JP7032833B2 - Cutting method, metal material, mold, and mold manufacturing method - Google Patents

Cutting method, metal material, mold, and mold manufacturing method Download PDF

Info

Publication number
JP7032833B2
JP7032833B2 JP2021014349A JP2021014349A JP7032833B2 JP 7032833 B2 JP7032833 B2 JP 7032833B2 JP 2021014349 A JP2021014349 A JP 2021014349A JP 2021014349 A JP2021014349 A JP 2021014349A JP 7032833 B2 JP7032833 B2 JP 7032833B2
Authority
JP
Japan
Prior art keywords
cutting
solid solution
nitrogen concentration
nitrogen
solution layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021014349A
Other languages
Japanese (ja)
Other versions
JP2021079542A (en
Inventor
英二 社本
弘鎭 鄭
健宏 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai National Higher Education and Research System NUC
Original Assignee
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai National Higher Education and Research System NUC filed Critical Tokai National Higher Education and Research System NUC
Priority to JP2021014349A priority Critical patent/JP7032833B2/en
Publication of JP2021079542A publication Critical patent/JP2021079542A/en
Application granted granted Critical
Publication of JP7032833B2 publication Critical patent/JP7032833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turning (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本開示は、ダイヤモンド切削工具を用いた切削方法、金属材料、金型、および金型の製造方法に関する。 The present disclosure relates to cutting methods using diamond cutting tools, metal materials, dies, and methods for manufacturing dies.

特許文献1は、機械加工後における鋼材の表面粗さを低減する方法を開示する。この方法は、鋼材の少なくとも表面にアトム窒化法により条件(a)および/または条件(b)の下で、窒素原子が侵入型固溶原子として存在する固溶体層を形成した後、固溶体層をダイヤモンド切削工具で機械加工する。条件(a)は、アトム窒化法を10Pa以下の圧力で行うことであり、条件(b)は、アトム窒化法においてプラズマの電位を基準とする鋼材の電位を-300~300Vとすることである。 Patent Document 1 discloses a method for reducing the surface roughness of a steel material after machining. In this method, a solid solution layer in which nitrogen atoms are present as intrusive solid solution atoms is formed on at least the surface of a steel material by an atom nitriding method under the conditions (a) and / or the condition (b), and then the solid solution layer is formed into diamond. Machin with a cutting tool. The condition (a) is that the atom nitriding method is performed at a pressure of 10 Pa or less, and the condition (b) is that the potential of the steel material based on the plasma potential in the atom nitriding method is −300 to 300 V. ..

特開2018-135596号公報Japanese Unexamined Patent Publication No. 2018-135596

アトム窒化法等により鋼材の表面に拡散窒化処理を施した場合であっても、窒素濃度が低ければ、ダイヤモンド切削工具の炭素原子が鋼材に侵入して、工具摩耗が生じる。そこで本開示者は、ダイヤモンド切削工具を用いた切削に適した拡散窒素濃度に関する条件を実験により求め、窒素濃度にもとづいた切削方法を考案するに至った。 Even when the surface of the steel material is subjected to diffusion nitriding treatment by the atom nitriding method or the like, if the nitrogen concentration is low, carbon atoms of the diamond cutting tool invade the steel material and tool wear occurs. Therefore, the present discloser has experimentally determined the conditions regarding the diffusion nitrogen concentration suitable for cutting using a diamond cutting tool, and has devised a cutting method based on the nitrogen concentration.

本開示はこうした状況に鑑みてなされており、その目的とするところの1つは、拡散窒化処理を施した金属材料をダイヤモンド切削工具により窒素濃度にもとづいて切削する方法を提供することにある。 The present disclosure has been made in view of these circumstances, and one of the objects thereof is to provide a method for cutting a metal material subjected to diffusion nitriding treatment by a diamond cutting tool based on a nitrogen concentration.

上記課題を解決するために、本開示のある態様は、窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有する金属材料の固溶体層を、その表面からダイヤモンド切削工具により切削する方法に関する。この方法では、窒素濃度が所定の濃度以上である領域内で切削を行い、窒素濃度が所定の濃度未満となる領域の切削を行わない。 In order to solve the above problems, one aspect of the present disclosure is a method of cutting a solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on its surface with a diamond cutting tool from the surface thereof. Regarding. In this method, cutting is performed in a region where the nitrogen concentration is equal to or higher than a predetermined concentration, and cutting is not performed in a region where the nitrogen concentration is lower than the predetermined concentration.

本開示の別の態様もまた、窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有する金属材料の固溶体層を、その表面からダイヤモンド切削工具により切削する方法である。この方法では、窒素濃度がピークを示す位置を切削した後、窒素濃度が所定の濃度未満となる領域に達する前に切削を終了する。 Another aspect of the present disclosure is also a method of cutting a solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on its surface with a diamond cutting tool from the surface thereof. In this method, after cutting the position where the nitrogen concentration shows a peak, the cutting is finished before the region where the nitrogen concentration becomes less than a predetermined concentration is reached.

本開示の別の態様もまた、窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有する金属材料の固溶体層を、その表面からダイヤモンド切削工具により切削する方法に関する。この方法では、窒素濃度が第1濃度以上である領域内を切削可能範囲とし、第1濃度より高い第2濃度以上である領域内で切削を行う。 Another aspect of the present disclosure also relates to a method of cutting a solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on its surface with a diamond cutting tool from the surface thereof. In this method, the region where the nitrogen concentration is the first concentration or higher is set as the cuttable range, and the cutting is performed in the region where the nitrogen concentration is the second concentration or higher, which is higher than the first concentration.

切削対象である金属材料の断面を示す図である。It is a figure which shows the cross section of the metal material which is the object of cutting. アトム窒化処理した加工ワークを示す図である。It is a figure which shows the machined work which was atom nitriding processed. 窒素濃度の分析結果を示す図である。It is a figure which shows the analysis result of a nitrogen concentration. 加工ワークの硬度の測定結果を示す図である。It is a figure which shows the measurement result of the hardness of a machined work. 表面からの距離が20μmであるときの観察画像を示す図である。It is a figure which shows the observation image when the distance from a surface is 20 μm. 表面からの距離が35μmであるときの観察画像を示す図である。It is a figure which shows the observation image when the distance from a surface is 35 μm. 表面からの距離が57μmであるときの観察画像を示す図である。It is a figure which shows the observation image when the distance from a surface is 57 μm. 表面からの距離と逃げ面摩耗幅の関係を示す図である。It is a figure which shows the relationship between the distance from a surface and the wear width of a flank. 窒素濃度と逃げ面摩耗幅の関係を示す図である。It is a figure which shows the relationship between a nitrogen concentration and a flank wear width.

図1は、ダイヤモンド切削工具による切削対象である金属材料の断面を示す。金属材料1は、窒素原子が侵入型固溶原子として存在する固溶体層10を少なくとも表面に有する。金属材料1は鉄系材料であり、実施形態では鋼材とするが、他の種類の金属であってもよい。実施形態は、固溶体層10を少なくとも表面に有する金属材料1の固溶体層10を、その表面からダイヤモンド切削工具により切削する方法を提供する。この切削は、鏡面加工であってよい。 FIG. 1 shows a cross section of a metal material to be cut by a diamond cutting tool. The metal material 1 has at least a solid solution layer 10 on the surface in which nitrogen atoms are present as intrusive solid solution atoms. The metal material 1 is an iron-based material, and although it is a steel material in the embodiment, it may be another kind of metal. The embodiment provides a method of cutting a solid solution layer 10 of a metal material 1 having a solid solution layer 10 at least on its surface from the surface thereof with a diamond cutting tool. This cutting may be mirror processing.

固溶体層10は、金属材料1の表面に、窒素原子を拡散固溶させることで形成される。固溶体層10は、たとえば窒素原子を含む希薄気体内に金属材料1を配置し、その希薄気体に電子ビームを照射して励起することで形成されてよい。 The solid solution layer 10 is formed by diffusing and solidifying nitrogen atoms on the surface of the metal material 1. The solid solution layer 10 may be formed by, for example, arranging the metal material 1 in a dilute gas containing a nitrogen atom and irradiating the dilute gas with an electron beam to excite it.

固溶体層10は、鉄の窒化物を実質的に含まないことが好ましい。固溶体層10が鉄の窒化物を含むと、切削時にダイヤモンド切削工具の刃先が欠損する可能性がある。そこで鉄の窒化物を含まないように固溶体層10を形成することで、ダイヤモンド切削工具の寿命を長くできるとともに、切削後における金属製品の表面粗さを小さくできる利点がある。 The solid solution layer 10 preferably contains substantially no iron nitride. If the solid solution layer 10 contains iron nitride, the cutting edge of the diamond cutting tool may be damaged during cutting. Therefore, by forming the solid solution layer 10 so as not to contain iron nitride, there is an advantage that the life of the diamond cutting tool can be extended and the surface roughness of the metal product after cutting can be reduced.

固溶体層10は、特許文献1に開示されるアトム窒化法によって形成されてよい。アトム窒化法は、窒素原子を含むプラズマを用いて、窒素原子を金属材料1の表面から侵入、拡散させる方法である。アトム窒化法により形成される固溶体層10は、鉄の窒化物を含まないため、好適な形成方法であると言える。 The solid solution layer 10 may be formed by the atom nitriding method disclosed in Patent Document 1. The atom nitriding method is a method of invading and diffusing nitrogen atoms from the surface of the metal material 1 by using plasma containing nitrogen atoms. Since the solid solution layer 10 formed by the atom nitriding method does not contain iron nitride, it can be said that it is a suitable forming method.

本開示者は、アトム窒化処理した固溶体層10をダイヤモンド切削工具で切削し、工具摩耗と窒素濃度との関係を調べた。
図2(a)は、アトム窒化処理した加工ワークを示し、図2(b)は、加工ワーク21のA-A断面を示す。加工ワーク21の材質はSUS420J2の生材である。加工ワーク21は、中心に孔22を設けられた直径50mmの円板形状を有し、実験中、機械加工装置の主軸が孔22に取り付けられて、回転させられる。ダイヤモンド切削工具は、機械加工装置の送り機構により、回転する加工ワーク21の表面23に対して相対的に動かされ、加工ワーク21の表面23を切削する。
The present disclosure examines the relationship between tool wear and nitrogen concentration by cutting the atom-nitrided solid solution layer 10 with a diamond cutting tool.
FIG. 2A shows a machined work subjected to atom nitriding treatment, and FIG. 2B shows a cross section of the machined work 21 AA. The material of the processed work 21 is a raw material of SUS420J2. The machining work 21 has a disk shape having a diameter of 50 mm provided with a hole 22 in the center, and the spindle of the machining apparatus is attached to the hole 22 and rotated during the experiment. The diamond cutting tool is moved relative to the surface 23 of the rotating machining work 21 by the feed mechanism of the machining apparatus, and cuts the surface 23 of the machining work 21.

なお本実験では、同条件でアトム窒化処理した加工ワーク21を複数用意し、1つの加工ワークを表面から深さ方向に切断して、表面からの窒素濃度を測定した。
図3は、電子線マイクロアナライザ(EPMA)による窒素濃度の分析結果を示す。分析結果に示されるように、窒素原子は表面から侵入するため、表面の窒素濃度が高く、表面から深くなるにつれて窒素濃度が低くなる。本実験で使用した加工ワーク21のアトム窒化処理条件によると、固溶体層10の表面は、窒素原子が飽和に固溶した状態となっており、表面からの距離(深さ)が約50μmより下方で、窒素濃度がほぼ0重量パーセントとなっている。なお窒素濃度のプロファイル、つまり窒素濃度と表面からの距離(深さ)の関係は窒化処理条件に依存し、たとえば処理時間を長くすることで、固溶体層10を深く形成できる。なお処理時間を長くすると飽和領域は広がるが、飽和領域における最大の窒素濃度(ピーク濃度)は変わらない。
In this experiment, a plurality of machined works 21 atom-nitrided under the same conditions were prepared, one machined work was cut in the depth direction from the surface, and the nitrogen concentration from the surface was measured.
FIG. 3 shows the analysis result of the nitrogen concentration by the electron probe microanalyzer (EPMA). As shown in the analysis results, the nitrogen atom penetrates from the surface, so that the nitrogen concentration on the surface is high, and the nitrogen concentration decreases as the depth from the surface increases. According to the atom nitriding treatment conditions of the processed work 21 used in this experiment, the surface of the solid solution layer 10 is in a state where nitrogen atoms are saturated and dissolved, and the distance (depth) from the surface is below about 50 μm. The nitrogen concentration is almost 0% by weight. The profile of the nitrogen concentration, that is, the relationship between the nitrogen concentration and the distance (depth) from the surface depends on the nitriding treatment conditions. For example, by lengthening the treatment time, the solid solution layer 10 can be formed deeply. If the treatment time is lengthened, the saturated region expands, but the maximum nitrogen concentration (peak concentration) in the saturated region does not change.

窒素濃度が6重量パーセントを超えると、鉄の窒化物が生成されることが知られている。鉄の窒化物は、切削中にダイヤモンド切削工具を欠損させる可能性を高める。そこで加工ワーク21は、固溶体層10の窒素濃度が6重量パーセント以下となるようにアトム窒化処理されている。 It is known that when the nitrogen concentration exceeds 6 weight percent, iron nitride is produced. Nitride of iron increases the likelihood of chipping the diamond cutting tool during cutting. Therefore, the processed work 21 is atom-nitrided so that the nitrogen concentration of the solid solution layer 10 is 6% by weight or less.

図4は、加工ワーク21の硬度の測定結果を示す。実験では、工具摩耗を観察すると同時に、表面硬度を微小硬度計を用いて測定した。この測定結果から、窒化処理を施すことで、表面近傍の硬度が高くなっていることが確認される。また図3の窒素濃度プロファイルを参照すると、窒素濃度の低下とともに、硬度も低下することが確認される。高い表面硬度は、金属材料1を金型等に使用する際に好適である。 FIG. 4 shows the measurement result of the hardness of the machined work 21. In the experiment, the surface hardness was measured using a micro hardness tester at the same time as observing the tool wear. From this measurement result, it is confirmed that the hardness near the surface is increased by performing the nitriding treatment. Further, referring to the nitrogen concentration profile of FIG. 3, it is confirmed that the hardness decreases as the nitrogen concentration decreases. The high surface hardness is suitable when the metal material 1 is used for a mold or the like.

実験では、加工ワーク21の表面を複数回に分けて一層ずつ切削し、微分干渉顕微鏡により工具摩耗を観察した。実験における切削条件は、以下のとおりである。
切込量(一層分) : 2~3μm
一回転ごとの工具送り量 : 5μm
回転速度 : 80rpm
平均切削速度 : 10m/分
切削長さ : 188m/層
工具摩耗の観察にあたり、表面から約10μmの深さを前加工により除去して、切削面を滑らかにした。
In the experiment, the surface of the machined work 21 was cut layer by layer in a plurality of times, and tool wear was observed with a differential interference microscope. The cutting conditions in the experiment are as follows.
Cut amount (for one layer): 2 to 3 μm
Tool feed amount per rotation: 5 μm
Rotation speed: 80 rpm
Average cutting speed: 10 m / min Cutting length: 188 m / layer When observing tool wear, a depth of about 10 μm from the surface was removed by pre-machining to smooth the cutting surface.

図5~図7は、微分干渉顕微鏡によるすくい面と逃げ面の観察画像を示す。これらの図では、上側にすくい面の観察画像を、下側に逃げ面の観察画像を合成している。微分干渉顕微鏡は、ノマルスキープリズムによって光源からの光を2分割して試料を照明し、試料から反射された2つの観測光を合成する際に生じる干渉を利用して、試料表面の凹凸を強調する。微分干渉顕微鏡の撮影画像において、すくい面および/または逃げ面のエッジに明るさの変化が観察されると、すくい面および/または逃げ面に摩耗が生じたことが示される。 5 to 7 show observation images of the rake face and the flank surface by a differential interference microscope. In these figures, the observation image of the rake face on the upper side and the observation image of the flank surface on the lower side are combined. The differential interference microscope illuminates the sample by dividing the light from the light source into two by a Nomalski prism, and emphasizes the unevenness of the sample surface by utilizing the interference generated when the two observation lights reflected from the sample are combined. .. When a change in brightness is observed at the edges of the rake face and / or flank surface in the image taken by the differential interference microscope, it is indicated that the rake face and / or the flank surface is worn.

図5は、表面からの距離が20μmであるときの観察画像を示す。この観察画像において、すくい面および逃げ面のエッジに明るさの強弱は発生しておらず、摩耗が生じていない。 FIG. 5 shows an observation image when the distance from the surface is 20 μm. In this observation image, there is no difference in brightness at the edges of the rake face and the flank surface, and no wear occurs.

図6は、表面からの距離が35μmであるときの観察画像を示す。この観察画像では、逃げ面のエッジが明るくなっており、この箇所近傍に摩耗が発生している。なお表面からの距離が35μm未満であるときには、エッジ部分に明るさの強弱は発生していなかったため、表面からの距離35μmの位置から摩耗が発生し始めたことが観察された。なお摩耗は刃先の先端から進むため、すくい面側より逃げ面側の摩耗の方が先に観察されやすい。 FIG. 6 shows an observation image when the distance from the surface is 35 μm. In this observation image, the edge of the flank is bright, and wear occurs in the vicinity of this portion. When the distance from the surface was less than 35 μm, the intensity of the brightness did not occur at the edge portion, so that it was observed that the wear started to occur from the position at the distance of 35 μm from the surface. Since the wear proceeds from the tip of the cutting edge, the wear on the flank side is more likely to be observed earlier than the wear on the rake face side.

図7は、表面からの距離が57μmであるときの観察画像を示す。この観察画像では、すくい面および逃げ面のエッジの明るさが変化し、すくい面および逃げ面に大きな摩耗が生じていることが観察される。 FIG. 7 shows an observation image when the distance from the surface is 57 μm. In this observation image, it is observed that the brightness of the edges of the rake face and the flank surface changes, causing great wear on the rake face and the flank surface.

本実験では、さらに、各層を切削するときの切削力の変化を測定するとともに、各層を切削した後の仕上げ面粗さを測定した。この結果、表面からの距離35μm以上になると、切り込み方向の切削力が急激に上昇し、且つ仕上げ面粗さも大きくなることが測定された。このことは表面からの切削距離が35μmとなったときに、工具摩耗が進行し始めたことを意味する。 In this experiment, the change in cutting force when cutting each layer was further measured, and the finished surface roughness after cutting each layer was measured. As a result, it was measured that when the distance from the surface was 35 μm or more, the cutting force in the cutting direction increased sharply and the roughness of the finished surface also increased. This means that tool wear began to progress when the cutting distance from the surface reached 35 μm.

図8は、表面からの距離と逃げ面摩耗幅の関係を示す。逃げ面摩耗幅は、一層分(188m)を切削したときの逃げ面における摩耗長さの最大値である。表面からの距離が35μmの位置から摩耗が進行していることが観察される。 FIG. 8 shows the relationship between the distance from the surface and the wear width of the flank. The flank wear width is the maximum value of the wear length on the flank when one layer (188 m) is cut. It is observed that the wear progresses from the position where the distance from the surface is 35 μm.

図9は、窒素濃度と逃げ面摩耗幅の関係を示す。この関係は、図3に示す窒素濃度のプロファイルと図8に示す実験結果とから導き出され、窒素濃度が、所定の濃度未満となる領域で工具摩耗が発生し、所定の濃度以上である領域で工具摩耗が発生しないことが確認された。この閾値となる濃度は、後述するように窒素原子が飽和に固溶した領域の窒素濃度(ピーク濃度)にもとづいて定められる。金属材料1をダイヤモンド切削工具により切削する方法は、工具摩耗を回避または低減させる目的のために、窒素濃度が所定の濃度以上である領域内で切削を行い、窒素濃度が所定の濃度未満となる領域の切削を行わないことが好ましい。窒素濃度のプロファイルの観点から言えば、金属材料1の切削方法は、窒素濃度がピークを示す位置を切削してから、窒素濃度が所定の濃度未満となる領域に達する前に切削を終了することが好ましい。 FIG. 9 shows the relationship between the nitrogen concentration and the flank wear width. This relationship is derived from the nitrogen concentration profile shown in FIG. 3 and the experimental results shown in FIG. 8, and the tool wear occurs in the region where the nitrogen concentration is lower than the predetermined concentration and is higher than the predetermined concentration. It was confirmed that no tool wear occurred. As will be described later, this threshold concentration is determined based on the nitrogen concentration (peak concentration) in the region where the nitrogen atom is saturated and dissolved. In the method of cutting the metal material 1 with a diamond cutting tool, cutting is performed in a region where the nitrogen concentration is equal to or higher than a predetermined concentration for the purpose of avoiding or reducing tool wear, and the nitrogen concentration becomes lower than the predetermined concentration. It is preferable not to cut the area. From the viewpoint of the nitrogen concentration profile, the cutting method of the metal material 1 is to cut the position where the nitrogen concentration shows a peak and then finish the cutting before reaching the region where the nitrogen concentration becomes less than the predetermined concentration. Is preferable.

炭素原子が固溶体層10に侵入することによる工具摩耗を回避するためには、窒素濃度が約3.5重量パーセント以上である領域内で切削を行うことが好ましい(図9参照)が、僅かな工具摩耗を許容できる場合は、約3.5重量パーセントよりも低い窒素濃度以上である領域内で切削を行ってもよい。たとえば188mの切削長さに対して2μmの逃げ面摩耗が許容できる場合、窒素濃度が約2重量パーセント以上である領域内で切削を行ってもよい。 In order to avoid tool wear due to carbon atoms invading the solid solution layer 10, it is preferable to perform cutting in a region where the nitrogen concentration is about 3.5% by weight or more (see FIG. 9), but only a little. If tool wear is tolerable, cutting may be performed in areas with nitrogen concentrations greater than or equal to about 3.5 weight percent. For example, if a flank wear of 2 μm is acceptable for a cutting length of 188 m, cutting may be performed in a region where the nitrogen concentration is about 2 weight percent or more.

本開示者は、工具摩耗を回避できる窒素濃度が、窒素原子が飽和に固溶した領域の窒素濃度の相対値として定まることを見いだした。図3に示すように、実験における飽和領域の窒素濃度は約5重量パーセントであり、したがって飽和領域の窒素濃度の70パーセント(3.5重量パーセント/5重量パーセント)以上である領域内で切削を行うことで、工具摩耗を回避できる。同様に、188mの切削長さに対して2μmの逃げ面摩耗が許容できる場合は、飽和領域の窒素濃度の40パーセント(2重量パーセント/5重量パーセント)以上である領域内で切削を行うことで、工具摩耗を小さく抑えられる。 The present disclosure has found that the nitrogen concentration at which tool wear can be avoided is determined as a relative value of the nitrogen concentration in the region where the nitrogen atom is saturated and dissolved. As shown in FIG. 3, the nitrogen concentration in the saturated region in the experiment is about 5 weight percent, so cutting is done in a region that is greater than or equal to 70 percent (3.5 weight percent / 5 weight percent) of the nitrogen concentration in the saturated region. By doing so, tool wear can be avoided. Similarly, if a flank wear of 2 μm is acceptable for a cutting length of 188 m, cutting may be performed in a region that is at least 40 percent (2 weight percent / 5 weight percent) of the nitrogen concentration in the saturated region. , Tool wear can be kept small.

なお金属材料1をダイヤモンド切削工具により切削する方法は、工具摩耗を回避または低減させる目的のために、窒素濃度が第1濃度以上である領域内を切削可能範囲とし、窒素濃度が第1濃度未満となる領域を切削不可範囲としたうえで、第1濃度より高い第2濃度以上である領域内で切削を行ってもよい。上記したように第1濃度は飽和領域の窒素濃度にもとづいて定められ、飽和窒素濃度の70パーセントである3.5重量パーセントに設定されてよい。図4に示すように、窒素濃度が高いほど表面硬度が高く、高い表面硬度は、金型等の表面に好適である。そのためダイヤモンド切削工具に摩耗を生じさせず、且つ高い表面硬度を確保するために、切削加工では、第1濃度より高い第2濃度以上である領域内で切削を行うことが好ましい。 In the method of cutting the metal material 1 with a diamond cutting tool, for the purpose of avoiding or reducing tool wear, the area where the nitrogen concentration is the first concentration or more is within the cutting range, and the nitrogen concentration is less than the first concentration. It is also possible to set the region to be a non-cutting range and then perform cutting in a region having a second concentration or higher higher than the first concentration. As described above, the first concentration is determined based on the nitrogen concentration in the saturated region and may be set to 3.5 weight percent, which is 70 percent of the saturated nitrogen concentration. As shown in FIG. 4, the higher the nitrogen concentration, the higher the surface hardness, and the higher surface hardness is suitable for the surface of a mold or the like. Therefore, in order to prevent the diamond cutting tool from being worn and to secure high surface hardness, it is preferable to perform cutting in a region having a second concentration higher than the first concentration and higher than the first concentration.

実施形態の切削方法を実現するために、切削加工業者は、窒化処理業者に対して、被削材となる金属材料1の固溶体層10の窒素濃度プロファイルを指定する。つまり最終的に仕上げる製品の仕上げ面における窒素濃度を指定したうえで、窒化処理業者に被削材の窒化処理を依頼する。窒化処理業者は、仕上げ面と被削材表面との距離に応じて、仕上げ面が指定された窒素濃度となるように窒化処理条件を定め、鉄の窒化物が存在しないように固溶体層10を形成すればよい。 In order to realize the cutting method of the embodiment, the cutting processor specifies the nitrogen concentration profile of the solid solution layer 10 of the metal material 1 to be the work material to the nitriding processor. In other words, after specifying the nitrogen concentration on the finished surface of the product to be finally finished, a nitriding processor is requested to nitrid the work material. The nitriding agent determines the nitriding conditions so that the finished surface has a specified nitrogen concentration according to the distance between the finished surface and the surface of the work material, and the solid solution layer 10 is provided so that iron nitride does not exist. It should be formed.

本開示の態様の概要は、次の通りである。本開示のある態様は、窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有する金属材料の固溶体層を、その表面からダイヤモンド切削工具により切削する方法である。この方法では、窒素濃度が所定の濃度以上である領域内で切削を行い、窒素濃度が所定の濃度未満となる領域の切削を行わない。窒素濃度にもとづいて切削領域を定めることで、ダイヤモンド切削工具の摩耗を抑制して、工具寿命を長くできる。 The outline of the aspects of the present disclosure is as follows. One aspect of the present disclosure is a method of cutting a solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on its surface with a diamond cutting tool from the surface thereof. In this method, cutting is performed in a region where the nitrogen concentration is equal to or higher than a predetermined concentration, and cutting is not performed in a region where the nitrogen concentration is lower than the predetermined concentration. By determining the cutting area based on the nitrogen concentration, wear of the diamond cutting tool can be suppressed and the tool life can be extended.

本開示の別の態様もまた、窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有する金属材料の固溶体層を、その表面からダイヤモンド切削工具により切削する方法である。この方法では、窒素濃度がピークを示す位置を切削した後、窒素濃度が所定の濃度未満となる領域に達する前に切削を終了する。窒素濃度にもとづいて切削領域を定めることで、ダイヤモンド切削工具の摩耗を抑制して、工具寿命を長くできる。 Another aspect of the present disclosure is also a method of cutting a solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on its surface with a diamond cutting tool from the surface thereof. In this method, after cutting the position where the nitrogen concentration shows a peak, the cutting is finished before the region where the nitrogen concentration becomes less than a predetermined concentration is reached. By determining the cutting area based on the nitrogen concentration, wear of the diamond cutting tool can be suppressed and the tool life can be extended.

金属材料において、固溶体層の表面は、窒素原子が飽和に固溶した状態となっており、所定の濃度は、飽和領域の窒素濃度にもとづいて定められてよい。このとき所定の濃度は、飽和領域の窒素濃度の70%以上の濃度に定められてよい。 In the metal material, the surface of the solid solution layer is in a state where nitrogen atoms are dissolved in a saturated solution, and a predetermined concentration may be determined based on the nitrogen concentration in the saturated region. At this time, the predetermined concentration may be set to a concentration of 70% or more of the nitrogen concentration in the saturated region.

本開示の別の態様もまた、窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有する金属材料の固溶体層を、その表面からダイヤモンド切削工具により切削する方法である。この方法では、窒素濃度が第1濃度以上である領域内を切削可能範囲とし、第1濃度より高い第2濃度以上である領域内で切削を行う。窒素濃度にもとづいて切削可能範囲を設定しつつ、切削可能範囲で切削する領域を定めることで、ダイヤモンド切削工具の摩耗を抑制して、工具寿命を長くできる。 Another aspect of the present disclosure is also a method of cutting a solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on its surface with a diamond cutting tool from the surface thereof. In this method, the region where the nitrogen concentration is the first concentration or higher is set as the cuttable range, and the cutting is performed in the region where the nitrogen concentration is the second concentration or higher, which is higher than the first concentration. By setting the cutting range based on the nitrogen concentration and defining the cutting area within the cutting range, the wear of the diamond cutting tool can be suppressed and the tool life can be extended.

金属材料において、固溶体層の表面は、窒素原子が飽和に固溶した状態となっており、第1濃度は、飽和領域の窒素濃度にもとづいて定められてよい。このとき第1濃度は、飽和領域の窒素濃度の70%以上の濃度に定められてよい。 In the metal material, the surface of the solid solution layer is in a state where nitrogen atoms are dissolved in a saturated solution, and the first concentration may be determined based on the nitrogen concentration in the saturated region. At this time, the first concentration may be set to a concentration of 70% or more of the nitrogen concentration in the saturated region.

1・・・金属材料、10・・・固溶体層、21・・・加工ワーク。 1 ... Metal material, 10 ... Solid solution layer, 21 ... Processing work.

Claims (9)

炭素原子が被削材に移動することで工具摩耗が生じるダイヤモンド切削工具により切削する方法であって、
窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有し、前記表面は窒素原子が飽和に固溶した状態となっている金属材料の前記固溶体層を、その表面からダイヤモンド切削工具で切削する際、
窒素濃度が2重量パーセント以上である領域内で切削を行い、窒素濃度が2重量パーセント未満となる領域の切削を行わない、
ことを特徴とする切削方法。
A method of cutting with a diamond cutting tool that causes tool wear due to the movement of carbon atoms to the work material.
A diamond cutting tool from the surface of the solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on the surface, and the surface is in a state where the nitrogen atom is saturated and dissolved. When cutting with
Cutting in the region where the nitrogen concentration is 2% by weight or more, and not cutting in the region where the nitrogen concentration is less than 2% by weight.
A cutting method characterized by that.
炭素原子が被削材に移動することで工具摩耗が生じるダイヤモンド切削工具により切削する方法であって、
窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有し、前記表面は窒素原子が飽和に固溶した状態となっている金属材料の前記固溶体層を、その表面からダイヤモンド切削工具で切削する際、
窒素濃度がピークを示す位置を切削した後、窒素濃度が2重量パーセント未満となる領域に達する前に切削を終了する、
ことを特徴とする切削方法。
A method of cutting with a diamond cutting tool that causes tool wear due to the movement of carbon atoms to the work material.
A diamond cutting tool from the surface of the solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on the surface, and the surface is in a state where the nitrogen atom is saturated and dissolved. When cutting with
After cutting the position where the nitrogen concentration peaks, the cutting is finished before the nitrogen concentration reaches the region where the nitrogen concentration is less than 2% by weight.
A cutting method characterized by that.
炭素原子が被削材に移動することで工具摩耗が生じるダイヤモンド切削工具により切削する方法であって、
窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有し、前記表面は窒素原子が飽和に固溶した状態となっている金属材料の前記固溶体層を、その表面からダイヤモンド切削工具で切削する際、
窒素濃度が2重量パーセント以上である領域内を切削可能範囲とし、2重量パーセントより高い濃度以上である領域内で切削を行う、
ことを特徴とする切削方法。
A method of cutting with a diamond cutting tool that causes tool wear due to the movement of carbon atoms to the work material.
A diamond cutting tool from the surface of the solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on the surface, and the surface is in a state where the nitrogen atom is saturated and dissolved. When cutting with
The area where the nitrogen concentration is 2% by weight or more is defined as the machinable range, and the cutting is performed in the area where the nitrogen concentration is higher than 2% by weight.
A cutting method characterized by that.
前記切削方法は、金属材料を鏡面加工する方法である、
ことを特徴とする請求項1から3のいずれかに記載の切削方法。
The cutting method is a method of mirror-finishing a metal material.
The cutting method according to any one of claims 1 to 3.
金属材料は、鉄系材料である、
ことを特徴とする請求項1から4のいずれかに記載の切削方法。
The metal material is an iron-based material,
The cutting method according to any one of claims 1 to 4, wherein the cutting method is characterized by that.
窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有し、前記表面は窒素原子が飽和に固溶した状態となっている金属材料であって、請求項1から5のいずれかの切削方法に供される、
ことを特徴とする金属材料。
A metal material having at least a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom on the surface, and the surface is in a state where the nitrogen atom is saturated and dissolved, and is any one of claims 1 to 5. Used for the cutting method of
A metallic material characterized by that.
炭素原子が被削材に移動することで工具摩耗が生じるダイヤモンド切削工具により切削され、
窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有し、
前記固溶体層には窒素濃度が2重量パーセント以上となる領域が存在する、
ことを特徴とする金型。
Tool wear occurs when carbon atoms move to the work material. Cutting by a diamond cutting tool,
It has at least a solid solution layer on its surface where nitrogen atoms are present as intrusive solid solution atoms.
The solid solution layer has a region where the nitrogen concentration is 2% by weight or more .
A mold characterized by that.
前記固溶体層には窒素濃度が2重量パーセント以上であって、飽和濃度以下となる領域が存在する、The solid solution layer has a region having a nitrogen concentration of 2% by weight or more and a saturation concentration or less.
ことを特徴とする請求項7に記載の金型。The mold according to claim 7.
炭素原子が被削材に移動することで工具摩耗が生じるダイヤモンド切削工具により被削材を切削して金型を製造する方法であって、
窒素原子が侵入型固溶原子として存在する固溶体層を少なくとも表面に有し、前記表面は窒素原子が飽和に固溶した状態となっている金属材料の前記固溶体層を、その表面からダイヤモンド切削工具で切削する際、
窒素濃度がピークを示す位置を切削した後、窒素濃度が2重量パーセント未満となる領域に達する前に切削を終了する、
ことを特徴とする金型の製造方法。
Tool wear occurs when carbon atoms move to the work material This is a method of cutting the work material with a diamond cutting tool to manufacture a mold.
A diamond cutting tool from the surface of the solid solution layer of a metal material having a solid solution layer in which a nitrogen atom exists as an intrusive solid solution atom at least on the surface, and the surface is in a state where the nitrogen atom is saturated and dissolved. When cutting with
After cutting the position where the nitrogen concentration peaks, the cutting is finished before the nitrogen concentration reaches the region where the nitrogen concentration is less than 2% by weight.
A method for manufacturing a mold, which is characterized by the fact that.
JP2021014349A 2021-02-01 2021-02-01 Cutting method, metal material, mold, and mold manufacturing method Active JP7032833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014349A JP7032833B2 (en) 2021-02-01 2021-02-01 Cutting method, metal material, mold, and mold manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021014349A JP7032833B2 (en) 2021-02-01 2021-02-01 Cutting method, metal material, mold, and mold manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020516943A Division JP6839884B2 (en) 2019-03-05 2019-03-05 Cutting method using a diamond cutting tool

Publications (2)

Publication Number Publication Date
JP2021079542A JP2021079542A (en) 2021-05-27
JP7032833B2 true JP7032833B2 (en) 2022-03-09

Family

ID=75965818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021014349A Active JP7032833B2 (en) 2021-02-01 2021-02-01 Cutting method, metal material, mold, and mold manufacturing method

Country Status (1)

Country Link
JP (1) JP7032833B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192556A (en) 2005-01-17 2006-07-27 Nsk Ltd Surface machining method and thrust bearing raceway ring
JP2014214076A (en) 2013-04-30 2014-11-17 住友電気工業株式会社 Diamond composite, single crystal diamond and methods of producing these, and diamond tool
US20160032442A1 (en) 2014-07-31 2016-02-04 Peter C. Williams Enhanced activation of self-passivating metals
JP2018135596A (en) 2017-02-22 2018-08-30 学校法人トヨタ学園 Production method of metal product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006192556A (en) 2005-01-17 2006-07-27 Nsk Ltd Surface machining method and thrust bearing raceway ring
JP2014214076A (en) 2013-04-30 2014-11-17 住友電気工業株式会社 Diamond composite, single crystal diamond and methods of producing these, and diamond tool
US20160032442A1 (en) 2014-07-31 2016-02-04 Peter C. Williams Enhanced activation of self-passivating metals
JP2018135596A (en) 2017-02-22 2018-08-30 学校法人トヨタ学園 Production method of metal product

Also Published As

Publication number Publication date
JP2021079542A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
WO2016002402A1 (en) Cutting tool production method and cutting tool
JP2012143821A (en) Method for manufacturing gear
JP7032833B2 (en) Cutting method, metal material, mold, and mold manufacturing method
Chen et al. Development of an ultrahard nanotwinned cBN micro tool for cutting hardened steel
JP6839884B2 (en) Cutting method using a diamond cutting tool
JP2014226737A (en) Cutting-processing method
Nosenko et al. The effect of the operating speed and wheel characteristics on the surface quality at creep-feed grinding titanium alloys
Saito et al. Suppression of tool damage in ultraprecision diamond machining of stainless steel by applying electron-beam-excited plasma nitriding
RU2740068C1 (en) Method of milling grooves in thin-walled parts
Jarosz A review of the recent investigations regarding texturized cutting tools
Marinin et al. The capability of pulsed laser radiation for cutting band saws hardening
JP6453945B2 (en) Machining part manufacturing method, cutting device and cutting method
JP4618680B2 (en) Broach manufacturing method
JP2016140868A (en) Slide member texture processing method, and slide member
JP2020131310A (en) Cutting tool and method for manufacturing the same
RU2767368C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 120-200 mm FROM LOW-CARBON STEEL WITH DISK SAW
RU2764449C1 (en) Method for mechanical processing of a steel workpiece with chip crushing
RU2756056C2 (en) Method for turning the open boundary of cylindrical or conical surfaces of a workpiece with its end surface and tool for implementing the method
RU2767363C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 40-120 mm FROM LOW-CARBON STEEL WITH DISK SAW
RU2767362C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 120-200 mm FROM LOW-ALLOY STEEL WITH DISK SAW
US20240058906A1 (en) Nitrided cut tap and production method therefor
JPS6322216A (en) Spline broach
RU2790142C1 (en) Drill bit
RU2767366C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 120-200 mm FROM LOW-CARBON STEEL WITH DISK SAW
RU2643022C1 (en) Method of machining a titanium alloy billet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7032833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150