JP7032019B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP7032019B2
JP7032019B2 JP2018019604A JP2018019604A JP7032019B2 JP 7032019 B2 JP7032019 B2 JP 7032019B2 JP 2018019604 A JP2018019604 A JP 2018019604A JP 2018019604 A JP2018019604 A JP 2018019604A JP 7032019 B2 JP7032019 B2 JP 7032019B2
Authority
JP
Japan
Prior art keywords
flow rate
raw water
current value
water
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018019604A
Other languages
Japanese (ja)
Other versions
JP2019136625A (en
Inventor
義之 鵜飼
進一 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIZAKI KABUSHIKI KAISHA
Original Assignee
HOSHIZAKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOSHIZAKI KABUSHIKI KAISHA filed Critical HOSHIZAKI KABUSHIKI KAISHA
Priority to JP2018019604A priority Critical patent/JP7032019B2/en
Publication of JP2019136625A publication Critical patent/JP2019136625A/en
Application granted granted Critical
Publication of JP7032019B2 publication Critical patent/JP7032019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

この発明は、電解水を生成する電解水生成装置に関し、より具体的には、微酸性電解水を生成する電解水生成装置において、給水源から供給される原水に電解質水溶液を添加した被電解水を、無隔膜電解槽内で一対の電極に直流電圧を印加して電気分解することにより微酸性電解水を生成するに際して、所定のpH値および所定の有効塩素濃度の微酸性電解水が生成されるように、原水のMアルカリ度、電解質水溶液の塩酸濃度および原水の水温に応じて設定される値の電流が被電解水中を流れるように、原水に添加されるべき電解質水溶液の添加流量が実際に電解槽内を流れる電流の測定値に照らして自動的に調節されるようにPI制御し、その場合のP項、I項の係数を実際の運転における水温、流量、電圧に応じて設定することにより、水温、流量、電圧の幅広い範囲にわたって同一の演算式で適切にPI制御がなされるように工夫したものである。 The present invention relates to an electrolyzed water generator that produces electrolyzed water, and more specifically, in an electrolyzed water generator that produces slightly acidic electrolyzed water, electrolyzed water obtained by adding an aqueous electrolyte solution to raw water supplied from a water supply source. When slightly acidic electrolyzed water is generated by applying a DC voltage to a pair of electrodes in a diaphragmless electrolytic tank and electrolyzing it, slightly acidic electrolyzed water having a predetermined pH value and a predetermined effective chlorine concentration is generated. So that the current of the value set according to the M alkalinity of the raw water, the hydrochloric acid concentration of the electrolytic solution and the water temperature of the raw water flows through the electrolyzed water, the addition flow rate of the electrolytic solution to be added to the raw water is actually PI control is performed so that it is automatically adjusted in light of the measured value of the current flowing in the electrolytic tank, and the coefficients of the P and I terms in that case are set according to the water temperature, flow rate, and voltage in the actual operation. By doing so, it is devised so that PI control can be appropriately performed by the same calculation formula over a wide range of water temperature, flow rate, and voltage.

一対の電極を配設した無隔膜電解槽に水道水を所定流量で供給するとともに塩化ナトリウムと塩酸を含む電解質水溶液を所定流量で添加してなる被電解水を、電解槽内で一対の電極に直流電圧を印加して電気分解することにより、微酸性電解水を連続的に生成する装置が知られている。例えば、特許文献1には、原水に塩化ナトリウム水溶液と塩酸水溶液を添加してなる被電解水を無隔膜電解槽で電気分解する微酸性電解水の製造方法が開示されており、その方法では、所定のpH値で所定の有効塩素濃度の電解水が生成されるように、被電解水の水量の調節や、電解質水溶液を添加するポンプの調節、電気分解の電圧および電流の調節を経験や勘に基づいて行っている。 Tap water is supplied at a predetermined flow rate to a non-diabolic electrolytic cell in which a pair of electrodes are arranged, and electrolyzed water obtained by adding an electrolyte aqueous solution containing sodium chloride and hydrochloric acid at a predetermined flow rate is supplied to the pair of electrodes in the electrolytic cell. A device that continuously generates slightly acidic electrolyzed water by applying a DC voltage to electrolyze is known. For example, Patent Document 1 discloses a method for producing slightly acidic electrolyzed water in which an aqueous solution of sodium chloride and an aqueous solution of hydrochloric acid are added to raw water to electrolyze water to be electrolyzed in a diaphragmless electrolytic tank. Experience and intuition of adjusting the amount of water to be electrolyzed, adjusting the pump to which the aqueous electrolyte solution is added, and adjusting the voltage and current of electrolysis so that electrolytic water with a predetermined effective chlorine concentration is generated at a predetermined pH value. It is done based on.

特開平5-237478号公報Japanese Unexamined Patent Publication No. 5-237478

この出願の発明は、所定のpH値で所定の有効塩素濃度を有する微酸性電解水を生成するのに、原水のMアルカリ度、添加する電解質水溶液の塩酸濃度および原水の水温に応じて、電気分解のために電極間に印加される直流電圧および電極間を流れる電流を適切な値に選定し、当該選定された電圧値の直流電圧を電極間に印加するとともに、当該選定された電流値の電流が実際に電極間を流れるように、原水に添加されるべき電解質水溶液の添加流量を、経験や勘に頼ることなく、PI制御により自動的に調節し、その場合に実際の運転における水温、流量、電圧の幅広い範囲にわたって同一の演算式により適切にPI制御がなされる電解水生成装置を提供することを目的とする。 The invention of this application is to generate slightly acidic electrolyzed water having a predetermined effective chlorine concentration at a predetermined pH value, depending on the M alkalinity of the raw water, the hydrochloric acid concentration of the electrolyte aqueous solution to be added, and the water temperature of the raw water. The DC voltage applied between the electrodes and the current flowing between the electrodes for decomposition are selected to appropriate values, the DC voltage of the selected voltage value is applied between the electrodes, and the selected current value is used. The flow rate of the electrolyte solution to be added to the raw water is automatically adjusted by PI control so that the current actually flows between the electrodes, and in that case, the water temperature in actual operation, It is an object of the present invention to provide an electrolyzed water generator in which PI control is appropriately performed by the same calculation formula over a wide range of current flow and voltage.

上記課題を解決するために、この出願の発明は、一対の電極を配設した電解槽と、給水源から供給される原水を電解槽に供給する原水供給管路と、電解槽に供給される原水に少なくとも塩酸を含む電解質水溶液を流量可変の送出ポンプを介して供給する電解質水溶液供給管路と、原水のMアルカリ度、添加する電解質水溶液の塩酸濃度および原水の水温のそれぞれ予め考慮された各複数の環境条件値に対して、電解槽内で所定のpH値および所定の有効塩素濃度を有する電解水を生成するために電極間に印加すべき直流電圧の各所要電圧値と電極間を流れるべき電流の各所要電流値を示すデータテーブルと、電解水の生成を行う際の実際の原水のMアルカリ度、添加する電解質水溶液の塩酸濃度および原水の水温の環境条件情報の入力を受けて、データテーブルからその環境条件下で電解水を生成するために適切な電解電圧値と電解電流値を読み出して提示する電圧電流値提示装置と、一対の電極に電解電圧値の直流電圧を印加する電源装置と、電極間に実際に供給されている電流を計測電流値として計測する電流計測手段と、電解質水溶液供給管路から電解槽に供給すべき電解質水溶液の流量を、電解電流値を目標電流値として、目標電流値と計測電流値との電流値差に基づいてPI制御の手法により所定の演算周期で順次演算して、順次計測電流値が目標電流値に漸近するように、原水に添加する電解質水溶液の流量を演算周期で順次自動的に調節しながら供給するように送出ポンプを制御する制御装置とを備えてなり、PI制御における演算のP項の係数およびI項の係数が、原水の水温、原水の流量および電解電圧値に応じて無駄時間、時定数およびゲインを求めたうえで、無駄時間、時定数およびゲインから算定されることを特徴とする電解水生成装置を提供するものである。これにより、環境条件に応じて電気分解の電圧が設定されるとともに、電流が自動的に調節されて、所定のpH値および所定の有効塩素濃度を有する電解水が、水温、流量、電圧の幅広い範囲にわたって同一の演算式により適切にPI制御がなされて生成される。 In order to solve the above problems, the invention of this application is supplied to an electrolytic tank in which a pair of electrodes are arranged, a raw water supply pipeline for supplying raw water supplied from a water supply source to the electrolytic tank, and an electrolytic tank. Each of the electrolyte aqueous solution supply pipeline that supplies the electrolytic aqueous solution containing at least hydrochloric acid in the raw water via a delivery pump with a variable current, the M alkalinity of the raw water, the hydrochloric acid concentration of the electrolytic aqueous solution to be added, and the water temperature of the raw water are considered in advance. For multiple environmental condition values, each required voltage value of the DC voltage to be applied between the electrodes to generate electrolytic water having a predetermined pH value and a predetermined effective chlorine concentration in the electrolytic tank and flows between the electrodes. After receiving the input of the data table showing each required current value of the power current, the M alkalinity of the actual raw water when generating the electrolytic water, the hydrochloric acid concentration of the electrolyte aqueous solution to be added, and the environmental condition information of the raw water temperature, A voltage / current value presenter that reads out and presents an electrolytic voltage value and an electrolytic current value appropriate for generating electrolytic water under the environmental conditions from a data table, and a power supply that applies a DC voltage of the electrolytic voltage value to a pair of electrodes. The device, the current measuring means that measures the current actually supplied between the electrodes as the measured current value, the flow rate of the electrolyte aqueous solution to be supplied from the electrolyte aqueous solution supply pipeline to the electrolytic tank, and the electrolytic current value as the target current value. As a result, the current value difference between the target current value and the measured current value is sequentially calculated by the PI control method in a predetermined calculation cycle, and the measured current value is added to the raw water so as to gradually approach the target current value. It is equipped with a control device that controls the delivery pump so that the flow rate of the electrolyte aqueous solution is automatically adjusted in sequence in the calculation cycle, and the P term coefficient and I term coefficient of the calculation in PI control are the raw water. It provides an electrolytic water generator characterized in that it is calculated from the wasted time, the time constant and the gain after obtaining the wasted time, the time constant and the gain according to the water temperature, the flow rate of the raw water and the electrolytic voltage value. be. As a result, the voltage of electrolysis is set according to the environmental conditions, and the current is automatically adjusted so that the electrolyzed water having a predetermined pH value and a predetermined effective chlorine concentration has a wide range of water temperature, flow rate, and voltage. It is generated by appropriately performing PI control by the same arithmetic expression over a range.

また、上記のように構成した電解水生成装置においては、制御装置の演算において、無駄時間が、原水の流量に反比例する係数として求められ、時定数が、原水の流量に反比例する係数として求められ、ゲインが、原水の水温による+2%/℃の影響があり、不感帯を超える印加電圧値に比例し、原水の流量に反比例する係数として求められる。これにより、適切なPI制御がなされる。 Further, in the electrolytic water generator configured as described above, in the calculation of the control device, the wasted time is obtained as a coefficient inversely proportional to the flow rate of raw water, and the time constant is obtained as a coefficient inversely proportional to the flow rate of raw water. The gain is obtained as a coefficient that is proportional to the applied voltage value exceeding the dead zone and inversely proportional to the flow rate of the raw water because of the influence of + 2% / ° C. due to the water temperature of the raw water. As a result, appropriate PI control is performed.

さらに、上記のように構成した電解水生成装置においては、制御装置において演算周期の各演算時点で演算して算出する電解槽に供給すべき電解質水溶液の今回算出流量が、直前の演算時点において算出した電解槽に供給すべき電解質水溶液の前回算出流量に、今回電流値差から前回電流値差を減じた値にP項の係数を乗じた値と、今回電流値差に演算周期とI項の係数を乗じた値とを加算して得られる。漸化式を用いて演算ずることにより、演算規模を小さくすることができる。 Further, in the electrolytic water generator configured as described above, the current calculated flow rate of the electrolyte aqueous solution to be supplied to the electrolytic cell calculated and calculated at each calculation time of the calculation cycle in the control device is calculated at the immediately preceding calculation time. The value obtained by multiplying the previously calculated flow rate of the electrolyte aqueous solution to be supplied to the electrolytic cell by the value obtained by subtracting the previous current value difference from the current value difference by the coefficient of the P term, and the current value difference multiplied by the calculation cycle and the I term. It is obtained by adding the value multiplied by the coefficient. The operation scale can be reduced by performing the operation using the recurrence formula.

さらに、上記のように構成した電解水生成装置においては、
前記制御装置において前記演算周期の各演算時点で演算して算出する電解槽に供給すべき電解質水溶液の今回算出流量Strknが、式[数1]により演算して算出され、
Furthermore, in the electrolyzed water generator configured as described above,
The currently calculated flow rate Strk n of the aqueous electrolyte solution to be supplied to the electrolytic cell calculated and calculated at each calculation time of the calculation cycle in the control device is calculated and calculated by the equation [Equation 1].

Figure 0007032019000001
Figure 0007032019000001

式[数1]において、送出ポンプが1ストローク当たり一定量の水溶液を送り出すタイプのパルスポンプであって、単位時間当たりのストローク数、すなわちストローク速度を変えることにより、電解質水溶液の流量を可変とするものであり、Strknは今回演算時点で算出される前記電解質水溶液の今回算出流量、Strkn-1は前回演算時点で算出された電解質水溶液の流量、en は今回演算時点での今回電流値差、en-1 は前回演算時点での前回電流値差、Δtは演算周期であり、ここに、KP は[数1]におけるP項の係数、KP /TI は[数1]におけるI項の係数で、KP とTI は、無駄時間LPLと時定数TPLとゲインKPLとによって式[数2]により定義される。 In the formula [Equation 1], the delivery pump is a type of pulse pump that sends out a constant amount of aqueous solution per stroke, and the flow rate of the electrolyte aqueous solution is made variable by changing the number of strokes per unit time, that is, the stroke speed. Strk n is the current calculated flow rate of the electrolyte aqueous solution calculated at the time of this calculation, Strk n-1 is the flow rate of the electrolyte aqueous solution calculated at the time of the previous calculation, and en is the current current value at the time of this calculation. The difference, en -1 is the previous current value difference at the time of the previous calculation, Δt is the calculation cycle, where K P is the coefficient of the P term in [Equation 1], and K P / TI is [Equation 1 ]. In the coefficient of the I term in, K P and TI are defined by the equation [Equation 2] by the wasted time L PL , the time constant T PL and the gain K PL .

Figure 0007032019000002
Figure 0007032019000002

さらに、上記のように構成した電解水生成装置においては、無駄時間LPL、時定数TPL、ゲインKPLは、それぞれ式[数3]によって求められたものであり、 Further, in the electrolyzed water generator configured as described above, the wasted time L PL , the time constant T PL , and the gain K PL are each obtained by the equation [Equation 3].

Figure 0007032019000003
Figure 0007032019000003

ここに、流量は原水の流量であり、水温は原水の水温であり、電圧は一対の電極に印加されている電解電圧値である。 Here, the flow rate is the flow rate of raw water, the water temperature is the water temperature of raw water, and the voltage is the electrolytic voltage value applied to the pair of electrodes.

さらに、上記のように構成した電解水生成装置においては、送出ポンプは、1ストローク当たり一定量の水溶液を送り出すタイプのパルスポンプであって、パルスポンプのストロークの周期を変えることにより電解質水溶液の流量を可変とするものであり、制御装置は、電流計測手段が計測する前記計測電流値の時間的変化波形をパルスポンプのストロークの周期の1/2を時定数とする一次遅れ処理をする一次遅れ回路を介して遅延電流波形を得て、遅延電流波形の値をPI制御の手法における計測電流値として演算する。これにより、制御装置の演算周期と比較してパルスポンプのストロークの周期が長めである場合でも、パルスポンプによる電解質水溶液の打ち込み時における計測電流波形の一時的変動の影響が減じられて、制御装置内でのPI制御におけるハンチング現象の発生が抑制される。 Further, in the electrolytic water generator configured as described above, the delivery pump is a type of pulse pump that sends out a constant amount of aqueous solution per stroke, and the flow rate of the aqueous electrolyte solution is changed by changing the stroke cycle of the pulse pump. Is variable, and the control device performs a primary delay process in which the temporal change waveform of the measured current value measured by the current measuring means is set to 1/2 of the stroke cycle of the pulse pump as a time constant. The delayed current waveform is obtained via the circuit, and the value of the delayed current waveform is calculated as the measured current value in the PI control method. As a result, even when the stroke cycle of the pulse pump is longer than the calculation cycle of the control device, the influence of the temporary fluctuation of the measured current waveform at the time of charging the electrolyte aqueous solution by the pulse pump is reduced, and the control device is used. The occurrence of the hunting phenomenon in the PI control inside is suppressed.

この出願の発明によると、電解水生成装置を運転するに際して、水温、Mアルカリ度、塩酸濃度に応じて電気分解の電極に印加する電圧を適切な値に自動的に設定するとともに、電極間を流れる電流をPI制御により適切な値に自動的に調節し、その場合のP項、I項の係数を水温、流量、電圧に応じて設定することにより、水温、流量、電圧の幅広い範囲にわたって良好なPI制御がなされる。 According to the invention of this application, when operating the electrolytic water generator, the voltage applied to the electrodes for electrolysis is automatically set to an appropriate value according to the water temperature, M alkalinity, and hydrochloric acid concentration, and the distance between the electrodes is set. By automatically adjusting the flowing current to an appropriate value by PI control and setting the coefficients of the P and I terms according to the water temperature, flow rate, and voltage, it is good over a wide range of water temperature, flow rate, and voltage. PI control is performed.

この発明による電解水生成装置の一実施形態の概略線図である。It is a schematic diagram of one Embodiment of the electrolyzed water generation apparatus by this invention. 原水のMアルカリ度と、電解質水溶液の塩酸濃度と、原水の水温の各複数の環境条件に対して、所定のアルカリ度および所定の有効塩素濃度の微酸性電解水を生成するために電極に印加すべき各電圧値と電極間に流すべき各電流値を示すデータテーブルである。Applied to the electrodes to generate slightly acidic electrolyzed water with a predetermined alkalinity and a predetermined effective chlorine concentration for each of the multiple environmental conditions of the M alkalinity of the raw water, the hydrochloric acid concentration of the electrolyte aqueous solution, and the water temperature of the raw water. It is a data table showing each voltage value to be and each current value to be passed between electrodes. 図1の構成部分および図2のデータテーブルに対する制御装置の関連を示すブロック線図である。It is a block diagram which shows the relationship of the control device with respect to the component part of FIG. 1 and the data table of FIG. 電解質水溶液がストロークポンプで原水に添加されることにより、電極間を流れる計測電流が時間的に変化する様子を示す変化波形図である。It is a change waveform diagram which shows how the measured current flowing between electrodes changes with time by adding an aqueous electrolyte solution to raw water by a stroke pump. 図3の部分の他の実施形態を示すブロック線図である。It is a block diagram which shows the other embodiment of the part of FIG.

以下に、この発明による電解水生成装置の一実施形態を添付図面を参照して説明する。図1に示すように、この発明の電解水生成装置10は、被電解水を無隔膜の電解槽11内で電気分解することによって微酸性電解水を生成するものであり、特にpH5.0~6.5、有効塩素濃度10~80ppmの微酸性電解水を生成するものである。電解水生成装置10は、一対の電極12a、12bを配設した電解槽11と、電解槽11に原水を供給する原水供給管路20と、塩酸を含む電解質水溶液を原水に供給する電解質水溶液供給管路30と、電極12a、12bに直流電圧を印加する電源装置40とを備えている。 Hereinafter, an embodiment of the electrolyzed water generator according to the present invention will be described with reference to the accompanying drawings. As shown in FIG. 1, the electrolyzed water generator 10 of the present invention generates slightly acidic electrolyzed water by electrolyzing the electrolyzed water in the electrolytic cell 11 having no diaphragm, and particularly pH 5.0 to. 6.5, It produces slightly acidic electrolyzed water with an effective chlorine concentration of 10 to 80 ppm. The electrolytic cell 10 is an electrolytic cell 11 in which a pair of electrodes 12a and 12b are arranged, a raw water supply pipeline 20 for supplying raw water to the electrolytic cell 11, and an electrolyte aqueous solution supply for supplying an electrolytic solution containing hydrochloric acid to the raw water. A pipeline 30 and a power supply device 40 for applying a DC voltage to the electrodes 12a and 12b are provided.

電解槽11は、被電解水を電気分解するための一室型の無隔膜電解槽であり、中に一対の電極12a、12bが配設されている。電解槽11には、水道等の給水源から原水を供給する原水供給管路20と、電解槽11で生成された微酸性電解水を注出する注出管路13が接続されている。 The electrolytic cell 11 is a one-chamber type non-diabolic electrolytic cell for electrolyzing water to be electrolyzed, and a pair of electrodes 12a and 12b are arranged therein. The electrolytic cell 11 is connected to a raw water supply pipeline 20 for supplying raw water from a water supply source such as water supply, and a pouring pipeline 13 for pouring out slightly acidic electrolyzed water generated in the electrolytic cell 11.

原水供給管路20には、減圧弁21と通水弁22が介装されており、給水源から送られる原水が減圧弁21によって圧力が下げられ、通水弁22の開放によって電解槽11に供給される。また、原水供給管路20には、温度センサ23と流量計24が介装されており、温度センサ23は、原水供給管路20を通過する原水の温度を検出し、流量計24は、原水供給管路20を通過する原水の流量を検出する。なお、この原水供給管路20には、アルカリ度測定器を設けて、アルカリ度測定器により原水のMアルカリ度を計測するようにしてもよい。 A pressure reducing valve 21 and a water flow valve 22 are interposed in the raw water supply pipe line 20, the pressure of the raw water sent from the water supply source is reduced by the pressure reducing valve 21, and the pressure of the raw water is reduced by the pressure reducing valve 21. Be supplied. Further, a temperature sensor 23 and a flow meter 24 are interposed in the raw water supply pipe 20, the temperature sensor 23 detects the temperature of the raw water passing through the raw water supply pipe 20, and the flow meter 24 detects the temperature of the raw water. The flow rate of raw water passing through the supply line 20 is detected. The raw water supply pipe 20 may be provided with an alkalinity measuring device, and the M alkalinity of the raw water may be measured by the alkalinity measuring device.

原水供給管路20には、電解質水溶液タンク31から電解質水溶液を送出ポンプ(送出手段)32を介して原水供給管路20に供給するための電解質水溶液供給管路30が接続されている。電解質水溶液タンク31内に貯えた電解質水溶液は、少なくとも塩酸を含むものであり、この実施形態では飽和塩化ナトリウム水溶液に塩酸を所定濃度となるように調製したものである。電解質水溶液タンク31内の電解質水溶液は、送出ポンプ32の作動によって電解質水溶液供給管路30を通って原水供給管路20に送られ、原水に添加される。送出ポンプ32は、1ストローク当たり一定量の水溶液を送り出すタイプのパルスポンプであり、パルス信号の周期に応じてポンプのストロークの周期を変える(単位時間当たりのストローク数を変える)ことにより、電解質水溶液の流量(単位時間当たり流れる体積)を可変とするものである。電解質水溶液タンク31内の電解質水溶液は、所定の特性の微酸性電解水を生成するために、原水のMアルカリ度に応じて異なる適切な塩酸濃度の電解質水溶液が用いられる。具体的には、原水のMアルカリ度が20~40ppmの範囲では、塩酸濃度が0.8wt%の電解質水溶液を用い、原水のMアルカリ度が40~60ppmの範囲では、塩酸濃度が1.0wt%の電解質水溶液を用い、原水のMアルカリ度が60~80ppmの範囲では、塩酸濃度が1.2wt%の電解質水溶液を用いるようにしている。詳しくは、図2を参照して後記する。 The raw water supply pipeline 20 is connected to the electrolyte aqueous solution supply pipeline 30 for supplying the electrolyte aqueous solution from the electrolyte aqueous solution tank 31 to the raw water supply pipeline 20 via the delivery pump (delivery means) 32. The electrolyte aqueous solution stored in the electrolyte aqueous solution tank 31 contains at least hydrochloric acid, and in this embodiment, hydrochloric acid is prepared to have a predetermined concentration in a saturated sodium chloride aqueous solution. The electrolyte aqueous solution in the electrolyte aqueous solution tank 31 is sent to the raw water supply pipe 20 through the electrolyte aqueous solution supply pipe 30 by the operation of the delivery pump 32, and is added to the raw water. The delivery pump 32 is a type of pulse pump that sends out a constant amount of aqueous solution per stroke, and by changing the cycle of the stroke of the pump according to the cycle of the pulse signal (changing the number of strokes per unit time), the aqueous electrolyte solution is used. The flow rate (volume flowing per unit time) is variable. As the electrolyte aqueous solution in the electrolyte aqueous solution tank 31, an electrolyte aqueous solution having an appropriate hydrochloric acid concentration, which differs depending on the M alkalinity of the raw water, is used in order to generate slightly acidic electrolytic water having predetermined characteristics. Specifically, when the M alkalinity of the raw water is in the range of 20 to 40 ppm, an aqueous electrolyte solution having a hydrochloric acid concentration of 0.8 wt% is used, and when the M alkalinity of the raw water is in the range of 40 to 60 ppm, the hydrochloric acid concentration is 1.0 wt. % Electrolyte aqueous solution is used, and when the M alkalinity of the raw water is in the range of 60 to 80 ppm, the electrolyte aqueous solution having a hydrochloric acid concentration of 1.2 wt% is used. Details will be described later with reference to FIG.

電源装置40は、電解槽11内の電極12a、12bに直流電圧を印加して、電解槽11内の被電解水を電気分解するものである。電源装置40と電極12aとの間には電流計41が接続されており、電流計41は、被電解水を通して電極12a、12bの間を流れる実際の電解電流を計測するものである。電極12a、12bの間には電圧計42が接続されており、電圧計42は、電極12a、12bの間に印加される実際の電解電圧を計測するものである。 The power supply device 40 applies a DC voltage to the electrodes 12a and 12b in the electrolytic cell 11 to electrolyze the water to be electrolyzed in the electrolytic cell 11. An ammeter 41 is connected between the power supply device 40 and the electrode 12a, and the ammeter 41 measures the actual electrolytic current flowing between the electrodes 12a and 12b through the water to be electrolyzed. A voltmeter 42 is connected between the electrodes 12a and 12b, and the voltmeter 42 measures the actual electrolytic voltage applied between the electrodes 12a and 12b.

図2は、この実施形態の電解水生成装置10が備えているデータテーブル50の具体的内容を示すもので、このデータテーブル50は、原水のMアルカリ度と、電解質水溶液の塩酸濃度と、原水の水温のそれぞれ予め考慮された複数の各環境条件に対する、アルカリ度pH=5.0~6.5で有効塩素濃度=10~80ppmの微酸性電解水を生成するために電極に印加すべき適切な電圧値と電極間に流すべき適切な電流値を、予め実験により求めて一覧表の形で示したものである。図示の表は、環境条件として、原水のMアルカリ度が20~80ppmの範囲について、添加する電解質水溶液の塩酸濃度が0.8~1.2wt%の範囲について、原水の温度が5~30℃の範囲について、所定の微酸性電解水を生成するのに適切な電圧値と電流値を示している。より具体的に説明すると、原水のMアルカリ度が20~40ppmの範囲では、塩酸濃度が0.8wt%の電解質水溶液を用い、原水のMアルカリ度が40~60ppmの範囲では、塩酸濃度が1.0wt%の電解質水溶液を用い、原水のMアルカリ度が60~80ppmの範囲では、塩酸濃度が1.2wt%の電解質水溶液を用いるようにしている。さらに、それぞれの条件の組合せについて原水の異なる水温5~30℃の範囲に対して、所定の電解水生成に適切な電圧値と電流値が示されている。例えば、水温15℃でMアルカリ度50ppmの原水に対しては、原水に塩酸濃度1.0wt%の電解質水溶液を添加して、電極12a、12bの間に6.7Vの直流電圧を印加して、20Aの電流が流れるようにする。この場合、電流の値は、被電解水の導電度に応じて決まり、その導電度は、電解質水溶液で添加された被電解水中の塩化ナトリウムの濃度に応じて決まるので、流れる電流が少なければ、電解質水溶液の添加流量を多くし、流れる電流が多ければ、電解質水溶液の添加流量を少なくすることにより、所定の電流が流れるように調節して運転する。なお、図2のデータテーブルがカバーする各環境条件の範囲の外の隣接条件については、適宜外挿補間により値を算出して、その値が使用される。 FIG. 2 shows the specific contents of the data table 50 provided in the electrolyzed water generator 10 of this embodiment, and the data table 50 shows the M alkalinity of the raw water, the hydrochloric acid concentration of the aqueous electrolyte solution, and the raw water. Appropriately applied to the electrodes to produce slightly acidic electrolyzed water with alkalinity pH = 5.0-6.5 and effective chlorine concentration = 10-80 ppm for each of the plurality of pre-considered environmental conditions of the water temperature. The appropriate voltage value and the appropriate current value to be passed between the electrodes are obtained in advance by experiments and shown in the form of a list. In the illustrated table, the temperature of the raw water is 5 to 30 ° C. as the environmental conditions, the M alkalinity of the raw water is in the range of 20 to 80 ppm, the hydrochloric acid concentration of the aqueous electrolyte solution to be added is in the range of 0.8 to 1.2 wt%, and the temperature of the raw water is 5 to 30 ° C. In the range of, the voltage value and the current value suitable for producing a predetermined slightly acidic electrolyzed water are shown. More specifically, when the M alkalinity of the raw water is in the range of 20 to 40 ppm, an aqueous electrolyte solution having a hydrochloric acid concentration of 0.8 wt% is used, and when the M alkalinity of the raw water is in the range of 40 to 60 ppm, the hydrochloric acid concentration is 1. A 0.0 wt% aqueous electrolyte solution is used, and an aqueous electrolyte solution having a hydrochloric acid concentration of 1.2 wt% is used when the M alkalinity of the raw water is in the range of 60 to 80 ppm. Further, for each combination of conditions, voltage values and current values suitable for producing a predetermined electrolyzed water are shown for different water temperatures of 5 to 30 ° C. of raw water. For example, for raw water having a water temperature of 15 ° C. and an M alkalinity of 50 ppm, an aqueous electrolyte solution having a hydrochloric acid concentration of 1.0 wt% is added to the raw water, and a DC voltage of 6.7 V is applied between the electrodes 12a and 12b. , 20A current is allowed to flow. In this case, the value of the current is determined according to the conductivity of the water to be electrolyzed, and the conductivity is determined according to the concentration of sodium chloride in the water to be electrolyzed added by the aqueous electrolyte solution. If the addition flow rate of the aqueous electrolyte solution is increased and the flowing current is large, the addition flow rate of the aqueous electrolyte solution is decreased to adjust the flow so that a predetermined current flows. For adjacent conditions outside the range of each environmental condition covered by the data table of FIG. 2, a value is appropriately calculated by extrapolation and the value is used.

次に、この出願の発明による電解水生成装置の制御系について説明する。図3は、図1の構成のうち制御に関連する構成部分と図2のデータテーブル50に対する制御系の関連を示すブロック線図である。図3において、制御系は、電圧電流値提示装置60と制御装置70を含んで構成されている。電圧電流値提示装置60は、実際の原水のMアルカリ度、添加する電解質水溶液の塩酸濃度および原水の水温という実際の環境条件情報の入力を受けて、データテーブル50からその環境条件下で所定の電解水を生成するために適切な電解電圧値と電解電流値を読み出して、提示するものである。この場合、各環境情報は、それぞれの計測器で検知した値を作業者がボタン操作などで人為的に入力する構成としてもよいし、それぞれの計測器をこの電解水生成装置の系に付随させて、各計測器から直接に信号入力する構成としてもよい。提示された電解電圧値は、電源装置40に伝達されて、電源装置40は、その電圧値の直流電圧を電極12a、12b(図1)に印加する。他方、提示された電解電流値は、制御装置70に伝達される。制御装置70は、電解質水溶液供給管路30から電解槽11に供給すべき電解質水溶液の流量を制御するもので、当該提示された電解電流値を目標電流値として、当該目標電流値と電流計41の計測した計測電流値との差に基づいてPI制御の手法により所定の演算周期で順次演算して、電流計41が計測する実際の計測電流値が目標電流値に漸近するように、原水に添加する電解質水溶液の流量を所定の演算周期で順次自動的に調節しながら、その流量の電解質水溶液を供給するように送出ポンプ32を制御するものである。 Next, the control system of the electrolyzed water generator according to the invention of this application will be described. FIG. 3 is a block diagram showing the relationship between the components related to control in the configuration of FIG. 1 and the control system with respect to the data table 50 of FIG. In FIG. 3, the control system includes a voltage / current value presenting device 60 and a control device 70. The voltage / current value presenting device 60 receives input of actual environmental condition information such as the M alkalinity of the actual raw water, the hydrochloric acid concentration of the aqueous electrolyte solution to be added, and the water temperature of the raw water, and is predetermined from the data table 50 under the environmental conditions. The appropriate electrolytic voltage value and electrolytic current value for generating electrolytic water are read out and presented. In this case, each environmental information may be configured such that the operator artificially inputs the value detected by each measuring instrument by operating a button or the like, or each measuring instrument is attached to the system of this electrolyzed water generator. Therefore, the signal may be directly input from each measuring instrument. The presented electrolytic voltage value is transmitted to the power supply device 40, and the power supply device 40 applies a DC voltage of the voltage value to the electrodes 12a and 12b (FIG. 1). On the other hand, the presented electrolytic current value is transmitted to the control device 70. The control device 70 controls the flow rate of the electrolyte aqueous solution to be supplied from the electrolyte aqueous solution supply line 30 to the electrolytic tank 11, and uses the presented electrolytic current value as a target current value, and the target current value and the current meter 41. Based on the difference from the measured current value measured in, the PI control method is used to sequentially calculate in a predetermined calculation cycle, and the actual measured current value measured by the current meter 41 is added to the raw water so that it gradually approaches the target current value. The delivery pump 32 is controlled so as to supply the electrolyte aqueous solution at that current while automatically adjusting the flow rate of the electrolyte aqueous solution to be added sequentially at a predetermined calculation cycle.

ここで、目標電流値と計測電流値との差に基づいて送出ポンプ32の送出流量を制御するPI制御について、具体的に説明する。送出流量は、パルスポンプのストローク速度(単位時間当たりのストローク数)を変えることによって、調節する。ストローク速度は、ここでは、[ストローク/分](または[spm])の単位で表す。以下、各種の量の単位を[ ]内に示す。演算周期は、ここでは、1秒である。次式[数1]は、目標電流値と現実の電流値との差に応じてPI制御の手法によりストローク速度を算出する関係式である。なお、ここで用いるPI制御手法は、いわゆるPID制御手法のうちのP項とI項による制御を行うものである。 Here, PI control for controlling the delivery flow rate of the delivery pump 32 based on the difference between the target current value and the measured current value will be specifically described. The delivery flow rate is adjusted by changing the stroke speed (number of strokes per unit time) of the pulse pump. The stroke speed is expressed here in the unit of [stroke / minute] (or [spm]). Hereinafter, the units of various quantities are shown in []. The calculation cycle here is 1 second. The following equation [Equation 1] is a relational expression that calculates the stroke speed by the PI control method according to the difference between the target current value and the actual current value. The PI control method used here is one of the so-called PID control methods that controls by the P term and the I term.

Figure 0007032019000004
Figure 0007032019000004

ここに、Strknは今回の演算時点で算出されるストローク速度[spm]、Strkn-1は前回の演算時点で算出されたストローク速度[spm]、en は今回の演算時点における目標電流値[A]と計測電流値[A]との差[A]、en-1 は前回の演算時点における目標電流値と計測電流値との差、Kp [spm/A]はP項(比例項)の係数、Kp [spm/A]/TI [s]はI項(積分項)の係数である。なお、ストローク速度により添加流量を変える方式の場合、ストローク速度が遅いと被電解水の導電度が波打って変化し(電解質水溶液を打ち込んだときに、少し遅れて導電度が一瞬上がり、その後下がる)、電流が波打つため、この発明では、D項(微分項)による制御は不適当なので、使用しない。Δt[s]は演算周期で、ここでは1秒である。 Here, Strk n is the stroke speed [spm] calculated at the time of this calculation, Strk n -1 is the stroke speed [spm] calculated at the time of the previous calculation, and en is the target current value at the time of this calculation. The difference [A] between [A] and the measured current value [A], en -1 is the difference between the target current value and the measured current value at the time of the previous calculation, and K p [spm / A] is the P term (proportional). The coefficient of the term), K p [ spm / A] / TI [s], is the coefficient of the I term (integration term). In the case of the method of changing the addition flow rate according to the stroke speed, if the stroke speed is slow, the conductivity of the water to be electrolyzed will undulate and change (when the aqueous electrolyte solution is poured, the conductivity will increase momentarily with a slight delay and then decrease. ), Since the current undulates, control by the D term (differential term) is inappropriate in this invention, so it is not used. Δt [s] is the calculation cycle, which is 1 second here.

この発明は、実際の制御が良好に行われるように、式[数1]の右辺の第2項であるP項(比例項)および右辺の第3項であるI項(積分項)の各係数の設定に特徴があるので、その点について説明する。すなわち、この発明では、P項、I項の係数を水温、流量、電圧に応じて設定して、PI制御が水温、流量、電圧の幅広い範囲にわたって適切になされるようにした。 In the present invention, each of the P term (proportional term) which is the second term on the right side of the equation [Equation 1] and the I term (integration term) which is the third term on the right side of the equation [Equation 1] so that the actual control is performed well. Since there is a feature in the setting of the coefficient, that point will be explained. That is, in the present invention, the coefficients of the P term and the I term are set according to the water temperature, the flow rate, and the voltage so that the PI control is appropriately performed over a wide range of the water temperature, the flow rate, and the voltage.

様々な環境条件(Mアルカリ度、塩酸濃度、水温、流量、電圧)について、PI制御における無駄時間、時定数およびゲインに関して実験で調べたところ、次のことが分かった。
1.無駄時間は、流量にほぼ反比例し、その他の影響は少ない。
2.時定数も、流量にほぼ反比例し、その他の影響は少ない。
3.3V程度以上の電圧を印加しないと、電流が流れない(不感帯がある)。
Experiments on various environmental conditions (M alkalinity, hydrochloric acid concentration, water temperature, flow rate, voltage) regarding wasted time, time constant and gain in PI control revealed the following.
1. 1. Wasted time is almost inversely proportional to the flow rate and has little other effect.
2. 2. The time constant is also almost inversely proportional to the flow rate, and other effects are small.
If a voltage of about 3.3V or higher is not applied, no current will flow (there is a dead zone).

また、既知の知見として、次のことが分かっている。
4.ゲインは、水温による+2%/℃の影響がある。
5.ゲインは、流量にほぼ反比例する。
In addition, the following are known as known findings.
4. The gain is affected by + 2% / ° C due to the water temperature.
5. Gain is approximately inversely proportional to flow rate.

さらに、発明者らの実験によると、P項およびI項について係数を独立に設定するのではなく、水温、流量、電圧からPI制御における無駄時間、時定数、ゲインを計算して、それら無駄時間、時定数、ゲインからP項の係数とI項の係数を計算するやり方により、水温、流量、電圧の幅広い変化範囲にわたって良好な制御が可能であることが分かった。 Furthermore, according to the experiments of the inventors, instead of setting the coefficients for the P and I terms independently, the wasted time, time constant, and gain in PI control are calculated from the water temperature, flow rate, and voltage, and these wasted time. It was found that good control is possible over a wide range of changes in water temperature, flow rate, and voltage by calculating the coefficient of the P term and the coefficient of the I term from the time constant and gain.

以上のことを踏まえて、式[数1]におけるP項の係数とI項の係数を、無駄時間LPL[s]、時定数TPL[s]、ゲインKPL[A/spm]により、次式[数2]により定義する。 Based on the above, the coefficient of the P term and the coefficient of the I term in the equation [Equation 1] are determined by the wasted time L PL [s], the time constant T PL [s], and the gain K PL [A / spm]. It is defined by the following equation [Equation 2].

Figure 0007032019000005
Figure 0007032019000005

ここに、KPcoef とTIcoef は、各項の係数の効果の度合いを調節するための係数である。また、無駄時間LPL、時定数TPL、ゲインKPLは、以下の意味をもつものである。すなわち、添加すべき電解質水溶液を一定ストローク打ったときに、電流がある時間遅れてから立ち上がり始めて定常値に近づいていくが、その立ち上がりまでの時間的遅れが無駄時間であり、立ち上がり曲線の初期傾斜が時定数であり、定常状態における電流値(増加量)とストローク量(ストローク速度の増加量)との比がゲインである。同型の電解水生成装置において予め実験により求めた良好に当てはまる関係式として、具体的な数値を含んで、次式[数3]を作成した。なお、流量の単位は[L/min]、水温の単位は[℃]、電圧の単位は[V]である。 Here, K Pcoef and TIcoef are coefficients for adjusting the degree of effect of the coefficients of each term. Further, the wasted time L PL , the time constant T PL , and the gain K PL have the following meanings. That is, when the electrolyte aqueous solution to be added is hit with a constant stroke, the current starts to rise after a certain time delay and approaches a steady value, but the time delay until the rise is wasted time, and the initial inclination of the rise curve. Is a time constant, and the ratio of the current value (increase amount) and the stroke amount (increase amount of the stroke speed) in the steady state is the gain. The following equation [Equation 3] was created, including specific numerical values, as a relational expression that was obtained in advance by experiments in the same type of electrolyzed water generator and fits well. The unit of flow rate is [L / min], the unit of water temperature is [° C], and the unit of voltage is [V].

Figure 0007032019000006
Figure 0007032019000006

式[数3]に示すように、無駄時間は、原水の流量に反比例し、時定数は、原水の流量に反比例し、ゲインは、原水の水温による+2%/℃の影響があり、不感帯を超える印加電圧値に比例し、原水の流量に反比例する。このように、PI制御を行うに当たり、P項、I項の係数を実際の運転における水温、流量、電圧に応じて設定することにより、PI制御が水温、流量、電圧の幅広い範囲にわたって良好になされる。 As shown in the equation [Equation 3], the wasted time is inversely proportional to the flow rate of the raw water, the time constant is inversely proportional to the flow rate of the raw water, and the gain is affected by the water temperature of the raw water by + 2% / ° C. It is proportional to the applied voltage value that exceeds and is inversely proportional to the flow rate of raw water. In this way, in performing PI control, by setting the coefficients of the P term and I term according to the water temperature, flow rate, and voltage in actual operation, PI control is satisfactorily performed over a wide range of water temperature, flow rate, and voltage. To.

次に、ストロークの周期(打込み周期)が比較的長い場合に、測定した電流が波打つ現象の影響およびその抑制手法について説明する。図4は、演算周期より長い周期で電解質水溶液がストロークポンプにより打ち込まれる場合(ストローク速度が比較的遅い場合)における計測電流の時間的変化波形Wを示している。図示の場合、演算時点t1 では、計測電流値が高くなっており、その高い計測電流値に対して打ち込みのストローク速度が演算されるので、もし、その測定電流値が目標電流値よりも大きいと、ストローク速度を下げる方向の演算がなされる。しかし、その後の演算時点t2 やt3 では、計測電流値が低くなっていて、その低い計測電流値に対して打ち込みのストローク速度が演算されるので、ストローク速度を上げる方向の演算がなされる。このように、計測電流値が波打つと、送出ポンプを制御する演算結果が安定せず、目標の電流値に漸近させることが難しいことになる。 Next, when the stroke cycle (driving cycle) is relatively long, the influence of the phenomenon that the measured current undulates and the suppression method thereof will be described. FIG. 4 shows a temporal change waveform W of the measured current when the aqueous electrolyte solution is driven by the stroke pump at a cycle longer than the calculation cycle (when the stroke speed is relatively slow). In the case of the figure, the measured current value is high at the calculation time t1, and the stroke speed of the driving is calculated for the high measured current value. Therefore, if the measured current value is larger than the target current value. , The calculation in the direction of lowering the stroke speed is performed. However, at the subsequent calculation points t2 and t3, the measured current value is low, and the stroke speed of the driving is calculated for the low measured current value, so that the calculation in the direction of increasing the stroke speed is performed. As described above, when the measured current value undulates, the calculation result for controlling the transmission pump is not stable, and it becomes difficult to asymptotically approach the target current value.

続いて、測定した電流の波打つ現象がP項およびI項による制御における影響を少なくする手法について説明する。図5は、その手法を実施する場合の制御系のブロック線図であり、前記図3の制御系に相当する部分の一部を変形したものである。なお、図5の実施形態および前記図3の実施形態とも、演算をデジタル処理で行うため、PI制御の演算周期は、1秒であり、電流の測定は、0.1秒周期でデジタル的に行っている。計測した電流の波形は、打込み周期と同じ周期で少し遅れて瞬間的に高くなり波打つが、図5の実施形態では、その電流波形を一次遅れ回路73によりその周期の1/2の時定数で一次遅れ処理することにより適当に平坦化して、上記算出式における計測電流値として演算に使用する。一次遅れ回路73を介することにより、演算に使用される計測電流の変化波形は、図4においてW73で示すような形となり、PI制御の不安定さが抑制される。 Next, a method of reducing the influence of the measured current undulating phenomenon on the control by the P term and the I term will be described. FIG. 5 is a block diagram of the control system when the method is implemented, and is a partially modified version of the portion corresponding to the control system of FIG. Since the calculation is performed digitally in both the embodiment of FIG. 5 and the embodiment of FIG. 3, the calculation cycle of PI control is 1 second, and the current measurement is digitally performed at a cycle of 0.1 second. Is going. The measured current waveform is momentarily increased and wavy with a slight delay in the same cycle as the driving cycle, but in the embodiment of FIG. 5, the current waveform is set to a time constant of 1/2 of the cycle by the primary delay circuit 73. It is appropriately flattened by primary delay processing and used in the calculation as the measured current value in the above calculation formula. Through the first-order lag circuit 73, the change waveform of the measured current used for the calculation has a shape as shown by W73 in FIG. 4, and the instability of PI control is suppressed.

以上説明したように、この発明による電解水生成装置では、運転に際して、環境条件に応じて電気分解の電極に印加される電圧が適切な値に自動的に設定されるとともに、電極間を流れる電流が水温、流量、電圧の幅広い範囲にわたってPI制御により適切な値に自動的に調節されて、所定のアルカリ度および所定の有効塩素濃度の微酸性電解水を生成することができる。 As described above, in the electrolytic water generator according to the present invention, the voltage applied to the electrodes for electrolysis is automatically set to an appropriate value according to the environmental conditions during operation, and the current flowing between the electrodes is automatically set. Can be automatically adjusted to an appropriate value by PI control over a wide range of water temperature, flow rate and voltage to produce slightly acidic electrolyzed water with a given alkalinity and a given effective chlorine concentration.

10…電解水生成装置、11…電解槽、12a、12b…電極、20…原水供給管路、30…電解質水溶液供給管路、32…送出ポンプ、40…電源装置、41…電流計、42…電圧計、50…データテーブル、60…電圧電流値表示装置、70…制御装置、73…一次遅れ回路。 10 ... Electrolyzed water generator, 11 ... Electrolytic cell, 12a, 12b ... Electrodes, 20 ... Raw water supply pipeline, 30 ... Electrolyte aqueous solution supply pipeline, 32 ... Delivery pump, 40 ... Power supply device, 41 ... Ammeter, 42 ... Voltage meter, 50 ... data table, 60 ... voltage / current value display device, 70 ... control device, 73 ... primary lag circuit.

Claims (6)

一対の電極を配設した電解槽と、
給水源から供給される原水を前記電解槽に供給する原水供給管路と、
前記電解槽に供給される原水に少なくとも塩酸を含む電解質水溶液を流量可変の送出ポンプを介して供給する電解質水溶液供給管路と、
原水のMアルカリ度、添加する電解質水溶液の塩酸濃度および原水の水温のそれぞれ予め考慮された各複数の環境条件値に対して、前記電解槽内で所定のpH値および所定の有効塩素濃度を有する電解水を生成するために前記電極間に印加すべき直流電圧の各所要電圧値と前記電極間を流れるべき電流の各所要電流値を示すデータテーブルと、
電解水の生成を行う際の実際の原水のMアルカリ度、添加する電解質水溶液の塩酸濃度および原水の水温の環境条件情報の入力を受けて、前記データテーブルからその環境条件下で電解水を生成するために適切な電解電圧値と電解電流値を読み出して提示する電圧電流値提示装置と、
前記一対の電極に前記電解電圧値の直流電圧を印加する電源装置と、
前記電極間に実際に供給されている電流を計測電流値として計測する電流計測手段と、
前記電解質水溶液供給管路から前記電解槽に供給すべき前記電解質水溶液の流量を、前記電解電流値を目標電流値として、当該目標電流値と前記計測電流値との電流値差に基づいてPI制御の手法により所定の演算周期で順次演算して、順次前記計測電流値が前記目標電流値に漸近するように、前記原水に添加する前記電解質水溶液の流量を前記演算周期で順次自動的に調節しながら供給するように前記送出ポンプを制御する制御装置と
を備えてなり、
前記PI制御における演算のP項の係数およびI項の係数は、前記原水の水温、前記原水の流量および前記電解電圧値に応じて無駄時間、時定数およびゲインを求めたうえで、前記無駄時間、前記時定数および前記ゲインから算定されることを特徴とする
電解水生成装置。
An electrolytic cell with a pair of electrodes and
The raw water supply pipeline that supplies the raw water supplied from the water supply source to the electrolytic cell, and
An electrolyte aqueous solution supply line for supplying an electrolyte aqueous solution containing at least hydrochloric acid to the raw water supplied to the electrolytic cell via a delivery pump having a variable flow rate.
It has a predetermined pH value and a predetermined effective chlorine concentration in the electrolytic cell for each of a plurality of environmental condition values considered in advance for the M alkalinity of the raw water, the hydrochloric acid concentration of the electrolyte aqueous solution to be added, and the water temperature of the raw water. A data table showing each required voltage value of the DC voltage to be applied between the electrodes and each required current value of the current to flow between the electrodes to generate electrolyzed water.
Upon receiving input of environmental condition information of the actual M alkalinity of the raw water, the hydrochloric acid concentration of the aqueous electrolyte solution to be added, and the water temperature of the raw water when generating the electrolyzed water, the electrolyzed water is generated under the environmental conditions from the above data table. A voltage / current value presenting device that reads out and presents an appropriate electrolytic voltage value and electrolytic current value,
A power supply device that applies a DC voltage of the electrolytic voltage value to the pair of electrodes,
A current measuring means that measures the current actually supplied between the electrodes as a measured current value, and
PI control of the flow rate of the electrolyte aqueous solution to be supplied from the electrolyte aqueous solution supply pipeline to the electrolytic tank based on the current value difference between the target current value and the measured current value with the electrolytic current value as the target current value. The flow rate of the electrolyte aqueous solution added to the raw water is automatically adjusted in the calculation cycle so that the measured current value gradually approaches the target current value. It is equipped with a control device that controls the delivery pump so that it can be supplied while supplying electric current.
The coefficient of the P term and the coefficient of the I term of the calculation in the PI control are the wasted time after obtaining the wasted time, the time constant and the gain according to the water temperature of the raw water, the flow rate of the raw water and the electrolytic voltage value. , The electrolyzed water generator, characterized in that it is calculated from the time constant and the gain.
請求項1に記載の電解水生成装置において、
前記制御装置における演算において、前記無駄時間は、前記原水の流量に反比例する係数として求められ、前記時定数は、前記原水の流量に反比例する係数として求められ、前記ゲインは、原水の水温による+2%/℃の影響があり、不感帯を超える印加電圧値に比例し、原水の流量に反比例する係数として求められる
ことを特徴とする電解水生成装置。
In the electrolyzed water generator according to claim 1,
In the calculation in the control device, the wasted time is obtained as a coefficient inversely proportional to the flow rate of the raw water, the time constant is obtained as a coefficient inversely proportional to the flow rate of the raw water, and the gain is +2 due to the water temperature of the raw water. An electrolytic water generator characterized in that it is affected by% / ° C., is proportional to an applied voltage value exceeding the dead zone, and is obtained as a coefficient inversely proportional to the flow rate of raw water.
請求項1または2に記載の電解水生成装置において、
前記制御装置において前記演算周期の各演算時点で演算して算出する電解槽に供給すべき電解質水溶液の今回算出流量が、直前の演算時点において算出した電解槽に供給すべき電解質水溶液の前回算出流量に、今回電流値差から前回電流値差を減じた値にP項の係数を乗じた値と、今回電流値差に演算周期とI項の係数を乗じた値とを加算して得られる
ことを特徴とする電解水生成装置。
In the electrolyzed water generator according to claim 1 or 2.
The current calculated flow rate of the electrolyte aqueous solution to be supplied to the electrolytic cell calculated and calculated at each calculation time of the calculation cycle in the control device is the previously calculated flow rate of the electrolyte aqueous solution to be supplied to the electrolytic cell calculated at the immediately preceding calculation time. It is obtained by adding the value obtained by multiplying the value obtained by subtracting the previous current value difference from the current value difference this time by the coefficient of the P term and the value obtained by multiplying the current value difference this time by the calculation cycle and the coefficient of the term I. An electrolyzed water generator characterized by.
請求項3に記載の電解水生成装置において、
前記制御装置において前記演算周期の各演算時点で演算して算出する電解槽に供給すべき電解質水溶液の今回算出流量Strknが、式[数1]により演算して算出され、
Figure 0007032019000007
上記式[数1]において、前記送出ポンプが1ストローク当たり一定量の水溶液を送り出
すタイプのパルスポンプであって、単位時間当たりのストローク数、すなわちストローク速度を変えることにより、前記電解質水溶液の流量を可変とするものであり、Strknは今回演算時点で算出される前記電解質水溶液の今回算出流量、Strkn-1は前回演算時点で算出された前記電解質水溶液の流量、en は今回演算時点での今回電流値差、en-1 は前回演算時点での前回電流値差、Δtは演算周期であり、ここに、KP は[数1]におけるP項の係数、KP /TI は[数1]におけるI項の係数で、KP とTI は、無駄時間LPLと時定数TPLとゲインKPLとによって式[数2]により定義される、
Figure 0007032019000008
ことを特徴とする電解水生成装置。
In the electrolyzed water generator according to claim 3,
The currently calculated flow rate Strkn of the aqueous electrolyte solution to be supplied to the electrolytic cell calculated and calculated at each calculation time of the calculation cycle in the control device is calculated and calculated by the equation [Equation 1].
Figure 0007032019000007
In the above formula [Equation 1], the delivery pump is a type of pulse pump that sends out a constant amount of aqueous solution per stroke, and the number of strokes per unit time, that is, the stroke speed is changed to change the flow rate of the electrolyte aqueous solution. It is variable, Strkn is the flow rate of the electrolyte solution calculated at the time of this calculation, Strkn-1 is the flow rate of the electrolyte solution calculated at the time of the previous calculation, and en is the current current at the time of this calculation. The value difference, en-1 is the previous current value difference at the time of the previous calculation, Δt is the calculation cycle, where KP is the coefficient of the P term in [Equation 1] and KP / TI is the I term in [Equation 1]. In the coefficients of, KP and TI are defined by the equation [Equation 2] by the wasted time LPL, the time constant TPL and the gain KPL.
Figure 0007032019000008
An electrolyzed water generator characterized by this.
請求項4に記載の電解水生成装置において、
前記無駄時間LPL、時定数TPL、ゲインKPLは、それぞれ式[数3]によって求められたものであり、
Figure 0007032019000009
ここに、流量は前記原水の流量であり、水温は前記原水の水温であり、電圧は前記一対の電極に印加されている電解電圧値である、
ことを特徴とする電解水生成装置。
In the electrolyzed water generator according to claim 4,
The wasted time LPL, the time constant TPL, and the gain KPL are each obtained by the equation [Equation 3].
Figure 0007032019000009
Here, the flow rate is the flow rate of the raw water, the water temperature is the water temperature of the raw water, and the voltage is the electrolytic voltage value applied to the pair of electrodes.
An electrolyzed water generator characterized by this.
請求項1~5のいずれかに記載の電解水生成装置において、
前記送出ポンプは、1ストローク当たり一定量の水溶液を送り出すタイプのパルスポンプであって、前記パルスポンプのストロークの周期を変えることにより前記電解質水溶液の流量を可変とするものであり、
前記制御装置は、前記電流計測手段が計測する前記計測電流値の時間的変化波形を前記パルスポンプのストロークの周期の1/2を時定数とする一次遅れ処理をする一次遅れ回路を介して遅延電流波形を得て、当該遅延電流波形の値を前記PI制御の手法における計測電流値として演算する
ことを特徴とする電解水生成装置。
In the electrolyzed water generator according to any one of claims 1 to 5.
The delivery pump is a type of pulse pump that sends out a constant amount of aqueous solution per stroke, and changes the flow rate of the aqueous electrolyte solution by changing the cycle of the stroke of the pulse pump.
The control device delays the temporal change waveform of the measured current value measured by the current measuring means via a primary delay circuit that performs a primary delay process in which 1/2 of the stroke cycle of the pulse pump is set as a time constant. An electrolyzed water generator characterized in that a current waveform is obtained and the value of the delayed current waveform is calculated as a measured current value in the PI control method.
JP2018019604A 2018-02-06 2018-02-06 Electrolyzed water generator Active JP7032019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019604A JP7032019B2 (en) 2018-02-06 2018-02-06 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019604A JP7032019B2 (en) 2018-02-06 2018-02-06 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2019136625A JP2019136625A (en) 2019-08-22
JP7032019B2 true JP7032019B2 (en) 2022-03-08

Family

ID=67692699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019604A Active JP7032019B2 (en) 2018-02-06 2018-02-06 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP7032019B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117776346B (en) * 2024-02-28 2024-05-28 广州市纳爱生物科技有限公司 Preparation method of hydrogen-rich water for improving visual fatigue

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093961A (en) 1998-09-24 2000-04-04 Amano Corp Electrolytic water making apparatus
US20060076248A1 (en) 2004-10-08 2006-04-13 Electric Aquagenics Unlimited Apparatus and method for producing electrolyzed water
WO2009060867A1 (en) 2007-11-08 2009-05-14 Hoshizaki Denki Kabushiki Kaisha Electrolysis water generator
JP2010207668A (en) 2009-03-06 2010-09-24 Hoshizaki Electric Co Ltd Electrolytic water generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619756B2 (en) * 1991-11-07 1997-06-11 株式会社オムコ Sterilized water production method
JPH0938652A (en) * 1995-07-31 1997-02-10 Nikko Co Ltd Producing device of strong acid water
JPH09150156A (en) * 1995-11-30 1997-06-10 Amano Corp Device for controlling quality of produced water in electrolyzed water producing unit
JP3432123B2 (en) * 1997-10-23 2003-08-04 ホシザキ電機株式会社 Electrolyzed water generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093961A (en) 1998-09-24 2000-04-04 Amano Corp Electrolytic water making apparatus
US20060076248A1 (en) 2004-10-08 2006-04-13 Electric Aquagenics Unlimited Apparatus and method for producing electrolyzed water
WO2009060867A1 (en) 2007-11-08 2009-05-14 Hoshizaki Denki Kabushiki Kaisha Electrolysis water generator
JP2010207668A (en) 2009-03-06 2010-09-24 Hoshizaki Electric Co Ltd Electrolytic water generator

Also Published As

Publication number Publication date
JP2019136625A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
KR100314886B1 (en) Electrolyzed Water Generator
JP6196528B2 (en) Dissolved hydrogen concentration measuring method and electrolyzed water generator
EP0874710A1 (en) Computer controlled electrochemical machining system
JP7032019B2 (en) Electrolyzed water generator
CN106681136A (en) Synchronous motor excitation control system based on auto-adjusting fuzzy PID control
JP2009229382A (en) Controller and electric power estimation method
EP1944862A3 (en) Induction motor controller
RU2017104885A (en) GAMMA VOLTAGE GENERATION MODULE AND LIQUID CRYSTAL PANEL
JP2015165344A (en) Control parameter adjustment device and control parameter adjustment program
JP6917280B2 (en) Electrolyzed water generator
JP4968839B2 (en) Ozone generator
EP2233441A1 (en) Electrolysis water generator
SU793411A3 (en) Method and device for material feeding control in electrolyzer bath
RU2681590C1 (en) Combined method of electrochemical treatment of titanium alloys parts
KR101536461B1 (en) Apparatus for controlling slab width and method for the same
JP2011104519A (en) Method and apparatus for producing sterilizing water with variable volume of production
JP2015136768A (en) Working fluid supply control device for wire electric discharge machine
WO2020045063A1 (en) Electrolyzed water generator and electrolyzed water generation method
JP4272229B2 (en) Process control device
JP6173949B2 (en) Water treatment system, control device, and water treatment method
KR101050197B1 (en) Linear system control device and method
RU2549149C2 (en) Digital control method
JP2005194564A (en) Method of producing electrolyzed product
RU2217528C1 (en) Method of control of thermal conditions of aluminum electrolyzer
JP3557331B2 (en) Ion concentration calculation method, ion concentration calculation device, and electrolyzed water generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220223

R150 Certificate of patent or registration of utility model

Ref document number: 7032019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150