JP7024632B2 - 沈降槽およびその制御方法、並びに、固形物の製造方法 - Google Patents

沈降槽およびその制御方法、並びに、固形物の製造方法 Download PDF

Info

Publication number
JP7024632B2
JP7024632B2 JP2018128404A JP2018128404A JP7024632B2 JP 7024632 B2 JP7024632 B2 JP 7024632B2 JP 2018128404 A JP2018128404 A JP 2018128404A JP 2018128404 A JP2018128404 A JP 2018128404A JP 7024632 B2 JP7024632 B2 JP 7024632B2
Authority
JP
Japan
Prior art keywords
filtrate
tank
supernatant
solid matter
level sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128404A
Other languages
English (en)
Other versions
JP2020006302A (ja
Inventor
範幸 長瀬
典久 土岐
達也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018128404A priority Critical patent/JP7024632B2/ja
Publication of JP2020006302A publication Critical patent/JP2020006302A/ja
Application granted granted Critical
Publication of JP7024632B2 publication Critical patent/JP7024632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、各種ろ過工程から排出されるろ液に含有される漏れ固形物を回収するための沈降槽およびその制御方法に関する。また、本発明は、被処理液から該被処理液に含まれる固形物を抜き出すことによる固形物の製造方法に関する。
銅の電解精製においては、不純物を含有する粗銅板を陽極(アノード)とし、純銅、ステンレス、チタンなどの薄板を陰極(カソード)として、陽極と陰極とを交互に電解槽に装入し、一定範囲に温度管理された電解液を電解槽に供給しつつ通電し、陰極に所定の厚みの銅を電着させて、電気銅を得ている。
通電によって、陽極に含有されている銅が、銅イオンとして電解液中に溶出する。同時に、陽極に含有されている、ヒ素、ビスマス、アンチモン、ニッケルなどの不純物も電解液に溶出する。電解液中の銅イオンのみが陰極に電着し、高純度な電気銅が得られるが、不純物は電解液に残るため、その結果として、電解液の不純物濃度が上昇する。
電解精製の進行に伴って電解液の不純物濃度が高くなると、不純物が銅とともに共析して、電気銅の銅品位を低下させる、電解液の配管にスケールを生じさせて操業を阻害する、および、電解液の電気伝導度を低下させて電力コストを増加させるなどの問題が生じる。
このため、電解液の一部を浄液工程に送って、不純物を除去したうえで、電解槽へ再度供給することが行われている。浄液工程では、電解液を真空蒸発して濃縮し、急冷することで過飽和となった銅を粗硫酸銅として析出させて除去する、濃縮および冷却工程、次いで、粗硫酸銅を回収した後のろ液である粗母液から、残留した銅、ヒ素、ビスマス、アンチモンをカソード上に析出させるなどして除去する、脱銅電解工程、さらに、脱銅後の含ニッケル溶液である脱銅終液から、ニッケルを粗硫酸ニッケルとして分離回収する、脱ニッケル工程などが行われる。
脱ニッケル工程では、最初に、あらかじめ昇温された脱銅終液を、ニッケル濃縮槽に給液し、このニッケル濃縮槽において、脱銅終液に黒鉛電極を浸漬して通電し、この脱銅終液をジュール熱により加熱濃縮する。次に、加熱濃縮された濃縮液を、冷却結晶槽に送り、濃縮による硫酸濃度の上昇に伴う共通イオン効果と、冷却による溶解度の減少により、この濃縮液から粗硫酸ニッケルを析出させる。さらに、析出した粗硫酸ニッケルを含むスラリーを、冷却結晶槽ポンプによりろ過器に送り、ろ過により粗硫酸ニッケルを固形物として回収し、かつ、ろ液を真空ポンプにより吸引して、レシーバタンクに溜め、適宜払い出している。
このように、粗硫酸ニッケルの回収工程のみならず、一般的に溶解度の差を用いて固形化して固形物となった対象物を回収する工程では、加熱濃縮された濃縮液を、冷却結晶槽に送り、濃縮後の冷却による溶解度の減少により固形物を析出させ、この固形物が析出したスラリーを、ろ過工程に供給する。ろ過工程では、ろ布、ろ紙、メッシュスクリーンなどのろ材によって、スラリーを固形物(残渣)とろ液に分離する。特に、真空ろ過などの吸引ろ過では、ろ材よりろ液側を減圧することによってろ液を吸引することにより、分離を速やかに行うことが可能である。吸引したろ液は、レシーバタンクに溜め、適宜払い出している。
払い出されるろ液には、溶解度により溶解状態にある対象物とろ過器からろ過漏れした微細な固形物(脱ニッケル工程においては、微細な粗硫酸ニッケル)が含有されており、これらは、回収ロスの原因となっている。
ろ過漏れを低減するために、ろ材の目を細かくする方法が考えられるが、この方法ではろ過速度が低下するため、ろ過器の能力に余裕がない場合には、固形物の生産量が低下するという問題が生ずる。
特開2009-114520号公報に記載の技術のように、ろ液の一部をレシーバタンクから冷却結晶槽に返送する方法もある。この方法では、ろ液を返送する量を増やすほど、ろ液漏れした微細な固形物を多く回収できるが、返送したろ液を再びろ過器で処理する必要があるため、ろ過器の能力に余裕がない場合には、固形物の生産量が低下するという問題が生ずる。また、ろ液の全体を返送するとろ過器で処理する量が時間とともに増え続けるため、レシーバタンクからろ液の一部だけしか返送することができない。このように、ろ過器からろ液漏れした微細な固形物を十分に回収することは困難である。
特開2009-114520号公報
本発明の目的は、ろ過器からろ過漏れした微細な固形物を回収することにより、ろ過工程における固形物の回収率を向上させ、固形物の製造コストの低減を可能とする手段を提供することにある。
本発明者らは、前記課題を解決するために種々検討した結果、ろ過器の下流側に沈降槽を設けて、ろ過器からろ過漏れした微細な固形物を含有するろ液を沈降分離させて、微細な固形物を沈殿させることにより、効率的に微細な固形物を回収できるとの知見を得た。
また、沈降槽の形状および制御についても種々検討した結果、沈降槽の底部の形状を工夫し、かつ、上澄みの抜き出しと固形物の底抜きを適切に制御することが可能な手段を設けることにより、より効率的にろ液漏れした微細な固形物を回収できるとの知見を得た。
本発明者らは、これらの知見に基づいて本発明を完成するに至った。
本発明の沈降槽は、槽本体と、底部と、ろ液受け入れ用インレットと、上澄み抜き出し用アウトレットと、前記底部に設けられた固形物底抜き用アウトレットと、前記上澄み抜き出し用アウトレットに接続される槽内配管と、前記ろ液受け入れ用インレットを介して、ろ液を供給する手段と、前記槽内配管および前記上澄み抜き出し用アウトレットを介して、前記ろ液の沈降分離で生じた上澄みを抜き出す手段と、前記固形物底抜き用アウトレットを介して、前記ろ液の沈降分離で沈殿している固形物を底抜きする手段と、を備える。
特に、本発明の沈降槽は、該沈降槽の槽内における前記ろ液のレベルをセンシング可能に配置された非接触式レベルセンサと、タイマーと、をさらに備える。
前記底部は、前記固形物底抜き用アウトレットに向けて下傾している。該底部は、水平面からの傾斜角度が40度以上の傾斜を有することが好ましい。
前記固形物底抜き用アウトレットは、前記底部の最底部に配置される。
前記槽内配管は、前記上澄み抜き出し用アウトレットから前記底部の水平方向中間部および高さ方向中間部まで伸長し、下端部に開口を備える。必要に応じて、前記槽内配管は、前記上澄み抜き出し用アウトレットと前記底部の上端部との間において、前記槽本体の横断面における、前記非接触式レベルセンサがセンシングする範囲と干渉しない位置に配置されることが好ましい。
前記非接触式レベルセンサは、前記ろ液のレベルが、前記槽内のろ液受け入れ上限に達するまで、前記ろ液を供給する手段を作動させ、かつ、該ろ液が沈降分離し、前記上澄みを抜き出す手段の作動後において、前記上澄みのレベルを検知する。
前記タイマーは、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みを抜き出す手段の作動を停止し、かつ、前記固形物を底抜きする手段を作動させて、所定時間経過後に、前記固形物を底抜きする手段を停止させる。
前記ろ液を供給する手段、前記上澄みを抜き出す手段、および、前記固形物を底抜きする手段のそれぞれは、配管、および、真空ポンプ、定量ポンプ、ラインポンプ、その他の公知のポンプを含む公知の流体移送装置により構成される。
前記非接触式レベルセンサは、超音波式レベルセンサ、電波式レベルセンサ、および、レーザ式レベルセンサから選択される。
前記底部は、コーン型(円錐)もしくは臼状の形状を有することが好ましい。
本発明の沈降槽の制御方法は、上記の本発明の沈降槽を用いる。
特に、本発明の沈降槽の制御方法では、
前記ろ液を供給する手段により、ろ液を受け入れ、前記非接触式レベルセンサが前記槽内の前記ろ液受け入れ上限を検知すると、前記ろ液の受け入れを停止する工程、
該沈降槽内で前記ろ液を沈降分離させ、固形物を前記底部に沈殿させる工程、
前記上澄みを抜き出す手段により、上澄みの抜き出しを開始し、前記非接触式レベルセンサが該上澄みのレベルを検知し、かつ、前記タイマーが、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みの抜き出しを停止する工程、
前記上澄みの抜き出しの停止と同時に、前記固形物を底抜きする手段により、前記固形物の底抜きを開始し、該固形物の底抜きの開始後の所定時間経過後、前記固形物の底抜きを停止する工程、
を備える。
本発明の固形物の製造方法は、
被処理液を加熱濃縮して濃縮液を得る濃縮工程と、
前記濃縮液を冷却して固形物を析出させて、該固形物を含むスラリーを得る冷却工程と、
前記スラリーをろ過して、前記固形物を回収するろ過工程と、
前記ろ過工程で得られ、ろ過漏れした固形物を含むろ液を、沈降槽に投入し、該ろ液中の固形物を前記沈降槽の底部に沈殿させ、かつ、前記沈降槽の底部に沈殿した固形物を抜き出して、前記冷却工程以前に繰り返す工程と、
を備える。
特に、本発明の固形物の回収方法では、前記沈降槽を用いた工程において、本発明の沈降槽の制御方法を用いる。
前記沈降槽を2基以上設け、該沈降槽のうちのいずれか1基への前記ろ液の投入と、前記沈降槽のうちの別の少なくとも1基での前記固形物の沈殿および/または抜き出しとを同時に行うことが好ましい。
本発明により、ろ過器からろ過漏れした微細な固形物を含有するろ液を、所定時間、沈降槽にて滞留させることで、沈降分離により微細な固形物を沈降槽の底部に沈殿させ、沈降槽の底部に沈殿した固形物を、冷却結晶槽または濃縮槽に繰り返して、粒成長を経て、再びろ過することにより、固形物が系外に排出されることを抑制し、効率的に固形物を回収することができる。よって、被処理液からの固形物の回収率を飛躍的に向上させ、固形物あたりの製造コストを低減させることが可能となる。
図1は、本発明の固形物の回収装置を示す、設備フロー図である。 図2は、本発明の沈降槽を示す概略断面図である。
本発明は、銅の電解精製における脱銅終液からニッケルを粗硫酸ニッケルとして分離回収する脱ニッケル工程など、被処理液から固形物を回収する工程に関する。このような被処理液から固形物を回収する工程では、図1に示すように、基本的には、被処理液6を加熱濃縮して濃縮液7を得るための濃縮槽1と、濃縮槽1から送られた濃縮液7を冷却して固形物9を析出させて、固形物9を含むスラリー8を得るための冷却結晶槽2と、スラリー8をろ過して、固形物9を回収するろ過器3とを備える。
濃縮槽1には、被処理液6の沸点以上の温度で被処理液6を加熱可能であれば、任意の濃縮槽を適用することができる。たとえば、電気蒸発槽が適用可能である。電気蒸発槽は、槽内に、通電可能で、かつ、被処理液に浸漬される黒鉛電極棒が挿入配置されており、この黒鉛電極棒を介して、被処理液6に通電し、被処理液6をジュール熱により加熱して水分を蒸発させて、濃縮液7を得る。加熱温度は、被処理液の種類に応じるが、脱銅終液の場合は、約150℃~200℃の範囲にある温度とすることが好ましい。濃縮槽1としては、その他、重油バーナを用いて、被処理液を直接あるいは槽の周囲から間接的に加熱可能な構造も採り得る。
冷却結晶槽2についても、濃縮液7に含まれる溶質の種類に応じて、固形物9が十分に析出する温度、たとえば粗硫酸ニッケルの回収の場合には約50℃まで、濃縮液7を冷却可能な任意の構造を採り得る。たとえば、槽の周囲あるいは槽内にジャケットや蛇管を設置して、これらに冷媒を通す構造が、冷却結晶槽2に適用可能である。
ろ過器3についても、自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過などを用いたろ過器を用いることができる。また、ろ過器3に用いられるろ材としては、ろ布、ろ紙、メッシュスクリーンなどを用いることができる。ろ過器3としては、たとえば、真空ろ過器、遠心分離機、遠心沈降機などを用いることができるが、粗硫酸ニッケルの回収の場合には、通常、ろ過器3として、真空ろ過器が適用されている。
真空ろ過器の場合、ろ過器3において粗硫酸ニッケルなどの固形物9が回収され、ろ液10は、真空ポンプに吸引されて、通常はレシーバタンク4に貯留されて、適宜払い出される。
本発明は、従来の装置に設けられていた、レシーバタンク4に代替して、あるいは、レシーバタンク4に追加して、沈降槽5が設けられている点に特徴がある。ろ過器3からろ過漏れした微細な固形物9aを含有するろ液10を、直接あるいはレシーバタンク4を介して、沈降槽5に投入し、微細な固形物9aを沈降槽5の底部14に沈殿させて、沈降槽5の底部14に沈殿した固形物9aを、底抜きして冷却結晶槽2または濃縮槽1に繰り返す。
従来、ろ過器3から送られたろ液10は、レシーバタンク4に貯留され、適宜、ろ液10を全量払い出すか、あるいはその一部をそのまま冷却結晶槽2に返送していた。これに対して本発明では、沈降槽5においてろ液10を十分な時間保持して、微細な固形物9aを沈殿させ、沈殿した固形物9aを底抜きして、冷却結晶槽2または濃縮槽1に返送し、固形物9aの沈殿により生じた上澄み11のみを系外に一旦払い出して、電解液に添加して酸濃度の調整などに使用することができる。これにより、冷却結晶槽2または濃縮槽1への供給量を過剰にすることなく、主として微細な固形物9aを、系内循環により効果的に回収することができ、被処理液6からの固形物の回収率を飛躍的に向上させている。
本発明の実施形態の一例に係る沈降槽5の基本的な構造は、図2に示すように、槽本体13と、微細な固形物9aが沈殿する底部14と、ろ過器3あるいはレシーバタンク4などの上流側からろ液10を受け入れるためのろ液受け入れ用インレット15と、上澄み抜き出し用アウトレット16と、底部14に設けられた固形物底抜き用アウトレット17と、上澄み抜き出し用アウトレット16に接続される槽内配管18と、ろ液受け入れ用インレット15にろ液を供給する手段20と、上澄み抜き出し用アウトレット16からろ液10の沈降分離後の上澄み11を抜き出す手段21と、固形物底抜き用アウトレット17から沈殿した固形物9aを底抜きする手段12と、を備える。
沈降槽5の全体的な形状および大きさは、その底部14が、固形物底抜き用アウトレット17に向けて下傾している限り、基本的には周囲の設備などに応じた大きさでよく、任意である。固形物底抜き用アウトレット17に向けて下傾している底部14は、下へ行くほど狭まる形状である。このような底部14の形状は、底部14の容積のうち固形物底抜き用アウトレット17の真上部分の占める容積の割合が高まるので、沈殿した固形物9aを固形物底抜き用アウトレット17から抜き出すのに有利である。
沈降槽5の底部14の傾斜は、水平面からの傾斜角度を40度以上、好ましくは45度以上とすることにより、底部14に沈殿した固形物9aを速やかに底部14の最底部に寄せることができ、沈殿した固形物9aをスムーズに底抜きすることが可能となる。一方、底部14の傾斜について、水平面からの傾斜角度が40度未満では、底部14に沈殿した固形物9aが、底部14の最底部に流動するのに時間を要し、沈殿した固形物9aの粒子形状によっては底部14の底面に堆積してしまう可能性がある。沈降槽5の底部14に固形物9aの堆積が生じると、槽容量が減少して、ろ液10の滞留時間が短縮される、固形物9aが沈降槽5の内面に固着する、抜き取りラインが詰まるなどの問題が発生する原因となる。底部14の傾斜についての水平面からの傾斜角度の上限は、特にないが、沈降槽5の容積を確保する観点から60度以下とすることが好ましい。
沈降槽5の槽本体13の形状が円筒形である場合には、底部14の形状は、コーン型(円錐)もしくは臼状の形状を有することができる。このような形状により、底部14の中央部に最底部が配置され、底部14の中央部に沈殿した固形物9aが偏りなく集約され、底部14の中央部から固形物9aを底抜きすることが容易に可能となる。
ろ液受け入れ用インレット15は、槽本体13の気相部に配置することにより、固形物9aによる閉塞を抑制することができる。具体的には、ろ液受け入れ用インレット15は、槽本体13の上端部あるいは天井部の任意の位置に設けられるが、槽本体13が天井部を有さない場合には、槽本体13の開口がろ液受け入れ用インレット15に相当する。ろ液10の受け入れ上限は、ろ液受け入れ用インレット15よりも下方に設定するのが適切である。
ろ液受け入れ用インレット15は、ろ過器3あるいはレシーバタンク4などの上流側からろ液10を移送するための、ろ液供給手段20に接続される。ろ液供給手段20は、配管、および、真空ポンプ、定量ポンプ、ラインポンプ、その他の公知のポンプを含む流体移送装置により構成される。本例では、真空ろ過を行うために、レシーバタンク4に設けられた真空ポンプ(VP)により、ろ過器3からろ液10が引き抜かれ、レシーバタンク4に貯留したろ液10を適宜、配管を通じて沈降槽5に移送している。このため、実質的に、レシーバタンク4に設けられた真空ポンプ(VP)が流体移送装置として機能する。なお、本発明において、ろ液供給手段20の配管の下流側一端部が、槽本体13の開口内または開口の鉛直上方に配置されている場合にも、ろ液供給手段20とろ液受け入れ用インレット15が接続しているものと解釈される。
上澄み抜き出し用アウトレット16は、槽本体13のうち、ろ液10の受け入れ上限と、底部14の上端部(槽本体13と底部14との境界)との間の任意の箇所に設けられる。上澄み抜き出し用アウトレット16は、上澄み抜き出し手段21に接続されている。
槽本体13の内部では、槽内配管18の下流側の端部(上端部)が上澄み抜き出し用アウトレット16に接続されている。槽内配管18の上流側の端部(下端部)は、底部14の水平方向中間部かつ高さ方向中間部に配置される。すなわち、槽内配管18の下端部開口を、底部14内の当該位置に配置することで上澄みを下から一度に回収でき、かつ、ろ液10の沈降分離後に壁面に堆積している固形物9aを避けて上澄みを回収できる。具体的には、槽内配管18の配置は、底部14の形状や一回の処理により生じる固形物9aの量などに応じて適宜設定される。槽内配管18により、上澄み抜き出し用アウトレット16と底部14の水平方向中間部かつ高さ方向中間部との間が連通され、上澄み11のみが、上澄み抜き出し手段21により系外に抜き出されることが可能となっている。なお、後述するように、非接触式レベルセンサの種類に応じて、必要により、槽内配管18は、上澄み抜き出し用アウトレット16と底部14の上端部との間において、槽本体13の横断面における、非接触式レベルセンサ19がセンシングする範囲と干渉しない位置に配置される。
固形物底抜き用アウトレット17を、底部14の最底部に設けることによって、固形物9aを最大限に底抜きすることが可能となっている。底部14がコーン型(円錐)もしくは臼状の形状を有する場合には、固形物底抜き用アウトレット17は、底部14の径方向中央部に設けられる。固形物底抜き用アウトレット17は、固形物底抜き手段12に接続されている。ろ液10の沈降分離で沈殿している固形物9aは、上澄み11の抜き出し後に、固形物底抜き用アウトレット17および固形物底抜き手段12を介して、冷却結晶槽2または濃縮槽1に繰り返される。
なお、上澄み抜き出し手段21および固形物底抜き手段12についても、ろ液供給手段20と同様に、配管、および、真空ポンプ、定量ポンプ、ラインポンプ、その他の公知のポンプを含む流体移送装置により構成される。
本発明において、上澄み抜き出し手段21または固形物底抜き手段12を構成する流体移送装置としては、被搬送物や搬送高さなどに応じて適宜選択可能であるが、特に、定量ポンプ23を用いることが好ましい。定量ポンプ23としては、歯車ポンプ、ベローズダイヤフラムを用いた容積式ポンプであるベローズポンプ、プランジャを往復動させて液体を吸い込み側から吐出側に押し出す容積式ポンプであるプランジャポンプ、回転数比例で定量性のあるホースポンプなどを用いることができる。定量ポンプを適用することにより、沈殿した固形物9aの粒度、水分率などによっては、流量が若干変化した場合でも、流量を一定に保つことができる。
本発明の実施形態の一例に係る沈降槽5は、非接触式レベルセンサ19と、タイマー22をさらに備える。
非接触式レベルセンサ19は、超音波式レベルセンサ、電波式レベルセンサ、および、レーザ式レベルセンサから選択可能である。これらの非接触式レベルセンサ19は、超音波、電波、あるいはレーザが、液面から反射して戻ってくる時間を測定することで、沈降槽5内のろ液のレベルを判定する。非接触式で測定できるため、液体の種類に依存することなく、かつ、ろ液などによる腐食にも強いという特徴を有する。
ただし、超音波式レベルセンサおよび電波式レベルセンサは、スポット径が比較的大きいため、沈降槽5の内面の形状や障害物の影響を受けやすい。このため、非接触式レベルセンサ19として、超音波式レベルセンサあるいは電波式レベルセンサを用いる場合には、非接触式レベルセンサ19を、沈降槽5のうち、槽内のセンシング可能な範囲と最上部に設けた不感帯とを、を避けるように槽内配管18を配置する必要がある。
具体的には、槽内配管18のうち、底部14の上端部よりも上側に配置される部分については、槽本体13の内周面に沿って配置し、底部14に配置される部分については、沈殿した固形物9aの表面近傍に配置することが好ましい。この場合、非接触式レベルセンサ19は、沈降槽5の天井部あるいは開口部のうち、中心から径方向に外れた位置に配置して、槽内配管18が非接触式レベルセンサ19のセンシング範囲に入らないようにすることが好ましい。槽内配管18のうち、底部14に配置される部分は、沈殿した固形物9aに近づくほど非接触式レベルセンサ19がセンシングする範囲に入る可能性が小さくなる一方で、沈殿した固形物9aから遠ざかるほど沈殿した固形物9aに埋没する可能性が小さくなる。そこで、槽内配管18のうち、底部14に配置される部分は、非接触式レベルセンサ19がセンシングする範囲と干渉せず、かつ、沈殿した固形物9aに隙間なく埋没することを防止できる位置に配置される。
一方、非接触式レベルセンサ19として、レーザ式レベルセンサを用いる場合には、レーザ式レベルセンサのスポット径が小さいため、槽内配管18と非接触式レベルセンサ19の配置上の制約は緩和されるが、管理コストも含めて高コストであるため、その適用は限定される可能性がある。
なお、レベルセンサには、浮きなどを利用したフロート式レベルセンサ、電極間に電圧を印加して液体の有無による電流の流れを検知する電極式レベルセンサなどの、接触式レベルセンサもあるが、ろ液中の固形物の固着による影響が生じる。たとえば、電極式レベルセンサでは、電極棒の先端部に沈殿した固形物が固着して、短絡した状態となって、正確な検知ができない場合がある。よって、本発明では、これらの接触式レベルセンサを用いることは実質的に困難である。
非接触式レベルセンサ19によるろ液10のレベルのセンシングは、センシング可能な範囲が沈降槽5の底部14の上端部から上方向に広がっている。これは、本発明の実施形態の一例では、底部が水平面から40度以上の傾斜角度を有するように傾斜しているため、ろ液10のレベルが底部14の上端部の高さ位置を下回ると、適切なセンシングができないためである。特に、底部14の形状がコーン型(円錐)もしくは臼状の形状を有する場合、底部14が非接触式レベルセンサ19の検知距離および検知角内にあると、非接触式レベルセンサ19が誤指示を行う可能性が高い。このため、非接触式レベルセンサ19は、ろ液10のレベルが底部14の上端部の高さに達すると同時に、そのセンシングを終了するように設定する、あるいは、次述するタイマー22を作動させて、タイマー22を用いた工程管理に移行するようにすることが望ましい。
本発明の実施形態の一例では、非接触式レベルセンサ19に加えて、タイマー22を設置している。本例では、底部14におけるろ液10のレベルを測定するかわりに、タイマー22を用いて、底部14に存在する上澄み11の抜き取り時間と固形物9aの底抜き時間を制御している。
すなわち、タイマー22が、ろ液10のレベルが、底部14のうち、沈殿した固形物9aが存在する領域の高さよりわずかに上方の位置、言い換えると、槽内配管18の上流側の端部(下端部)の開口が存在する高さ位置に到達するまでを、時間によって制御して、上澄み抜き出し手段21を構成するポンプが空転する前にその作動を停止させる。このように、タイマー22は、ろ液10のレベルが所定の位置となった時点で、たとえば非接触式レベルセンサ19によるセンシングにより、ろ液10のレベルが底部14の上端部に達した時点で時間測定を開始して、ろ液10のレベルが槽内配管18の下端部に到達する頃(直前)である所定時間経過時に、上澄み抜き出し手段21の作動を停止する。
タイマー22は、次に、固形物底抜き手段12を作動させて、固形物9aの底抜きを開始し、固形物9aの底抜きの開始後の所定時間経過後、すなわち、固形物9aが十分に底抜きされるが、固形物底抜き手段12を構成するポンプが空転により過熱する前に、固形物底抜き手段12の作動を停止する。
タイマーの作動時間については、上澄み抜き出し手段21あるいは固形物底抜き手段12を構成する流体移送装置の構成に応じて、沈殿した固形物9aと上澄み11を抜き出すのに要する時間をそれぞれ調べることにより、適宜決定される。特に、流体移送装置として、定量ポンプを用いた場合には、ろ液10の容量として、ろ液10のレベルが所定の位置(底部14の上端部)にある時点から槽内配管18の下端部までの容量、並びに、槽内配管18の下端部から底部14の最底部までの容量は計算により求めることができるから、タイマーの作動時間を決めるための予備試験は不要となる。
非接触式レベルセンサ19およびタイマー22による、ろ液供給手段20、上澄み抜き出し手段21、および、固形物底抜き手段12の作動の管理については、非接触式レベルセンサ19およびタイマー22が有するスイッチ機構を利用することができる。あるいは、コンピュータ、制御機器などを別に設けて、これらを介して、非接触式レベルセンサ19、タイマー22、ろ液供給手段20、上澄み抜き出し手段21、および、固形物底抜き手段12の全体の作動を管理および制御することもできる。
本発明の沈降槽は、以下のように制御される。
まず、ろ液供給手段20により、ろ液10を受け入れ、非接触式レベルセンサ19が、ろ液受け入れ上限まで、ろ液10のレベルが到達したことを検知すると、ろ液供給手段20の作動を停止して、ろ液10の受け入れを終了する。非接触式レベルセンサ19は、少なくとも槽本体13におけるろ液10のレベルを検知できるように配置される。非接触式レベルセンサ19の種類に応じて、センシング範囲に不感帯が存在する場合には、少なくとも、槽本体13の最上部に存在する不感帯の最低レベルと底部14の上端部との高さ方向範囲についてセンシング可能に配置される。なお、この場合、ろ液受け入れ上限は、不感帯の最低レベルよりも下方の位置、好ましくは不感帯の最低レベルのわずか下方の位置に設定される。
その後、ろ液10の所定の滞留時間を設けて、沈降槽5内でろ液10を沈降分離させ、固形物9aを沈殿させる。
所定の滞留時間経過後、上澄み抜き出し手段21により、沈降分離によって生じた上澄み11の抜き出しを開始し、非接触式レベルセンサ19が、少なくとも、そのセンシングに関する高さ方向範囲の下限、すなわち、底部14の最上部まで、ろ液10のレベルのセンシングを継続する。
非接触式レベルセンサ19によるセンシングの停止と同時あるいはろ液10のレベルが所定の位置となった時点において、タイマー22が始動し、上澄み11の抜き出しを継続し、ろ液10のレベルが槽内配管18の下端部に到達する頃(直前)である所定時間経過後に、上澄み抜き出し手段21の作動を停止し、上澄み11の抜き出しを終了する。
上澄みの抜き出しの停止と実質的に同時に、固形物底抜き手段12が作動し、固形物底抜き手段12が、タイマー22が停止するまで、所定時間、固形物9aの底抜きを継続する。
このようにして、固形物底抜き手段12によって、沈降槽5内で沈殿濃縮された固形物9aをスラリー状態のまま、前工程の所定の場所、すなわち、冷却結晶槽2あるいは濃縮槽1に繰り返す。固形物9aの全量を抜き終えた後、上述のように、タイマー22が停止して、固形物底抜き手段12の作動を停止させて、ろ液10の沈降分離並びに上澄み11と固形物9aの抜き出しの1サイクルを完了させる。
本発明において、沈降槽5において、粗硫酸ニッケルなどの微細な固形物9aの沈殿を得るためには、微細な固形物を含有するろ液10を、所定の時間沈降させることが重要である。沈降槽5に送られたろ液10から微細な固形物9aを沈降させて、固形物9aの沈殿を十分に得るためには、沈降槽5へのろ液10の投入を停止してからの沈降槽5での滞留時間を15分以上とすることが好ましく、固形物9aの90%以上を確実に沈殿させるためには、沈降槽5での滞留時間を20分以上確保することが好ましい。
この滞留時間は、15分以上、好ましくは20分以上であれば上限は限定されないが、この滞留時間が長くなるほど時間当たり処理液量が低下する。よって、ろ過器3から送り出されたろ液10の保有に大型の沈降槽5が必要とされる。これらの事情を勘案すると、滞留時間は50分以下、好ましくは、40分以下とすることが望ましい。
また、本発明においては、沈降槽5へのろ液10の受け入れと、固形物9aの沈降および底抜きとを明確に区別して行うこと、すなわち、沈降槽5へのろ液10の投入を停止した後で、固形物9aの沈降および底抜きを行うことが重要である。本発明を効果的に実施するためには、ろ過器3でろ過されたろ液10を、レシーバタンク4を介して間欠的に沈降槽5に送ることがよい。これによって、ろ過器3でろ過を連続的に行いつつ、すなわち、ろ過器3への通液量を大きく保った状態で、沈降槽5において、ろ液10の受け入れと、固形物9aの沈降および底抜きを時間的に区別して行うことが可能となる。
さらに、本発明では、沈降槽5は、ろ液10の受け入れ後、あるいは、固形物9aの底抜きおよび上澄み11の抜き出しの前に、ろ液10の沈降分離のみを行う待機時間を設ける機能を有する。沈降槽5のこのような機能が確保できる限り、沈降槽5は1基設置すれば十分である。ただし、十分な滞留時間を確保するには、沈降槽5を2基以上設置することが有効である。たとえば、図1に示すように沈降槽5を2基設けて、第1の工程として、このうちの1基でろ液10の受け入れを行い、別の1基で固形物9aの沈殿および底抜き、並びに、上澄み11の抜き出しを行い、第2の工程として、ろ液10の受け入れを行っていた1基を固形物9aの沈殿および底抜き、並びに、上澄み11の抜き出しに切り替えて、これらを行い、固形物9aの沈殿および底抜き、並びに、上澄み11の抜き出しを行っていた別の1基では、これらの代わりにろ液10の受け入れを行うようにして、第1の工程と第2の工程とをそれぞれ交互に行うことが好ましい。これにより、ろ液10の受け入れ後、あるいは、固形物9aの底抜きおよび上澄み11の抜き出しの前に、ろ液10の沈降分離のみを行う待機時間を十分に設けることが可能となり、固形物9aの沈降および底抜きの時間的な区別が確実になされる。2基以上の沈降槽5へ液を振り分けるには、三方弁を沈降槽5の上流に配置すれよいが、この態様に限らない。
ろ液10の滞留時間を十分に確保でき、かつ、ろ液10の受け入れと、固形物9aの沈降および底抜き、並びに、上澄み11の抜き出しとが明確に区別され、かつ、固形物9aの沈降および底抜きが時間的に区別して行われる限り、レシーバタンク4を省略することが可能である。たとえば、ろ液10の滞留時間と、固形物9aの底抜きおよび上澄み11の抜き出しの時間との合計が、ろ液10の受け入れ時間より短い場合は、レシーバタンク4を省略しても、2基の沈降槽5を切り替えながら、ろ過器3から連続的にろ液10を送り出すことができる。
沈降槽5からの固形物9aの底抜きおよび上澄み11の抜き出しを行う工程では、沈降槽5の下部から、固形物底抜き手段12に設けた定量ポンプ23により、固形物9aの沈殿を底抜きして、冷却結晶槽2または濃縮槽1(図1の例では、冷却結晶槽2)への繰り返し、および、上澄み11の沈降槽5の上部からの払い出しを行う。上澄み11は、硫酸を多く含むため、電解液に添加して酸濃度の調整に使うことができる。
ろ過器3からのろ液10に粒度の大きい固形物9aの粒子が含まれている場合は、この粒子は沈降槽5に到達する前にレシーバタンク4内で沈殿することがある。このため、レシーバタンク4でのろ液10の滞留時間を適切に調整することによって、固形物9aの粒子のほぼ全量を沈降槽5に送ることが好ましい。
以下、実施例により、本発明についてさらに詳細に説明する。実施例においては、被処理液として銅の電解精製において生ずる脱銅終液、固形物として、脱銅終液からの脱ニッケル工程において析出および回収される粗硫酸ニッケルを取り扱うが、本発明は以下の実施例に限定されることはない。
(実施例1)
図1および図2に示す、濃縮槽1、冷却結晶槽2、ろ過器3、レシーバタンク4、および、2基の沈降槽5(いずれも、容積800L、内径1m、槽本体13の高さ0.9m、底部14の高さ0.5m)により構成される、粗硫酸ニッケルの回収装置を用いた。
沈降槽5としては、槽本体13と、底部14を備え、底部14は、コーン型の形状を有し、水平面からの傾斜角度が45度となるように、底部14の径方向中心部にある最底部に向けて傾斜している、沈降槽を用いた。
槽本体13の天井部の一部に、ろ液受け入れ用インレット15を、槽本体13の側壁の上部に、上澄み抜き出し用アウトレット16を、底部14の最底部に固形物底抜き用アウトレット17をそれぞれ設けた。ろ液受け入れ用インレット15に、レシーバタンク4からろ液10を供給するためのろ液供給手段20を、上澄み抜き出し用アウトレット16に、槽内から上澄み11を系外に抜き出すための上澄み抜き出し手段21を、固形物底抜き用アウトレット17に、固形物9aを槽内から底抜きし、冷却結晶槽2に戻すための固形物底抜き手段12をそれぞれ接続した。ろ液供給手段20、上澄み抜き出し手段21、固形物底抜き手段12は、いずれも配管と定量ポンプにより構成した。
槽内配管18の下流側の端部(上端部)を上澄み抜き出し用アウトレット16に接続した。槽内配管18の上端部から中間部までを、槽本体13(円筒部)と底部14の境界まで、内周面に沿って、内周面の近傍に配置した。槽内配管18を中間部で屈曲させて、槽内配管18の上流側の端部(下端部)を槽本体13の内周面近傍から径方向中心部に向けて突出させ、底部14の高さ方向中間部で径方向中心部に槽内配管18の下端部開口を開口させた。
槽本体13の天井部で径方向中心部から外れた位置で、槽内配管18と径方向反対側の箇所に、超音波式レベルセンサである非接触式レベルセンサ19(横河電機株式会社製、SUN61)を設置した。
このように構成された沈降槽5を組み込んだ、粗硫酸ニッケルの回収装置を以下のように操業した。
最初に、銅0g/L、ニッケル30g/L~40g/Lの脱銅終液である被処理液6を濃縮槽1に供給した。濃縮槽1の液温は、黒鉛電極のジュール熱により150℃~170℃の範囲内の温度を維持した。
濃縮槽1からオーバーフローにより濃縮液7を冷却結晶槽2に払い出し、冷却結晶槽2での液温が60℃以下となるように、強制冷却した。この冷却は、冷却結晶槽2内に設けた蛇管に工業用水を流入させることで行った。
生成した粗硫酸ニッケルを含有するスラリー8は、レシーバタンク4に設けられた真空ポンプ(VP)を用い、冷却結晶槽2の液位を一定に保つように、連続的に真空ろ過器であるろ過器3に供給し、粗硫酸ニッケルである固形物9を回収した。ろ過漏れした残留粗硫酸ニッケルを含むろ液10を、レシーバタンク4に供給した。
ろ液供給手段20および非接触式レベルセンサ19である超音波式レベルセンサを作動させ、ろ液供給手段20を介して、レシーバタンク4から沈降槽5のうちの1基へのろ液10の送液を開始し、ろ液10のレベルが受け入れ上限まで到達したことを非接触式レベルセンサ19が検知すると、ろ液供給手段20の作動を停止して、ろ液10の受け入れを停止した。
沈降槽5内におけるろ液10の滞留時間を40分として、ろ液10を沈降分離させ、残留粗硫酸ニッケルである固形物9aを底部14に沈殿させた。本例では、2つの沈降槽5のうちの別の1基は稼働させず、次のろ液10の受け入れまで、レシーバタンク4からろ液10を系外に排出した。
上澄み抜き出し手段21および非接触式レベルセンサ19を作動させて、上澄み抜き出し手段21により、沈降分離で生じた上澄みを抜き出しながら、非接触式レベルセンサ19が、ろ液10のレベルのセンシングを行い、ろ液10のレベルが底部14の最上部まで到達した時点で、タイマー22を作動させると同時に、センシングを停止した。
タイマー22は、作動してから120秒が経過した時点で、上澄み抜き出し手段21を停止すると同時に、固形物底抜き手段12を作動させて固形物9aを冷却結晶槽2に返送した。タイマー22は、固形物底抜き手段12の作動から180秒後に、固形物底抜き手段12の作動を停止させた。なお、上澄みは電解液の一部として電解槽に送って使用した。
レシーバタンク4から系外に排出した液量は、沈降槽5へ送った液量とほぼ同じであった。すなわち本例では、ろ液10の沈降槽5での処理率は、実質的に50%であった。以上の試験操業を3ヶ月間行い、月ごとの粗硫酸ニッケルの回収率を求めた。その結果、粗硫酸ニッケルの回収率は、平均して83%であった。
(実施例2)
実施例1とは異なり、2基の沈降槽5を使用した。レシーバタンク4から沈降槽5のうちの1基(第1槽)に、沈降槽5内のろ液10が受け入れ上限になるまで供給し、供給停止後に、ろ液10の供給先を沈降槽5の別の1基(第2槽)に切り替え、同様にろ液10の供給を行った。第2槽にろ液10を供給している間は、第1槽におけるろ液10の滞留時間を40分とした後、第1槽から上澄み11の抜き出しと固形物(残留粗硫酸ニッケル)9aの底抜きを行った。底抜きの完了後、第1槽へろ液10の供給を再開した。第1槽にろ液10を供給している間は、第2槽についても同様に、ろ液10の滞留時間40分の後、上澄み11の抜き出しと固形物9aの底抜きを行った。底抜きの完了後、第2槽へろ液10の供給を再開した。2基の沈降槽5の制御については、実施例1と同様に行った。これらの工程を順次繰り返して、粗硫酸ニッケルの回収を操業した。
なお、レシーバタンク4の液量が少ない場合は、液量が一定以上に達してからレシーバタンク4から沈降槽5への送液を行った。
本例では、ろ液10の全量を沈降槽5で処理でき、沈降槽5での処理率は、実質的に100%であった。以上の試験操業を3ヶ月間行い、月ごとの粗硫酸ニッケルの回収率を求めた。その結果、粗硫酸ニッケルの回収率は、平均して87%であった。
(比較例1)
沈降槽5を用いずに、真空ろ過器であるろ過器3でろ過されレシーバタンク4に溜められたろ液10をそのまま払い出したこと以外は、実施例1と同様に、試験操業を3ヶ月間行って、月ごとの粗硫酸ニッケルの回収率を求めた。その結果、粗硫酸ニッケルの回収率は80%であった。
(比較例2)
超音波式レベルセンサ(非接触式レベルセンサ19)およびタイマーに代替して、接触式レベルセンサである電極式レベルセンサを用い、電極式レベルセンサの電極棒の先端が、槽内配管18の下端部と同じ高さに配されるように、電極式レベルセンサを設置したこと以外は、実施例1と同様に試験操業を行った。
ろ液10の受け入れから固形物9aの底抜きの完了までを数日繰り返した時点で、電極式レベルセンサによる上澄み11の抜き出しの下限が検出できなくなり、上澄み抜き出し手段21のポンプが長時間空転する事態が発生した。沈降槽5を開けて中を確認したところ、残留粗硫酸ニッケルが電極棒とその間に固着していた。電極棒から粗硫酸ニッケルを取り除いたところ、電極棒に変色や亀裂が見られた。ろ液10の受け入れの際に、電極棒の周りでろ液の流れが悪くなって、電極棒の周囲に沈降した残留粗硫酸ニッケルが堆積するとともに粗硫酸ニッケルが新たに析出して、短絡したことが原因であると考えられる。
(考察)
粗硫酸ニッケルの回収率は、ろ過器3から回収したニッケルの量を、濃縮槽1へのニッケルの供給量(被処理液6に含まれていたニッケルの全体量)で割って求めている。沈降槽5を非使用の比較例1に対して、沈降槽5を使用した実施例1では、ろ過漏れした残留粗硫酸ニッケルが回収され、3%の粗硫酸ニッケルの回収率の向上が見られたことになる。また、ろ液10の全量を沈降槽5で処理した実施例2では、ろ過漏れした残留粗硫酸ニッケルがより多く回収され、7%の粗硫酸ニッケルの回収率の向上が見られたことになる。これら回収率の向上はろ過漏れを回収したことに起因するため、上澄み11に溶存したままの硫酸ニッケルの量にかかわらず、安定して回収率を向上させることができる。
1 濃縮槽
2 冷却結晶槽
3 ろ過器
4 レシーバタンク
5 沈降槽
6 被処理液(脱銅終液)
7 濃縮液
8 スラリー
9 固形物(粗硫酸ニッケル)
10 ろ液
11 上澄み
12 固形物底抜き手段
13 槽本体(円筒部側)
14 底部
15 ろ液受け入れ用インレット
16 上澄み抜き出し用アウトレット
17 固形物底抜き用アウトレット
18 槽内配管
19 非接触式レベルセンサ(超音波式レベルセンサ)
20 ろ液供給手段
21 上澄み抜き出し手段
22 タイマー
23 定量ポンプ

Claims (8)

  1. 槽本体と、底部と、ろ液受け入れ用インレットと、上澄み抜き出し用アウトレットと、前記底部に設けられた固形物底抜き用アウトレットと、前記上澄み抜き出し用アウトレットに接続される槽内配管と、前記ろ液受け入れ用インレットを介して、ろ液を供給する手段と、前記槽内配管および前記上澄み抜き出し用アウトレットを介して、前記ろ液の沈降分離で生じた上澄みを抜き出す手段と、前記固形物底抜き用アウトレットを介して、前記ろ液の沈降分離で沈殿している固形物を底抜きする手段と、を備えた沈降槽であって、
    該沈降槽は、該沈降槽の槽内における前記ろ液のレベルをセンシング可能に配置された非接触式レベルセンサと、タイマーと、をさらに備え、
    前記底部は、前記固形物底抜き用アウトレットに向けて下傾しており、
    前記固形物底抜き用アウトレットは、前記底部の最底部に配置されており、
    前記槽内配管は、前記上澄み抜き出し用アウトレットから前記底部の水平方向中間部および高さ方向中間部まで伸長し、下端部に開口を備えており、
    前記非接触式レベルセンサは、前記ろ液のレベルが、前記槽内のろ液受け入れ上限に達するまで、前記ろ液を供給する手段を作動させ、かつ、該ろ液が沈降分離し、前記上澄みを抜き出す手段の作動後において、前記上澄みのレベルを検知し、および、
    前記タイマーは、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みを抜き出す手段の作動を停止し、かつ、前記固形物を底抜きする手段を作動させて、所定時間経過後に、前記固形物を底抜きする手段を停止させる、
    沈降槽。
  2. 前記非接触式レベルセンサは、超音波式レベルセンサ、電波式レベルセンサ、および、レーザ式レベルセンサから選択される、請求項1に記載の沈降槽。
  3. 前記底部は、コーン型もしくは臼状の形状を有する、請求項1または2に記載の沈降槽。
  4. 前記底部は、水平面からの傾斜角度が40度以上の傾斜を有する、請求項1~3のいずれかに記載の沈降槽。
  5. 前記槽内配管は、前記上澄み抜き出し用アウトレットと前記底部の上端部との間において、前記槽本体の横断面における、前記非接触式レベルセンサがセンシングする範囲と干渉しない位置に配置されている、請求項1~4のいずれかに記載の沈降槽。
  6. 請求項1~5のいずれかに記載の沈降槽を用い、
    前記ろ液を供給する手段により、ろ液を受け入れ、前記非接触式レベルセンサが前記槽内の前記ろ液受け入れ上限を検知すると、前記ろ液の受け入れを停止する工程、
    該沈降槽内で前記ろ液を沈降分離させて固形物を前記底部に沈殿させる工程、
    前記上澄みを抜き出す手段により、上澄みの抜き出しを開始し、前記非接触式レベルセンサが該上澄みのレベルを検知し、かつ、前記タイマーが、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みの抜き出しを停止する工程、
    前記上澄みの抜き出しの停止と同時に、前記固形物を底抜きする手段により、前記固形物の底抜きを開始し、該固形物の底抜きの開始後の所定時間経過後、前記固形物の底抜きを停止する工程、
    を備える、
    沈降槽の制御方法。
  7. 被処理液を加熱濃縮して濃縮液を得る濃縮工程と、
    前記濃縮液を冷却して固形物を析出させて、該固形物を含むスラリーを得る冷却工程と、
    前記スラリーをろ過して、前記固形物を回収するろ過工程と、
    前記ろ過工程で得られ、ろ過漏れした固形物を含むろ液を、沈降槽に投入し、該ろ液中の固形物を前記沈降槽の底部に沈殿させ、かつ、前記沈降槽の底部に沈殿した固形物を抜き出して、前記冷却工程以前に繰り返す工程と、
    を備え、
    前記沈降槽を用いた工程において、請求項6に記載の沈降槽の制御方法を用いる、
    固形物の製造方法。
  8. 前記沈降槽を2基以上設け、該沈降槽のうちのいずれか1基への前記ろ液の投入と、前記沈降槽のうちの別の少なくとも1基での前記固形物の沈殿および/または抜き出しとを同時に行う、請求項7に記載の固形物の製造方法。
JP2018128404A 2018-07-05 2018-07-05 沈降槽およびその制御方法、並びに、固形物の製造方法 Active JP7024632B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128404A JP7024632B2 (ja) 2018-07-05 2018-07-05 沈降槽およびその制御方法、並びに、固形物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128404A JP7024632B2 (ja) 2018-07-05 2018-07-05 沈降槽およびその制御方法、並びに、固形物の製造方法

Publications (2)

Publication Number Publication Date
JP2020006302A JP2020006302A (ja) 2020-01-16
JP7024632B2 true JP7024632B2 (ja) 2022-02-24

Family

ID=69149701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128404A Active JP7024632B2 (ja) 2018-07-05 2018-07-05 沈降槽およびその制御方法、並びに、固形物の製造方法

Country Status (1)

Country Link
JP (1) JP7024632B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259516B2 (ja) * 2019-04-24 2023-04-18 住友金属鉱山株式会社 沈降槽および固形物の回収方法
JP7497632B2 (ja) * 2020-07-08 2024-06-11 住友金属鉱山株式会社 固形物の回収方法および回収装置
CN112717482A (zh) * 2020-11-27 2021-04-30 中国恩菲工程技术有限公司 用于锌电积阳极泥处理的沉降装置和处理***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045529A (ja) 2010-08-30 2012-03-08 Masanori Watanabe 澱粉含有食品処理排水の浄化装置
JP2013208548A (ja) 2012-03-30 2013-10-10 Kurita Water Ind Ltd 排水処理装置及び方法
JP2014101546A (ja) 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd 脱銅電解液からの脱ニッケル方法
JP2015016442A (ja) 2013-07-12 2015-01-29 株式会社ネオナイト 水質浄化処理装置および水質浄化処理方法
US20160288021A1 (en) 2015-03-31 2016-10-06 ClearCove Systems, Inc. System for processing food process waste water including purification and optional recycling of purified waste water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771674B2 (ja) * 1987-04-22 1995-08-02 株式会社明電舎 回分式排水処理装置の上澄水排出装置
JPH06233993A (ja) * 1993-02-10 1994-08-23 Shokuhin Sangyo Clean Eko Syst Gijutsu Kenkyu Kumiai 上澄水余剰汚泥排出方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045529A (ja) 2010-08-30 2012-03-08 Masanori Watanabe 澱粉含有食品処理排水の浄化装置
JP2013208548A (ja) 2012-03-30 2013-10-10 Kurita Water Ind Ltd 排水処理装置及び方法
JP2014101546A (ja) 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd 脱銅電解液からの脱ニッケル方法
JP2015016442A (ja) 2013-07-12 2015-01-29 株式会社ネオナイト 水質浄化処理装置および水質浄化処理方法
US20160288021A1 (en) 2015-03-31 2016-10-06 ClearCove Systems, Inc. System for processing food process waste water including purification and optional recycling of purified waste water

Also Published As

Publication number Publication date
JP2020006302A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7024632B2 (ja) 沈降槽およびその制御方法、並びに、固形物の製造方法
JP5176493B2 (ja) 脱銅電解液からの脱ニッケル方法および装置
US20140144788A1 (en) System and process for the continuous recovery of metals
CN207404874U (zh) 一种高污染废水蒸馏回收设备
US6451183B1 (en) Method and apparatus for electrowinning powder metal from solution
KR101416429B1 (ko) 금속회수반응기 및 금속회수시스템
JP7259516B2 (ja) 沈降槽および固形物の回収方法
KR101611951B1 (ko) 금속회수방법
JP3927706B2 (ja) ガリウムの電解精製法および装置
US20150152518A1 (en) Method for Reprocessing an Emulsion Formed During Hydrometallurgical Recovery of a Metal
CN208603877U (zh) 一种处理含硝酸钠离心母液的装置
CN104084047A (zh) 一种甘草提取液澄清浓缩膜***
CN112717482A (zh) 用于锌电积阳极泥处理的沉降装置和处理***
CN207412928U (zh) 一种氧化残渣排除处理***
CN207575952U (zh) 一种硝酸磷肥生产用酸不溶物脱除***
CN206395860U (zh) 一种pta氧化残渣处理***
JP7497632B2 (ja) 固形物の回収方法および回収装置
WO2024026905A1 (zh) 废液分离处理***
KR100691080B1 (ko) 금속 전기정련 셀 및 이 셀의 뱅크와, 전기정련 셀 작동방법
CN214597384U (zh) 用于锌电积阳极泥处理的沉降装置和处理***
CN109264888A (zh) 金属电解含酸废水浓缩分离回收工艺及装置和废水处理***
JP2022026613A (ja) 固形物の回収方法および装置
CN219683399U (zh) 水洗池料液溢流***
CN103961932A (zh) 一种钛锭熔铸真空***的污染处理方法及装置
KR101461502B1 (ko) 전해기를 이용한 금속회수 시스템 및 전해기를 이용한 금속회수 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7024632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150