JP7022594B2 - Method for producing hollow oxide particles - Google Patents

Method for producing hollow oxide particles Download PDF

Info

Publication number
JP7022594B2
JP7022594B2 JP2018005665A JP2018005665A JP7022594B2 JP 7022594 B2 JP7022594 B2 JP 7022594B2 JP 2018005665 A JP2018005665 A JP 2018005665A JP 2018005665 A JP2018005665 A JP 2018005665A JP 7022594 B2 JP7022594 B2 JP 7022594B2
Authority
JP
Japan
Prior art keywords
oxide
particles
hollow
melting
hollow particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018005665A
Other languages
Japanese (ja)
Other versions
JP2019123644A (en
Inventor
基宏 梅津
広樹 山崎
恭子 野中
賢太 増田
幸輝 一坪
克己 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018005665A priority Critical patent/JP7022594B2/en
Publication of JP2019123644A publication Critical patent/JP2019123644A/en
Application granted granted Critical
Publication of JP7022594B2 publication Critical patent/JP7022594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Description

本発明は、断熱材料や遮熱材として有用な酸化物中空粒子の製造方法に関する。 The present invention relates to a method for producing hollow oxide particles useful as a heat insulating material or a heat insulating material.

東日本大震災を契機に、省エネルギー化に対する関心が高まり、断熱性、遮熱性等の部材の熱特性を改善するフィラー材に注目が集まっている。このうち、中空粒子は、粒子内部に空隙が存在するため、緻密な粒子に比べ、軽量性、断熱・遮熱性、遮音性、光散乱性などの特性が優れることから、断熱・遮熱材フィラー、遮音フィラー、反射材フィラーとして、広く普及している。 With the Great East Japan Earthquake, interest in energy saving has increased, and filler materials that improve the thermal properties of members such as heat insulating properties and heat insulating properties are attracting attention. Of these, hollow particles have voids inside the particles, and are superior in lightness, heat insulation / heat insulation, sound insulation, and light scattering properties to dense particles. Therefore, the heat insulation / heat shield filler is used. , As a sound insulation filler and a reflective material filler, are widely used.

中空粒子の製造法としては、気相合成法、溶液合成法や噴霧熱分解法などが知られている。特に噴霧熱分解法は、他の方法に比べて、製造装置がシンプルであり、連続的に粒子を製造できる観点から量産性、コストパフォーマンスに優れるため注目されている製造法である。この噴霧熱分解法の製造プロセスは、無機塩が溶けている水溶液を超音波や圧縮空気を利用してミスト化(液滴化)し、このミストをキャリアガスによって熱分解炉に供給する製造法である(特許文献1)。この従来の噴霧熱分解炉は、炉内温度が乾燥ゾーンと熱分解ゾーンと二つの温度域で構成されている。 As a method for producing hollow particles, a gas phase synthesis method, a solution synthesis method, a spray pyrolysis method, and the like are known. In particular, the spray pyrolysis method is attracting attention because it has a simpler manufacturing apparatus than other methods and is excellent in mass productivity and cost performance from the viewpoint of being able to continuously manufacture particles. The manufacturing process of this spray pyrolysis method is a manufacturing method in which an aqueous solution in which an inorganic salt is dissolved is made into a mist (droplet) using ultrasonic waves or compressed air, and this mist is supplied to a pyrolysis furnace by a carrier gas. (Patent Document 1). In this conventional spray pyrolysis furnace, the temperature inside the furnace is composed of two temperature ranges, a drying zone and a pyrolysis zone.

特開2011-98867号公報Japanese Unexamined Patent Publication No. 2011-98867

従来の噴霧熱分解法により製造される中空粒子は、乾燥ゾーンで液滴中の溶媒が蒸発し、粒子表面に無機塩が析出し、噴霧ミストが緻密に収縮する前に、熱分解ゾーンで粒子表面の無機塩を熱分解して酸化物粒子が生成することにより得られる中空粒子である。しかし、この噴霧熱分解法で合成される中空粒子は、乾燥ゾーンで溶媒を除去する際に数μm~数nmの溶媒の抜け孔が形成され、この孔は熱分解においても閉塞することがないため、中空粒子の表面を形成する外殻が多孔質状となる。このため、先に述べた用途に応じて、例えば樹脂などにフィラー材として添加すると、外殻表面の孔から樹脂などが粒子内部
に侵入し、断熱性などの中空粒子の特性を発揮しないケースがあった。また、中空粒子を形成する外殻に孔が存在することから粒子強度も低くなり、フィラー材としての効果を発揮するに至らないケースが多かった。
Hollow particles produced by the conventional spray pyrolysis method have particles in the pyrolysis zone before the solvent in the droplets evaporates in the dry zone, inorganic salts are deposited on the particle surface, and the spray mist shrinks densely. Hollow particles obtained by thermally decomposing an inorganic salt on the surface to form oxide particles. However, the hollow particles synthesized by this spray pyrolysis method have holes for the solvent of several μm to several nm formed when the solvent is removed in the drying zone, and these pores are not closed even during the thermal decomposition. Therefore, the outer shell forming the surface of the hollow particles becomes porous. For this reason, depending on the application described above, for example, when added as a filler material to a resin or the like, the resin or the like invades the inside of the particles through the holes on the outer shell surface, and in some cases, the characteristics of the hollow particles such as heat insulating properties are not exhibited. there were. In addition, since the outer shell forming the hollow particles has holes, the particle strength is also low, and in many cases, the effect as a filler material is not exhibited.

従って、本発明の課題は、外殻に孔が存在せず、粒子強度も高い酸化物中空粒子を安価かつ大量に製造することができる方法を提供することにある。 Therefore, an object of the present invention is to provide a method capable of producing a large amount of oxide hollow particles having no pores in the outer shell and having high particle strength at low cost.

そこで本発明者は、外殻に孔を生じない酸化物中空粒子の製造方法について種々検討した結果、噴霧熱分解法において、乾燥工程及び熱分解工程に加えて、さらに中空粒子の外殻を溶融して外殻の孔を閉塞させる工程を追加することにより、外殻に孔が存在せず、粒子強度も高い酸化物中空粒子を製造できることを見出した。そして、さらに検討したところ、酸化物中空粒子形成工程と溶融工程の間に粒子を一度回収し、分級又は第三の溶融成分との混合工程を設ければ、この中間工程で不良品を簡単に分級でき、生産性が向上し、最終段階での分離工程が不要となることを見出し、本発明を完成した。 Therefore, as a result of various studies on a method for producing oxide hollow particles having no pores in the outer shell, the present inventor has found that in the spray pyrolysis method, in addition to the drying step and the thermal decomposition step, the outer shell of the hollow particles is further melted. It has been found that by adding a step of closing the pores of the outer shell, it is possible to produce oxide hollow particles having no pores in the outer shell and having high particle strength. Then, as a result of further examination, if the particles are once recovered between the oxide hollow particle forming step and the melting step and a classification step or a mixing step with the third melt component is provided, defective products can be easily eliminated in this intermediate step. The present invention was completed by finding that the classification can be performed, the productivity is improved, and the separation step at the final stage becomes unnecessary.

すなわち、本発明は、次の〔1〕~〔2〕を提供するものである。 That is, the present invention provides the following [1] to [2].

〔1〕酸化物を構成する元素を含有する溶液の噴霧液滴から溶媒を除去する乾燥工程、乾燥された粒子を熱分解して酸化物中空粒子を形成する工程、及び形成された酸化物中空粒子の表面を溶融する工程の連続する3段階加熱工程を有する酸化物中空粒子の噴霧熱分解法による酸化物中空粒子の製造法であって、前記酸化物中空粒子形成工程と溶融工程の間に酸化物中空粒子を回収し、分級又は酸化物中空粒子に酸化物溶融物を混合する工程を含むことを特徴とする酸化物中空粒子の製造法。
〔2〕前記乾燥工程の温度が50~600℃、前記酸化物中空粒子形成工程の温度が150~1000℃、前記溶融工程の温度が600℃以上である〔1〕に記載の酸化物中空粒子の製造方法。
[1] A drying step of removing a solvent from spray droplets of a solution containing an element constituting an oxide, a step of thermally decomposing the dried particles to form an oxide hollow particle, and an oxide hollow formed. It is a method for producing an oxide hollow particle by a spray thermal decomposition method of the oxide hollow particle having a continuous three-step heating step of a step of melting the surface of the particle, and is between the oxide hollow particle forming step and the melting step. A method for producing an oxide hollow particle, which comprises a step of recovering the oxide hollow particle and classifying or mixing the oxide melt with the oxide hollow particle.
[2] The oxide hollow particles according to [1], wherein the temperature of the drying step is 50 to 600 ° C, the temperature of the oxide hollow particle forming step is 150 to 1000 ° C, and the temperature of the melting step is 600 ° C or higher. Manufacturing method.

本発明の酸化物中空粒子の製造方法を用いれば、酸化物中空粒子の外殻に孔がなく、粒子強度の高い、フィラー材として有用な酸化物中空粒子が連続的かつ大量に安定して製造できる。 By using the method for producing hollow oxide particles of the present invention, hollow oxide particles having no pores in the outer shell of the hollow oxide particles and having high particle strength, which are useful as a filler material, can be stably produced continuously and in large quantities. can.

乾燥ゾーン、熱分解ゾーン及び溶融ゾーンを有し、熱分解ゾーンと溶融ゾーンの間に回収工程を有する本発明の酸化物中空粒子製造装置の概略図である(溶融工程が気流式管状炉)。It is a schematic diagram of the oxide hollow particle production apparatus of this invention which has a drying zone, a pyrolysis zone and a melting zone, and has a recovery process between a pyrolysis zone and a melting zone (the melting process is an air flow type tube furnace). 乾燥ゾーン、熱分解ゾーン及び溶融ゾーンを有し、熱分解ゾーンと溶融ゾーンの間に回収工程を有する本発明の酸化物中空粒子製造装置の概略図である(溶融工程が転動式加熱炉)。It is a schematic diagram of the oxide hollow particle production apparatus of this invention which has a drying zone, a pyrolysis zone and a melting zone, and has a recovery process between a pyrolysis zone and a melting zone (the melting process is a rolling heating furnace). .. 乾燥ゾーン、熱分解ゾーン及び溶融ゾーンを有し、熱分解ゾーンと溶融ゾーンの間に回収工程を有する本発明の酸化物中空粒子製造装置の概略図である(分級がサイクロン)。It is a schematic diagram of the oxide hollow particle production apparatus of this invention which has a dry zone, a pyrolysis zone and a melting zone, and has a recovery step between a pyrolysis zone and a melting zone (classification is cyclone). 多孔質の中空粒子(左)と、本発明方法で得られる殻の表面に孔のない中空粒子(右)のSEM像を示す。An SEM image of porous hollow particles (left) and hollow particles having no pores on the surface of the shell obtained by the method of the present invention is shown.

本発明の酸化物中空粒子の製造方法は、(1)酸化物を構成する元素を含有する溶液の噴霧液滴から溶媒を除去する乾燥工程(単に乾燥工程ともいう)、(2)乾燥された粒子を熱分解して酸化物中空粒子を形成する工程(単に熱分解工程ともいう)、及び(3)形成された酸化物中空粒子の表面を溶融する工程(単に溶融工程ともいう)の連続する3段階加熱工程を有し、前記酸化物中空粒子形成工程(熱分解工程)と溶融工程の間に酸化物中空粒子を回収し、分級又は酸化物中空粒子に酸化物溶融物を混合する工程を含むことを特徴とする。 The method for producing an oxide hollow particle of the present invention is (1) a drying step (also simply referred to as a drying step) for removing a solvent from spray droplets of a solution containing an element constituting an oxide, and (2) drying. A series of steps of thermally decomposing the particles to form the oxide hollow particles (also simply referred to as a thermal decomposition step) and (3) melting the surface of the formed oxide hollow particles (simply also referred to as a melting step). It has a three-step heating step, and a step of recovering the oxide hollow particles between the oxide hollow particle forming step (thermal decomposition step) and the melting step, and classifying or mixing the oxide melt with the oxide hollow particles. It is characterized by including.

本発明方法では、噴霧ノズルから酸化物の合成元素を含有する溶液を噴霧する。 In the method of the present invention, a solution containing a synthetic element of an oxide is sprayed from a spray nozzle.

ここで、酸化物を構成する元素を含有する溶液としては、水等の溶媒に溶解する化合物であり、無機塩、金属アルコキシド等が挙げられる。より具体的には、アルミニウム塩、チタン塩、マグネシウム塩、アルミノケイ酸塩、アルミニウムアルコキシド、テトラエトキシシラン、テトラメトキシシラン等が挙げられる。また、アルミニウム酸化物、ケイ素酸化物を溶媒に分散した溶液、アルミニウム酸化物、ケイ素酸化物のゾル溶液も原料溶液として用いることができる。さらに、溶融温度、耐熱性、粒子強度を調整するために他の元素の原料を添加することもできる。また、これらの原料化合物から得られる酸化物とし
ては、無機酸化物、例えば金属酸化物、アルミナ、シリカ、アルミニウムおよびケイ素からなる酸化物などが挙げられ、より具体的には、アルミナ、シリカ、アルミニウムおよびケイ素からなる酸化物、チタン酸化物、マグネシウム酸化物、ジルコニウム酸化物、バリウム酸化物、セリウム酸化物、イットリウム酸化物などが挙げられ、これら酸化物を組み合わせた複合酸化物も挙げられる。
Here, examples of the solution containing an element constituting an oxide include compounds that are soluble in a solvent such as water, and inorganic salts, metal alkoxides, and the like. More specifically, examples thereof include aluminum salt, titanium salt, magnesium salt, aluminosilicate, aluminum alkoxide, tetraethoxysilane, tetramethoxysilane and the like. Further, a solution obtained by dispersing aluminum oxide or silicon oxide in a solvent, or a sol solution of aluminum oxide or silicon oxide can also be used as a raw material solution. In addition, raw materials of other elements can be added to adjust the melting temperature, heat resistance and particle strength. Examples of the oxide obtained from these raw material compounds include inorganic oxides such as metal oxides, alumina, silica, and oxides composed of aluminum and silicon, and more specifically, alumina, silica, and aluminum. Examples thereof include oxides composed of silicon, titanium oxides, magnesium oxides, zirconium oxides, barium oxides, cerium oxides, yttrium oxides, and composite oxides in which these oxides are combined.

これらの酸化物を構成する元素の原料を溶解あるいは分散する溶媒としては、水及び有機溶媒が挙げられるが、環境への影響、製造コストの点から水が好ましい。 Examples of the solvent for dissolving or dispersing the raw materials of the elements constituting these oxides include water and organic solvents, but water is preferable from the viewpoint of environmental influence and production cost.

噴霧する溶液中の酸化物を構成する元素の原料濃度は、得られる酸化物中空粒子の密度、強度等を考慮し、0.01mol/L~飽和濃度が好ましく、0.1mol/L~0.5mol/Lがより好ましい。 The raw material concentration of the elements constituting the oxide in the sprayed solution is preferably 0.01 mol / L to a saturated concentration, preferably 0.1 mol / L to 0., in consideration of the density, strength and the like of the obtained hollow oxide particles. 5 mol / L is more preferable.

前記溶液は、超音波式の噴霧装置で液滴を形成することが可能であるが、生産性の観点から、圧縮空気によって噴霧液滴とするのが好ましい。具体的には、2流体ノズルや4流体ノズルで噴霧するのが、粒子径の調整、生産性の点で好ましい。ここで2流体ノズルの方式には、空気と前記溶液とをノズル内部で混合する内部混合方式と、ノズル外部で空気と前記溶液を混合する外部混合方式があるが、いずれも採用できる。 Although it is possible to form droplets of the solution with an ultrasonic spraying device, it is preferable to use compressed air to form droplets from the viewpoint of productivity. Specifically, spraying with a two-fluid nozzle or a four-fluid nozzle is preferable in terms of particle size adjustment and productivity. Here, the two-fluid nozzle method includes an internal mixing method in which air and the solution are mixed inside the nozzle and an external mixing method in which the air and the solution are mixed outside the nozzle, both of which can be adopted.

噴霧される液滴の平均粒子径は、ノズル径や空気の圧力によって調整することができ、0.5~60μmが好ましく、1~20μmがより好ましく、1~15μmがさらに好ましい。 The average particle size of the sprayed droplets can be adjusted by the nozzle diameter and the air pressure, and is preferably 0.5 to 60 μm, more preferably 1 to 20 μm, still more preferably 1 to 15 μm.

(1)乾燥工程は、前記溶液の噴霧液滴から溶媒を除去する乾燥工程であり、ここでは、噴霧液滴粒子から溶媒が蒸発し、液滴粒子表面に無機塩が析出し、粒子内部に空隙が形成される。この乾燥工程の温度は、用いる原料溶液の噴霧液滴から、溶媒が蒸発する温度であればよいが、乾燥工程で無機塩が析出する必要性から、50~600℃の範囲内であって0.1秒から1分程度で当該蒸発及び析出が生じる温度であるのが好ましい。より好ましくは100℃~600℃であり、さらに好ましくは150℃~500℃であり、さらに好ましくは150~400℃である。 (1) The drying step is a drying step of removing the solvent from the spray droplets of the solution. Here, the solvent evaporates from the spray droplet particles, the inorganic salt is deposited on the surface of the droplet particles, and the inside of the particles is filled. Voids are formed. The temperature of this drying step may be a temperature at which the solvent evaporates from the spray droplets of the raw material solution to be used, but it is 0 in the range of 50 to 600 ° C. due to the necessity of precipitating the inorganic salt in the drying step. It is preferable that the temperature is such that the evaporation and precipitation occur in about 1 second to 1 minute. It is more preferably 100 ° C to 600 ° C, still more preferably 150 ° C to 500 ° C, still more preferably 150 to 400 ° C.

(2)熱分解工程は、乾燥された液滴および粒子を熱分解して酸化物中空粒子を形成する工程であり、ここでは、液滴および粒子表面の無機塩が熱分解および酸化されて酸化物中空粒子が生成する。この熱分解工程の温度は、前記熱分解および酸化反応が進行する温度であればよいが、熱分解工程で酸化反応が終了する必要性から、150℃~1000℃が好ましい。また0.1秒~1分程度で当該酸化反応が終了する温度が好ましく、具体的には、400℃~900℃が好ましく、500℃~900℃が好ましい。 (2) The thermal decomposition step is a step of thermally decomposing dried droplets and particles to form oxide hollow particles, in which the inorganic salts on the surface of the droplets and particles are thermally decomposed and oxidized to be oxidized. Hollow particles are generated. The temperature of this thermal decomposition step may be any temperature at which the thermal decomposition and oxidation reaction proceed, but is preferably 150 ° C. to 1000 ° C. because the oxidation reaction needs to be completed in the thermal decomposition step. Further, the temperature at which the oxidation reaction is completed in about 0.1 seconds to 1 minute is preferable, specifically, 400 ° C. to 900 ° C. is preferable, and 500 ° C. to 900 ° C. is preferable.

(3)溶融工程は、形成された酸化物中空粒子の表面を溶融する工程であり、酸化物中空粒子の表面を溶融し、表面に存在する孔を閉塞させる工程である。この溶融工程の温度は、酸化物中空粒子の表面が溶融する温度であればよいが、溶融工程で溶融により酸化物中空粒子表面の孔が閉塞する点から600℃以上が好ましい。また、0.1秒~1分程度で酸化物中空粒子表面が溶融する点から、700℃以上が好ましく、800℃以上がより好ましく、900℃以上がさらに好ましく、1000℃以上がさらに好ましい。なお、経済性の点から1500℃以下が好ましい。また、溶融温度が600~1000℃と低い酸化物であれば、熱分解ゾーンと溶融ゾーンの加熱温度を同じにしてもよい。
なお、溶融工程は、気流式管状炉(図1)、セメントキルンのような転動式加熱炉(図2)が使用できる。
(3) The melting step is a step of melting the surface of the formed hollow oxide particles, and is a step of melting the surface of the hollow oxide particles and closing the pores existing on the surface. The temperature of this melting step may be any temperature as long as the surface of the hollow oxide particles is melted, but is preferably 600 ° C. or higher from the viewpoint that the pores on the surface of the hollow oxide particles are closed by melting in the melting step. Further, from the viewpoint that the surface of the hollow oxide particles melts in about 0.1 seconds to 1 minute, 700 ° C. or higher is preferable, 800 ° C. or higher is more preferable, 900 ° C. or higher is further preferable, and 1000 ° C. or higher is further preferable. From the viewpoint of economy, 1500 ° C. or lower is preferable. Further, if the oxide has a melting temperature as low as 600 to 1000 ° C., the heating temperature of the pyrolysis zone and the melting zone may be the same.
As the melting step, an air flow type tube furnace (FIG. 1) and a rolling type heating furnace such as a cement kiln (FIG. 2) can be used.

上記乾燥工程、熱分解工程及び溶融工程は、連続して行う。連続して行なわない場合は、粒子同士が溶着し凝集が生じる。 The drying step, the thermal decomposition step and the melting step are continuously performed. If it is not performed continuously, the particles are welded to each other and agglomeration occurs.

本発明方法においては、前記熱分解工程と溶融工程の間に酸化物中空粒子を回収し、分級又は酸化物中空粒子に酸化物溶融物を混合する工程を有する。
熱分解工程後の酸化物中空粒子の回収及び分級は、高性能サイクロン粉体回収機やバグフィルターを用いることができる。
The method of the present invention includes a step of recovering the oxide hollow particles and mixing the oxide hollow particles with the classification or oxide hollow particles between the thermal decomposition step and the melting step.
A high-performance cyclone powder recovery machine or a bag filter can be used for recovery and classification of the oxide hollow particles after the thermal decomposition step.

また、溶融工程においては、加熱により酸化物中空粒子表面が溶融して孔を閉塞させる。この溶融工程や回収工程において、酸化物中空粒子表面の溶融成分をスプレーする操作を追加してもよい。ここで、追加でスプレーする酸化物中空粒子表面の溶融成分は、酸化物の溶融物であり、予め酸化物となる化合物を溶解又は溶融した液をスプレーするのが好ましい。かかるスプレーにより、酸化物となる化合物が、酸化物中空粒子表面に付着し、酸化物になって溶融することによって、孔の閉塞を促進させることができる。また、回収工程において、溶融成分をスプレーする場合、回収容器内で粒子を流動、回転させること
により、酸化物中空粒子同士の凝集を防止することができる。
Further, in the melting step, the surface of the oxide hollow particles is melted by heating to close the pores. In this melting step and recovery step, an operation of spraying the melted component on the surface of the oxide hollow particles may be added. Here, the melt component on the surface of the oxide hollow particles to be additionally sprayed is a melt of the oxide, and it is preferable to spray a liquid in which the compound to be the oxide is melted or melted in advance. By such a spray, the compound to be an oxide adheres to the surface of the hollow oxide particles and becomes an oxide and melts, so that the closure of the pores can be promoted. Further, in the recovery step, when the molten component is sprayed, the particles can be prevented from agglomerating with each other by flowing and rotating the particles in the recovery container.

溶融工程が終了した酸化物中空粒子は、表面の孔が閉塞されていることから外殻に孔がなく、粒子強度の高い酸化物中空粒子となっている。従って、溶融工程を行った酸化物中空粒子を冷却後回収すれば、目的の酸化物中空粒子が得られる。酸化物中空粒子の回収は、高性能サイクロン粉体回収機やバグフィルターを用いた粉体回収装置を用いることができる。また、酸化物中空粒子の回収にあたっては、フィルターを通過させることにより粒子径の調整をすることができるが、熱分解工程後に分級を行っている場合は、最終工程での分級は必要としない。また、不良品のスクリーニングは、溶融工程において、不良品を
溶融させる必要をなくすことが出来るため、溶融工程のエネルギー効率を上げることができ、エネルギーコストを下げて、製造コストを低減することができる。
The oxide hollow particles for which the melting step has been completed have no pores in the outer shell because the pores on the surface are closed, and the oxide hollow particles have high particle strength. Therefore, if the oxide hollow particles that have undergone the melting step are cooled and then recovered, the desired oxide hollow particles can be obtained. For the recovery of the oxide hollow particles, a high-performance cyclone powder recovery machine or a powder recovery device using a bag filter can be used. Further, in the recovery of the oxide hollow particles, the particle size can be adjusted by passing through a filter, but if the classification is performed after the thermal decomposition step, the classification in the final step is not necessary. Further, in the screening of defective products, it is possible to eliminate the need to melt the defective products in the melting process, so that the energy efficiency of the melting process can be improved, the energy cost can be reduced, and the manufacturing cost can be reduced. ..

本発明における乾燥工程、熱分解工程及び溶融工程の加熱方式は、電気抵抗熱による輻射熱やガスバーナーによる火炎を熱源とした直接加熱、また熱風などの直接加熱が挙げられる。 Examples of the heating method of the drying step, the thermal decomposition step, and the melting step in the present invention include direct heating using radiant heat by electric resistance heat, flame by a gas burner as a heat source, and direct heating such as hot air.

本発明方法により得られる酸化物中空粒子の好ましい例としては、中空室を区画する殻を有する酸化物中空粒子であって、形状がほぼ球状(平均円形度0.85以上)、平均粒子径が0.5μm~20μm、前記殻の厚みが500nm以下のものが挙げられる。 A preferred example of the oxide hollow particles obtained by the method of the present invention is an oxide hollow particles having a shell for partitioning a hollow chamber, having a substantially spherical shape (average circularity of 0.85 or more) and an average particle diameter. Examples thereof include those having a thickness of 0.5 μm to 20 μm and a shell thickness of 500 nm or less.

本発明方法で得られる酸化物中空粒子の平均粒子径は、0.5μm~20μmが好ましく、より好ましくは1μm~20μmであり、さらに好ましくは2μm~15μmであり、さらに好ましくは2μm~12μmであり、さらに好ましくは2μm~10μmである。なお、平均粒子径の調整は、噴霧に使用する流体ノズルの直径および圧縮空気の圧力の調節によって行うことができる。ここで粒子径は、電子顕微鏡の解析によって測定でき、その平均は、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」、レーザー回折・散乱法による粒子径分布測定装置として、例
えばマイクロトラック(日機装株式会社製)などによって計算できる。
The average particle size of the oxide hollow particles obtained by the method of the present invention is preferably 0.5 μm to 20 μm, more preferably 1 μm to 20 μm, still more preferably 2 μm to 15 μm, still more preferably 2 μm to 12 μm. , More preferably 2 μm to 10 μm. The average particle size can be adjusted by adjusting the diameter of the fluid nozzle used for spraying and the pressure of the compressed air. Here, the particle size can be measured by analysis with an electron microscope, and the average thereof is JIS R 1629 "Measurement method of particle size distribution by laser diffraction / scattering method of fine ceramics raw material", Particle size distribution measuring device by laser diffraction / scattering method. For example, it can be calculated by a micro truck (manufactured by Nikkiso Co., Ltd.).

本発明方法で得られる酸化物中空粒子の粒子径分布(粒度分布)は、せまい程好ましく、粒子の80%以上が平均粒子径の±5.0μmにあるのが好ましく、粒子の80%以上が平均粒子径の±4.5μmにあるのがより好ましく、粒子の80%以上が平均粒子径の±4.0μmにあるのがさらに好ましい。 The particle size distribution (particle size distribution) of the oxide hollow particles obtained by the method of the present invention is preferably narrow, and 80% or more of the particles are preferably ± 5.0 μm of the average particle size, and 80% or more of the particles are. It is more preferable that the average particle size is ± 4.5 μm, and it is more preferable that 80% or more of the particles are within ± 4.0 μm of the average particle size.

本発明方法で得られる酸化物中空粒子の殻の厚みは、2000nm以下であり、1~500nmが好ましく、10~300nmがより好ましく、50~200nmがさらに好ましい。殻の厚みが2000nmを超えると、中空室が十分でなく、熱伝導率が十分に小さい粒子とならない。また、殻の厚みが小さすぎる場合には、粒子の強度が十分でない可能性がある。殻の厚みは透過型電子顕微鏡(TEM)像から測定できる。 The thickness of the shell of the oxide hollow particles obtained by the method of the present invention is 2000 nm or less, preferably 1 to 500 nm, more preferably 10 to 300 nm, still more preferably 50 to 200 nm. If the thickness of the shell exceeds 2000 nm, the hollow chamber is not sufficient, and the particles do not have sufficiently small thermal conductivity. Also, if the shell thickness is too small, the particle strength may not be sufficient. The thickness of the shell can be measured from a transmission electron microscope (TEM) image.

本発明方法で得られる酸化物中空粒子の熱伝導率は、0.005~0.1W/m・Kが好ましく、0.005~0.08W/m・Kがより好ましく、0.01~0.06W/m・Kがさらに好ましい。この酸化物中空粒子は熱伝導率が小さいため、断熱材料、遮熱材料として優れている。ここで、熱伝導率は、迅速熱伝導率計QTM-500(京都電子工業社製)を用いた非定常熱線法により測定できる。 The thermal conductivity of the hollow oxide particles obtained by the method of the present invention is preferably 0.005 to 0.1 W / m · K, more preferably 0.005 to 0.08 W / m · K, and 0.01 to 0. .06 W / m · K is even more preferred. Since these oxide hollow particles have low thermal conductivity, they are excellent as a heat insulating material and a heat insulating material. Here, the thermal conductivity can be measured by the transient hot wire method using a rapid thermal conductivity meter QTM-500 (manufactured by Kyoto Denshi Kogyo Co., Ltd.).

本発明方法で得られる酸化物中空粒子のかさ密度は、0.01~0.3g/cm3であるのが好ましく、0.02~0.3g/cm3であるのがより好ましく、0.03~0.3g/cm3であるのがさらに好ましい。かさ密度は、JIS R 1628「ファインセラミックス粉末のかさ密度測定方法」の測定方法、パウダテスタ(ホソカワミクロン社製)などの粉体力学特性測定装置により測定できる。 The bulk density of the oxide hollow particles obtained by the method of the present invention is preferably 0.01 to 0.3 g / cm 3 , more preferably 0.02 to 0.3 g / cm 3 , and 0. It is more preferably 03 to 0.3 g / cm 3 . The bulk density can be measured by a measuring method of JIS R 1628 "Measuring method of bulk density of fine ceramic powder", a powder dynamic property measuring device such as a powder tester (manufactured by Hosokawa Micron).

本発明方法で得られる酸化物中空粒子の粒子強度は、0.3~480(90%生存時)MPaであるのが好ましく、0.3~320MPaであるのがより好ましく、0.3~40MPaであるのがさらに好ましい。粒子強度は、ASTM D 3102-78に準拠した水銀圧入ポロシメーターにより測定できる。 The particle strength of the oxide hollow particles obtained by the method of the present invention is preferably 0.3 to 480 (at 90% survival) MPa, more preferably 0.3 to 320 MPa, and more preferably 0.3 to 40 MPa. Is more preferable. Particle strength can be measured by a mercury intrusion porosimeter according to ASTM D 3102-78.

本発明方法で得られる酸化物中空粒子の圧縮強度は、5~800MPaであるのが好ましく、10~700MPaであるのがより好ましく、30~500MPaであるのがさらに好ましい。ここで圧縮強度は、微小圧縮試験機 MCT-510(株式会社島津製作所製)により測定できる。 The compressive strength of the oxide hollow particles obtained by the method of the present invention is preferably 5 to 800 MPa, more preferably 10 to 700 MPa, and even more preferably 30 to 500 MPa. Here, the compressive strength can be measured by a micro-compression tester MCT-510 (manufactured by Shimadzu Corporation).

次に実施例を挙げて本発明を説明するが、本発明は何らこれに限定されるものではない。 Next, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
図3の装置を使用し、Al、Ca及びMgの硝酸塩混合水溶液にホウ酸ナトリウムと珪酸ナトリウムを混合した原料水溶液を、二流体ノズルを使って噴霧熱分解炉に噴霧した。600℃で焼成した後、加熱炉下部に設置した回収装置で一度焼成物を回収した。回収後、回収装置下部に設置した加熱炉に焼成物を投入し、900℃で加熱した。得られた焼成物は、殻の表面に孔のない中空粒子であった。
Example 1
Using the apparatus of FIG. 3, a raw material aqueous solution prepared by mixing sodium borate and sodium silicate with a nitrate mixed aqueous solution of Al, Ca and Mg was sprayed onto a spray pyrolysis furnace using a two-fluid nozzle. After firing at 600 ° C., the fired product was once recovered by a recovery device installed in the lower part of the heating furnace. After the recovery, the fired product was put into a heating furnace installed at the bottom of the recovery device and heated at 900 ° C. The obtained fired product was hollow particles having no pores on the surface of the shell.

実施例2
実施例1と同じ硝酸塩混合水溶液を、二流体ノズルを使って噴霧熱分解炉に噴霧した。600℃で焼成した後、加熱炉下部に設置した回収装置で焼成物を回収した。回収装置にホウ酸ナトリウムと珪酸ナトリウムを混合した水溶液を噴霧して、焼成物表面に水溶液を塗布した後、水準1同様回収装置下部に設置した加熱炉に焼成物を連続的に投入し、900℃で加熱した。得られた焼成物は、殻の表面に孔のない中空粒子であった。
Example 2
The same nitrate mixed aqueous solution as in Example 1 was sprayed into a spray pyrolysis furnace using a two-fluid nozzle. After firing at 600 ° C., the fired product was recovered by a recovery device installed in the lower part of the heating furnace. After spraying an aqueous solution of a mixture of sodium borate and sodium silicate on the recovery device and applying the aqueous solution to the surface of the fired product, the fired product is continuously charged into the heating furnace installed at the bottom of the recovery device as in Level 1, and 900. Heated at ° C. The obtained fired product was hollow particles having no pores on the surface of the shell.

実施例3
実施例1と同じ原料水溶液を、二流体ノズルを使って噴霧熱分解炉に噴霧した。600℃で焼成した後、熱分解炉の後段に設置したサイクロンで、焼成物を分級し、中空粒子と密実粒子(不良品)を分別した。分別された中空粒子のみをサイクロンから直接加熱炉に投入し、900℃で加熱した。得られた焼成物は、殻の表面に孔のない中空粒子であった。
Example 3
The same raw material aqueous solution as in Example 1 was sprayed into a spray pyrolysis furnace using a two-fluid nozzle. After firing at 600 ° C., the fired product was classified by a cyclone installed in the subsequent stage of the pyrolysis furnace, and hollow particles and solid particles (defective products) were separated. Only the separated hollow particles were put directly into the heating furnace from the cyclone and heated at 900 ° C. The obtained fired product was hollow particles having no pores on the surface of the shell.

比較例1
実施例1と同じ硝酸塩混合水溶液を、二流体ノズルを使って噴霧熱分解炉に噴霧した。600℃で焼成した後、加熱炉下部に設置した回収装置で焼成物を回収した。回収後、ホバートミキサーを用いて、焼成物とホウ酸ナトリウムと珪酸ナトリウムを混合した水溶液を投入して、焼成物表面を被覆した後、90℃で乾燥機にて乾燥させた。
得られた乾燥物を、バッチ式の大気加熱炉を用いて900℃で焼成した。得られた焼成物は塊状物となり、顕微鏡観察を行った結果、粒子同士が溶着していて、単一の中空粒子を得ることが出来なかった。
Comparative Example 1
The same nitrate mixed aqueous solution as in Example 1 was sprayed into a spray pyrolysis furnace using a two-fluid nozzle. After firing at 600 ° C., the fired product was recovered by a recovery device installed in the lower part of the heating furnace. After the recovery, an aqueous solution of the calcined product, sodium borate, and sodium silicate was added using a Hobart mixer to cover the surface of the calcined product, and then dried in a dryer at 90 ° C.
The obtained dried product was calcined at 900 ° C. using a batch type atmospheric heating furnace. The obtained fired product became a lump, and as a result of microscopic observation, the particles were welded to each other, and a single hollow particle could not be obtained.

Claims (2)

乾燥ゾーン、熱分解ゾーン及び溶融ゾーンを有し、かつ熱分解ゾーンと溶融ゾーンの間にサイクロンを備えた装置を用い、酸化物を構成する元素を含有する溶液の噴霧液滴から溶媒を除去する乾燥工程、乾燥された粒子を熱分解して酸化物中空粒子を形成する工程、及び形成された酸化物中空粒子の表面を溶融する工程の連続する3段階加熱工程を有する酸化物中空粒子の噴霧熱分解法による酸化物中空粒子の製造法であって、前記酸化物中空粒子形成工程と溶融工程の間に酸化物中空粒子を回収し、回収した酸化物中空粒子を中空粒子と密実粒子に分別する工程を含むことを特徴とする酸化物中空粒子の製造法。 A device having a drying zone, a pyrolysis zone and a melting zone and a cyclone between the pyrolysis zone and the melting zone is used to remove the solvent from the spray droplets of the solution containing the elements constituting the oxide. Spraying of hollow oxide particles having a continuous three-step heating step of a drying step, a step of thermally decomposing the dried particles to form hollow oxide particles, and a step of melting the surface of the formed hollow oxide particles. It is a method for producing oxide hollow particles by a thermal decomposition method. The oxide hollow particles are recovered between the oxide hollow particle forming step and the melting step, and the recovered oxide hollow particles are converted into hollow particles and solid particles. A method for producing hollow oxide particles, which comprises a step of sorting . 前記乾燥工程の温度が50~600℃、前記酸化物中空粒子形成工程の温度が150~1000℃、前記溶融工程の温度が600℃以上である請求項1に記載の酸化物中空粒子の製造方法。 The method for producing oxide hollow particles according to claim 1, wherein the temperature of the drying step is 50 to 600 ° C, the temperature of the oxide hollow particle forming step is 150 to 1000 ° C, and the temperature of the melting step is 600 ° C or higher. ..
JP2018005665A 2018-01-17 2018-01-17 Method for producing hollow oxide particles Active JP7022594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018005665A JP7022594B2 (en) 2018-01-17 2018-01-17 Method for producing hollow oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018005665A JP7022594B2 (en) 2018-01-17 2018-01-17 Method for producing hollow oxide particles

Publications (2)

Publication Number Publication Date
JP2019123644A JP2019123644A (en) 2019-07-25
JP7022594B2 true JP7022594B2 (en) 2022-02-18

Family

ID=67397931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018005665A Active JP7022594B2 (en) 2018-01-17 2018-01-17 Method for producing hollow oxide particles

Country Status (1)

Country Link
JP (1) JP7022594B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229622A (en) 2014-06-06 2015-12-21 太平洋セメント株式会社 Production apparatus of hollow particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229622A (en) 2014-06-06 2015-12-21 太平洋セメント株式会社 Production apparatus of hollow particle

Also Published As

Publication number Publication date
JP2019123644A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6422679B2 (en) Hollow particle production equipment
Okuyama et al. Preparation of nanoparticles via spray route
KR100438228B1 (en) Doped and pyrolyzed oxides
JP6385168B2 (en) Method for producing hollow particles
US8846785B2 (en) Manufacturing method of core-shell-type ceria-polymer hybrid nanoparticles and dispersion sols of them
JP6316153B2 (en) Fine alumina hollow particles
JP6324247B2 (en) Inorganic oxide micro hollow particles
JP5248054B2 (en) Method for producing spherical alumina particles
Janackovic et al. Synthesis and formation mechanism of submicrometre spherical cordierite powders by ultrasonic spray pyrolysis
Janaćković et al. Synthesis, morphology, and formation mechanism of mullite particles produced by ultrasonic spray pyrolysis
JP7022594B2 (en) Method for producing hollow oxide particles
JP7114231B2 (en) inorganic particles
JP6389431B2 (en) Fine aluminosilicate hollow particles
JPS58207938A (en) Manufacture of fine ceramic particle
JP6389373B2 (en) Micro mullite hollow particles
JP6846245B2 (en) Fine particle production equipment by spray pyrolysis
JP6763740B2 (en) Spray thermal decomposition device
JP7232024B2 (en) Method for producing inorganic oxide hollow particles
JP6605304B2 (en) Manufacturing method of micro magnesium oxide hollow particles
JP4596111B2 (en) Method for producing spherical oxide powder and apparatus for producing spherical powder
JP6588365B2 (en) Inorganic oxide micro hollow particles
JP2019122926A (en) Process for producing microparticle by spray pyrolysis
JP7266361B2 (en) Manufacturing method of hollow particles
JP6975575B2 (en) Oxide hollow particles
JP6807711B2 (en) Method for producing hollow oxide particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150