JP7033912B2 - Board processing equipment and board processing method - Google Patents

Board processing equipment and board processing method Download PDF

Info

Publication number
JP7033912B2
JP7033912B2 JP2017246788A JP2017246788A JP7033912B2 JP 7033912 B2 JP7033912 B2 JP 7033912B2 JP 2017246788 A JP2017246788 A JP 2017246788A JP 2017246788 A JP2017246788 A JP 2017246788A JP 7033912 B2 JP7033912 B2 JP 7033912B2
Authority
JP
Japan
Prior art keywords
substrate
drying auxiliary
temperature
auxiliary substance
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017246788A
Other languages
Japanese (ja)
Other versions
JP2019114654A (en
Inventor
洋祐 塙
悠太 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2017246788A priority Critical patent/JP7033912B2/en
Priority to PCT/JP2018/040553 priority patent/WO2019123852A1/en
Priority to TW107139606A priority patent/TW201936277A/en
Publication of JP2019114654A publication Critical patent/JP2019114654A/en
Application granted granted Critical
Publication of JP7033912B2 publication Critical patent/JP7033912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、半導体ウエハ、液晶表示装置や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、セラミック基板、太陽電池用基板などの各種基板(以下、単に「基板」と記載する)に付着した処理液を基板から除去する基板処理装置及び基板処理方法に関する。 The present invention relates to a semiconductor wafer, a substrate for FPD (Flat Panel Display) such as a liquid crystal display device and an organic EL (Electroluminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for an optical magnetic disk, and a glass substrate for a photomask. The present invention relates to a substrate processing apparatus and a substrate processing method for removing a processing liquid adhering to various substrates (hereinafter, simply referred to as “substrate”) such as a ceramic substrate and a substrate for a solar cell from the substrate.

半導体装置や液晶表示装置などの電子部品の製造工程では、液体を使用する様々な湿式処理を基板に対して施した後、湿式処理によって基板に付着した処理液を除去するための乾燥処理を基板に対して施す。 In the manufacturing process of electronic components such as semiconductor devices and liquid crystal displays, various wet treatments using liquids are applied to the substrate, and then a drying treatment is performed to remove the treatment liquid adhering to the substrate by the wet treatment. Apply to.

湿式処理としては、基板表面の汚染物質を除去する洗浄処理が挙げられる。例えば、ドライエッチング工程により、凹凸を有する微細なパターンを形成した基板表面には、反応副生成物(エッチング残渣)が存在している。また、エッチング残渣の他に、基板表面には金属不純物や有機汚染物質等が付着している場合があり、これらの物質を除去するために、基板へ洗浄液を供給する等の洗浄処理を行う。 Examples of the wet treatment include a cleaning treatment for removing contaminants on the surface of the substrate. For example, a reaction by-product (etching residue) is present on the surface of a substrate on which a fine pattern having irregularities is formed by a dry etching step. In addition to the etching residue, metal impurities, organic pollutants, and the like may adhere to the surface of the substrate, and in order to remove these substances, a cleaning treatment such as supplying a cleaning liquid to the substrate is performed.

洗浄処理の後には、洗浄液をリンス液により除去するリンス処理と、リンス液を乾燥する乾燥処理が施される。リンス処理としては、洗浄液が付着した基板表面に対して脱イオン水(DIW:Deionized Water)等のリンス液を供給し、基板表面の洗浄液を除去するリンス処理が挙げられる。その後、リンス液を除去することにより基板を乾燥させる乾燥処理を行う。 After the cleaning treatment, a rinsing treatment for removing the cleaning liquid with a rinsing liquid and a drying treatment for drying the rinsing liquid are performed. Examples of the rinsing treatment include a rinsing treatment in which a rinsing liquid such as Deionized Water (DIW) is supplied to the surface of the substrate to which the cleaning liquid is attached to remove the cleaning liquid on the surface of the substrate. After that, a drying treatment is performed to dry the substrate by removing the rinsing liquid.

近年、基板に形成されるパターンの微細化に伴い、凹凸を有するパターンの凸部に於けるアスペクト比(パターン凸部に於ける高さと幅の比)が大きくなってきている。このため、乾燥処理の際、パターンの凹部に入り込んだ洗浄液やリンス液等の液体と、液体に接する気体との境界面に作用する表面張力や界面自由エネルギーなどの影響により、パターン中の隣接する凸部同士を引き寄せて倒壊させる、いわゆるパターン倒壊の問題がある。 In recent years, with the miniaturization of patterns formed on a substrate, the aspect ratio (ratio of height to width in the convex portion of the pattern) in the convex portion of the pattern having unevenness has increased. Therefore, during the drying process, the liquids such as the cleaning liquid and the rinsing liquid that have entered the recesses of the pattern and the gas in contact with the liquid are adjacent to each other in the pattern due to the influence of surface tension and interfacial free energy acting on the interface. There is a problem of so-called pattern collapse, in which the convex parts are attracted to each other and collapsed.

この様な影響に起因するパターンの倒壊の防止を目的とした乾燥技術として、例えば、下記特許文献1には、構造体(パターン)が形成された基板に溶液を接触させ、当該溶液を固体に変化させてパターンの支持体(凝固体)とし、当該支持体を固相から気相に、液相を経ることなく変化させて除去する方法が開示されている。また、特許文献1には、支持材として、メタクリル系樹脂、スチレン系樹脂及びフッ化炭素系樹脂の少なくとも何れかの昇華性物質を用いることが開示されている。 As a drying technique for the purpose of preventing the collapse of the pattern due to such an influence, for example, in Patent Document 1 below, a solution is brought into contact with a substrate on which a structure (pattern) is formed, and the solution is made into a solid. A method is disclosed in which a support (coagulated body) having a pattern is changed to form a support, and the support is changed from a solid phase to a gas phase and removed without passing through a liquid phase. Further, Patent Document 1 discloses that a sublimable substance of at least one of a methacrylic resin, a styrene resin and a fluorocarbon resin is used as a support material.

特開2013-16699号公報Japanese Unexamined Patent Publication No. 2013-16699

ここで、支持材の除去として加熱処理や紫外線照射、反応性ガス処理やアッシング処理等が挙げられているが、これらの処理において基板付近で酸素分子やOHラジカル(ヒドロキシルラジカル)などが反応すると、基板が酸化してしまい、基板特性を悪化させるという課題がある。 Here, heat treatment, ultraviolet irradiation, reactive gas treatment, ashing treatment, etc. are mentioned as removal of the support material, but when oxygen molecules or OH radicals (hydroxyl radicals) react in the vicinity of the substrate in these treatments, There is a problem that the substrate is oxidized and the characteristics of the substrate are deteriorated.

本発明は上記課題を鑑みなされたものであり、基板の酸化を抑制した上で、基板の表面に形成されたパターンの倒壊を防止しつつ、基板の表面に付着した処理液を除去することができる基板処理装置及び基板処理方法を提供することを目的とする。 The present invention has been made in view of the above problems, and it is possible to remove the treatment liquid adhering to the surface of the substrate while suppressing the oxidation of the substrate and preventing the pattern formed on the surface of the substrate from collapsing. It is an object of the present invention to provide a substrate processing apparatus and a substrate processing method capable of performing the same.

上記目的を達成するため、本発明に係る基板処理装置は、昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給手段と、前記基板表面に前記乾燥補助液に含まれる前記乾燥補助物質を析出させる析出手段と、前記乾燥補助物質を水素ラジカルとの反応により昇華させ、前記基板表面から除去する昇華除去手段と、を備える。 In order to achieve the above object, the substrate treatment apparatus according to the present invention comprises a drying auxiliary liquid supply means for supplying a drying auxiliary liquid in which a sublimating drying auxiliary substance is dissolved in a solvent to a substrate to which the treatment liquid is attached. It is provided with a precipitation means for precipitating the drying auxiliary substance contained in the drying auxiliary liquid on the substrate surface, and a sublimation removing means for sublimating the drying auxiliary substance by reaction with hydrogen radicals and removing the drying auxiliary substance from the substrate surface.

また、本発明に係る基板処理装置において、前記昇華除去手段は、貯留された水素ガスを供給する供給管の開閉を行う水素ガスバルブと、前記供給管を介して管路接続するプラズマ発生部と、を備えることが好ましい。この場合に、前記昇華除去手段は、前記絶縁管内を酸素成分が存在しない雰囲気として放電を発生させることにより水素ラジカルを生成するように構成されていることが好ましい。
また、前記水素ガスバルブの開成により前記水素ガスを前記基板に供給した後、前記プラズマ発生部で放電を開始することが好ましい
Further, in the substrate processing apparatus according to the present invention, the sublimation removing means includes a hydrogen gas valve for opening and closing a supply pipe for supplying stored hydrogen gas, a plasma generating unit connected to the pipeline via the supply pipe, and the like. It is preferable to provide. In this case, it is preferable that the sublimation removing means is configured to generate hydrogen radicals by generating an electric discharge in the insulating tube as an atmosphere in which an oxygen component does not exist.
Further , it is preferable that the hydrogen gas is supplied to the substrate by opening the hydrogen gas valve, and then the discharge is started at the plasma generating portion.

また、本発明に係る基板処理装置において、前記昇華除去手段は、前記基板表面と前記乾燥補助物質を昇温させる加熱手段を備えることが好ましいFurther, in the substrate processing apparatus according to the present invention, it is preferable that the sublimation removing means includes a heating means for raising the temperature of the substrate surface and the drying auxiliary substance.

また、本発明に係る基板処理装置において、前記加熱手段は、少なくとも前記乾燥補助物質の温度を水の沸点よりも高く、前記乾燥補助物質の融点よりも低い温度にすることが好ましい
また、前記加熱手段は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質のガラス転移温度以下の温度にすることが好ましい。
Further, in the substrate processing apparatus according to the present invention, it is preferable that the heating means makes the temperature of the drying auxiliary substance at least higher than the boiling point of water and lower than the melting point of the drying auxiliary substance.
Further, it is preferable that the heating means makes the temperature of the drying auxiliary substance at least higher than the boiling point of water and lower than the glass transition temperature of the drying auxiliary substance.

また、本発明に係る基板処理装置において、前記昇華除去手段によって前記乾燥補助物質を前記基板表面から除去した後、前記加熱手段を停止し、常温または常温より低い温度のガスを前記基板表面に供給することで前記基板表面の温度を常温にする常温化手段をさらに備えることが好ましいFurther, in the substrate processing apparatus according to the present invention, after the drying auxiliary substance is removed from the substrate surface by the sublimation removing means, the heating means is stopped and gas at room temperature or a temperature lower than normal temperature is supplied to the substrate surface. It is preferable to further provide a room temperature raising means for raising the temperature of the substrate surface to room temperature.

また、本発明に係る基板処理方法は、昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給工程と、前記基板表面に前記乾燥補助液に含まれる前記乾燥補助物質を析出させる析出工程と、前記乾燥補助物質を水素ラジカルとの反応により昇華させて、前記基板表面から除去する昇華除去工程と、を備える。
前記昇華除去工程は、貯留された水素ガスを供給する供給管の開閉を行う水素ガスバルブと、前記供給管を介して管路接続する絶縁管内で放電を発生させるプラズマ発生部と、を用い、前記絶縁管内を酸素成分が存在しない雰囲気として放電を発生させることにより水素ラジカルを生成することが好ましい。
前記昇華除去工程は、前記基板表面と前記乾燥補助物質とを昇温させる加熱工程を備え、前記加熱工程は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質の融点よりも低い温度にすることが好ましい。
前記加熱工程は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質のガラス転移温度以下の温度にすることが好ましい。
Further, the substrate treatment method according to the present invention comprises a drying auxiliary liquid supply step of supplying a drying auxiliary liquid in which a sublimating drying auxiliary substance is dissolved in a solvent to a substrate to which the treatment liquid is attached, and a drying auxiliary liquid supply step on the surface of the substrate. The present invention comprises a precipitation step of precipitating the drying auxiliary substance contained in the drying auxiliary liquid, and a sublimation removing step of sublimating the drying auxiliary substance by reaction with a hydrogen radical to remove the drying auxiliary substance from the surface of the substrate.
The sublimation removal step uses a hydrogen gas valve that opens and closes a supply pipe that supplies stored hydrogen gas, and a plasma generation unit that generates an electric discharge in an insulating pipe that is connected to the pipeline via the supply pipe. It is preferable to generate a hydrogen radical by generating an electric discharge in an atmosphere in which an oxygen component does not exist in the insulating tube.
The sublimation removing step includes a heating step of raising the temperature of the substrate surface and the drying auxiliary substance, and the heating step sets the temperature of the drying auxiliary substance at least higher than the boiling point of water to raise the temperature of the drying auxiliary substance. It is preferable to set the temperature lower than the melting point.
In the heating step, it is preferable that the temperature of the drying auxiliary substance is at least higher than the boiling point of water and equal to or lower than the glass transition temperature of the drying auxiliary substance.

本発明によれば、基板の酸化を抑制した上で、基板の表面に形成されたパターンの倒壊を防止しつつ、基板の表面に付着した処理液を除去することができる。 According to the present invention, it is possible to remove the treatment liquid adhering to the surface of the substrate while suppressing the oxidation of the substrate and preventing the pattern formed on the surface of the substrate from collapsing.

本発明に係る基板処理装置の概略構成を示す図である。It is a figure which shows the schematic structure of the substrate processing apparatus which concerns on this invention. 本発明に係る制御ユニットの概略構成を示す図である。It is a figure which shows the schematic structure of the control unit which concerns on this invention. 実施形態に係る気体供給ユニットの概略構成を示す図である。It is a figure which shows the schematic structure of the gas supply unit which concerns on embodiment. 実施形態に係る基板保持部の模式断面図である。It is a schematic cross-sectional view of the substrate holding part which concerns on embodiment. 実施形態に係る基板処理装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the substrate processing apparatus which concerns on embodiment. 実施形態における基板表面の様子を示す図である。It is a figure which shows the state of the substrate surface in an embodiment. 実施形態における基板表面の様子を示す図である。It is a figure which shows the state of the substrate surface in an embodiment. 実施形態における基板表面の様子を示す図である。It is a figure which shows the state of the substrate surface in an embodiment. 実施形態における基板表面の様子を示す図である。It is a figure which shows the state of the substrate surface in an embodiment. 実施形態における基板表面の様子を示す図である。It is a figure which shows the state of the substrate surface in an embodiment.

以下の説明において、基板とは、半導体ウエハ、液晶表示装置や有機EL(Electroluminescence)表示装置などのFPD(Flat Panel Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用ガラス基板、セラミック基板、太陽電池用基板などの各種基板をいう。 In the following description, the substrate is a semiconductor wafer, a substrate for FPD (Flat Panel Display) such as a liquid crystal display device or an organic EL (Electroluminescence) display device, a substrate for an optical disk, a substrate for a magnetic disk, a substrate for an optical magnetic disk, and a photo. Refers to various substrates such as mask glass substrates, ceramic substrates, and solar cell substrates.

以下の説明においては、一方主面のみに回路パターン等(以下「パターン」と記載する)が形成されている基板を例として用いる。ここで、パターンが形成されている主面を「表面」と称し、その反対側のパターンが形成されていない主面を「裏面」と称する。また、下方に向けられた基板の面を「下面」と称し、上方に向けられた基板の面を「上面」と称する。なお、以下においては上面を表面として説明する。 In the following description, a substrate in which a circuit pattern or the like (hereinafter referred to as “pattern”) is formed only on one main surface is used as an example. Here, the main surface on which the pattern is formed is referred to as a "front surface", and the main surface on the opposite side of which the pattern is not formed is referred to as a "back surface". Further, the surface of the substrate facing downward is referred to as "lower surface", and the surface of the substrate facing upward is referred to as "upper surface". In the following, the upper surface will be described as the surface.

以下、本発明の実施の形態を、半導体基板の処理に用いられる基板処理装置を例に採って図面を参照して説明する。なお、本発明は、半導体基板の処理に限らず、液晶表示器用のガラス基板などの各種の基板の処理にも適用することができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking as an example a substrate processing apparatus used for processing a semiconductor substrate. The present invention can be applied not only to the processing of semiconductor substrates but also to the processing of various substrates such as glass substrates for liquid crystal displays.

<実施形態>
図1はこの発明に係る基板処理装置1の構成を示した概略図である。この基板処理装置1は、半導体基板等の基板91(以下、単に「基板91」と記載する)に付着しているパーティクル等の汚染物質(以下「パーティクル等」と記載する)を除去するための洗浄処理、および洗浄処理の後のリンス処理、乾燥処理に用いられる枚葉式の基板処理装置である。
<Embodiment>
FIG. 1 is a schematic view showing the configuration of the substrate processing apparatus 1 according to the present invention. The substrate processing device 1 is for removing contaminants (hereinafter referred to as "particles and the like") such as particles adhering to the substrate 91 (hereinafter, simply referred to as "substrate 91") such as a semiconductor substrate. It is a single-wafer type substrate processing apparatus used for cleaning treatment, rinsing treatment after cleaning treatment, and drying treatment.

なお、基板処理装置1では、洗浄処理やリンス処理に用いるノズル等を図示せず、乾燥処理に用いる部位のみを示す。 In the substrate processing apparatus 1, the nozzles and the like used for the cleaning treatment and the rinsing treatment are not shown, and only the parts used for the drying treatment are shown.

<1-1.基板処理装置の構成>
次に、基板処理装置1の構成について図1を用いて説明する。基板処理装置1は、チャンバ11、制御ユニット13、乾燥補助液供給ユニット21、水素ラジカル供給ユニット31、気体供給ユニット41、モータ51、回転駆動部53、加熱部54、基板保持部55、チャックピン57を備える。また、基板処理装置1は図示しない基板搬入出手段と、図示しないチャックピン開閉機構と、図示しない湿式洗浄手段と、図示しないリンス手段を備える。基板処理装置1の各部について、以下に説明する。
<1-1. Configuration of board processing equipment>
Next, the configuration of the substrate processing apparatus 1 will be described with reference to FIG. The substrate processing device 1 includes a chamber 11, a control unit 13, a drying auxiliary liquid supply unit 21, a hydrogen radical supply unit 31, a gas supply unit 41, a motor 51, a rotary drive unit 53, a heating unit 54, a substrate holding unit 55, and a chuck pin. 57 is provided. Further, the substrate processing device 1 includes a substrate loading / unloading means (not shown), a chuck pin opening / closing mechanism (not shown), a wet cleaning means (not shown), and a rinsing means (not shown). Each part of the substrate processing apparatus 1 will be described below.

図2は、制御ユニット13の構成を示す模式図である。制御ユニット13は、基板処理装置1の各部と電気的に接続しており(図1参照)、各部の動作を制御する。制御ユニット13のハードウエアとしての構成は、一般的なコンピュータと同様のものを採用できる。すなわち、制御ユニット13は、例えば、各種演算処理を行う演算処理部(CPU)15、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAM、およびプログラムやデータなどを記憶しておくHDDからなる記憶部17をバスライン19に接続して構成されている。記憶部17には、基板91の処理内容および処理手順を規定するレシピ、および基板処理装置1の構成に関する装置情報などが記憶されている。 FIG. 2 is a schematic diagram showing the configuration of the control unit 13. The control unit 13 is electrically connected to each part of the substrate processing device 1 (see FIG. 1), and controls the operation of each part. The configuration of the control unit 13 as hardware can be the same as that of a general computer. That is, the control unit 13 is, for example, an arithmetic processing unit (CPU) 15 that performs various arithmetic processing, a ROM that is a read-only memory that stores basic programs, a RAM that is a read / write memory that stores various information, and a program. A storage unit 17 including an HDD for storing data and data is connected to a bus line 19. The storage unit 17 stores recipes that define the processing contents and processing procedures of the substrate 91, device information regarding the configuration of the substrate processing apparatus 1, and the like.

制御ユニット13において、プログラムに記述された手順に従って主制御部としての演算処理部15が演算処理を行うことにより、基板処理装置1の各部を制御する各種の機能部が実現される。もっとも、制御ユニット13において実現される一部あるいは全部の機能部は、専用の論理回路などでハードウエア的に実現されてもよい。 In the control unit 13, various functional units that control each unit of the board processing apparatus 1 are realized by performing arithmetic processing by the arithmetic processing unit 15 as the main control unit according to the procedure described in the program. However, some or all the functional units realized in the control unit 13 may be realized in terms of hardware by a dedicated logic circuit or the like.

図1に戻る。次に、乾燥補助液供給ユニット21について説明する。乾燥補助液供給ユニット21は、基板91へ乾燥補助液を供給するユニットであり、乾燥補助液供給管23、乾燥補助液バルブ25、乾燥補助液ノズル27、乾燥補助液タンク29を備える。 Return to FIG. Next, the drying auxiliary liquid supply unit 21 will be described. The drying auxiliary liquid supply unit 21 is a unit that supplies the drying auxiliary liquid to the substrate 91, and includes a drying auxiliary liquid supply pipe 23, a drying auxiliary liquid valve 25, a drying auxiliary liquid nozzle 27, and a drying auxiliary liquid tank 29.

乾燥補助液タンク29は、乾燥補助液供給管23を介して、乾燥補助液ノズル27と管路接続しており、乾燥補助液供給管23の経路途中には乾燥補助液バルブ25が介挿されている。乾燥補助液タンク29には、乾燥補助物質を溶媒に溶解させた乾燥補助液が貯留されており、図示しないポンプにより乾燥補助液タンク29内の乾燥補助液が加圧され、乾燥補助液供給管23へ送られる。 The drying auxiliary liquid tank 29 is connected to the drying auxiliary liquid nozzle 27 via the drying auxiliary liquid supply pipe 23, and the drying auxiliary liquid valve 25 is inserted in the middle of the path of the drying auxiliary liquid supply pipe 23. ing. A drying auxiliary liquid in which a drying auxiliary substance is dissolved in a solvent is stored in the drying auxiliary liquid tank 29, and the drying auxiliary liquid in the drying auxiliary liquid tank 29 is pressurized by a pump (not shown) to supply a drying auxiliary liquid supply pipe. It will be sent to 23.

乾燥補助液バルブ25は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって乾燥補助液バルブ25の開閉が制御される。乾燥補助液バルブ25が開成すると、乾燥補助液タンク29から乾燥補助液供給管23を通って、乾燥補助液ノズル27から基板91に乾燥補助液が供給される。 The drying auxiliary liquid valve 25 is electrically connected to the control unit 13, and the opening / closing of the drying auxiliary liquid valve 25 is controlled by the operation command of the control unit 13. When the drying auxiliary liquid valve 25 is opened, the drying auxiliary liquid is supplied from the drying auxiliary liquid tank 29 to the substrate 91 from the drying auxiliary liquid nozzle 27 through the drying auxiliary liquid supply pipe 23.

本実施形態における乾燥補助物質は、常温、常圧雰囲気下で固体状態であることが望ましい。例として、メタクリル系樹脂、スチレン系樹脂、フッ炭素系樹脂、ノボラック系樹脂、イソブチレン系樹脂、イソプレン系樹脂、ブタジエン系樹脂、ケイ皮酸ビニル系樹脂、ビニルフェノール系樹脂、シクロオレフィン系樹脂、ポリイミド系樹脂、ベンゾオキサゾール系樹脂などが挙げられる。なお、本実施形態では、イソブチレン系樹脂であるポリイソブチレンを乾燥補助物質として用いる。 It is desirable that the drying auxiliary substance in the present embodiment is in a solid state under a normal temperature and pressure atmosphere. For example, methacrylic resin, styrene resin, fluorocarbon resin, novolak resin, isobutylene resin, isoprene resin, butadiene resin, vinyl silicate resin, vinylphenol resin, cycloolefin resin, Examples thereof include a polyimide resin and a benzoxazole resin. In this embodiment, polyisobutylene, which is an isobutylene resin, is used as a drying auxiliary substance.

本実施形態における乾燥補助物質の溶媒は、乾燥補助物質が溶解性を示し、常温で容易に乾燥が可能であるような液体が好ましい。例として、イソプロピルアルコール(Iso Propyl Alcohol:以下「IPA」と記載する)、メタノール、エタノール、アセトン、ベンゼン、四塩化炭素、クロロホルム、ヘキサン、デカリン、テトラリン、酢酸、シクロヘキサノール、エーテル、ハイドロフルオロエーテル(Hydro Fluoro Ether)、プロピレングリコール1-モノメチルエーテル2-アセタート(PGMEA)、またはN-メチル-2-ピロリドン(NMP)などが挙げられる。また、前記溶媒の他に、脱イオン水(De Ionized Water:以下「DIW」と記載する)を用いることもできる。なお、本実施形態では、乾燥補助物質の溶媒としてIPAを用いる。本実施形態における乾燥補助液とは、ポリイソブチレンをIPAに溶解したポリイソブチレン溶液である。 The solvent of the drying auxiliary substance in the present embodiment is preferably a liquid in which the drying auxiliary substance is soluble and can be easily dried at room temperature. As an example, isopropyl alcohol (Iso propanol Alcohol: hereinafter referred to as "IPA"), methanol, ethanol, acetone, benzene, carbon tetrachloride, chloroform, hexane, decalin, tetralin, acetic acid, cyclohexanol, ether, hydrofluoro ether ( Hydro Euro Ether), propylene glycol 1-monomethyl ether 2-acetate (PGMEA), N-methyl-2-pyrrolidone (NMP) and the like. In addition to the solvent, deionized water (De Ionized Water: hereinafter referred to as "DIW") can also be used. In this embodiment, IPA is used as a solvent for the drying auxiliary substance. The drying auxiliary liquid in the present embodiment is a polyisobutylene solution in which polyisobutylene is dissolved in IPA.

次に、水素ラジカル供給ユニット31について説明する。水素ラジカル供給ユニット31は、基板91へ水素ラジカルを供給するユニットであり、水素ガス供給管33、水素ガスバルブ35、プラズマ発生部37、水素ガスタンク39を備える。 Next, the hydrogen radical supply unit 31 will be described. The hydrogen radical supply unit 31 is a unit that supplies hydrogen radicals to the substrate 91, and includes a hydrogen gas supply pipe 33, a hydrogen gas valve 35, a plasma generation unit 37, and a hydrogen gas tank 39.

水素ガスタンク39は、水素ガス供給管33を介して、プラズマ発生部37と管路接続しており、水素ガス供給管33の経路途中には水素ガスバルブ35が介挿されている。水素ガスタンク39には、水素ガスが貯留されており、図示しない加圧手段により水素ガスタンク39内の水素ガスが加圧され、水素ガス供給管33へ送られる。なお、加圧手段は、ポンプなどによる加圧の他、水素ガスを水素ガスタンク39内に圧縮貯留することによっても実現される。水素ガスタンク39に貯留されるガスは、不活性ガスと混合された水素ガスでもよい。 The hydrogen gas tank 39 is connected to the plasma generating unit 37 via a hydrogen gas supply pipe 33, and a hydrogen gas valve 35 is inserted in the middle of the path of the hydrogen gas supply pipe 33. Hydrogen gas is stored in the hydrogen gas tank 39, and the hydrogen gas in the hydrogen gas tank 39 is pressurized by a pressurizing means (not shown) and sent to the hydrogen gas supply pipe 33. The pressurizing means is realized not only by pressurizing with a pump or the like, but also by compressing and storing hydrogen gas in the hydrogen gas tank 39. The gas stored in the hydrogen gas tank 39 may be hydrogen gas mixed with the inert gas.

水素ガスバルブ35は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって水素ガスバルブ35の開閉が制御される。水素ガスバルブ35が開成すると、水素ガスが水素ガス供給管33を通って、プラズマ発生部37へ供給される。 The hydrogen gas valve 35 is electrically connected to the control unit 13, and the opening and closing of the hydrogen gas valve 35 is controlled by an operation command of the control unit 13. When the hydrogen gas valve 35 is opened, hydrogen gas is supplied to the plasma generation unit 37 through the hydrogen gas supply pipe 33.

プラズマ発生部37は、中空である筒状の絶縁管の周面に図示しない放電電極を備え、放電電極に高電圧を印加して絶縁管内に放電を発生させる。絶縁管の端部は水素ガス供給管33と管路接続しており、放電が発生している絶縁管内に水素ガスが通る。放電箇所に水素ガスが通ることで水素ラジカルが発生し、基板91に水素ラジカルが供給される。なお、プラズマ発生部37は放電箇所に水素ガスを通せばよく、本実施形態の構造に限定しない。 The plasma generation unit 37 is provided with a discharge electrode (not shown) on the peripheral surface of a hollow tubular insulating tube, and a high voltage is applied to the discharge electrode to generate a discharge in the insulated tube. The end of the insulating pipe is connected to the hydrogen gas supply pipe 33 in a pipeline, and hydrogen gas passes through the insulating pipe in which electric discharge is generated. When hydrogen gas passes through the discharge point, hydrogen radicals are generated, and hydrogen radicals are supplied to the substrate 91. The plasma generating unit 37 may pass hydrogen gas through the discharge portion, and is not limited to the structure of the present embodiment.

プラズマ発生部37は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によってプラズマ発生部37の放電電極への高電圧の印加が制御される。 The plasma generation unit 37 is electrically connected to the control unit 13, and the application of a high voltage to the discharge electrode of the plasma generation unit 37 is controlled by an operation command of the control unit 13.

次に、気体供給ユニット41について説明する。気体供給ユニット41は、気体供給管43を介して気体ノズル47と接続しており、気体供給管43へ気体を供給するユニットである。気体供給管43へ供給された気体は、気体ノズル47から基板91の表面へ供給される。 Next, the gas supply unit 41 will be described. The gas supply unit 41 is connected to the gas nozzle 47 via the gas supply pipe 43, and is a unit that supplies gas to the gas supply pipe 43. The gas supplied to the gas supply pipe 43 is supplied from the gas nozzle 47 to the surface of the substrate 91.

図3に、本実施形態における気体供給ユニット41の概略構成を示す。気体供給ユニット41は、窒素ガスバルブ45、窒素ガスタンク49を備える。 FIG. 3 shows a schematic configuration of the gas supply unit 41 in the present embodiment. The gas supply unit 41 includes a nitrogen gas valve 45 and a nitrogen gas tank 49.

窒素ガスタンク49は、気体供給管43と管路接続しており、気体供給管43の経路途中には窒素ガスバルブ45が介挿されている。窒素ガスタンク49には、窒素ガスが貯留されており、図示しない加圧手段により窒素ガスタンク49内の窒素ガスが加圧され、気体供給管43へ送られる。なお、加圧手段は、ポンプなどによる加圧の他、窒素ガスを窒素ガスタンク49内に圧縮貯留することによっても実現される。 The nitrogen gas tank 49 is connected to the gas supply pipe 43 in a pipeline, and a nitrogen gas valve 45 is inserted in the middle of the path of the gas supply pipe 43. Nitrogen gas is stored in the nitrogen gas tank 49, and the nitrogen gas in the nitrogen gas tank 49 is pressurized by a pressurizing means (not shown) and sent to the gas supply pipe 43. The pressurizing means is realized not only by pressurizing with a pump or the like, but also by compressing and storing nitrogen gas in the nitrogen gas tank 49.

窒素ガスバルブ45は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって窒素ガスバルブ45の開閉が制御される。窒素ガスバルブ45が開成すると、気体供給管43を通って、気体ノズル47から基板91に窒素ガスが供給される。 The nitrogen gas valve 45 is electrically connected to the control unit 13, and the opening / closing of the nitrogen gas valve 45 is controlled by an operation command of the control unit 13. When the nitrogen gas valve 45 is opened, nitrogen gas is supplied from the gas nozzle 47 to the substrate 91 through the gas supply pipe 43.

本実施形態では、ここで窒素ガスを用いるが、乾燥補助物質に対して不活性な気体であれば、これに限られない。本実施形態において、窒素ガスの代替となる気体としては、アルゴンガス、またはヘリウムガスが挙げられる。 In the present embodiment, nitrogen gas is used here, but the gas is not limited to this as long as it is a gas inactive with respect to the drying auxiliary substance. In the present embodiment, examples of the gas as an alternative to nitrogen gas include argon gas and helium gas.

図1に戻る。次に、モータ51、回転駆動部53、加熱部54、基板保持部55、およびチャックピン57について説明する。モータ51は、制御ユニット13と電気的に接続しており、制御ユニット13の動作指令によって、回転駆動部53を回転駆動させる。回転駆動部53と基板保持部55は接続しており、回転駆動部53がモータ51によって回転駆動すると、基板保持部55も回転する。 Return to FIG. Next, the motor 51, the rotation drive unit 53, the heating unit 54, the substrate holding unit 55, and the chuck pin 57 will be described. The motor 51 is electrically connected to the control unit 13, and the rotation drive unit 53 is rotationally driven by an operation command of the control unit 13. The rotation drive unit 53 and the substrate holding unit 55 are connected to each other, and when the rotation drive unit 53 is rotationally driven by the motor 51, the substrate holding unit 55 also rotates.

図4は本実施形態における基板保持部55の模式断面図である。基板保持部55の内部には加熱部54が配されている。基板保持部55における保持板56は、基板保持部55の下方に配された回転駆動部53に接続している。加熱部54は回転せず、回転駆動部53を伝った給電軸により制御ユニット13と電気的に接続している。加熱部54は、制御ユニット13の動作指令によって、加熱を行う。なお、加熱部54はコイルへ電流を流すことによる電気誘導加熱や、抵抗加熱などが挙げられるが、特定の加熱方法に限定しない。また、本実施形態における加熱部54は基板保持部55に内蔵されているが、基板保持部55と基板91の間に配してもよく、基板91の裏面に接するよう配してもよい。基板保持部55と共に回転できる構造でもよい。 FIG. 4 is a schematic cross-sectional view of the substrate holding portion 55 in the present embodiment. A heating unit 54 is arranged inside the substrate holding unit 55. The holding plate 56 in the board holding portion 55 is connected to the rotation driving unit 53 arranged below the board holding portion 55. The heating unit 54 does not rotate and is electrically connected to the control unit 13 by a feeding shaft transmitted through the rotation drive unit 53. The heating unit 54 heats according to the operation command of the control unit 13. The heating unit 54 may include electrically induction heating by passing an electric current through the coil, resistance heating, and the like, but the heating unit 54 is not limited to a specific heating method. Further, although the heating unit 54 in the present embodiment is built in the substrate holding unit 55, it may be arranged between the substrate holding unit 55 and the substrate 91, or may be arranged so as to be in contact with the back surface of the substrate 91. It may be a structure that can rotate together with the substrate holding portion 55.

基板保持部55の周縁部付近の上面には、等角度間隔に複数のチャックピン57が配置されている。基板91は、パターンが形成される面を上面に向け、チャックピン57に保持される。各チャックピン57は、図示しないチャックピン開閉機構により、チャックピン57上に載置された基板91の周縁部を保持しない開状態と、基板91の周縁部の下面および外周端面に接触し、基板保持部55の上面から空隙を介して上方の位置に、基板91を支持する閉状態との間で移動可能となっている。複数のチャックピン57によって周縁部が保持されることで、基板91は基板保持部55上で水平な姿勢で保持されることとなる。 A plurality of chuck pins 57 are arranged at equal angle intervals on the upper surface near the peripheral edge portion of the substrate holding portion 55. The substrate 91 is held by the chuck pin 57 with the surface on which the pattern is formed facing the upper surface. Each chuck pin 57 is in contact with the lower surface and the outer peripheral end surface of the peripheral edge portion of the substrate 91 in an open state in which the peripheral edge portion of the substrate 91 mounted on the chuck pin 57 is not held by a chuck pin opening / closing mechanism (not shown). It is movable from the upper surface of the holding portion 55 to a position above the upper surface through the gap with respect to the closed state supporting the substrate 91. By holding the peripheral edge portion by the plurality of chuck pins 57, the substrate 91 is held in a horizontal posture on the substrate holding portion 55.

<1-2.基板処理の工程>
次に、上記のように構成された基板処理装置1における基板処理動作について説明する。ここで、基板91上には、凹凸のパターンが前工程により形成されている。パターンは、凸部および凹部を備えている。凸部は、100~200nmの範囲の高さであり、10~20nmの範囲の幅である。また、隣接する凸部間の距離(凹部の幅)は、10~20nmの範囲である。
<1-2. Substrate processing process>
Next, the substrate processing operation in the substrate processing apparatus 1 configured as described above will be described. Here, an uneven pattern is formed on the substrate 91 by the previous step. The pattern has protrusions and recesses. The convex portion has a height in the range of 100 to 200 nm and a width in the range of 10 to 20 nm. The distance between adjacent convex portions (width of the concave portion) is in the range of 10 to 20 nm.

以下、図1と図5を参照して基板処理の工程を説明する。図5は本実施形態における基板処理装置1の動作を示すフローチャートである。 Hereinafter, the substrate processing process will be described with reference to FIGS. 1 and 5. FIG. 5 is a flowchart showing the operation of the substrate processing apparatus 1 in the present embodiment.

まず、所定の基板91に応じた基板処理プログラム19がオペレータにより実行指示される。その後、基板91を基板処理装置1に搬入する準備として、制御ユニット13が動作指令を行い以下の動作をする。 First, the operator gives an execution instruction to the board processing program 19 corresponding to the predetermined board 91. After that, in preparation for carrying the board 91 into the board processing device 1, the control unit 13 issues an operation command and performs the following operations.

すなわち、回転駆動部53の回転を停止し、チャックピン57は基板91の受け渡しに適した位置へ位置決めする。また、乾燥補助液バルブ25、IPAバルブ35、窒素ガスバルブ45を閉成し、チャックピン57を図示しない開閉機構により開状態とする。 That is, the rotation of the rotation drive unit 53 is stopped, and the chuck pin 57 is positioned at a position suitable for delivery of the substrate 91. Further, the drying auxiliary liquid valve 25, the IPA valve 35, and the nitrogen gas valve 45 are closed, and the chuck pin 57 is opened by an opening / closing mechanism (not shown).

未処理の基板91が、図示しない基板搬入出手段により基板処理装置1内に搬入され、基板保持部55のチャックピン57上に載置されると、図示しない開閉機構によりチャックピン57を閉状態とする。 When the unprocessed substrate 91 is carried into the substrate processing apparatus 1 by a substrate loading / unloading means (not shown) and placed on the chuck pin 57 of the substrate holding portion 55, the chuck pin 57 is closed by an opening / closing mechanism (not shown). And.

未処理の基板91が基板保持部55に保持された後、基板に対して、図示しない湿式洗浄手段により、湿式洗浄工程(S11)を行う。湿式洗浄工程としては、例えば、基板91の表面へSC-1(アンモニア、過酸化水素水、および水を含む液体)やSC-2(塩酸、過酸化水素水、および水を含む液体)などの洗浄液を供給した後、リンス液としてDIWを供給する工程が挙げられる。 After the untreated substrate 91 is held by the substrate holding portion 55, a wet cleaning step (S11) is performed on the substrate by a wet cleaning means (not shown). As a wet cleaning step, for example, SC-1 (liquid containing ammonia, hydrogen peroxide solution, and water) or SC-2 (liquid containing hydrochloric acid, hydrogen peroxide solution, and water) or the like is applied to the surface of the substrate 91. A step of supplying DIW as a rinsing liquid after supplying the cleaning liquid can be mentioned.

なお、本実施形態においては、図示しない湿式洗浄手段により、基板91の表面にSC-1が供給され、基板91の洗浄を行った後、基板91の表面にDIWを供給し、SC-1を除去する。 In the present embodiment, SC-1 is supplied to the surface of the substrate 91 by a wet cleaning means (not shown), and after cleaning the substrate 91, DIW is supplied to the surface of the substrate 91 to supply SC-1. Remove.

次に、DIWが付着している基板91の表面へIPAを供給するIPAリンス工程(S12)を行う。まず、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が図示しないリンス手段により、基板91の表面の中心付近にIPAを供給する。 Next, an IPA rinsing step (S12) for supplying IPA to the surface of the substrate 91 to which the DIW is attached is performed. First, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 supplies the IPA near the center of the surface of the substrate 91 by a rinsing means (not shown).

基板91の表面に供給されたIPAは、基板91が回転することにより生ずる遠心力により、基板91の中心付近から基板91の周縁部に向かって流動し、基板91の表面全面に拡散する。これにより、基板91の表面のDIWをIPAの供給によって置換し、基板91の表面全面がIPAで覆われる。 The IPA supplied to the surface of the substrate 91 flows from the vicinity of the center of the substrate 91 toward the peripheral edge of the substrate 91 due to the centrifugal force generated by the rotation of the substrate 91, and diffuses over the entire surface of the substrate 91. As a result, the DIW on the surface of the substrate 91 is replaced by the supply of IPA, and the entire surface of the substrate 91 is covered with IPA.

次に、基板91の表面へ乾燥補助液を供給する乾燥補助液供給工程(S13)を行う。まず、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が乾燥補助液バルブ25へ動作指令を行い、乾燥補助液バルブ25を開成する。これにより、乾燥補助液を、乾燥補助液タンク29から乾燥補助液供給管23および乾燥補助液ノズル27を介して、基板91の表面の中心付近に供給する。 Next, a drying auxiliary liquid supply step (S13) for supplying the drying auxiliary liquid to the surface of the substrate 91 is performed. First, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 issues an operation command to the drying auxiliary liquid valve 25 to open the drying auxiliary liquid valve 25. As a result, the drying auxiliary liquid is supplied from the drying auxiliary liquid tank 29 to the vicinity of the center of the surface of the substrate 91 via the drying auxiliary liquid supply pipe 23 and the drying auxiliary liquid nozzle 27.

基板91の表面に供給された乾燥補助液は、基板91が回転することにより生ずる遠心力により、基板91の中心付近から基板91の周縁部に向かって流動し、基板91の表面全面に拡散する。乾燥補助液供給工程終了後の基板91の表面の様子を図6に示す。 The drying auxiliary liquid supplied to the surface of the substrate 91 flows from the vicinity of the center of the substrate 91 toward the peripheral edge of the substrate 91 due to the centrifugal force generated by the rotation of the substrate 91, and diffuses over the entire surface of the substrate 91. .. FIG. 6 shows the state of the surface of the substrate 91 after the drying auxiliary liquid supply step is completed.

図6のパターン93は、基板91の表面に形成されており、凸部95と凹部97を備える。図6は、パターン93の凹部97に、乾燥補助液としてのポリイソブチレン溶液61が充填している様子を模式図として示している。後述する析出工程において、基板91の表面にアモルファスの状態で析出するポリイソブチレン63の膜厚を十分厚く保つために、乾燥補助液供給工程において、基板91の回転速度を制御ユニット13により制御し、基板91の表面に形成されるポリイソブチレン溶液61の液膜の膜厚が凸部95の高さよりも厚くなるように調整する。なお、パターン倒壊の防止及び基板91の表面に付着した液体を除去できれば、ポリイソブチレン溶液61の液膜の膜厚を必ずしも凸部95の高さよりも厚くする必要はない。 The pattern 93 of FIG. 6 is formed on the surface of the substrate 91 and includes a convex portion 95 and a concave portion 97. FIG. 6 shows, as a schematic diagram, a state in which the recess 97 of the pattern 93 is filled with the polyisobutylene solution 61 as a drying auxiliary liquid. In the precipitation step described later, in order to keep the film thickness of the polyisobutylene 63 deposited on the surface of the substrate 91 in an amorphous state sufficiently thick, the rotation speed of the substrate 91 is controlled by the control unit 13 in the drying auxiliary liquid supply step. The thickness of the liquid film of the polyisobutylene solution 61 formed on the surface of the substrate 91 is adjusted to be thicker than the height of the convex portion 95. If the pattern collapse can be prevented and the liquid adhering to the surface of the substrate 91 can be removed, the film thickness of the polyisobutylene solution 61 does not necessarily have to be thicker than the height of the convex portion 95.

図5に戻る。乾燥補助液供給工程の終了後、制御ユニット13が乾燥補助液バルブ25へ動作指令を行い、乾燥補助液バルブ25を閉成する。 Return to FIG. After the drying auxiliary liquid supply process is completed, the control unit 13 issues an operation command to the drying auxiliary liquid valve 25 and closes the drying auxiliary liquid valve 25.

次に、析出工程(S14)を行う。まず、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を開成する。これにより、窒素ガスを、窒素ガスタンク49から気体供給管43および気体ノズル47を介して、基板91の表面に供給する。 Next, the precipitation step (S14) is performed. First, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 issues an operation command to the nitrogen gas valve 45 to open the nitrogen gas valve 45. As a result, nitrogen gas is supplied from the nitrogen gas tank 49 to the surface of the substrate 91 via the gas supply pipe 43 and the gas nozzle 47.

本実施形態の窒素ガスには、窒素ガスにおけるIPA蒸気の分圧が、基板91の表面におけるポリイソブチレン溶液の溶媒としてのIPAの蒸気圧よりも低い窒素ガスを使用する。このような窒素ガスの供給により、基板91の表面のIPAが蒸発により除去されると、アモルファス状態のポリイソブチレン63が基板91の表面に析出する。析出工程終了後の基板91の表面の様子を図7に示す。 As the nitrogen gas of the present embodiment, the nitrogen gas whose partial pressure of the IPA vapor in the nitrogen gas is lower than the vapor pressure of the IPA as the solvent of the polyisobutylene solution on the surface of the substrate 91 is used. When the IPA on the surface of the substrate 91 is removed by evaporation by such supply of nitrogen gas, polyisobutylene 63 in an amorphous state is deposited on the surface of the substrate 91. FIG. 7 shows the state of the surface of the substrate 91 after the precipitation step is completed.

図7は、パターン93の凹部97に、ポリイソブチレン63が充填している様子を模式図として示している。前工程である乾燥補助液供給工程において、基板91の回転速度を制御し、基板91の表面におけるポリイソブチレン溶液の液膜の膜厚を凸部95の高さよりも厚くなるように調整したため、析出工程後のポリイソブチレン63の膜厚も、凸部95の高さよりも厚く形成されている。 FIG. 7 shows, as a schematic diagram, how the recess 97 of the pattern 93 is filled with polyisobutylene 63. In the drying auxiliary liquid supply step, which is the previous step, the rotation speed of the substrate 91 was controlled, and the film thickness of the polyisobutylene solution on the surface of the substrate 91 was adjusted to be thicker than the height of the convex portion 95. The film thickness of the polyisobutylene 63 after the step is also formed to be thicker than the height of the convex portion 95.

図5に戻る。析出工程の終了後、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を閉成する。 Return to FIG. After the precipitation step is completed, the control unit 13 issues an operation command to the nitrogen gas valve 45 and closes the nitrogen gas valve 45.

ここで、本実施形態では溶媒として用いたIPAの蒸発により乾燥補助物質であるポリイソブチレン63を析出したが、乾燥補助液に対し、冷却による析出や、化学反応による析出など他の方式を用いてもよい。 Here, in the present embodiment, polyisobutylene 63, which is a drying auxiliary substance, is precipitated by evaporation of IPA used as a solvent, but another method such as precipitation by cooling or precipitation by a chemical reaction is used for the drying auxiliary liquid. May be good.

次に、ポリイソブチレン63の昇華除去工程(S15)を行う。まず、制御ユニット13が加熱部54へ動作指令を行い、加熱部54は加熱を行う。図8は、加熱部54が加熱している様子を模式図として示している。これにより、基板91の裏面から昇温が始まる。制御ユニット13は、基板91の表面とポリイソブチレン63が100℃~138℃の温度で維持されるよう加熱部54の加熱処理を制御する。制御方法としては、予め、搬入される基板91の表面と析出されるポリイソブチレン63の温度が100℃~138℃の範囲になる場合の加熱部54の温度を測定し、以降、加熱部54がその温度になるように制御してもよい。また、温度センサで基板91とポリイソブチレン63を測定し、基板91の表面とポリイソブチレン63の温度が100℃~138℃の範囲になるようフィードバック制御を行ってもよい。 Next, the sublimation removal step (S15) of polyisobutylene 63 is performed. First, the control unit 13 issues an operation command to the heating unit 54, and the heating unit 54 heats the unit. FIG. 8 shows as a schematic diagram how the heating unit 54 is heating. As a result, the temperature rise starts from the back surface of the substrate 91. The control unit 13 controls the heat treatment of the heating unit 54 so that the surface of the substrate 91 and the polyisobutylene 63 are maintained at a temperature of 100 ° C to 138 ° C. As a control method, the temperature of the heating unit 54 when the temperature of the surface of the substrate 91 to be carried in and the temperature of the precipitated polyisobutylene 63 is in the range of 100 ° C. to 138 ° C. is measured in advance, and thereafter, the heating unit 54 determines. It may be controlled to reach that temperature. Further, the substrate 91 and the polyisobutylene 63 may be measured by a temperature sensor, and feedback control may be performed so that the temperature of the surface of the substrate 91 and the polyisobutylene 63 is in the range of 100 ° C to 138 ° C.

基板91の表面とポリイソブチレン63がこの温度の範囲内で安定すれば、制御ユニット13がモータ51へ動作指令を行い、基板91を一定速度で回転させる。次に、制御ユニット13が水素ガスバルブ35へ動作指令を行い、水素ガスバルブ35を開成する。さらに、制御ユニット13がプラズマ発生部37へ動作指令を行い、プラズマ発生部37の放電電極に高電圧が印加されることで、放電が開始する。このように、水素ガスの供給後に放電を開始することで、放電により生成された水素ラジカルが供給される。即ち、放電が発生する絶縁管内を酸素成分が存在しない雰囲気にすることで、酸素成分より発生するOHラジカル(ヒドロキシルラジカル)による基板91の酸化を防止することができる。なお、本実施形態ではスポット照射型のプラズマ発生部を用いるため、基板91を回転させて基板表面全体に水素ラジカルを供給するが、基板表面全体に水素ラジカルを供給できれば、必ずしも回転させる必要はない。 If the surface of the substrate 91 and the polyisobutylene 63 are stable within this temperature range, the control unit 13 issues an operation command to the motor 51 to rotate the substrate 91 at a constant speed. Next, the control unit 13 issues an operation command to the hydrogen gas valve 35 to open the hydrogen gas valve 35. Further, the control unit 13 issues an operation command to the plasma generating unit 37, and a high voltage is applied to the discharge electrode of the plasma generating unit 37 to start discharging. In this way, by starting the discharge after the supply of the hydrogen gas, the hydrogen radical generated by the discharge is supplied. That is, by creating an atmosphere in which the oxygen component does not exist in the insulating tube in which the discharge is generated, it is possible to prevent the substrate 91 from being oxidized by the OH radical (hydroxyl radical) generated from the oxygen component. In this embodiment, since the spot irradiation type plasma generator is used, the substrate 91 is rotated to supply hydrogen radicals to the entire surface of the substrate, but if the hydrogen radicals can be supplied to the entire surface of the substrate, it is not always necessary to rotate the substrate 91. ..

図9はポリイソブチレン63に水素ラジカルが供給されている様子を模式図として示している。基板91の表面とポリイソブチレン63は加熱部54により100℃~138℃の範囲内の温度に保持されている。水素ラジカルの供給により、アモルファス状のポリイソブチレン63は、水素ラジカルと反応してメタンガスとなる。 FIG. 9 shows as a schematic diagram how hydrogen radicals are supplied to polyisobutylene 63. The surface of the substrate 91 and the polyisobutylene 63 are held at a temperature within the range of 100 ° C. to 138 ° C. by the heating unit 54. By supplying hydrogen radicals, the amorphous polyisobutylene 63 reacts with the hydrogen radicals to form methane gas.

ここで、析出されたポリイソブチレン63には少量の酸素が不純物として含まれている場合がある。ポリイソブチレン63の昇華除去時に、酸素が水素ラジカルと反応して液体の水が発生すると、液体の表面張力によりパターン中の隣接する凸部同士を引き寄せて倒壊させる可能性がある。そこで、基板91の表面とポリイソブチレン63の温度を、水の沸点である100℃以上かつポリイソブチレン63の融点である138℃以下の状態にすることで、水素ラジカルを供給しても、ポリイソブチレン63をメタンガスと水蒸気の状態で分解することができる。特に、ポリイソブチレン63だけでなく、基板91の表面もこの温度範囲内に維持しなければ、基板91の表面に接するポリイソブチレン63の分解時に、基板91の表面温度により冷やされてしまう可能性がある。この場合、基板91の表面に近接するポリイソブチレン63に酸素が不純物として含まれていれば、水素ラジカルと反応して液体の水が付着してしまう可能性が生じる。 Here, the precipitated polyisobutylene 63 may contain a small amount of oxygen as an impurity. When oxygen reacts with hydrogen radicals to generate liquid water during the sublimation removal of polyisobutylene 63, the surface tension of the liquid may attract adjacent protrusions in the pattern and cause them to collapse. Therefore, by setting the temperature of the surface of the substrate 91 and the polyisobutylene 63 to a state of 100 ° C. or higher, which is the boiling point of water, and 138 ° C. or lower, which is the melting point of polyisobutylene 63, even if hydrogen radicals are supplied, polyisobutylene is used. 63 can be decomposed in the state of methane gas and steam. In particular, if not only the polyisobutylene 63 but also the surface of the substrate 91 is not maintained within this temperature range, the polyisobutylene 63 in contact with the surface of the substrate 91 may be cooled by the surface temperature of the substrate 91 when the polyisobutylene 63 is decomposed. be. In this case, if oxygen is contained as an impurity in the polyisobutylene 63 close to the surface of the substrate 91, there is a possibility that liquid water may adhere to the polyisobutylene 63 by reacting with hydrogen radicals.

なお、加熱部54は、基板91の表面とポリイソブチレン63を昇温し、温度保持できれば基板91の下面への配置に限定されない。例えば、チャンバ11内に配置し、基板91とポリイソブチレン63を昇温・温度維持できればよい。 The heating unit 54 is not limited to the arrangement on the lower surface of the substrate 91 as long as the surface of the substrate 91 and the polyisobutylene 63 can be heated and the temperature can be maintained. For example, it suffices if the substrate 91 and the polyisobutylene 63 can be heated and maintained in temperature by arranging them in the chamber 11.

また、本実施形態における基板91の表面とポリイソブチレン63の温度範囲はポリイソブチレン63の融点である138℃以下に定めたが、他の乾燥補助物質によっては、ガラス転移温度よりも高くなると、ゴム状になり、流動性があがるため、パターン倒壊が発生する可能性がある。従って、基板表面と乾燥補助物質をガラス転移温度以下に保持してもよい。なお、一般的な物質のガラス転移温度は、その物質の融点より低いため、ガラス転移温度以下に保持した場合、基板保持部55の耐熱性は、その物質の融点に対するものより低くてもよい。 Further, the temperature range of the surface of the substrate 91 and the polyisobutylene 63 in the present embodiment is set to 138 ° C. or lower, which is the melting point of the polyisobutylene 63, but depending on other drying auxiliary substances, when the temperature becomes higher than the glass transition temperature, the rubber The pattern may collapse due to the shape and increased fluidity. Therefore, the substrate surface and the drying aid may be kept below the glass transition temperature. Since the glass transition temperature of a general substance is lower than the melting point of the substance, the heat resistance of the substrate holding portion 55 may be lower than that of the melting point of the substance when the substance is kept below the glass transition temperature.

さらに、昇華除去工程は真空中で実施してもよい。真空中であれば、昇華速度が上がり、パターン倒壊の可能性がさらに下がる。また、残渣の基板91への再付着も防止できる。 Further, the sublimation removal step may be carried out in vacuum. In a vacuum, the sublimation speed increases and the possibility of pattern collapse is further reduced. In addition, it is possible to prevent the residue from reattaching to the substrate 91.

図5に戻る。昇華除去工程の終了後、制御ユニット13がプラズマ発生部37へ動作指令を行い、プラズマ発生部37の放電電極への高電圧印加を停止する。その後、制御ユニット13が水素ガスバルブ35へ動作指令を行い、水素ガスバルブ35を閉成する。これにより、放電中の絶縁管内に酸素成分が入り込むことがなくなり、酸素成分より発生するOHラジカル(ヒドロキシルラジカル)の発生を抑えることができる。従って、基板91の表面の酸化を防止することが可能となる。 Return to FIG. After the sublimation removal step is completed, the control unit 13 issues an operation command to the plasma generating unit 37, and stops applying a high voltage to the discharge electrode of the plasma generating unit 37. After that, the control unit 13 issues an operation command to the hydrogen gas valve 35 and closes the hydrogen gas valve 35. As a result, the oxygen component does not enter the insulating tube during discharge, and the generation of OH radicals (hydroxyl radicals) generated from the oxygen component can be suppressed. Therefore, it is possible to prevent oxidation of the surface of the substrate 91.

次に、常温化工程(S16)を行う。図10は基板91の表面で析出されたポリイソブチレン63が昇華除去された様子を模式図として示している。まず、制御ユニット13が加熱部54へ動作指令を行い、加熱部54は加熱を停止する。次に、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を開成する。これにより、窒素ガスを、窒素ガスタンク49から気体供給管43および気体ノズル47を介して、基板91の表面に供給する。供給される窒素ガスは常温または常温より低い温度の不活性ガスであり、加熱部54は既に停止しているので、基板91は当該工程により早急に常温に戻る。これにより、基板処理に伴うスループットが向上するだけでなく、基板乾燥処理の後、図示しない基板搬入出機構による搬出時において、基板91の熱膨張による寸法変化により、基板搬入出手段の搬送アームに乗らない、チャックピンの保持が緩い、などの不具合も解消できる。また、基板91は常温の状態で搬出されるので、搬送アームなどの部材の耐熱性も低くできる。 Next, a room temperature step (S16) is performed. FIG. 10 shows, as a schematic diagram, a state in which the polyisobutylene 63 deposited on the surface of the substrate 91 is sublimated and removed. First, the control unit 13 issues an operation command to the heating unit 54, and the heating unit 54 stops heating. Next, the control unit 13 issues an operation command to the nitrogen gas valve 45 to open the nitrogen gas valve 45. As a result, nitrogen gas is supplied from the nitrogen gas tank 49 to the surface of the substrate 91 via the gas supply pipe 43 and the gas nozzle 47. Since the nitrogen gas supplied is an inert gas having a temperature of normal temperature or lower than normal temperature, and the heating unit 54 has already stopped, the substrate 91 immediately returns to normal temperature by the process. As a result, not only the throughput associated with the substrate processing is improved, but also the transfer arm of the substrate loading / unloading means due to the dimensional change due to the thermal expansion of the substrate 91 at the time of carrying out by the substrate loading / unloading mechanism (not shown) after the substrate drying treatment. Problems such as not getting on and loose chuck pin holding can be solved. Further, since the substrate 91 is carried out at room temperature, the heat resistance of the member such as the transport arm can be lowered.

図5に戻る。常温化工程の終了後、制御ユニット13が窒素ガスバルブ45へ動作指令を行い、窒素ガスバルブ45を閉成する。以上により、一連の基板乾燥処理が終了する。 Return to FIG. After the room temperature setting process is completed, the control unit 13 issues an operation command to the nitrogen gas valve 45 and closes the nitrogen gas valve 45. This completes a series of substrate drying processes.

以上のように、本実施形態では、基板91の表面で析出した乾燥補助物質を、水素ラジカルで除去することで、基板の酸化を抑制した上で、基板の表面に形成されたパターンの倒壊を防止しつつ、基板の表面に付着した液体を除去することができる。 As described above, in the present embodiment, the drying auxiliary substance precipitated on the surface of the substrate 91 is removed by hydrogen radicals to suppress the oxidation of the substrate and to prevent the pattern formed on the surface of the substrate from collapsing. It is possible to remove the liquid adhering to the surface of the substrate while preventing it.

上述した本実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲と均等の意味及び特許請求の範囲内での全ての変更が含まれることが意図される。また、本発明の効果がある限りにおいては、基板処理装置及び基板処理方法に、本実施形態に開示されていない構成要素が含まれていてもよい。 The embodiments described above are exemplary in all respects and should be considered non-restrictive. The scope of the present invention is not intended to have the above-mentioned meaning, but is intended to include the meaning equivalent to the scope of claims and all modifications within the scope of claims. Further, as long as the effect of the present invention is effective, the substrate processing apparatus and the substrate processing method may include components not disclosed in the present embodiment.

1 基板処理装置
13 制御ユニット
21 乾燥補助液供給ユニット
31 水素ラジカル供給ユニット
41 気体供給ユニット
37 プラズマ発生部
39 水素ガスタンク
51 モータ
53 回転駆動部
55 基板保持部
57 チャックピン
91 基板
1 Board processing device 13 Control unit 21 Drying auxiliary liquid supply unit 31 Hydrogen radical supply unit 41 Gas supply unit 37 Plasma generator 39 Hydrogen gas tank 51 Motor 53 Rotation drive part 55 Board holding part 57 Chuck pin 91 Board

Claims (6)

昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給手段と、
前記基板表面に前記乾燥補助液に含まれる前記乾燥補助物質を析出させる析出手段と、
前記乾燥補助物質を水素ラジカルとの反応により昇華させ、前記基板表面から除去する昇華除去手段と、を備え
前記昇華除去手段は、貯留された水素ガスを供給する供給管の開閉を行う水素ガスバルブと、前記供給管に管路接続する絶縁管内で放電を発生させるプラズマ発生部と、を備え、前記絶縁管内を酸素成分が存在しない雰囲気として放電を発生させることにより水素ラジカルを生成するように構成されており、
前記昇華除去手段は、前記基板表面と前記乾燥補助物質とを昇温させる加熱手段をさらに備え、前記加熱手段は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質の融点よりも低い温度にする、基板処理装置。
A drying auxiliary liquid supply means for supplying a drying auxiliary liquid in which a sublimating drying auxiliary substance is dissolved in a solvent to a substrate to which the treatment liquid is attached, and a drying auxiliary liquid supply means.
A precipitation means for precipitating the drying auxiliary substance contained in the drying auxiliary liquid on the substrate surface, and
A sublimation removing means for sublimating the drying auxiliary substance by reacting with hydrogen radicals and removing the drying auxiliary substance from the surface of the substrate is provided .
The sublimation removing means includes a hydrogen gas valve for opening and closing a supply pipe for supplying stored hydrogen gas, and a plasma generating unit for generating an electric discharge in an insulating pipe connected to the supply pipe. It is configured to generate hydrogen radicals by generating an electric discharge as an atmosphere in which no oxygen component is present.
The sublimation removing means further includes a heating means for raising the temperature of the substrate surface and the drying auxiliary substance, and the heating means has at least a temperature of the drying auxiliary substance higher than the boiling point of water, and the drying auxiliary substance. A substrate processing device that keeps the temperature below the melting point of .
前記加熱手段は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質のガラス転移温度以下の温度にする、請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the heating means makes the temperature of the drying auxiliary substance at least higher than the boiling point of water and lower than the glass transition temperature of the drying auxiliary substance. 前記水素ガスバルブを開成した後、前記プラズマ発生部で放電を開始することを特徴とする請求項1または2に記載の基板処理装置。 The substrate processing apparatus according to claim 1 or 2 , wherein after opening the hydrogen gas valve, discharge is started at the plasma generating portion. 前記昇華除去手段によって前記乾燥補助物質を前記基板表面から除去した後、前記加熱手段を停止し、常温または常温より低い温度のガスを前記基板表面に供給することで前記基板表面の温度を常温にする常温化手段をさらに備えることを特徴とする請求項1~3のいずれか一項に記載の基板処理装置。 After the drying auxiliary substance is removed from the substrate surface by the sublimation removing means, the heating means is stopped and a gas having a temperature lower than normal temperature or normal temperature is supplied to the substrate surface to bring the temperature of the substrate surface to normal temperature. The substrate processing apparatus according to any one of claims 1 to 3, further comprising a room temperature cooling means. 昇華性を有する乾燥補助物質を溶媒に溶解させた乾燥補助液を、処理液が付着した基板に供給する乾燥補助液供給工程と、
前記基板表面に前記乾燥補助液に含まれる前記乾燥補助物質を析出させる析出工程と、
前記乾燥補助物質を水素ラジカルとの反応により昇華させて、前記基板表面から除去する昇華除去工程と、を備え
前記昇華除去工程は、貯留された水素ガスを供給する供給管の開閉を行う水素ガスバルブと、前記供給管を介して管路接続する絶縁管内で放電を発生させるプラズマ発生部と、を用い、前記絶縁管内を酸素成分が存在しない雰囲気として放電を発生させることにより水素ラジカルを生成し、
前記昇華除去工程は、前記基板表面と前記乾燥補助物質とを昇温させる加熱工程を備え、前記加熱工程は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質の融点よりも低い温度にする、基板処理方法。
A drying auxiliary liquid supply step of supplying a drying auxiliary liquid in which a sublimating drying auxiliary substance is dissolved in a solvent to a substrate to which the treatment liquid is attached, and a drying auxiliary liquid supply step.
A precipitation step of precipitating the drying auxiliary substance contained in the drying auxiliary liquid on the substrate surface, and
A sublimation removing step of sublimating the drying auxiliary substance by reaction with hydrogen radicals and removing the drying auxiliary substance from the surface of the substrate is provided .
The sublimation removal step uses a hydrogen gas valve that opens and closes a supply pipe that supplies stored hydrogen gas, and a plasma generation unit that generates an electric discharge in an insulating pipe that is connected to the pipeline via the supply pipe. Hydrogen radicals are generated by generating an electric discharge in the insulated tube as an atmosphere in which no oxygen component is present.
The sublimation removing step includes a heating step of raising the temperature of the substrate surface and the drying auxiliary substance, and the heating step sets the temperature of the drying auxiliary substance at least higher than the boiling point of water to raise the temperature of the drying auxiliary substance. A substrate processing method that lowers the temperature below the melting point .
前記加熱工程は、少なくとも前記乾燥補助物質の温度を、水の沸点よりも高く、前記乾燥補助物質のガラス転移温度以下の温度にする、請求項5に記載の基板処理方法。 The substrate processing method according to claim 5, wherein in the heating step, at least the temperature of the drying auxiliary substance is set to a temperature higher than the boiling point of water and equal to or lower than the glass transition temperature of the drying auxiliary substance.
JP2017246788A 2017-12-22 2017-12-22 Board processing equipment and board processing method Active JP7033912B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017246788A JP7033912B2 (en) 2017-12-22 2017-12-22 Board processing equipment and board processing method
PCT/JP2018/040553 WO2019123852A1 (en) 2017-12-22 2018-10-31 Substrate processing apparatus and substrate processing method
TW107139606A TW201936277A (en) 2017-12-22 2018-11-08 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246788A JP7033912B2 (en) 2017-12-22 2017-12-22 Board processing equipment and board processing method

Publications (2)

Publication Number Publication Date
JP2019114654A JP2019114654A (en) 2019-07-11
JP7033912B2 true JP7033912B2 (en) 2022-03-11

Family

ID=66994533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246788A Active JP7033912B2 (en) 2017-12-22 2017-12-22 Board processing equipment and board processing method

Country Status (3)

Country Link
JP (1) JP7033912B2 (en)
TW (1) TW201936277A (en)
WO (1) WO2019123852A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010573A (en) 2008-06-30 2010-01-14 Hitachi High-Technologies Corp Semiconductor processing method
JP2013016699A (en) 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
WO2014157321A1 (en) 2013-03-28 2014-10-02 芝浦メカトロニクス株式会社 Carrying stand and plasma processing device
JP2015037128A (en) 2013-08-14 2015-02-23 株式会社Screenホールディングス Substrate drying apparatus and substrate drying method
JP2015162486A (en) 2014-02-26 2015-09-07 株式会社Screenホールディングス Substrate drying device and substrate drying method
US20160097590A1 (en) 2014-10-06 2016-04-07 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using sacrificial bracing material that is removed using hydrogen-rich plasma
JP2017139279A (en) 2016-02-02 2017-08-10 株式会社東芝 Substrate drier and substrate processing system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3533583B2 (en) * 1994-07-25 2004-05-31 富士通株式会社 Cleaning method for hydrogen plasma down flow device
US9466511B2 (en) * 2014-09-18 2016-10-11 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using stimuli-responsive sacrificial bracing material
JP6461749B2 (en) * 2015-08-26 2019-01-30 東芝メモリ株式会社 Substrate processing method and substrate processing apparatus
JP6606470B2 (en) * 2016-06-17 2019-11-13 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010573A (en) 2008-06-30 2010-01-14 Hitachi High-Technologies Corp Semiconductor processing method
JP2013016699A (en) 2011-07-05 2013-01-24 Toshiba Corp Substrate processing method and substrate processing apparatus
WO2014157321A1 (en) 2013-03-28 2014-10-02 芝浦メカトロニクス株式会社 Carrying stand and plasma processing device
JP2015037128A (en) 2013-08-14 2015-02-23 株式会社Screenホールディングス Substrate drying apparatus and substrate drying method
JP2015162486A (en) 2014-02-26 2015-09-07 株式会社Screenホールディングス Substrate drying device and substrate drying method
US20160097590A1 (en) 2014-10-06 2016-04-07 Lam Research Corporation Systems and methods for drying high aspect ratio structures without collapse using sacrificial bracing material that is removed using hydrogen-rich plasma
JP2017139279A (en) 2016-02-02 2017-08-10 株式会社東芝 Substrate drier and substrate processing system

Also Published As

Publication number Publication date
TW201936277A (en) 2019-09-16
JP2019114654A (en) 2019-07-11
WO2019123852A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
US20210111042A1 (en) Apparatus and method for treating substrate
JP6216188B2 (en) Substrate drying apparatus and substrate drying method
JP4986565B2 (en) Substrate processing method and substrate processing apparatus
JP4986566B2 (en) Substrate processing method and substrate processing apparatus
TWI646596B (en) Substrate processing method and substrate processing apparatus
CN109496346B (en) Pattern collapse recovery method, substrate processing method, and substrate processing apparatus
KR20180029914A (en) Substrate processing method and substrate processing apparatus
TW201833997A (en) Substrate processing method and substrate processing apparatus
US20130028690A1 (en) Apparatus and method for treating substrate
JP2015092539A (en) Substrate processing apparatus and substrate processing method
JP2019102698A (en) Substrate processing method and substrate processing device
KR102006552B1 (en) Substrate processing method and substrate processing apparatus
JP6222558B2 (en) Substrate processing method and substrate processing apparatus
CN109564858B (en) Sacrificial film forming method, substrate processing method, and substrate processing apparatus
JP2020017613A (en) Substrate processing method and substrate processing apparatus
JP7033912B2 (en) Board processing equipment and board processing method
JP7126429B2 (en) Substrate processing method and substrate processing apparatus
JP2004327537A (en) Method, equipment, and system for substrate processing
TWI667076B (en) Substrate processing method and substrate processing apparatus
WO2020059286A1 (en) Substrate processing method and substrate processing device
WO2020021797A1 (en) Substrate processing method and substrate processing device
WO2019198575A1 (en) Substrate processing method and substrate processing device
JP2024064787A (en) Substrate processing apparatus and substrate processing method
JP2024047257A (en) SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND SUBSTRATE PROCESSING LIQUID
JP2023034828A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220301

R150 Certificate of patent or registration of utility model

Ref document number: 7033912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150