JP7033502B2 - Cultivation system and cultivation method - Google Patents

Cultivation system and cultivation method Download PDF

Info

Publication number
JP7033502B2
JP7033502B2 JP2018115271A JP2018115271A JP7033502B2 JP 7033502 B2 JP7033502 B2 JP 7033502B2 JP 2018115271 A JP2018115271 A JP 2018115271A JP 2018115271 A JP2018115271 A JP 2018115271A JP 7033502 B2 JP7033502 B2 JP 7033502B2
Authority
JP
Japan
Prior art keywords
cultivation
liquid
storage tank
supply amount
nighttime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018115271A
Other languages
Japanese (ja)
Other versions
JP2019216629A (en
Inventor
圭一郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Green System Co Ltd
Original Assignee
Yanmar Green System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Green System Co Ltd filed Critical Yanmar Green System Co Ltd
Priority to JP2018115271A priority Critical patent/JP7033502B2/en
Publication of JP2019216629A publication Critical patent/JP2019216629A/en
Application granted granted Critical
Publication of JP7033502B2 publication Critical patent/JP7033502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Hydroponics (AREA)

Description

本発明は、栽培システム及び栽培方法に関する。 The present invention relates to a cultivation system and a cultivation method.

作物を栽培する場合、作業者は通常作物の生育具合を定期的に観察し、葉の大きさ等の樹姿を基に給水量や施肥量等を調整する。この従来の栽培方法では、作業者が自身の限られた経験や知識に基づいて給水量、施肥量等を判断している。しかしながら、この栽培方法によると、作業者が自身の経験又は知識に基づいて判断できないような場合や、作業者の熟練度が不十分な場合等には適切に対処できない場合がある。従って、この栽培方法によると、安定した収量を得られない場合がある。 When cultivating crops, workers usually observe the growth condition of crops on a regular basis and adjust the amount of water supply and fertilizer application based on the tree shape such as the size of leaves. In this conventional cultivation method, the worker determines the amount of water supply, the amount of fertilizer applied, etc. based on his / her limited experience and knowledge. However, according to this cultivation method, there are cases where the worker cannot make a judgment based on his / her own experience or knowledge, or when the worker's skill level is insufficient, it cannot be dealt with appropriately. Therefore, according to this cultivation method, a stable yield may not be obtained.

そのため、今日では作業者個人の経験や知識に基づかないで作物を栽培することが可能な栽培方法が模索されている。例えば、特開2003-79215号公報には、土壌中のイオン濃度及び肥料溶液中の電気伝導度を測定し、塩素イオン及び硫酸イオンの寄与率を加味した土壌溶液の電気伝導度が作物の生育段階毎に設定される管理目標値の範囲内になるよう土壌に供給する肥料溶液の濃度及び液量を調節する方法が提案されている。 Therefore, today, a cultivation method that can cultivate crops without being based on the experience and knowledge of individual workers is being sought. For example, Japanese Patent Application Laid-Open No. 2003-79215 measures the ion concentration in soil and the electric conductivity in a fertilizer solution, and the electric conductivity of the soil solution in consideration of the contribution ratios of chlorine ion and sulfate ion is the growth of crops. A method of adjusting the concentration and amount of the fertilizer solution supplied to the soil so as to be within the control target value set for each stage has been proposed.

特開2003-79215号公報Japanese Patent Application Laid-Open No. 2003-79215

上記公報に記載の作物の栽培方法は、作物が理想的な生育を遂げる場合に最適と思われる土壌溶液を提供するものである。しかしながら、実際の作物の生育は、個々にばらつきがあり、土壌溶液以外にも、例えば気温、湿度、日照等の影響を受ける。このため、上記公報に記載の栽培方法では、実際の作物の生育が理想的な生育に対して進み過ぎたり遅れたりしている場合には、最適な土壌溶液等の生育環境を提供することができない。 The method for cultivating a crop described in the above publication provides a soil solution that seems to be optimal when the crop achieves ideal growth. However, the actual growth of crops varies from individual to individual, and is affected by, for example, temperature, humidity, sunshine, etc. in addition to the soil solution. Therefore, in the cultivation method described in the above publication, when the actual growth of the crop is too advanced or delayed with respect to the ideal growth, it is possible to provide an optimum growth environment such as a soil solution. Can not.

本発明は、このような事情に基づいてなされたものであり、作物の実際の生育状況に応じて生育環境を最適化することができる栽培システム及び栽培方法を提供することを課題とする。 The present invention has been made based on such circumstances, and an object of the present invention is to provide a cultivation system and a cultivation method capable of optimizing a growth environment according to an actual growth condition of a crop.

上記課題を解決するためになされた本発明の一態様に係る栽培システムは、作物を活着させる培地部と、栽培液を貯留する貯留槽と、上記
貯留槽から上記培地部に毛管現象により栽培液を流通する送液部と、上記貯留槽内の栽培液の水位が一定に保たれるよう上記貯留槽に栽培液を供給する供給機構と、夜間における上記供給機構による上記栽培液の供給量を測定する測定機構と、上記測定機構が測定した夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する制御部とを備える。
The cultivation system according to one aspect of the present invention, which has been made to solve the above problems, has a medium portion for engrafting crops, a storage tank for storing the cultivation liquid, and a cultivation liquid from the storage tank to the medium portion by a capillary phenomenon. The liquid feeding unit, the supply mechanism that supplies the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant, and the supply amount of the cultivation liquid by the supply mechanism at night. It is provided with a measuring mechanism for measuring and a control unit for controlling the growing environment of the crop based on the growing information including the nighttime supply amount measured by the measuring mechanism.

また、本発明の別の態様に係る栽培方法は、作物を活着させる培地部と、栽培液を貯留する貯留槽と、上記貯留槽から上記培地部に毛管現象により栽培液を流通する送液部と、上記貯留槽内の栽培液の水位が一定に保たれるよう上記貯留槽に栽培液を供給する供給機構とを備える栽培システムを用いた作物の栽培方法であって、夜間における上記供給機構による上記栽培液の供給量を測定する工程と、上記測定工程で測定される夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する工程とを備える。 Further, the cultivation method according to another aspect of the present invention is a medium portion for engrafting crops, a storage tank for storing the cultivation liquid, and a liquid feeding unit for distributing the cultivation liquid from the storage tank to the medium portion by a capillary phenomenon. A method for cultivating crops using a cultivation system including a supply mechanism for supplying the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant. It is provided with a step of measuring the supply amount of the above-mentioned cultivation liquid by the above-mentioned method and a step of controlling the growth environment of the above-mentioned crop based on the growth information including the nighttime supply amount measured in the above-mentioned measurement step.

本発明の一態様に係る栽培システム及び別の態様に係る栽培方法は、作物の実際の生育状況に応じて生育環境を最適化することができる。 The cultivation system according to one aspect of the present invention and the cultivation method according to another aspect can optimize the growing environment according to the actual growing condition of the crop.

本発明の一実施形態に係る栽培システムを示す模式図である。It is a schematic diagram which shows the cultivation system which concerns on one Embodiment of this invention. 積算温度と夜間供給量との関係を示すグラフである。It is a graph which shows the relationship between the integrated temperature and the nighttime supply amount. 夜間供給量と緑視率との関係を示すグラフである。It is a graph which shows the relationship between the nighttime supply amount and the green visibility rate. 夜間供給量と果実の糖度との関係を示すグラフである。It is a graph which shows the relationship between the nighttime supply amount and the sugar content of a fruit.

[本発明の実施形態の説明]
本発明の一態様に係る栽培システムは、作物を活着させる培地部と、栽培液を貯留する貯留槽と、上記貯留槽から上記培地部に毛管現象により栽培液を流通する送液部と、上記貯留槽内の栽培液の水位が一定に保たれるよう上記貯留槽に栽培液を供給する供給機構と、夜間における上記供給機構による上記栽培液の供給量を測定する測定機構と、上記測定機構が測定した夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する制御部とを備える。
[Explanation of Embodiment of the present invention]
The cultivation system according to one aspect of the present invention includes a medium portion for engrafting crops, a storage tank for storing the cultivation liquid, a liquid feeding unit for flowing the cultivation liquid from the storage tank to the medium portion by a capillary phenomenon, and the above. A supply mechanism that supplies the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant, a measurement mechanism that measures the supply amount of the cultivation liquid by the supply mechanism at night, and the measurement mechanism. It is provided with a control unit that controls the growth environment of the crop based on the growth information including the night supply amount measured by.

当該栽培システムは、夜間における上記供給機構による上記栽培液の供給量を測定する測定機構を備えることによって、日照の影響を受けない夜間における作物の吸水量と比較的正確に一致する夜間供給量によって作物の実際の生育具合を把握することができる。また、当該栽培システムは、上記測定機構が測定した夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する制御部を備えることによって、作物の実際の生育状況に応じて生育環境を最適化することができる。つまり、当該栽培システムは、作物の生育速度を理想的な生育速度に近付けて収量及び品質を最適化することができる。 The cultivation system is provided with a measuring mechanism for measuring the supply amount of the cultivation liquid by the above supply mechanism at night, so that the night supply amount relatively accurately matches the water absorption amount of the crop at nighttime which is not affected by the sunlight. It is possible to grasp the actual growth condition of the crop. In addition, the cultivation system is provided with a control unit that controls the growth environment of the crop based on the growth information including the night supply amount measured by the measurement mechanism, so that the growth environment can be adjusted according to the actual growth condition of the crop. Can be optimized. That is, the cultivation system can optimize the yield and quality by bringing the growth rate of the crop closer to the ideal growth rate.

当該栽培システムにおいて、上記制御部が制御する生育環境が上記栽培液の組成を含んでもよい。このように、上記制御部が制御する生育環境が上記栽培液の組成を含むことによって、容易且つ確実に作物の生育を理想に近付けることができる。 In the cultivation system, the growth environment controlled by the control unit may include the composition of the cultivation liquid. As described above, when the growth environment controlled by the control unit includes the composition of the cultivation liquid, the growth of the crop can be easily and surely approached to the ideal.

当該栽培システムにおいて、上記生育情報が環境温度の積算値をさらに含み、上記制御部が、上記夜間供給量の測定値が上記環境温度の積算値に対応する上記夜間供給量の理想値よりも小さい場合には上記栽培液の肥料濃度を大きくし、上記夜間供給量の測定値が上記夜間供給量の理想値よりも大きい場合には上記栽培液の肥料濃度を小さくしてもよい。このように、上記生育情報が環境温度の積算値をさらに含み、上記制御部が、上述のように上記夜間供給量の測定値に応じて上記栽培液の肥料濃度を変化させることによって、より確実に作物の生育速度を理想に近付けることができる。 In the cultivation system, the growth information further includes the integrated value of the environmental temperature, and the control unit measures the nighttime supply amount to be smaller than the ideal value of the nighttime supply amount corresponding to the integrated value of the environmental temperature. In this case, the fertilizer concentration of the cultivation liquid may be increased, and when the measured value of the nighttime supply amount is larger than the ideal value of the nighttime supply amount, the fertilizer concentration of the cultivation liquid may be decreased. As described above, the growth information further includes the integrated value of the environmental temperature, and the control unit changes the fertilizer concentration of the cultivation liquid according to the measured value of the nighttime supply amount as described above, so that it is more reliable. The growth rate of crops can be brought close to the ideal.

当該栽培システムにおいて、上記制御部が、上記夜間供給量が低下し始めた後は上記栽培液の塩分濃度を小さくしてもよい。このように、上記夜間供給量が低下し始めた後は上記栽培液の塩分濃度を小さくすることによって、茎葉等の生長が止まった後に生長する果実や塊根等の収量や品質(例えば糖度等)を向上することができる。 In the cultivation system, the control unit may reduce the salt concentration of the cultivation liquid after the nighttime supply amount starts to decrease. In this way, after the nighttime supply starts to decrease, the salt concentration of the cultivation solution is reduced to reduce the yield and quality (for example, sugar content) of fruits and lump roots that grow after the growth of foliage and the like has stopped. Can be improved.

当該栽培システムにおいて、上記供給機構が上記貯留槽の水位を検出する水位センサーを備えてもよい。このように、上記供給機構が上記貯留槽の水位を検出する水位センサーを備えることによって、上記貯留槽の水位をより正確に一定に保つことができる。これにより、上記測定機構によって上記夜間供給量を正確に測定し、作物の生育をより適切に制御することができる。 In the cultivation system, the supply mechanism may include a water level sensor that detects the water level of the storage tank. As described above, by providing the water level sensor for detecting the water level of the storage tank in the supply mechanism, the water level of the storage tank can be kept more accurately and constant. Thereby, the nighttime supply amount can be accurately measured by the measuring mechanism, and the growth of the crop can be controlled more appropriately.

また、本発明の別の態様に係る栽培方法は、作物を活着させる培地部と、栽培液を貯留する貯留槽と、上記貯留槽から上記培地部に毛管現象により栽培液を流通する送液部と、上記貯留槽内の栽培液の水位が一定に保たれるよう上記貯留槽に栽培液を供給する供給機構とを備える栽培システムを用いた作物の栽培方法であって、夜間における上記供給機構による上記栽培液の供給量を測定する工程と、上記測定工程で測定される夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する工程とを備える。 Further, the cultivation method according to another aspect of the present invention is a medium portion for engrafting crops, a storage tank for storing the cultivation liquid, and a liquid feeding unit for distributing the cultivation liquid from the storage tank to the medium portion by a capillary phenomenon. A method for cultivating crops using a cultivation system including a supply mechanism for supplying the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant. It is provided with a step of measuring the supply amount of the above-mentioned cultivation liquid by the above-mentioned method and a step of controlling the growth environment of the above-mentioned crop based on the growth information including the nighttime supply amount measured in the above-mentioned measurement step.

当該栽培方法は、夜間における上記供給機構による上記栽培液の供給量を測定する工程において、日照の影響を受けない夜間における作物の吸水量と比較的正確に一致する夜間供給量を測定して作物の実際の生育具合を把握することができる。また、当該栽培システムは、上記測定機構が測定した夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する工程において、作物の実際の生育状況に応じて生育環境を最適化することができる。 In the cultivation method, in the step of measuring the supply amount of the cultivation liquid by the above supply mechanism at night, the crop is measured by measuring the night supply amount which is relatively accurately matched with the water absorption amount of the crop at night which is not affected by the sunshine. It is possible to grasp the actual growth condition of. In addition, the cultivation system optimizes the growth environment according to the actual growth condition of the crop in the step of controlling the growth environment of the crop based on the growth information including the night supply amount measured by the measurement mechanism. Can be done.

なお、本発明において、「活着」とは、苗が根付いて生育することをいう。また、「夜間」とは作物に光合成を行い得る光が当たらない時間帯を意味し、日光を用いずに電気照明を用いて栽培する場合は外部の昼夜とは一致しないことがある。また、「夜間供給量」とは夜間における単位時間当たりの栽培液の供給量を意味する。 In the present invention, "establishment" means that seedlings take root and grow. In addition, "nighttime" means a time zone in which the crop is not exposed to light capable of photosynthesis, and when cultivated using electric lighting without using sunlight, it may not match the day and night outside. In addition, the "night supply amount" means the supply amount of the cultivation liquid per unit time at night.

[本発明の実施形態の詳細]
以下、本発明に係る栽培システム及び栽培方法の実施形態について図面を参照しつつ詳説する。
[Details of Embodiments of the present invention]
Hereinafter, embodiments of the cultivation system and cultivation method according to the present invention will be described in detail with reference to the drawings.

[栽培システム]
図1に、本発明の一実施形態に係る栽培システムの構成を示す。当該栽培システムは、作物Pを活着させる培地部10と、栽培液Qを貯留する貯留槽20と、貯留槽20から培地部10に毛管現象により栽培液Qを流通する送液部30と、貯留槽20内の栽培液Qの水位(液面高さ)が一定に保たれるよう貯留槽20に栽培液Qを供給する供給機構40と、夜間における供給機構40から貯留槽20への栽培液Qの供給量を測定する測定機構50と、環境温度(作物Pの栽培空間の気温)を検出する温度センサー60と、測定機構50が測定した夜間供給量及び温度センサー60が検出した環境温度を含む生育情報に基づいて作物Pの生育環境を制御する制御部70と、培地部10、貯留槽20及び送液部30を支持する架台80とを備える。
[Cultivation system]
FIG. 1 shows the configuration of a cultivation system according to an embodiment of the present invention. The cultivation system includes a medium unit 10 for engrafting the crop P, a storage tank 20 for storing the cultivation liquid Q, and a liquid feeding unit 30 for distributing the cultivation liquid Q from the storage tank 20 to the medium unit 10 by a capillary phenomenon. A supply mechanism 40 that supplies the cultivation liquid Q to the storage tank 20 so that the water level (liquid level height) of the cultivation liquid Q in the tank 20 is kept constant, and a cultivation liquid from the supply mechanism 40 to the storage tank 20 at night. The measuring mechanism 50 that measures the supply amount of Q, the temperature sensor 60 that detects the environmental temperature (the temperature of the cultivation space of the crop P), the nighttime supply amount measured by the measuring mechanism 50, and the environmental temperature detected by the temperature sensor 60. A control unit 70 that controls the growth environment of the crop P based on the included growth information, and a pedestal 80 that supports the medium unit 10, the storage tank 20, and the liquid feeding unit 30 are provided.

当該栽培システムは、室内空間を用いて作物Pを栽培するよう構成されていてもよく、屋外空間を用いて作物Pを栽培するよう構成されていてもよい。当該栽培システムが室内空間を用いたものである場合、「栽培空間」とは、この作物Pを栽培するために区画された室内空間をいう。また、当該栽培システムが屋外空間を用いたものである場合、「栽培空間」とは、圃場等によって画定される作物Pを栽培するために区画された空間をいう。 The cultivation system may be configured to cultivate the crop P using the indoor space, or may be configured to cultivate the crop P using the outdoor space. When the cultivation system uses an indoor space, the "cultivation space" means an indoor space partitioned for cultivating the crop P. When the cultivation system uses an outdoor space, the "cultivation space" means a space partitioned for cultivating a crop P defined by a field or the like.

<作物>
作物Pとしては、特に限定されるものではなく、例えば果菜類、根菜類、葉菜類、イネ科植物、花菜類等が挙げられるが、生育具合と根からの吸水量との相関がはっきりしている果菜類が好ましく、中でもトマトが特に好ましい。
<Crop>
The crop P is not particularly limited, and examples thereof include fruit vegetables, root vegetables, leaf vegetables, gramineous plants, flower vegetables, etc., but the correlation between the growth condition and the amount of water absorption from the roots is clear. Fruit vegetables are preferable, and tomatoes are particularly preferable.

<栽培液>
栽培液Qは、水に肥料を配合したものである。この肥料は、雑菌が繁殖することを抑制する観点から、化学肥料を含むことが好ましい。また、栽培液Qは、作物Pにストレスを与えて作物Pの果実等の品質を向上するために塩分を含むことができる。
<Cultivation liquid>
The cultivation liquid Q is a mixture of water and fertilizer. This fertilizer preferably contains a chemical fertilizer from the viewpoint of suppressing the growth of various germs. Further, the cultivation liquid Q may contain salt in order to stress the crop P and improve the quality of the fruits and the like of the crop P.

<培地部>
培地部10は、樋状の枠体11内に複数の粒子12が充填された構成を有する。培地部10は、枠体11の長手方向に複数の作物Pを活着可能に構成されてもよく、1つの作物Pのみを活着可能に構成されてもよい。枠体11は、長手方向と垂直方向の断面がU字状である。枠体11は、透水性及び防根性を有する帯状の透水シートによって構成されている。上記透水シートは、幅方向(長手方向と垂直な水平方向)の中心部を下方に弛ませた状態で幅方向の両端部が後述する架台80に保持されている。なお、枠体11は、必ずしも1枚の透水シートから構成される必要はなく、複数枚の透水シートが連続的又は断続的に配設されて構成されてもよい。
<Medium part>
The culture medium portion 10 has a structure in which a plurality of particles 12 are filled in the gutter-shaped frame 11. The culture medium portion 10 may be configured to allow a plurality of crops P to survive in the longitudinal direction of the frame 11, or may be configured to allow only one crop P to survive. The frame 11 has a U-shaped cross section in the longitudinal direction and the vertical direction. The frame 11 is composed of a strip-shaped water permeable sheet having water permeability and root resistance. In the water-permeable sheet, both ends in the width direction are held by a gantry 80, which will be described later, in a state where the center portion in the width direction (horizontal direction perpendicular to the longitudinal direction) is loosened downward. The frame 11 does not necessarily have to be composed of one water-permeable sheet, and a plurality of water-permeable sheets may be continuously or intermittently arranged.

枠体11の素材としては、特に限定されるものではなく、例えば紙、織布、不織布等が挙げられる。 The material of the frame 11 is not particularly limited, and examples thereof include paper, woven fabric, and non-woven fabric.

枠体11の平均厚さの下限としては、0.1mmが好ましく、0.2mmがより好ましい。一方、枠体11の平均厚さの上限としては、5.0mmが好ましく、3.0mmがより好ましい。枠体11の平均厚さが上記下限より小さいと、防根性が不十分となるおそれがある。逆に、枠体11の平均厚さが上記上限を超えると、上記透水シートのコストが高くなり過ぎるおそれがある。なお、「平均厚さ」とは、任意の10点の厚さの平均値をいう。 The lower limit of the average thickness of the frame 11 is preferably 0.1 mm, more preferably 0.2 mm. On the other hand, the upper limit of the average thickness of the frame 11 is preferably 5.0 mm, more preferably 3.0 mm. If the average thickness of the frame 11 is smaller than the above lower limit, the root protection may be insufficient. On the contrary, if the average thickness of the frame 11 exceeds the upper limit, the cost of the water permeable sheet may become too high. The "average thickness" means the average value of the thicknesses of any 10 points.

複数の粒子12は、枠体11内に充填されて粒子層を構成する。粒子12としては、枠体11内に充填されて毛管現象を発現するものであれば特に限定されないが、例えば土壌、パミスサンド等の微粒軽石、多孔性の火山岩の粉砕粒、粒状のロックウール、コーラルサンド、サンゴ、木炭等が挙げられる。これらは2種以上を混合して用いてもよい。中でも、良好な毛管現象が確保され、また不要になった場合に自然土に返せる観点から、土壌が好ましい。 The plurality of particles 12 are filled in the frame 11 to form a particle layer. The particles 12 are not particularly limited as long as they are filled in the frame 11 and exhibit capillarity, but for example, soil, fine pumice stones such as Pamis sand, crushed particles of porous volcanic rock, granular rock wool, and coral. Examples include sand, coral, and charcoal. These may be used by mixing two or more kinds. Of these, soil is preferable from the viewpoint of ensuring good capillarity and returning it to natural soil when it is no longer needed.

上記土壌としては、例えば市販の園芸用の培土、バーミキュライト、ベントナイト、ゼオライト、砂、鹿沼土、赤玉土、真砂土等が挙げられる。これらの中でも、作物Pの根病を発生し難い点から、一般的な培土に比べて有機物含量が低く微生物生息数も少ない砂が好ましい。 Examples of the soil include commercially available horticultural soil, vermiculite, bentonite, zeolite, sand, Kanuma soil, Akadama soil, decomposed granite soil and the like. Among these, sand having a low organic matter content and a low microbial population is preferable as compared with general hilling because it is less likely to cause root disease of crop P.

粒子12の粒子径の下限としては、0.10mmが好ましく、0.15mmがより好ましい。一方、粒子12の粒子径の上限としては、1.0mmが好ましく、0.6mmがより好ましい。粒子12の粒子径が上記下限に満たないと、栽培液Qを作物Pの根部に供給する領域の空隙部分が少なくなり過ぎて湿度過剰となり、雑菌が繁殖し易くなるおそれがある。逆に、粒子12の粒子径が上記上限を超えると、栽培液Qを作物Pの根部に供給する領域の空隙が大きくなり過ぎて毛管現象が弱くなり、所望される量の栽培液Qを作物Pの根部に供給できなくなるおそれがある。なお、「粒子径」とは、JIS-Z8801-1:2006に規定される篩を用い、目開きの大きい篩から順に粒子をかけて篩上の粒子数と各篩の目開きとから算出される粒子の平均径である。 The lower limit of the particle diameter of the particles 12 is preferably 0.10 mm, more preferably 0.15 mm. On the other hand, the upper limit of the particle diameter of the particles 12 is preferably 1.0 mm, more preferably 0.6 mm. If the particle size of the particles 12 does not reach the above lower limit, the voids in the region where the cultivation liquid Q is supplied to the roots of the crop P become too small, resulting in excessive humidity, which may facilitate the growth of germs. On the contrary, when the particle diameter of the particles 12 exceeds the above upper limit, the voids in the region for supplying the cultivation liquid Q to the root of the crop P become too large and the capillary phenomenon becomes weak, and the desired amount of the cultivation liquid Q is produced in the crop. There is a risk that it will not be possible to supply to the root of P. The "particle size" is calculated from the number of particles on the sieve and the mesh size of each sieve by using a sieve specified in JIS-Z8801-1: 2006 and applying particles in order from the sieve having the largest mesh size. The average diameter of the particles.

<貯留槽>
貯留槽20は、後述の用水槽41から供給される栽培液Qを一時貯留する。貯留槽20は枠体11の下方に配設されている。貯留槽20は樋状に形成されている。貯留槽20の長手方向と枠体11の長手方向とは平行である。貯留槽20は、上端に帯状の開口を有する上部21と、この上部21の下端から下方に連続して設けられ、栽培液Qを貯留する下部22とを有する。下部22は上部21よりも内部平均幅が小さい。
<Reservoir>
The storage tank 20 temporarily stores the cultivation liquid Q supplied from the water tank 41 described later. The storage tank 20 is arranged below the frame 11. The storage tank 20 is formed in a gutter shape. The longitudinal direction of the storage tank 20 and the longitudinal direction of the frame 11 are parallel. The storage tank 20 has an upper portion 21 having a band-shaped opening at the upper end, and a lower portion 22 which is continuously provided downward from the lower end of the upper portion 21 and stores the cultivation liquid Q. The lower portion 22 has a smaller internal mean width than the upper portion 21.

貯留槽20の主構成材料としては、例えば金属、セラミック、樹脂等が挙げられ、軽量な点で樹脂が好ましい。また、上記樹脂としては、例えばABS樹脂、AES樹脂、ASA樹脂、ポリスチレン、ポリエステル、ポリ塩化ビニル、ポリメタクリル樹脂、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリアミド等の熱可塑性樹脂が挙げられる。 Examples of the main constituent material of the storage tank 20 include metals, ceramics, resins, and the like, and resins are preferable in terms of light weight. Examples of the resin include thermoplastic resins such as ABS resin, AES resin, ASA resin, polystyrene, polyester, polyvinyl chloride, polymethacrylic resin, polycarbonate, polyethylene, polypropylene, and polyamide.

<送液部>
送液部30はシート体である。送液部30の具体的な平面形状は特に限定されないが、例えば矩形状、好ましくは長方形状である。送液部30は、一端、好ましくは短手方向の一端、が貯留槽20に貯留される栽培液Q中に浸漬している。また、送液部30は、他端側(栽培液Q中に浸漬される側と反対側)の一部が枠体11の底部と当接している。これにより、貯留槽20に貯留される栽培液Qを毛管現象により揚水し、枠体11の底部に供給可能に構成されている。
<Liquid transfer section>
The liquid feeding unit 30 is a sheet body. The specific planar shape of the liquid feeding unit 30 is not particularly limited, but is, for example, a rectangular shape, preferably a rectangular shape. The liquid feeding unit 30 is immersed in the cultivation liquid Q in which one end, preferably one end in the lateral direction, is stored in the storage tank 20. Further, a part of the liquid feeding portion 30 on the other end side (the side opposite to the side immersed in the cultivation liquid Q) is in contact with the bottom portion of the frame body 11. As a result, the cultivation liquid Q stored in the storage tank 20 is pumped by the capillary phenomenon and can be supplied to the bottom of the frame 11.

送液部30の材質としては、毛管現象により栽培液Qを揚水し、この栽培液Qを枠体11の底部に供給できるものであれば特に限定されないが、例えば不織布、ロックウール、フェルト、ポリウレタン等の合成樹脂などが挙げられる。中でも、適度な毛管現象の発現及び適切な吸水率を発揮できる点から不織布が好ましい。 The material of the liquid feeding unit 30 is not particularly limited as long as the cultivation liquid Q can be pumped by capillarity and the cultivation liquid Q can be supplied to the bottom of the frame 11, but for example, non-woven fabric, rock wool, felt, polyurethane. Such as synthetic resin and the like. Of these, a non-woven fabric is preferable because it can exhibit an appropriate capillary phenomenon and an appropriate water absorption rate.

送液部30の透水率の下限としては、0.01%が好ましく、1.00%がより好ましい。一方、送液部30の透水率の上限としては、40%が好ましく、30%がより好ましい。上記透水率が上記下限に満たないと、枠体11の底部に供給される栽培液Qの量が不十分となるおそれがある。逆に、上記透水率が上記上限を超えると、送液部30に要するコストが不要に高くなるおそれがある。なお、「透水率」とは、平面状の送液部の表面から水を散布した際に送液部の裏面へ通過した水の比率を意味する。 The lower limit of the water permeability of the liquid feeding unit 30 is preferably 0.01%, more preferably 1.00%. On the other hand, the upper limit of the water permeability of the liquid feeding unit 30 is preferably 40%, more preferably 30%. If the water permeability does not reach the lower limit, the amount of the cultivation liquid Q supplied to the bottom of the frame 11 may be insufficient. On the contrary, if the water permeability exceeds the upper limit, the cost required for the liquid feeding unit 30 may become unnecessarily high. The "water permeability" means the ratio of water that has passed to the back surface of the liquid feeding portion when water is sprayed from the front surface of the flat liquid feeding portion.

送液部30の厚さの下限としては、0.5mmが好ましく、0.7mmがより好ましい。一方、送液部30の厚さの上限としては、2.0mmが好ましく、1.5mmがより好ましい。送液部30の厚さが上記下限より小さいと、送液部30の強度が不十分となり破断するおそれがある。逆に、送液部30の厚さが上記上限を超えると、送液部30に要するコストが不要に高くなるおそれがある。 The lower limit of the thickness of the liquid feeding portion 30 is preferably 0.5 mm, more preferably 0.7 mm. On the other hand, the upper limit of the thickness of the liquid feeding portion 30 is preferably 2.0 mm, more preferably 1.5 mm. If the thickness of the liquid feeding unit 30 is smaller than the above lower limit, the strength of the liquid feeding unit 30 becomes insufficient and there is a risk of breakage. On the contrary, if the thickness of the liquid feeding unit 30 exceeds the above upper limit, the cost required for the liquid feeding unit 30 may become unnecessarily high.

送液部30の揚水高さの下限としては、3cmが好ましく、10cmがより好ましく、20cmがさらに好ましい。一方、送液部30の揚水高さの上限としては、300cmが好ましく、200cmがより好ましく、40cmがさらに好ましい。送液部30の揚水高さが上記下限より小さいと、枠体11の底部に供給される栽培液Qの量が不十分となるおそれがある。逆に、送液部30の揚水高さが上記上限を超えると、送液部30に要するコストが不要に高くなるおそれがある。なお、「揚水高さ」とは、以下の手法により測定される値をいう。まず、送液部を幅4cm、長さ120cmに切断したシートを平均厚さ0.03mmのポリエチレンフィルムで被覆(熱圧着で袋状としたフィルムにシートを挿入して周りを被覆)したものを測定サンプルとし、鉛直に測定サンプルを吊り下げられるようにした架台にセットする。このとき、上部及び下部を5cm開放して液面に接しておくようにする。そして、24時間で液面から揚水した高さを5回測定し、これらの平均値を揚水高さとする。 As the lower limit of the pumping height of the liquid feeding unit 30, 3 cm is preferable, 10 cm is more preferable, and 20 cm is further preferable. On the other hand, the upper limit of the pumping height of the liquid feeding unit 30 is preferably 300 cm, more preferably 200 cm, and even more preferably 40 cm. If the pumping height of the liquid feeding unit 30 is smaller than the above lower limit, the amount of the cultivation liquid Q supplied to the bottom of the frame 11 may be insufficient. On the contrary, if the pumping height of the liquid feeding unit 30 exceeds the above upper limit, the cost required for the liquid feeding unit 30 may become unnecessarily high. The "pumping height" means a value measured by the following method. First, a sheet obtained by cutting the liquid feeding part into a width of 4 cm and a length of 120 cm is coated with a polyethylene film having an average thickness of 0.03 mm (the sheet is inserted into a bag-shaped film by thermocompression bonding to cover the surroundings). As a measurement sample, set it on a stand that allows the measurement sample to be hung vertically. At this time, the upper part and the lower part are opened by 5 cm so as to be in contact with the liquid surface. Then, the height of water pumped from the liquid surface is measured 5 times in 24 hours, and the average value of these is taken as the pumped height.

<供給機構>
供給機構40は、栽培用水を貯留する用水槽41と、用水槽41に貯留される栽培用水を貯留槽20に圧送する給水ポンプ42と、液体肥料(肥料溶液)を貯留する液肥槽43と、液肥槽43に貯留される液体肥料を貯留槽20に圧送する液肥ポンプ44と、塩水を貯留する塩水槽45と、塩水槽45に貯留される塩水を貯留槽20に圧送する塩水ポンプ46と、貯留槽20の水位を検出する水位センサー47と、水位センサー47の検出信号に基づいて貯留槽20内の栽培液Qの水位を一定に保たれるよう給水ポンプ42、液肥ポンプ44及び塩水ポンプ46を駆動する給液制御部48とを有する。
<Supply mechanism>
The supply mechanism 40 includes a water tank 41 for storing cultivation water, a water supply pump 42 for pumping the cultivation water stored in the water tank 41 to the storage tank 20, and a liquid fertilizer tank 43 for storing liquid fertilizer (fertilizer solution). A liquid fertilizer pump 44 that pumps liquid fertilizer stored in the liquid fertilizer tank 43 to the storage tank 20, a salt water tank 45 that stores salt water, and a salt water pump 46 that pumps salt water stored in the salt water tank 45 to the storage tank 20. A water level sensor 47 that detects the water level of the storage tank 20, and a water supply pump 42, a liquid fertilizer pump 44, and a salt water pump 46 so that the water level of the cultivation liquid Q in the storage tank 20 is kept constant based on the detection signal of the water level sensor 47. It has a liquid supply control unit 48 for driving the liquid supply control unit 48.

貯留槽20に貯留される栽培液Qは、用水槽41に貯留される栽培用水と、液肥槽43に貯留される液体肥料と、塩水槽45に貯留される塩水とを混合して形成される。 The cultivation liquid Q stored in the storage tank 20 is formed by mixing the cultivation water stored in the water tank 41, the liquid fertilizer stored in the liquid fertilizer tank 43, and the salt water stored in the salt water tank 45. ..

水位センサー47の種類としては、貯留槽20の水位を検出することができる限り特に限定されるものではなく、光学式、フロート式、静電容量式、超音波式、電極式等のレベルスイッチ又はレベルセンサを用いることができる。 The type of the water level sensor 47 is not particularly limited as long as it can detect the water level of the storage tank 20, and is a level switch such as an optical type, a float type, a capacitance type, an ultrasonic type, an electrode type, or the like. A level sensor can be used.

水位センサー47としてレベルスイッチを用いる場合には、水位センサー47の応差はできるだけ小さい(感度が高い)ことが好ましい。水位センサー47の応差が小さいほど、貯留槽20の水位変動を高感度に検出することができるので、作物Pの根からの吸水に対する供給機構40からの栽培液Qの供給の時間的遅れが小さくなる。これにより、測定機構50が測定する夜間供給量と、作物Pの夜間における吸水量とをより正確に一致させることができ、夜間供給量に基づいてよりリアルタイムに近い作物Pの吸水量を把握することができ、時間を細分化した詳しい吸水の解析が可能になる。 When a level switch is used as the water level sensor 47, it is preferable that the difference between the water level sensor 47 is as small as possible (high sensitivity). The smaller the difference of the water level sensor 47, the more sensitively the water level fluctuation of the storage tank 20 can be detected. Therefore, the time delay of the supply of the cultivation liquid Q from the supply mechanism 40 to the water absorption from the roots of the crop P is small. Become. As a result, the nighttime supply amount measured by the measuring mechanism 50 and the water absorption amount of the crop P at night can be more accurately matched, and the water absorption amount of the crop P closer to real time can be grasped based on the nighttime supply amount. It is possible to analyze water absorption in detail by subdividing the time.

ここで、貯留槽20に貯留されている栽培液Qの液量の変化量は、栽培液Qの液面の表面積と栽培液Qの水位の変化量との積として表される。このため、測定機構50で作物Pの吸水量により正確に一致する夜間供給量を測定するためには、できるだけ応差が小さい水位センサー47を用いると共に、貯留槽20の平面視での面積を小さくすることがより好ましい。貯留槽20は、複数の作物Pの列の下に連続して延在するよう配設される。従って、貯留槽20の面積を小さくするためには、複数の作物Pの列に垂直な方向の貯留槽20の幅を小さくすることが有効である。 Here, the amount of change in the amount of the cultivation liquid Q stored in the storage tank 20 is expressed as the product of the surface area of the liquid surface of the cultivation liquid Q and the amount of change in the water level of the cultivation liquid Q. Therefore, in order to measure the nighttime supply amount that exactly matches the water absorption amount of the crop P by the measuring mechanism 50, the water level sensor 47 having the smallest possible difference is used, and the area of the storage tank 20 in a plan view is reduced. Is more preferable. The storage tank 20 is arranged so as to extend continuously under a row of a plurality of crops P. Therefore, in order to reduce the area of the storage tank 20, it is effective to reduce the width of the storage tank 20 in the direction perpendicular to the rows of the plurality of crops P.

例として、複数の作物Pを一列に並んで活着させる栽培システムを想定すると、一般的なトマトを栽培する場合、培地部10には、15cm間隔で作物(トマト)Pが活着される。つまり、貯留槽20のトマト1株当たりの長さは15cmである。また、1株のトマトの夜間吸水量は、生育初期で1mL/h程度、生育後期で10mL/h程度である。このため、1時間当たりの吸水量に相当する貯留槽20における栽培液Qの水位低下は、貯留槽20の幅が10cmである場合には0.067mm~0.67mmとなり、貯留槽20の幅が2cmである場合には0.33mm~3.3mmとなる。 As an example, assuming a cultivation system in which a plurality of crops P are cultivated side by side in a row, when cultivating a general tomato, the crops (tomatoes) P are cultivated in the medium portion 10 at intervals of 15 cm. That is, the length of the storage tank 20 per tomato strain is 15 cm. The nighttime water absorption of one tomato is about 1 mL / h in the early stage of growth and about 10 mL / h in the late stage of growth. Therefore, the decrease in the water level of the cultivation liquid Q in the storage tank 20 corresponding to the amount of water absorption per hour is 0.067 mm to 0.67 mm when the width of the storage tank 20 is 10 cm, and the width of the storage tank 20. When is 2 cm, it is 0.33 mm to 3.3 mm.

従って、当該栽培システムで一般的なトマトを栽培するとき、測定機構50による夜間供給量の最小測定間隔を1時間以下にするためには、貯留槽20の幅が10cmである場合には水位センサー47の応差を0.067mm以下とし、貯留槽20の幅が2cmである場合には水位センサー47の応差を0.33mm以下とすることが要求される。このため、水位センサー47の応差の上限としては、0.3mmが好ましく、0.06mmがより好ましい。逆に言うと、水位センサー47として比較的安価な市販の汎用レベルスイッチを用いるためには、貯留槽20の幅を小さくすることが望ましい。なお、上記の要求される応差の下限は、単なる例示であって、例えば作物Pの種類、活着間隔等によっても異なることは言うまでもない。 Therefore, when cultivating general tomatoes in the cultivation system, in order to reduce the minimum measurement interval of the nighttime supply amount by the measurement mechanism 50 to 1 hour or less, the water level sensor is used when the width of the storage tank 20 is 10 cm. It is required that the difference of 47 is 0.067 mm or less, and when the width of the storage tank 20 is 2 cm, the difference of the water level sensor 47 is 0.33 mm or less. Therefore, the upper limit of the response of the water level sensor 47 is preferably 0.3 mm, more preferably 0.06 mm. Conversely, in order to use a commercially available general-purpose level switch that is relatively inexpensive as the water level sensor 47, it is desirable to reduce the width of the storage tank 20. Needless to say, the lower limit of the required tolerance is merely an example, and may differ depending on, for example, the type of crop P, the survival interval, and the like.

給液制御部48の構成としては、貯留槽20の水位を一定に保持できるものであればよいが、例えば、一定の時間間隔で水位センサー47の出力を確認し、水位センサー47が検出した水位が予め設定された水位以上であるときは給水ポンプ42、液肥ポンプ44及び塩水ポンプ46を停止し、水位センサー47が検出した水位が予め設定された水位未満であるときは給水ポンプ42、液肥ポンプ44及び塩水ポンプ46を駆動するよう構成することができる。 The configuration of the liquid supply control unit 48 may be such that the water level of the storage tank 20 can be kept constant. For example, the output of the water level sensor 47 is confirmed at regular time intervals, and the water level detected by the water level sensor 47 is detected. When is above the preset water level, the water supply pump 42, liquid fertilizer pump 44 and salt water pump 46 are stopped, and when the water level detected by the water level sensor 47 is below the preset water level, the water supply pump 42 and liquid fertilizer pump are stopped. It can be configured to drive the 44 and the salt water pump 46.

供給機構40は、栽培液Qの肥料濃度及び塩分濃度を調節するために、液肥ポンプ44及び塩水ポンプ46による給液量を後述する制御部70が調節できるよう構成される。具体的には、液肥ポンプ44及び塩水ポンプ46として例えばインバーター、減速機等の速度調節機構を有するものを用いる構成や、液肥ポンプ44及び塩水ポンプ46としてパルスモーターによって駆動されるものを用い、給液制御部48が制御部70から指示される頻度の駆動パルスを出力する構成とすることができる。この給液制御部48は、制御部70と一体に構成されてもよい。 The supply mechanism 40 is configured so that the control unit 70, which will be described later, can adjust the amount of liquid supplied by the liquid fertilizer pump 44 and the salt water pump 46 in order to adjust the fertilizer concentration and the salt concentration of the cultivation liquid Q. Specifically, a configuration using a liquid fertilizer pump 44 and a salt water pump 46 having a speed adjusting mechanism such as an inverter or a speed reducer, or a liquid fertilizer pump 44 and a salt water pump 46 driven by a pulse motor are used to supply the liquid fertilizer pump 44 and the salt water pump 46. The liquid control unit 48 can be configured to output drive pulses with a frequency instructed by the control unit 70. The liquid supply control unit 48 may be integrally configured with the control unit 70.

<測定機構>
測定機構50は、給水ポンプ42、液肥ポンプ44及び塩水ポンプ46から吐出される栽培用水、液体肥料及び塩水の合計流量を測定する流量計51と、夜間における流量計51の出力信号から算出される夜間供給量を制御部70に信号出力する演算部52とを有する構成とすることができる。演算部52は、給液制御部48や制御部70と一体に構成されてもよい。
<Measurement mechanism>
The measuring mechanism 50 is calculated from a flow meter 51 that measures the total flow rate of cultivation water, liquid fertilizer, and salt water discharged from the water supply pump 42, the liquid fertilizer pump 44, and the salt water pump 46, and an output signal of the flow meter 51 at night. The configuration may include a calculation unit 52 that outputs a signal to the control unit 70 for the nighttime supply amount. The calculation unit 52 may be integrally configured with the liquid supply control unit 48 and the control unit 70.

演算部52が流量計51の出力信号を積算する「夜間」は、日照の影響を受けない時間のうちで任意に設定することができる。ただし、日没直後は日照の影響で作物Pの温度が上昇している可能性があるため、日没から一定の時間を空けて栽培液Qの流量の測定を開始することが好ましい。この測定時間帯は、日の出及び日没の時刻に合わせて変動してもよいが、夏至においても日照の影響を受けない時間帯に固定してもよい。また、人工の照明が存在する場合には、消灯時間内に設定することが好ましい。測定機構50は、光センサーを有し、暗くなったことを検出してから供給機構40による栽培液Qの供給量を検出するよう構成されてもよい。 The “night” in which the calculation unit 52 integrates the output signal of the flow meter 51 can be arbitrarily set within the time not affected by the sunshine. However, since the temperature of the crop P may rise due to the influence of the sunshine immediately after sunset, it is preferable to start the measurement of the flow rate of the cultivation liquid Q after a certain period of time from the sunset. This measurement time zone may fluctuate according to the time of sunrise and sunset, but may be fixed to a time zone that is not affected by the sunshine even at the summer solstice. Further, when artificial lighting is present, it is preferable to set it within the extinguishing time. The measuring mechanism 50 may have an optical sensor and may be configured to detect that it has become dark and then detect the supply amount of the cultivation liquid Q by the supply mechanism 40.

演算部52が算出する「夜間供給量」は、単位時間当たりの栽培液Qの貯留槽20への供給量であり、作物Pの生育具合を把握するための生育情報の一つである。この夜間供給量は、一夜に複数回算出してもよいが、測定時間帯を固定する場合は一夜の合計供給量を夜間供給量としてもよい。また、夜間供給量は、一定のばらつきを有するため、例えば移動平均を算出する等の手法により測定値を平滑化して作物Pの生育具合の指標とすることが好ましい。 The “nighttime supply amount” calculated by the calculation unit 52 is the supply amount of the cultivation liquid Q to the storage tank 20 per unit time, and is one of the growth information for grasping the growth condition of the crop P. This nighttime supply amount may be calculated a plurality of times per night, but if the measurement time zone is fixed, the total nighttime supply amount may be used as the nighttime supply amount. Further, since the nighttime supply amount has a certain variation, it is preferable to smooth the measured value by a method such as calculating a moving average and use it as an index of the growth condition of the crop P.

<温度センサー>
温度センサー60は、環境温度を測定する。環境温度の平均値に日数を乗じた積算温度(積算日平均気温)は、作物Pの生育具合を把握するための生育情報の一つである。
<Temperature sensor>
The temperature sensor 60 measures the ambient temperature. The integrated temperature (integrated daily average temperature) obtained by multiplying the average value of the environmental temperature by the number of days is one of the growth information for grasping the growth condition of the crop P.

<制御部>
制御部70は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を備えるコンピューター装置から形成することができる。また、制御部70は、RAM又はハードディスクドライブ等の記憶装置に作物Pの理想的な生育における夜間供給量、積算温度等の生育情報の関係を記憶していることが好ましい。
<Control unit>
The control unit 70 can be formed from a computer device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. Further, it is preferable that the control unit 70 stores the relationship of growth information such as the nighttime supply amount and the integrated temperature in the ideal growth of the crop P in a storage device such as a RAM or a hard disk drive.

このような制御部70は、夜間供給量を含む生育情報に基づいて、給水ポンプ42が吐出する栽培用水の流量に対して、液肥ポンプ44が吐出する液体肥料の流量及び塩水ポンプ46が吐出する塩水の流量を調整することにより、作物Pの生育環境の一つである栽培液Qの組成を調節する。このように栽培液Qの組成を調節することによって、作物Pの生育状況に応じて生育環境を最適化することができる。 Based on the growth information including the nighttime supply amount, such a control unit 70 discharges the flow rate of the liquid fertilizer discharged by the liquid fertilizer pump 44 and the salt water pump 46 with respect to the flow rate of the cultivation water discharged by the water supply pump 42. By adjusting the flow rate of salt water, the composition of the cultivation liquid Q, which is one of the growing environments of the crop P, is adjusted. By adjusting the composition of the cultivation liquid Q in this way, the growing environment can be optimized according to the growing condition of the crop P.

具体的に説明すると、夜間供給量は、作物Pが夜間に根から吸い上げる水の量に略一致し、作物Pの生育具合を比較的正確に示す。また、作物Pの生育は、一般に積算温度に依存する。このため、制御部70の記憶装置に、予め積算温度と作物Pが理想的な生育をした場合の理想的な夜間供給量との関係を記憶しておき、測定機構50が測定した実際の夜間供給量と比較することによって、実際の作物Pの生育が理想的なモデルよりも進んでいるか遅れているかを判定することができる。 Specifically, the nighttime supply substantially corresponds to the amount of water that the crop P sucks up from the roots at night, and indicates the growth condition of the crop P relatively accurately. In addition, the growth of crop P generally depends on the integrated temperature. Therefore, the relationship between the integrated temperature and the ideal nighttime supply amount when the crop P grows ideally is stored in the storage device of the control unit 70 in advance, and the actual nighttime measured by the measuring mechanism 50 is stored. By comparing with the supply amount, it is possible to determine whether the actual growth of the crop P is ahead of or behind the ideal model.

図2に、当該栽培システムを用い、制御部70によらず経験に基づいて肥料の濃度を調節して、作物Pとしてトマトを栽培した例における、積算温度と夜間供給量との関係を示す。なお、栽培システムの枠体11、貯留槽20及び送液部30として住友電気工業社の「ニューサンドポニックスY型」を使用し、粒子12としてルナサンド社の「ルナサンドH」を400cc使用し、貯留槽内20内の栽培液Qの水位を7cmに保持した。また、液体肥料としては、OAT社の「SA処方」を用いた。肥料の濃度は、積算温度600℃から1000℃までの間が培地部10内の栽培液Qの導電率が1.0S/cmになるよう調節し、積算温度1000℃から2100℃までの間は培地部10内の栽培液Qの導電率が1.2S/cmになるよう調節し、積算温度2100℃から栽培終了までの間が培地部10内の栽培液Qの導電率が1.0S/cmとなるよう肥料濃度を調節した。また、夜間供給量は、0時から6時まで及び18時から24時までの合計12時間における栽培液Qの合計供給量を測定時間(12時間)で除した値をその日の夜間供給量とした。 FIG. 2 shows the relationship between the integrated temperature and the nighttime supply amount in an example in which the concentration of fertilizer is adjusted based on experience regardless of the control unit 70 using the cultivation system and tomatoes are cultivated as crop P. Sumitomo Electric Industries, Ltd.'s "New Sand Ponics Y type" was used as the frame 11, storage tank 20, and liquid transfer unit 30 of the cultivation system, and 400 cc of Luna Sand's "Luna Sand H" was used as the particles 12. The water level of the cultivation liquid Q in the storage tank 20 was maintained at 7 cm. As the liquid fertilizer, OAT's "SA prescription" was used. The concentration of fertilizer is adjusted so that the conductivity of the cultivation liquid Q in the medium portion 10 is 1.0 S / cm when the integrated temperature is from 600 ° C to 1000 ° C, and when the integrated temperature is from 1000 ° C to 2100 ° C. The conductivity of the cultivated liquid Q in the medium portion 10 is adjusted to 1.2 S / cm, and the conductivity of the cultivated liquid Q in the medium portion 10 is 1.0 S / cm from the integrated temperature of 2100 ° C. to the end of cultivation. The fertilizer concentration was adjusted to be cm. The nighttime supply amount is the value obtained by dividing the total supply amount of the cultivation liquid Q in the total 12 hours from 0:00 to 6:00 and 18:00 to 24:00 by the measurement time (12 hours) as the nighttime supply amount of the day. did.

図2に示すように、積算温度約1800℃までの作物Pの生長期(茎葉が増大する時期)における夜間供給率は積算温度に対して正の比例関係にあり、積算温度約1800℃以降の作物Pの収穫期(果実が増大する時期)における夜間供給率は積算温度に対して負の比例関係にあることが分かる。 As shown in FIG. 2, the nighttime supply rate of crop P up to an integrated temperature of about 1800 ° C. during the growing season (when the foliage increases) is in a positive proportional relationship with the integrated temperature, and is after the integrated temperature of about 1800 ° C. It can be seen that the nighttime supply rate of crop P during the harvest period (the period when the fruit grows) is in a negative proportional relationship with the integrated temperature.

また、図3に、上記栽培における夜間供給量と作物Pの生育具合を示す緑視率との関係を示す。ここで、「緑視率」とは、作物全体を定点カメラで撮影し、画像中に作物が占める面積を緑色の画素の割合として算出した値である。図示するように、夜間供給量と作物Pの生育具合とは、略比例しているということができる。 Further, FIG. 3 shows the relationship between the nighttime supply amount in the above cultivation and the green visibility indicating the growth condition of the crop P. Here, the "green visibility" is a value calculated by photographing the entire crop with a fixed-point camera and calculating the area occupied by the crop in the image as the ratio of green pixels. As shown in the figure, it can be said that the nighttime supply amount and the growth condition of the crop P are substantially proportional.

ここで、作物Pの生育具合は、栽培液Qの肥料濃度によって調節可能である。具体的には、栽培液Qの肥料濃度を大きくすることで作物Pの生育速度を大きくすることができ、栽培液Qの肥料濃度を小さくすることで作物Pの生育速度を小さくすることができる。作物Pの生育速度は、大きいほどよいというものではなく、最適な速度で生育させることで果実等の品質を向上することができる。 Here, the growth condition of the crop P can be adjusted by the fertilizer concentration of the cultivation liquid Q. Specifically, the growth rate of the crop P can be increased by increasing the fertilizer concentration of the cultivation liquid Q, and the growth rate of the crop P can be decreased by decreasing the fertilizer concentration of the cultivation liquid Q. .. The higher the growth rate of the crop P, the better, and the quality of fruits and the like can be improved by growing the crop P at an optimum rate.

このため、当該栽培システムにおいて、制御部70は、測定機構50による夜間供給量の測定値が積算温度に対応する夜間供給量の理想値よりも小さい場合には、栽培液Qの肥料濃度を大きくするよう液肥ポンプ44の吐出量を大きくし、測定機構50による夜間供給量の測定値が積算温度に対応する夜間供給量の理想値よりも大きい場合には栽培液Qの肥料濃度を小さくするよう液肥ポンプ44の吐出量を小さくするよう構成されることが好ましい。 Therefore, in the cultivation system, when the measured value of the nighttime supply amount by the measuring mechanism 50 is smaller than the ideal value of the nighttime supply amount corresponding to the integrated temperature, the control unit 70 increases the fertilizer concentration of the cultivation liquid Q. Increase the discharge amount of the liquid fertilizer pump 44, and decrease the fertilizer concentration of the cultivation liquid Q when the measured value of the nighttime supply amount by the measuring mechanism 50 is larger than the ideal value of the nighttime supply amount corresponding to the integrated temperature. It is preferable that the liquid fertilizer pump 44 is configured to reduce the discharge amount.

さらに、図4に、上記栽培の収穫期における夜間供給量と収穫した果実の糖度との関係を示す。このように、夜間供給量の低下に伴って、果実の糖度も低下することが確認された。つまり、夜間供給量の低下を抑制できれば、糖度の低下を抑制して高品質な果実を収穫できると考えられる。 Further, FIG. 4 shows the relationship between the nighttime supply amount and the sugar content of the harvested fruits during the harvest season of the above cultivation. Thus, it was confirmed that the sugar content of the fruit also decreased as the nighttime supply decreased. In other words, if the decrease in nighttime supply can be suppressed, it is considered that the decrease in sugar content can be suppressed and high-quality fruits can be harvested.

特にトマト等の栽培においては、土壌に塩分を含有させることによって、果実の糖度を向上できることが知られている。つまり、当該栽培システムでは、貯留部20内に貯留され、送液部30を介して培地部10に供給される栽培液Qに塩分を含有させることで果実の糖度を大きくすることができる。 Especially in the cultivation of tomatoes and the like, it is known that the sugar content of fruits can be improved by adding salt to the soil. That is, in the cultivation system, the sugar content of the fruit can be increased by containing salt in the cultivation liquid Q stored in the storage unit 20 and supplied to the culture medium unit 10 via the liquid feeding unit 30.

一方、本発明者らは、栽培液Qの塩分濃度を小さくすることによって、収穫期における夜間供給量の低下率を小さくできることを確認した。これは、収穫期では、作物Pの根や茎葉の生長が止まっており、塩分のストレスにより作物Pの根等の寿命が短くなることで生成できる糖が減少することによるものと思われる。 On the other hand, the present inventors have confirmed that the rate of decrease in the nighttime supply amount during the harvesting period can be reduced by reducing the salt concentration of the cultivation liquid Q. It is considered that this is because the growth of the roots and foliage of the crop P is stopped during the harvesting period, and the sugar that can be produced decreases due to the shortening of the life of the roots and the like of the crop P due to the stress of salt content.

このため、当該栽培システムにおいて、夜間供給量が増大している生長期の間は栽培液Qの塩分濃度を大きくし、夜間供給量が低下し始めた後の収穫期には栽培液Qの塩分濃度を小さくすることによって、収穫される果実全体の平均糖度を大きくすることができる。 Therefore, in the cultivation system, the salt concentration of the cultivation liquid Q is increased during the growing season when the night supply amount is increasing, and the salt content of the cultivation liquid Q is increased during the harvesting period after the nighttime supply amount starts to decrease. By reducing the concentration, the average sugar content of the whole harvested fruit can be increased.

従って、当該栽培システムにおいて、作物Pの品質を向上するために、制御部70は、夜間供給量が増大している間は、栽培液Qの塩分濃度を大きくするよう塩水ポンプ46の吐出量を大きくし、夜間供給量が低下し始めた後は栽培液Qの塩分濃度を小さくするよう塩水ポンプ46の吐出量を小さくするよう構成されることが好ましい。 Therefore, in the cultivation system, in order to improve the quality of the crop P, the control unit 70 reduces the discharge amount of the salt water pump 46 so as to increase the salt concentration of the cultivation liquid Q while the night supply amount is increasing. It is preferable to increase the amount and reduce the discharge amount of the salt water pump 46 so as to reduce the salt concentration of the cultivation liquid Q after the nighttime supply amount starts to decrease.

また、当該栽培システムにおいて、制御部70が、上述の肥料濃度及び塩分濃度のような栽培液Qの組成意外にも、他の生育環境を調整するよう構成されてもよい。他の生育環境の具体例としては、環境温度、作物Pに当たる風、日照時間又は照明点灯時間、栽培液Qの温度等を挙げることができる。このため、当該栽培システムは、これらの生育環境を調節する機構を備えてもよい。 Further, in the cultivation system, the control unit 70 may be configured to adjust other growth environments other than the composition of the cultivation liquid Q such as the fertilizer concentration and the salt concentration described above. Specific examples of other growing environments include environmental temperature, wind hitting crop P, sunshine duration or lighting time, temperature of cultivation liquid Q, and the like. Therefore, the cultivation system may be provided with a mechanism for regulating these growing environments.

<架台>
架台80は、枠体11の幅方向両側にこの枠体11の長手方向に沿って立設される複数対の支柱81と、枠体11の幅方向に延在し、各対の支柱81にそれぞれ連結される上側桟材82及び下側桟材83と、枠体11の長手方向に延在し、複数の上側桟材82に連結される互いに平行な一対の上側桁材84と、枠体11の長手方向に延在し、複数の下側桟材83に連結される互いに平行な一対の下側桁材85とを含む。
<Mount>
The gantry 80 has a plurality of pairs of columns 81 erected along the longitudinal direction of the frame 11 on both sides in the width direction of the frame 11, and extends in the width direction of the frame 11 to each pair of columns 81. An upper crosspiece 82 and a lower crosspiece 83, which are connected to each other, a pair of upper girders 84 extending in the longitudinal direction of the frame 11 and connected to a plurality of upper crosspieces 82, and a frame body. 11 includes a pair of lower girders 85 that extend longitudinally and are parallel to each other and are connected to a plurality of lower crosspieces 83.

一対の上側桁材84は、枠体11の幅方向の両端部をこの枠体11の長手方向に沿って固定している。具体的には、一対の上側桁材84は、枠体11の幅方向の両端部をC字状の固定部材(不図示)との間に挟み込むことで枠体11を固定している。一対の下側桁材85は、送液部30を介在させた状態で枠体11を下方から支持している。各下側桟材83は、貯留槽20の上部21を幅方向に貫通しており、これにより貯留槽20に連結されている。 The pair of upper girder members 84 fix both ends of the frame 11 in the width direction along the longitudinal direction of the frame 11. Specifically, the pair of upper girder members 84 fix the frame 11 by sandwiching both ends of the frame 11 in the width direction with a C-shaped fixing member (not shown). The pair of lower girders 85 support the frame 11 from below with the liquid feeding portion 30 interposed therebetween. Each lower crosspiece 83 penetrates the upper portion 21 of the storage tank 20 in the width direction, and is thereby connected to the storage tank 20.

[栽培方法]
次に、本発明に係る栽培方法の一実施形態の栽培方法について説明する。当該栽培方法は、図1の栽培システムを用いて好適に実施することができる。そのため、以下では図1の栽培システムを用いる場合について説明する。
[Cultivation method]
Next, the cultivation method of one embodiment of the cultivation method according to the present invention will be described. The cultivation method can be suitably carried out using the cultivation system of FIG. Therefore, the case where the cultivation system of FIG. 1 is used will be described below.

当該栽培方法は、作物Pを活着させる培地部10と、栽培液Qを貯留する貯留槽20と、貯留槽20から培地部10に毛管現象により栽培液Qを流通する送液部30と、貯留槽20内の栽培液Qの水位が一定に保たれるよう貯留槽20に栽培液Qを供給する供給機構40とを備える栽培システムを用いた栽培方法であって、夜間における供給機構40による栽培液Qの供給量を測定する工程<測定工程>と、この測定工程で測定される夜間供給量を含む生育情報に基づいて作物の生育環境を制御する工程<制御工程>とを備える。 The cultivation method includes a medium unit 10 for engrafting the crop P, a storage tank 20 for storing the cultivation liquid Q, and a liquid feeding unit 30 for distributing the cultivation liquid Q from the storage tank 20 to the medium unit 10 by a capillary phenomenon. It is a cultivation method using a cultivation system provided with a supply mechanism 40 for supplying the cultivation liquid Q to the storage tank 20 so that the water level of the cultivation liquid Q in the tank 20 is kept constant, and is cultivated by the supply mechanism 40 at night. It includes a step of measuring the supply amount of the liquid Q <measurement step> and a step of controlling the growth environment of the crop based on the growth information including the nighttime supply amount measured in this measurement step <control step>.

<測定工程>
測定工程では、上述のように、測定機構50によって、作物Pの生育具合の指標となる夜間供給量を測定する。
<Measurement process>
In the measurement step, as described above, the measurement mechanism 50 measures the nighttime supply amount, which is an index of the growth condition of the crop P.

<制御工程>
制御工程では、測定工程で測定した夜間供給量を用いて作物の生育環境を制御する。具体例としては、上述のように、もう一つの生育情報である積算温度に対応する夜間供給量の理想値と夜間供給量の実測値との比較結果に応じて栽培液Qの肥料濃度を調節したり、測定された夜間供給量が低下し始めたと判断される場合に栽培液Qの塩分濃度を低下させたりすることができる。
<Control process>
In the control step, the growing environment of the crop is controlled by using the night supply amount measured in the measurement step. As a specific example, as described above, the fertilizer concentration of the cultivation liquid Q is adjusted according to the comparison result between the ideal value of the nighttime supply amount corresponding to the integrated temperature, which is another growth information, and the measured value of the nighttime supply amount. Or, when it is determined that the measured nighttime supply amount has begun to decrease, the salt concentration of the cultivation liquid Q can be decreased.

<利点>
当該栽培システム及び当該栽培方法は、日照の影響を受けない夜間における作物Pの吸水量と比較的正確に一致する夜間供給量を測定することによって作物Pの実際の生育具合を比較的正確に把握することができる。また、当該栽培システム及び当該栽培方法は、夜間供給量を含む生育情報に基づいて作物Pの生育環境を制御することによって、作物Pの実際の生育状況に応じて生育環境を最適化することができる。つまり、当該栽培システム及び当該栽培方法は、作物Pの生育速度を理想的な生育速度に近付けて収量及び品質を最適化することができる。
<Advantage>
The cultivation system and the cultivation method can grasp the actual growth condition of the crop P relatively accurately by measuring the night supply amount which matches the water absorption amount of the crop P at night which is not affected by the sunshine relatively accurately. can do. In addition, the cultivation system and the cultivation method can optimize the growth environment according to the actual growth condition of the crop P by controlling the growth environment of the crop P based on the growth information including the nighttime supply amount. can. That is, the cultivation system and the cultivation method can optimize the yield and quality by bringing the growth rate of the crop P close to the ideal growth rate.

[その他の実施形態]
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記実施形態の構成に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
[Other embodiments]
It should be considered that the embodiments disclosed this time are exemplary in all respects and not restrictive. The scope of the present invention is not limited to the configuration of the above embodiment, but is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims. To.

当該栽培システムにおいて、例えば培地部、貯留槽、送液部、供給機構、測定機構、制御部、架台等、当該栽培システムの具体的構造は上記実施形態に記載の構成に限定されるものではない。 In the cultivation system, the specific structure of the cultivation system, such as a culture medium unit, a storage tank, a liquid feeding unit, a supply mechanism, a measurement mechanism, a control unit, and a gantry, is not limited to the configuration described in the above embodiment. ..

例として、当該栽培システムにおける測定機構は、例えば給水ポンプ、液肥ポンプ及び塩水ポンプが定量ポンプである場合にこれらのポンプの駆動時間又は駆動パルス数をカウントするものであってもよい。また、肥料や塩水の固形分濃度が大きい場合には、これらの供給量を無視してもよい。 As an example, the measuring mechanism in the cultivation system may be, for example, counting the drive time or the number of drive pulses of the water supply pump, the liquid fertilizer pump and the salt water pump when they are metering pumps. Further, when the solid content concentration of fertilizer or salt water is high, the supply amount thereof may be ignored.

当該栽培システムにおける供給機構は、水位センサーを用いずに貯留槽に栽培液を供給するものであってもよい。具体的には、供給機構は、例えばボールタップ、サイフォン等を用いて貯留槽内の栽培液の水位が一定に保たれるよう貯留槽に栽培液を供給するものであってもよい。 The supply mechanism in the cultivation system may supply the cultivation liquid to the storage tank without using the water level sensor. Specifically, the supply mechanism may use, for example, a ball tap, a siphon, or the like to supply the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant.

当該栽培方法は、測定機構又は制御部を備えていない栽培システムを用い、人が介在して夜間供給量の測定及び生育環境の制御を行ってもよい。具体的には、夜間供給量の測定は、栽培用水槽等の貯水量の減少量を目視によって確認することで行ってもよい。また、生育環境の制御については、例として栽培液の組成を調節する場合、ポンプの吐出量をマニュアル調整することにより調節してもよく、予め肥料及び塩分を混合した栽培液を貯留する単一の水槽とこの水槽から貯留槽に栽培液を供給するポンプとを有する供給機構を用い、水槽中の栽培液の組成をマニュアルで調節してもよい。 As the cultivation method, a cultivation system without a measuring mechanism or a control unit may be used, and a person may intervene to measure the night supply amount and control the growing environment. Specifically, the nighttime supply amount may be measured by visually confirming the decrease amount of the water storage amount in the cultivation water tank or the like. Regarding the control of the growing environment, for example, when adjusting the composition of the cultivation liquid, the discharge amount of the pump may be adjusted manually, and a single storage of the cultivation liquid in which fertilizer and salt are mixed in advance is stored. The composition of the cultivation liquid in the water tank may be manually adjusted by using a supply mechanism having a water tank and a pump for supplying the cultivation liquid from the water tank to the storage tank.

本発明の実施形態に係る栽培システム及び栽培方法は、多様な植物の栽培に利用することができ、中でも果菜類、特にトマトの栽培に好適に利用することができる。 The cultivation system and cultivation method according to the embodiment of the present invention can be used for cultivation of various plants, and above all, can be suitably used for cultivation of fruit vegetables, particularly tomatoes.

10 培地部
11 枠体
12 粒子
20 貯留槽
21 上部
22 下部
30 送液部
40 供給機構
41 用水槽
42 給水ポンプ
43 液肥槽
44 液肥ポンプ
45 塩水槽
46 塩水ポンプ
47 水位センサー
48 給液制御部
50 測定機構
51 流量計
52 演算部
60 温度センサー
70 制御部
80 架台
81 支柱
82 上側桟材
83 下側桟材
84 上側桁材
85 下側桁材
P 作物
Q 栽培液
10 Medium part 11 Frame body 12 Particles 20 Storage tank 21 Upper part 22 Lower part 30 Liquid supply part 40 Supply mechanism 41 Water tank 42 Water supply pump 43 Liquid fertilizer tank 44 Liquid fertilizer pump 45 Salt water tank 46 Salt water pump 47 Water level sensor 48 Liquid supply control unit 50 Measurement Mechanism 51 Flow meter 52 Calculation unit 60 Temperature sensor 70 Control unit 80 Stand 81 Support column 82 Upper crosspiece 83 Lower crosspiece 84 Upper girder 85 Lower girder P Crop Q Cultivation liquid

Claims (5)

作物を活着させる培地部と、
栽培液を貯留する貯留槽と、
上記貯留槽から上記培地部に毛管現象により栽培液を流通する送液部と、
上記貯留槽内の栽培液の水位が一定に保たれるよう上記貯留槽に栽培液を供給する供給機構と、
夜間における上記供給機構による上記栽培液の供給量を測定する測定機構と、
上記測定機構が測定した夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する制御部と
を備え
記制御部が制御する生育環境が上記栽培液の組成を含む栽培システム。
The medium part that allows the crops to take root, and
A storage tank for storing cultivation liquid and
A liquid feeding part that distributes the cultivation liquid from the storage tank to the medium part by capillarity,
A supply mechanism that supplies the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant, and
A measuring mechanism that measures the supply amount of the cultivation liquid by the supply mechanism at night, and
It is equipped with a control unit that controls the growth environment of the crop based on the growth information including the nighttime supply measured by the measurement mechanism .
A cultivation system in which the growth environment controlled by the control unit includes the composition of the above cultivation liquid .
上記生育情報が環境温度の積算値をさらに含み、
上記制御部が、上記夜間供給量の測定値が上記環境温度の積算値に対応する上記夜間供給量の理想値よりも小さい場合には上記栽培液の肥料濃度を大きくし、上記夜間供給量の測定値が上記夜間供給量の理想値よりも大きい場合には上記栽培液の肥料濃度を小さくする請求項に記載の栽培システム。
The above growth information further includes the integrated value of the environmental temperature,
When the control unit increases the fertilizer concentration of the cultivation liquid when the measured value of the nighttime supply amount is smaller than the ideal value of the nighttime supply amount corresponding to the integrated value of the environmental temperature, the nighttime supply amount is increased. The cultivation system according to claim 1 , wherein when the measured value is larger than the ideal value of the nighttime supply amount, the fertilizer concentration of the cultivation liquid is reduced.
上記制御部が、上記夜間供給量が低下し始めた後は上記栽培液の塩分濃度を小さくする請求項又は請求項に記載の栽培システム。 The cultivation system according to claim 1 or 2 , wherein the control unit reduces the salt concentration of the cultivation liquid after the nighttime supply amount starts to decrease. 上記供給機構が上記貯留槽の水位を検出する水位センサーを備える請求項1から請求項のいずれか1項に記載の栽培システム。 The cultivation system according to any one of claims 1 to 3 , wherein the supply mechanism includes a water level sensor for detecting the water level of the storage tank. 作物を活着させる培地部と、
栽培液を貯留する貯留槽と、
上記貯留槽から上記培地部に毛管現象により栽培液を流通する送液部と、
上記貯留槽内の栽培液の水位が一定に保たれるよう上記貯留槽に栽培液を供給する供給機構と
を備える栽培システムを用いた作物の栽培方法であって、
夜間における上記供給機構による上記栽培液の供給量を測定する工程と、
上記測定工程で測定される夜間供給量を含む生育情報に基づいて上記作物の生育環境を制御する工程と
を備え
上記生育環境が上記栽培液の組成を含む栽培方法。
The medium part that allows the crops to take root, and
A storage tank for storing cultivation liquid and
A liquid feeding part that distributes the cultivation liquid from the storage tank to the medium part by capillarity,
It is a method of cultivating crops using a cultivation system equipped with a supply mechanism for supplying the cultivation liquid to the storage tank so that the water level of the cultivation liquid in the storage tank is kept constant.
The process of measuring the supply amount of the cultivation liquid by the supply mechanism at night, and
It is provided with a step of controlling the growth environment of the above crop based on the growth information including the night supply amount measured in the above measurement step .
A cultivation method in which the growth environment includes the composition of the cultivation liquid .
JP2018115271A 2018-06-18 2018-06-18 Cultivation system and cultivation method Active JP7033502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018115271A JP7033502B2 (en) 2018-06-18 2018-06-18 Cultivation system and cultivation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018115271A JP7033502B2 (en) 2018-06-18 2018-06-18 Cultivation system and cultivation method

Publications (2)

Publication Number Publication Date
JP2019216629A JP2019216629A (en) 2019-12-26
JP7033502B2 true JP7033502B2 (en) 2022-03-10

Family

ID=69094475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018115271A Active JP7033502B2 (en) 2018-06-18 2018-06-18 Cultivation system and cultivation method

Country Status (1)

Country Link
JP (1) JP7033502B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021166495A (en) * 2020-04-11 2021-10-21 株式会社プランテックス Plant cultivation device and plant cultivation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178644A (en) 2009-02-04 2010-08-19 Ueno Engei:Kk Method for supplying water to plant, and hydroponics system
JP2015100313A (en) 2013-11-26 2015-06-04 株式会社にいみ農園 Watering method and apparatus for hydroponic cultivation
JP2016171781A (en) 2015-03-17 2016-09-29 住友電気工業株式会社 Water tank for capillary hydroponic cultivation, and capillary hydroponic cultivation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07264941A (en) * 1994-03-31 1995-10-17 Yasumasa Kato Hydroponic method and system therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178644A (en) 2009-02-04 2010-08-19 Ueno Engei:Kk Method for supplying water to plant, and hydroponics system
JP2015100313A (en) 2013-11-26 2015-06-04 株式会社にいみ農園 Watering method and apparatus for hydroponic cultivation
JP2016171781A (en) 2015-03-17 2016-09-29 住友電気工業株式会社 Water tank for capillary hydroponic cultivation, and capillary hydroponic cultivation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASUDA, M. et al.,Uptake of Water and Minerals during the Day and the Night in Tomato and Cucumber Plants,Journal of the Japanese Society for Horticultural Science,1990年,Vol. 58, Issue 4,pp. 951-957
寺林 敏 ほか,トマト水耕栽培における種々の培養液条件下でのリンの昼夜間吸収,京都府立大学学術報告.農学,1990年11月,Vol. 42,pp. 1-11

Also Published As

Publication number Publication date
JP2019216629A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
US7809475B2 (en) Computer controlled fertigation system and method
US10188051B2 (en) Method for controlling irrigation
CN106163263B (en) Cultivation device and cultivation method
JP7033502B2 (en) Cultivation system and cultivation method
Wootton-Beard Growing without soil: an overview of hydroponics
Jai et al. Near real time-sensing system for hydroponics based urban farming
JP2012024011A (en) Automatic controlling indoor plant growing apparatus for plants
KR20160101455A (en) Hydroponic cultivating apparatus
JP7000552B2 (en) Cultivation system and cultivation method
Holtman et al. Optimalization of oxygen levels in root systems as effective cultivation tool
US8112936B1 (en) Container-based plant husbandry apparatus and controlled horticultural environment for using same
JP2008182909A (en) Plant cultivation system
Hande Indoor farming hydroponic plant grow chamber
JP6110984B1 (en) Irrigation monitoring system
WO2019163056A1 (en) Cultivation system and cultivation method
Kratky Growing direct-seeded watercress by two non-circulating hydroponic methods
NL2004976C2 (en) SYSTEM, CASH AND METHOD FOR GROWING AND / OR INCREASING PRODUCTS.
Moustafa et al. Automatic Irrigation by Using Soil Moisture Sensor in Vertical Closed System for Lettuce Production
Khanieva et al. OPTIMIZATION OF THE SOIL MOISTURE CONTENT LEVEL WHEN GROWING SUGAR CORN
US20240114860A1 (en) Aquaponic system and method of plant cultivation
Wang Effects of different soil moistures on the yield, water use efficiency of solar greenhouse tomatoes in liaoning, China
JPH06276870A (en) Crop raising system and method for raising crop taking advantage of water surface
Mačukanović-Jocić et al. Nectar secretion in basil (Ocimum basilicum L.) grown in different soil conditions
Jamieson et al. Modelling Water and N Uptake and Responses in Models of Wheat, Potatoes and Maize.
Catigday et al. Relationships of Water Quality Parameters for Hydroponic Production of Kale (Brassica oleracea) with In-Ground Passive Cooling System

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200911

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7033502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150