelectric element.

本発明は、例えば、光学素子の位置決めに用いられる圧電素子の長寿命化に有利な技術を提供することを目的とする。 An object of the present invention is to provide, for example, a technique advantageous for extending the life of a piezoelectric element used for positioning an optical element.

本発明の一側面によれば、基板の複数のショット領域のそれぞれに露光を行う露光装置であって、前記基板を保持して移動する基板ステージと、前記基板ステージによって保持された前記基板の前記複数のショット領域のそれぞれに原版のパターンを投影する投影光学系と、印加された電圧に応じて変位し、該変位により前記投影光学系に含まれる光学素子を駆動する圧電素子と、前記複数のショット領域のうちの第1ショット領域への露光と該第1ショット領域の次の露光対象である第2ショット領域への露光との間における前記基板ステージの駆動プロファイルに従って定まる時間内に前記光学素子が整定されるように前記圧電素子の駆動プロファイルを決定する制御部とを有し、前記制御部は、前記圧電素子の駆動プロファイルを、前記光学素子の駆動量が小さいほど前記圧電素子に印加する電圧の変化が小さくなるように決定することを特徴とする露光装置が提供される。 According to one aspect of the present invention, an exposure device that exposes each of a plurality of shot regions of a substrate, the substrate stage that holds and moves the substrate, and the substrate that is held by the substrate stage. A projection optical system that projects an original pattern onto each of a plurality of shot regions, a piezoelectric element that is displaced according to an applied voltage and drives an optical element included in the projection optical system by the displacement, and the plurality of The optical element within a time determined according to the drive profile of the substrate stage between the exposure to the first shot region of the shot region and the exposure to the second shot region which is the next exposure target of the first shot region. It has a control unit that determines the drive profile of the piezoelectric element so that An exposure device is provided that is characterized in that the change in voltage is determined to be small.

本発明によれば、例えば、光学素子の位置決めに用いられる圧電素子の長寿命化に有利な技術を提供することができる。 According to the present invention, for example, it is possible to provide a technique advantageous for extending the life of a piezoelectric element used for positioning an optical element.

実施形態における露光装置の構成を示す図。The figure which shows the structure of the exposure apparatus in embodiment. 実施形態における保持装置の構成を示す図。The figure which shows the structure of the holding device in embodiment. 実施形態における駆動部の回路構成を示す図。The figure which shows the circuit structure of the drive part in an embodiment. 露光時の基板ステージの軌跡の例を示す図。The figure which shows the example of the locus of a substrate stage at the time of exposure. 露光時の圧電素子の制御を説明する図。The figure explaining the control of the piezoelectric element at the time of exposure.

以下、図面を参照して本発明の実施形態について詳細に説明する。なお、以下の実施形態は本発明の実施の具体例を示すにすぎないものであり、本発明は以下の実施形態に限定されるものではない。また、以下の実施形態の中で説明されている特徴の組み合わせの全てが本発明の課題解決のために必須のものであるとは限らない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that the following embodiments merely show specific examples of the embodiment of the present invention, and the present invention is not limited to the following embodiments. In addition, not all combinations of features described in the following embodiments are essential for solving the problems of the present invention.

図1は、実施形態における露光装置1の構成を示す図である。露光装置1は、基板の複数のショット領域のそれぞれに露光を行う露光装置であり、本実施形態では、スリット光により基板を走査露光するステップ・アンド・スキャン方式の走査型露光装置である。露光装置1は、照明光学系10と、マスクステージ12と、投影光学系13と、基板ステージ15と、制御装置22とを含む。制御装置22は、例えば、CPUやメモリを含むコンピュータ装置によって構成され、露光装置1を統括的に制御する。すなわち、制御装置22は、原版であるマスク11に形成されたパターンを基板14に転写する処理(基板14を走査露光する処理)を制御する。 FIG. 1 is a diagram showing a configuration of an exposure apparatus 1 according to an embodiment. The exposure apparatus 1 is an exposure apparatus that exposes each of a plurality of shot regions of a substrate, and in the present embodiment, it is a step-and-scan scan type exposure apparatus that scans and exposes a substrate with slit light. The exposure device 1 includes an illumination optical system 10, a mask stage 12, a projection optical system 13, a substrate stage 15, and a control device 22. The control device 22 is composed of, for example, a computer device including a CPU and a memory, and controls the exposure device 1 in an integrated manner. That is, the control device 22 controls the process of transferring the pattern formed on the mask 11 which is the original plate to the substrate 14 (the process of scanning and exposing the substrate 14).

照明光学系10は、それに含まれるマスクキングブレードなどの遮光部材により、光源(不図示)から射出された光を、例えばX方向に長い帯状または円弧状の形状を有するスリット光に整形し、そのスリット光でマスク11の一部を照明する。マスク11および基板14は、マスクステージ12および基板ステージ15によってそれぞれ保持されており、投影光学系13を介して光学的にほぼ共役な位置(投影光学系13の物体面および像面)にそれぞれ配置される。投影光学系13は、基板ステージ15によって保持された基板14の複数のショット領域のそれぞれにマスク11のパターンを投影する。具体的には、投影光学系13は、所定の投影倍率(例えば1/2倍や1/4倍)を有し、マスク11に形成されたパターンをスリット光により基板上に投影する。マスク上のパターンが投影された基板上の領域(スリット光が照射する領域)を、以下では照射領域と称する。そして、マスクステージ12および基板ステージ15は、投影光学系13の光軸方向(Z方向)に直交する方向(本実施形態ではY方向)に移動可能に構成されており、互いに同期しながら投影光学系13の投影倍率に応じた速度比で相対的に走査される。これにより、照射領域を基板上でY方向に走査させて、マスク11に形成されたパターンを基板上のショット領域に転写することができる。そして、このような走査露光を、基板ステージ15を移動させながら、基板上における複数のショット領域の各々について順次繰り返すことにより、1枚の基板14における露光処理を完了させることができる。 The illumination optical system 10 uses a light-shielding member such as a mask king blade included in the illumination optical system 10 to shape the light emitted from a light source (not shown) into slit light having a long strip or arc shape in the X direction, for example. A part of the mask 11 is illuminated with the slit light. The mask 11 and the substrate 14 are held by the mask stage 12 and the substrate stage 15, respectively, and are arranged at substantially conjugate positions (object plane and image plane of the projection optical system 13) via the projection optical system 13, respectively. Will be done. The projection optical system 13 projects the pattern of the mask 11 onto each of the plurality of shot regions of the substrate 14 held by the substrate stage 15. Specifically, the projection optical system 13 has a predetermined projection magnification (for example, 1/2 times or 1/4 times), and the pattern formed on the mask 11 is projected onto the substrate by slit light. The area on the substrate on which the pattern on the mask is projected (the area irradiated by the slit light) is hereinafter referred to as an irradiation area. The mask stage 12 and the substrate stage 15 are configured to be movable in a direction (Y direction in this embodiment) orthogonal to the optical axis direction (Z direction) of the projection optical system 13, and the projection optics are synchronized with each other. It is relatively scanned at a speed ratio corresponding to the projection magnification of the system 13. As a result, the irradiation region can be scanned in the Y direction on the substrate, and the pattern formed on the mask 11 can be transferred to the shot region on the substrate. Then, by sequentially repeating such scanning exposure for each of the plurality of shot regions on the substrate while moving the substrate stage 15, the exposure process on one substrate 14 can be completed.

投影光学系13は複数の光学素子から構成されており、その一部はアクチュエータにより、位置決めすることができる。図2に、そのような位置決めを行うことのできる、光学素子の保持装置100の構成を示す。保持装置100は、レンズ、平行平板ガラス、プリズム、ミラー、バイナリオプティックス、ホログラム等の光学素子OEを保持する保持装置であって、本実施形態では、露光装置1の投影光学系13を構成するレンズを保持する保持装置として具現化される。但し、保持装置100は、露光装置の照明光学系を構成する光学素子やその他の光学系を構成する光学素子を保持する保持装置としても適用することができる。保持装置100は、図1及び図2に示すように、セル110と、保持部120と、駆動部130と、変位センサ140とを有する。 The projection optical system 13 is composed of a plurality of optical elements, and some of them can be positioned by an actuator. FIG. 2 shows the configuration of the optical element holding device 100 capable of performing such positioning. The holding device 100 is a holding device that holds an optical element OE such as a lens, a parallel flat glass, a prism, a mirror, a binary optics, and a hologram, and in the present embodiment, constitutes a projection optical system 13 of the exposure device 1. It is embodied as a holding device that holds the lens. However, the holding device 100 can also be applied as a holding device for holding an optical element constituting the illumination optical system of the exposure device and other optical elements constituting the optical system. As shown in FIGS. 1 and 2, the holding device 100 includes a cell 110, a holding unit 120, a driving unit 130, and a displacement sensor 140.

セル110は、光学素子OEの光軸を中心とするリング状部材である。セル110は、例えば、接着材を介して、光学素子OEと結合し、後述する駆動部130によって駆動される可動体(物体)として機能する。セル110は、本実施形態では、保持部120に載置される。 The cell 110 is a ring-shaped member centered on the optical axis of the optical element OE. The cell 110 functions as a movable body (object) that is coupled to the optical element OE via an adhesive and is driven by a drive unit 130 described later, for example. In this embodiment, the cell 110 is placed on the holding unit 120.

保持部120は、光学素子OEと結合したセル110を投影光学系13の鏡筒に固定する固定ブロックである。保持部120は、例えば、光学素子OEの光軸を中心として120度ピッチ(等間隔)で円周上に配置される3つの載置部を介して、セル110を載置する。換言すれば、保持部120は、セル110を介して、光学部材OEを保持する。 The holding portion 120 is a fixed block for fixing the cell 110 coupled to the optical element OE to the lens barrel of the projection optical system 13. The holding portion 120 mounts the cell 110 via, for example, three mounting portions arranged on the circumference at a pitch of 120 degrees (equally spaced) about the optical axis of the optical element OE. In other words, the holding unit 120 holds the optical member OE via the cell 110.

駆動部130は、セル110と連結し、保持部120に対して光学素子OEを上下方向(Z方向)及び傾斜方向(θx方向、θy方向)に駆動する。換言すれば、駆動部130は、光学素子OEを駆動して、投影光学系13における光学素子OEの位置決め及び位置調整を行う駆動装置として機能する。駆動部130は、本実施形態では、光学素子OEの光軸を中心として120度ピッチ(等間隔)で円周上に配置される。これにより、駆動部130は、Z方向、θx方向及びθy方向の3軸駆動を実現することができる。 The drive unit 130 is connected to the cell 110 and drives the optical element OE with respect to the holding unit 120 in the vertical direction (Z direction) and the tilt direction (θx direction, θy direction). In other words, the drive unit 130 functions as a drive device that drives the optical element OE to position and adjust the position of the optical element OE in the projection optical system 13. In the present embodiment, the drive unit 130 is arranged on the circumference at a pitch of 120 degrees (equally spaced) about the optical axis of the optical element OE. As a result, the drive unit 130 can realize three-axis drive in the Z direction, the θx direction, and the θy direction.

変位センサ140は、光学素子OEの変位を測定するセンサである。変位センサ140は、本実施形態では、図2に示すように、Z方向(図2の紙面に対して垂直な方向)に配置された3つのセンサ140として構成される。変位センサ140の測定結果(即ち、光学素子OEの変位)を駆動部130にフィードバックさせることで、投影光学系における光学素子OEの位置決め及び位置調整を制御することが可能となる。Z方向に配置された3つのセンサ140によって、光学素子OEにおけるZ方向、θx方向及びθy方向の3軸の位置を制御することができる。 The displacement sensor 140 is a sensor that measures the displacement of the optical element OE. In the present embodiment, the displacement sensor 140 is configured as three sensors 140 arranged in the Z direction (direction perpendicular to the paper surface of FIG. 2) as shown in FIG. By feeding back the measurement result of the displacement sensor 140 (that is, the displacement of the optical element OE) to the drive unit 130, it is possible to control the positioning and position adjustment of the optical element OE in the projection optical system. The three sensors 140 arranged in the Z direction can control the positions of the three axes in the Z direction, the θx direction, and the θy direction in the optical element OE.

以下、駆動部130の具体的な構成について詳細に説明する。図3は、実施形態における駆動部130の回路構成を示す図である。図3において、駆動部130は、複数の圧電素子310a,310b,310cと、複数の電圧印加部320a,320b,320cと、制御部330とを有する。圧電素子は、以下に説明するように、印加された電圧に応じて変位し、該変位により投影光学系に含まれる光学素子を駆動するものである。 Hereinafter, a specific configuration of the drive unit 130 will be described in detail. FIG. 3 is a diagram showing a circuit configuration of the drive unit 130 in the embodiment. In FIG. 3, the drive unit 130 includes a plurality of piezoelectric elements 310a, 310b, 310c, a plurality of voltage application units 320a, 320b, 320c, and a control unit 330. As described below, the piezoelectric element is displaced according to the applied voltage, and the displacement drives the optical element included in the projection optical system.

複数の圧電素子310a,310b,310cは、例えば、容量性負荷となる圧電素子である。圧電素子310aは、第1端子312aと第2端子314aを有する。同じく、圧電素子310bは、第1端子312bと第2端子314bを有し、圧電素子310cは、第1端子312cと第2端子314cを有する。圧電素子310aは、第1端子312aと第2端子314aとの間に印加される電圧によって伸縮する。同じく、圧電素子310bは、第1端子312bと第2端子314bとの間に印加される電圧によって伸縮し、圧電素子310cは、第1端子312cと第2端子314cとの間に印加される電圧によって伸縮する。これにより、複数の圧電素子310a,310b,310cは、セル10を介して、光学素子OEの複数の部分をそれぞれ駆動する。複数の圧電素子310a,310b,310cそれぞれの伸縮量(即ち、光学素子OEの駆動量)は、複数の圧電素子310a,310b,310cにそれぞれ印加される電圧によって制御されうる。 The plurality of piezoelectric elements 310a, 310b, 310c are, for example, piezoelectric elements that serve as a capacitive load. The piezoelectric element 310a has a first terminal 312a and a second terminal 314a. Similarly, the piezoelectric element 310b has a first terminal 312b and a second terminal 314b, and the piezoelectric element 310c has a first terminal 312c and a second terminal 314c. The piezoelectric element 310a expands and contracts due to the voltage applied between the first terminal 312a and the second terminal 314a. Similarly, the piezoelectric element 310b expands and contracts due to the voltage applied between the first terminal 312b and the second terminal 314b, and the piezoelectric element 310c is the voltage applied between the first terminal 312c and the second terminal 314c. Stretches by. As a result, the plurality of piezoelectric elements 310a, 310b, and 310c each drive the plurality of portions of the optical element OE via the cell 10. The expansion / contraction amount of each of the plurality of piezoelectric elements 310a, 310b, 310c (that is, the driving amount of the optical element OE) can be controlled by the voltage applied to the plurality of piezoelectric elements 310a, 310b, 310c, respectively.

複数の電圧印加部320a,320b,320cは、それぞれ複数の圧電素子310a,310b,310cの第1端子312a,312b,312cと第2端子314a,314b,314cとの間に電圧を印加する。複数の電圧印加部320a,320b,320cは、例えば、増幅器(アンプ)により構成される。 The plurality of voltage application units 320a, 320b, 320c apply a voltage between the first terminals 312a, 312b, 312c and the second terminals 314a, 314b, 314c of the plurality of piezoelectric elements 310a, 310b, 310c, respectively. The plurality of voltage application units 320a, 320b, 320c are configured by, for example, an amplifier.

制御部330は、複数の圧電素子310a,310b,310cにそれぞれ印加される電圧の変化を抑制するように複数の電圧印加部320a,320b,320cを制御する。換言すれば、制御部330は、圧電素子310aに印加される電圧と、圧電素子310bに印加される電圧と、圧電素子310cに印加される電圧との間の差(電位差)の変化を抑制するように制御する。これにより、ある圧電素子の端子間の電圧変化を抑制し、圧電素子の変位の急激な変化を防止する。 The control unit 330 controls the plurality of voltage application units 320a, 320b, 320c so as to suppress changes in the voltage applied to the plurality of piezoelectric elements 310a, 310b, 310c, respectively. In other words, the control unit 330 suppresses a change in the difference (potential difference) between the voltage applied to the piezoelectric element 310a, the voltage applied to the piezoelectric element 310b, and the voltage applied to the piezoelectric element 310c. To control. As a result, the voltage change between the terminals of a certain piezoelectric element is suppressed, and the sudden change in the displacement of the piezoelectric element is prevented.

露光装置1では、マスク11のパターンを正確に基板上に転写することが求められている。そのためには投影光学系13の各光学素子を、光学設計を満足する位置に位置決めしつつ、更に露光装置の使用時における変動(露光による熱の影響、気圧変動の影響等)によって生じる収差などを打ち消す位置に、その都度修正して位置決めする必要がある。 The exposure apparatus 1 is required to accurately transfer the pattern of the mask 11 onto the substrate. For that purpose, while positioning each optical element of the projection optical system 13 at a position that satisfies the optical design, aberrations and the like caused by fluctuations during use of the exposure apparatus (effects of heat due to exposure, effects of atmospheric pressure fluctuations, etc.) are further detected. It is necessary to correct and position the position to cancel each time.

図4は、基板14上に形成されている第1ショット領域201、第2ショット領域202、第3ショット領域203を順次露光する際の基板ステージ15の軌道の例を示す図である。第1ショット領域201の露光が完了した後に、基板ステージ15を加減速させ、第2ショット領域202を露光する。この時に、投影光学系13内の光学素子も、第1ショット領域201の露光が完了した後、第2ショット領域202の露光が開始される前に、第2ショット領域202に対して最適な位置へ駆動される必要がある。 FIG. 4 is a diagram showing an example of the trajectory of the substrate stage 15 when the first shot region 201, the second shot region 202, and the third shot region 203 formed on the substrate 14 are sequentially exposed. After the exposure of the first shot area 201 is completed, the substrate stage 15 is accelerated / decelerated to expose the second shot area 202. At this time, the optical element in the projection optical system 13 also has an optimum position with respect to the second shot region 202 after the exposure of the first shot region 201 is completed and before the exposure of the second shot region 202 is started. Need to be driven to.

本実施形態において、制御部330は、第1ショット領域201への露光と次の露光対象である第2ショット領域202への露光との間における基板ステージの駆動プロファイルを保持している。そして制御部330は、この基板ステージの駆動プロファイルに従って定まる時間内に光学素子が整定されるように、圧電素子の駆動プロファイルを決定する。また、制御部330は、圧電素子の駆動プロファイルを、光学素子の駆動量が小さいほど圧電素子に印加する電圧の変化が小さくなるように決定する。以下、具体的に説明する。 In the present embodiment, the control unit 330 holds a drive profile of the substrate stage between the exposure to the first shot region 201 and the exposure to the second shot region 202, which is the next exposure target. Then, the control unit 330 determines the drive profile of the piezoelectric element so that the optical element is set within the time determined according to the drive profile of the substrate stage. Further, the control unit 330 determines the drive profile of the piezoelectric element so that the smaller the drive amount of the optical element, the smaller the change in the voltage applied to the piezoelectric element. Hereinafter, a specific description will be given.

図5の上図は、本実施形態による、第1ショット領域201の露光と次のショット領域である第2ショット領域202の露光との間の期間における、光学素子の位置Pと速度Vを表すグラフである。また、図5の下図は、比較のための、従来技術による光学素子の位置P’と速度V’を表すグラフである。第1ショット領域201の露光終了後、第2ショット領域202の露光開始までの間に、光学素子を、第1ショット領域201の露光に最適な位置P201から第2ショット領域202の露光に最適な位置P202への駆動を完了する必要がある。このとき、圧電素子に必要とされる駆動量L1は、P202-P201として求められる。 The upper figure of FIG. 5 shows the position P and the velocity V of the optical element in the period between the exposure of the first shot region 201 and the exposure of the second shot region 202 which is the next shot region according to the present embodiment. It is a graph. Further, the lower figure of FIG. 5 is a graph showing the position P'and the velocity V'of the optical element according to the prior art for comparison. Between the end of the exposure of the first shot area 201 and the start of the exposure of the second shot area 202, the optical element is optimally used for the exposure of the second shot area 202 from the position P201 which is the most suitable for the exposure of the first shot area 201. It is necessary to complete the drive to position P202. At this time, the drive amount L1 required for the piezoelectric element is obtained as P202-P201.

第1ショット領域201の露光完了から第2ショット領域202の露光開始までの時間Tは、例えば基板ステージ15が第1ショット領域201の露光終了位置から第2ショット領域202の露光開始位置に駆動されるまでの時間によって決まる。 The time T from the completion of the exposure of the first shot area 201 to the start of the exposure of the second shot area 202 is, for example, driven by the substrate stage 15 from the exposure end position of the first shot area 201 to the exposure start position of the second shot area 202. It depends on the time it takes.

図5の下図に示される従来の方法では、圧電素子の駆動量L1の大きさに関わらず、所定の速度V1、加速度A1で圧電素子を駆動していた。このときの圧電素子の変位時間T1と、駆動した際の振動の収束を待つための整定時間T2は、以下の連立方程式から求まる。 In the conventional method shown in the lower part of FIG. 5, the piezoelectric element is driven at a predetermined speed V1 and acceleration A1 regardless of the magnitude of the drive amount L1 of the piezoelectric element. The displacement time T1 of the piezoelectric element at this time and the settling time T2 for waiting for the convergence of the vibration when driven can be obtained from the following simultaneous equations.

L1=A1×T1A×T1A+V1×T1V,
A1×T1A=V1,
T1=T1A×2+T1V,
T=T1+T2
L1 = A1 x T1A x T1A + V1 x T1V,
A1 x T1A = V1,
T1 = T1A × 2 + T1V,
T = T1 + T2

一方、図5の上図に示される本実施形態の方法によれば、必要最小限の整定時間T2MINとして固定すると、圧電素子をL1だけ伸縮させるのに許容される許容時間T1MAXが求まる。 On the other hand, according to the method of the present embodiment shown in the upper figure of FIG. 5, if the setting time is fixed as the minimum necessary setting time T2MIN, the allowable time T1MAX allowed to expand and contract the piezoelectric element by L1 can be obtained.

T=T1MAX+T2MIN T = T1MAX + T2MIN

このとき、圧電素子の変位の加速度A1を固定した場合、以下の連立方程式から、圧電素子に印加される電圧の変化が最小となる速度V1MINが求められ、これに従い圧電素子を駆動する。 At this time, when the acceleration A1 of the displacement of the piezoelectric element is fixed, the velocity V1MIN that minimizes the change in the voltage applied to the piezoelectric element is obtained from the following simultaneous equations, and the piezoelectric element is driven accordingly.

L1=A1×T1A’×T1A’+V1MIN×T1V’,
A1×T1A’=V1MIN,
T1MAX=T1A’×2+T1V’
L1 = A1 x T1A'x T1A'+ V1MIN x T1V',
A1 x T1A'= V1MIN,
T1MAX = T1A'x2 + T1V'

なお、上記の例では、簡単のために加速度A1を固定としたが、加速度が0から所定値(加速度A1)まで変化する時間(ジャーク時間)を定めて、加速度を変化させてもよい。また、要求される光学素子の位置決め精度に応じて、整定時間T2MINを設定してもよい。 In the above example, the acceleration A1 is fixed for the sake of simplicity, but the acceleration may be changed by setting a time (jerk time) for the acceleration to change from 0 to a predetermined value (acceleration A1). Further, the settling time T2MIN may be set according to the required positioning accuracy of the optical element.

この他に、速度が微分連続に変化するように、速度がV1MINとなる瞬間の加速度が0となるように加速度の変化率を定めてもよい。例えば、加速度の時間変化の関数をA(T)とすると、ジャーク時間TJ経過後に、A(TJ)=0となるように定めることで、速度がV1MINとなる瞬間の加速度を0とすることができる。 In addition to this, the rate of change of acceleration may be set so that the acceleration at the moment when the velocity becomes V1MIN becomes 0 so that the velocity changes continuously. For example, if the function of the time change of the acceleration is A (T), the acceleration at the moment when the velocity becomes V1MIN can be set to 0 by setting A (TJ) = 0 after the jerk time TJ elapses. can.

加速度の時間変化関数A(T)に正弦波状のものを用いることもできる。その際に、正弦波の周波数Fを、圧電素子の固有周波数F0と異なる周波数とすることで、圧電素子の疲労破壊をさらに抑制することができる。 A sinusoidal one can also be used for the time change function A (T) of acceleration. At that time, by setting the frequency F of the sine wave to a frequency different from the natural frequency F0 of the piezoelectric element, fatigue failure of the piezoelectric element can be further suppressed.

以上説明した方法によれば、光学素子の位置決め性能を満足しつつ、圧電素子の伸縮速度が最小となるような駆動を実現することができる。これにより、圧電素子の両端に印加される電圧変化が最小化され、圧電素子の寿命にとって有利な駆動方法が実現される。 According to the method described above, it is possible to realize a drive in which the expansion / contraction speed of the piezoelectric element is minimized while satisfying the positioning performance of the optical element. As a result, the voltage change applied to both ends of the piezoelectric element is minimized, and a driving method advantageous for the life of the piezoelectric element is realized.

<物品製造方法の実施形態>
本発明の実施形態に係る物品製造方法は、例えば、半導体デバイス等のマイクロデバイスや微細構造を有する素子等の物品を製造するのに好適である。本実施形態の物品製造方法は、基板に塗布された感光剤に上記の露光装置を用いて潜像パターンを形成する工程(基板を露光する工程)と、かかる工程で潜像パターンが形成された基板を現像する工程とを含む。更に、かかる製造方法は、他の周知の工程(酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等)を含む。本実施形態の物品製造方法は、従来の方法に比べて、物品の性能・品質・生産性・生産コストの少なくとも1つにおいて有利である。
<Embodiment of article manufacturing method>
The article manufacturing method according to the embodiment of the present invention is suitable for manufacturing articles such as microdevices such as semiconductor devices and elements having a fine structure, for example. In the article manufacturing method of the present embodiment, a latent image pattern is formed on the photosensitive agent applied to the substrate by using the above-mentioned exposure apparatus (a step of exposing the substrate), and a latent image pattern is formed in such a step. Includes the process of developing the substrate. Further, such a manufacturing method includes other well-known steps (oxidation, film formation, vapor deposition, doping, flattening, etching, resist peeling, dicing, bonding, packaging, etc.). The article manufacturing method of the present embodiment is advantageous in at least one of the performance, quality, productivity, and production cost of the article as compared with the conventional method.

1:露光装置、10:照明光学系、11:マスク、12:マスクステージ、13:投影光学系、14:基板、15:基板ステージ、22:制御装置 1: Exposure device, 10: Illumination optical system, 11: Mask, 12: Mask stage, 13: Projection optical system, 14: Substrate, 15: Substrate stage, 22: Control device

Claims (8)

基板の複数のショット領域のそれぞれに露光を行う露光装置であって、
前記基板を保持して移動する基板ステージと、
前記基板ステージによって保持された前記基板の前記複数のショット領域のそれぞれに原版のパターンを投影する投影光学系と、
印加された電圧に応じて変位し、該変位により前記投影光学系に含まれる光学素子を駆動する圧電素子と、
前記複数のショット領域のうちの第1ショット領域への露光と該第1ショット領域の次の露光対象である第2ショット領域への露光との間における前記基板ステージの駆動プロファイルに従って定まる時間内に前記光学素子が整定されるように前記圧電素子の駆動プロファイルを決定する制御部と、
を有し、
前記制御部は、前記圧電素子の駆動プロファイルを、前記光学素子の駆動量が小さいほど前記圧電素子に印加する電圧の変化が小さくなるように決定することを特徴とする露光装置。
An exposure device that exposes each of a plurality of shot areas on a substrate.
A board stage that holds and moves the board, and
A projection optical system that projects the pattern of the original plate onto each of the plurality of shot regions of the substrate held by the substrate stage.
A piezoelectric element that displaces according to the applied voltage and drives the optical element included in the projection optical system by the displacement.
Within the time determined according to the drive profile of the substrate stage between the exposure to the first shot region of the plurality of shot regions and the exposure to the second shot region which is the next exposure target of the first shot region. A control unit that determines the drive profile of the piezoelectric element so that the optical element is settled.
Have,
The control unit is an exposure apparatus characterized in that the drive profile of the piezoelectric element is determined so that the change in the voltage applied to the piezoelectric element becomes smaller as the drive amount of the optical element becomes smaller.
前記制御部は、
前記圧電素子の整定時間を固定した場合における、前記光学素子を前記駆動量だけ駆動するのに許容される許容時間を求め、
前記許容時間に基づいて、前記圧電素子に印加する電圧の変化を最小にする前記圧電素子の変位の速度を求める
ことを特徴とする請求項1に記載の露光装置。
The control unit
When the settling time of the piezoelectric element is fixed, the allowable time allowed to drive the optical element by the driving amount is obtained.
The exposure apparatus according to claim 1, wherein the speed of displacement of the piezoelectric element that minimizes a change in voltage applied to the piezoelectric element is obtained based on the allowable time.
前記整定時間は、要求される前記光学素子の位置決め精度に応じて設定されることを特徴とする請求項2に記載の露光装置。 The exposure apparatus according to claim 2, wherein the settling time is set according to the required positioning accuracy of the optical element. 前記制御部は、前記圧電素子の変位の加速度を固定した場合の、前記圧電素子に印加する電圧の変化を最小にする前記圧電素子の変位の速度を求めることを特徴とする請求項2または3に記載の露光装置。 2. The exposure device according to. 前記制御部は、前記圧電素子の変位の加速度を0から所定値まで変化する時間であるジャーク時間を定めて該加速度を変化させた場合の、前記圧電素子に印加する電圧の変化を最小にする前記圧電素子の変位の速度を求めることを特徴とする請求項2または3に記載の露光装置。 The control unit determines a jerk time, which is a time for changing the displacement acceleration of the piezoelectric element from 0 to a predetermined value, and minimizes the change in the voltage applied to the piezoelectric element when the acceleration is changed. The exposure apparatus according to claim 2 or 3, wherein the speed of displacement of the piezoelectric element is obtained. 前記制御部は、前記ジャーク時間を経過した後の前記圧電素子の変位の加速度が0となるように定めることを特徴とする請求項5に記載の露光装置。 The exposure apparatus according to claim 5, wherein the control unit is determined so that the acceleration of displacement of the piezoelectric element after the lapse of the jerk time becomes zero. 前記制御部は、前記加速度を正弦波状の時間変化関数に従って変化させることを特徴とする請求項5または6に記載の露光装置。 The exposure apparatus according to claim 5 or 6, wherein the control unit changes the acceleration according to a sinusoidal time change function. 請求項1乃至7のいずれか1項に記載の露光装置を用いて基板を露光する工程と、
前記工程で前記露光された基板を現像する工程と、
を含み、
前記現像された基板から物品を製造することを特徴とする物品製造方法。
A step of exposing a substrate using the exposure apparatus according to any one of claims 1 to 7.
The step of developing the exposed substrate in the step and the step of developing the exposed substrate,
Including
An article manufacturing method comprising manufacturing an article from the developed substrate.
JP2018077797A 2018-04-13 2018-04-13 Exposure equipment and manufacturing method of articles Active JP7033997B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018077797A JP7033997B2 (en) 2018-04-13 2018-04-13 Exposure equipment and manufacturing method of articles
KR1020190038795A KR102476743B1 (en) 2018-04-13 2019-04-03 Exposure apparatus, and article manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018077797A JP7033997B2 (en) 2018-04-13 2018-04-13 Exposure equipment and manufacturing method of articles

Publications (2)

Publication Number Publication Date
JP2019184928A JP2019184928A (en) 2019-10-24
JP7033997B2 true JP7033997B2 (en) 2022-03-11

Family

ID=68341036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018077797A Active JP7033997B2 (en) 2018-04-13 2018-04-13 Exposure equipment and manufacturing method of articles

Country Status (2)

Country Link
JP (1) JP7033997B2 (en)
KR (1) KR102476743B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331923A (en) 1999-05-24 2000-11-30 Nikon Corp Projecting optical system, method for adjusting image- forming characteristic and projection aligner
JP2003243282A (en) 2002-02-14 2003-08-29 Nikon Corp Stage device and aligner
JP2003288121A (en) 2002-03-28 2003-10-10 Taiheiyo Cement Corp Positioning control method for fine-movement stage device using piezoelectric actuator, and control device
JP2008066540A (en) 2006-09-07 2008-03-21 Canon Inc Exposure apparatus, and method for manufacturing device
JP2012232575A (en) 2011-04-19 2012-11-29 Canon Inc Liquid ejection head and method of driving the same
JP2017167437A (en) 2016-03-17 2017-09-21 キヤノン株式会社 Driving device, lithography device and manufacturing method of article

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359463A (en) * 1989-07-28 1991-03-14 Nec Corp Reference acceleration generating device
JP3720099B2 (en) * 1995-11-10 2005-11-24 株式会社アマダ Method and apparatus for detecting plate thickness in bending machine, bending method and bending machine
KR100393545B1 (en) * 1997-08-29 2003-12-18 삼성전기주식회사 Circuit for preventing noise of inverter
JP2005175271A (en) 2003-12-12 2005-06-30 Canon Inc Driving mechanism, fine moving stage, exposure system, and device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331923A (en) 1999-05-24 2000-11-30 Nikon Corp Projecting optical system, method for adjusting image- forming characteristic and projection aligner
JP2003243282A (en) 2002-02-14 2003-08-29 Nikon Corp Stage device and aligner
JP2003288121A (en) 2002-03-28 2003-10-10 Taiheiyo Cement Corp Positioning control method for fine-movement stage device using piezoelectric actuator, and control device
JP2008066540A (en) 2006-09-07 2008-03-21 Canon Inc Exposure apparatus, and method for manufacturing device
JP2012232575A (en) 2011-04-19 2012-11-29 Canon Inc Liquid ejection head and method of driving the same
JP2017167437A (en) 2016-03-17 2017-09-21 キヤノン株式会社 Driving device, lithography device and manufacturing method of article

Also Published As

Publication number Publication date
KR20190120068A (en) 2019-10-23
KR102476743B1 (en) 2022-12-13
JP2019184928A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
US7218383B2 (en) Holding system, exposure apparatus, and device manufacturing method
JP5311341B2 (en) Proximity exposure apparatus and proximity exposure method
JP3931039B2 (en) Lithographic projection apparatus and device manufacturing method using the same
JP5820905B2 (en) Scanner
US7154581B2 (en) Scanning exposure apparatus, manufacturing method thereof, and device manufacturing method
US7859643B2 (en) Apparatus for moving curved-surface mirror, exposure apparatus and device manufacturing method
JP2020112695A (en) Exposure apparatus, exposure method and method for manufacturing article
JP5206132B2 (en) Optical element holding apparatus, optical system, exposure apparatus, and device manufacturing method
JP2010182866A (en) Electrostatic attraction holding device, aligner, exposure method, and method of manufacturing device
US6069683A (en) Scanning exposure method and apparatus
KR102193387B1 (en) Holding device, projection optical system, exposure device, and article manufacturing method
JP2009194204A (en) Aligner, exposure system, and method of manufacturing device
JP5595015B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
JP7033997B2 (en) Exposure equipment and manufacturing method of articles
US5930324A (en) Exposure apparatus and device manufacturing method using the same
JP7005364B2 (en) Projection optical system, exposure equipment, manufacturing method and adjustment method of articles
JPS6235619A (en) Projection exposure device
TW201400994A (en) Lithographic apparatus and device manufacturing method
US6630986B2 (en) Scanning type exposure apparatus and a device manufacturing method using the same
KR102165797B1 (en) Optical device, exposure device, and manufacturing method of article
JP2009206323A (en) Projection aligner
JP5335965B2 (en) Drive apparatus, exposure apparatus, and device manufacturing method
JP2021089371A (en) Illumination optical system and article manufacturing method
JP2000133580A (en) Aligner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R151 Written notification of patent or utility model registration

Ref document number: 7033997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151