JP7021748B2 - Equipment and programs - Google Patents

Equipment and programs Download PDF

Info

Publication number
JP7021748B2
JP7021748B2 JP2019141054A JP2019141054A JP7021748B2 JP 7021748 B2 JP7021748 B2 JP 7021748B2 JP 2019141054 A JP2019141054 A JP 2019141054A JP 2019141054 A JP2019141054 A JP 2019141054A JP 7021748 B2 JP7021748 B2 JP 7021748B2
Authority
JP
Japan
Prior art keywords
phase
current
zero
power circuit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019141054A
Other languages
Japanese (ja)
Other versions
JP2020173242A (en
Inventor
一彦 古屋
龍三 野田
功 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WADADENGYOUSYA CO., LTD.
CDN Corp
Original Assignee
WADADENGYOUSYA CO., LTD.
CDN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WADADENGYOUSYA CO., LTD., CDN Corp filed Critical WADADENGYOUSYA CO., LTD.
Priority to PCT/JP2020/015612 priority Critical patent/WO2020209242A1/en
Publication of JP2020173242A publication Critical patent/JP2020173242A/en
Application granted granted Critical
Publication of JP7021748B2 publication Critical patent/JP7021748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、装置及びプログラムに関する。 The present invention relates to devices and programs.

電力回路は、適切に管理を行い、事故等の防止に務める必要がある。このため、電力回路における地絡を検出、監視する装置が多々提案されており、例えば、特許文献1に記載されているような技術もある。 It is necessary to properly manage the power circuit and work to prevent accidents. For this reason, many devices for detecting and monitoring ground faults in power circuits have been proposed, and for example, there is a technique as described in Patent Document 1.

特開2006-114437号公報Japanese Unexamined Patent Publication No. 2006-114437

特許文献1に記載されている技術は、全漏洩電流の大きさと位相角とを測定し、前回に測定した値との差から、抵抗分漏洩電流増加量を算出し、その抵抗分漏洩電流増加量の位相角から漏洩の発生した相を特定するものである。 The technique described in Patent Document 1 measures the magnitude and phase angle of the total leakage current, calculates the amount of increase in leakage current due to resistance from the difference from the value measured last time, and increases the leakage current by resistance. The phase in which the leakage occurred is specified from the phase angle of the quantity.

しかしながら、特許文献1に記載の技術は、前回に測定した値との差から抵抗分漏洩電流増加量を算出しているため、絶縁抵抗が徐々に劣化した場合など、抵抗分漏洩電流の絶対値が大きい場合でも増加量が小さければ、検出を行うことができない。例えば、前回検出値と今回検出値の差が1mA程度あっても、異常検出値が50mAの場合、検出ができない。また、抵抗分漏洩電流増加量の位相角が漏洩の発生した相の電圧と同相とならない場合、例えば、静電容量分漏洩電流が大きく変化した場合等には、漏洩の発生した相を特定することができないものである(段落[0024]等に記載されている)。 However, since the technique described in Patent Document 1 calculates the amount of increase in resistance leakage current from the difference from the value measured last time, the absolute value of resistance leakage current is calculated when the insulation resistance gradually deteriorates. Even if is large, if the amount of increase is small, detection cannot be performed. For example, even if the difference between the previous detection value and the current detection value is about 1 mA, if the abnormality detection value is 50 mA, detection cannot be performed. Further, when the phase angle of the increase in the leakage current due to the resistance does not become the same phase as the voltage of the phase in which the leakage has occurred, for example, when the leakage current due to the capacitance changes significantly, the phase in which the leakage has occurred is specified. It cannot be done (described in paragraph [0024] etc.).

また、特許文献1に記載の技術は、漏電箇所を探査することを目的とするものであるから、地絡が発生する前の回路の状態、つまり、絶縁が正常な状態や劣化した状態を把握することは困難なものである。 Further, since the technique described in Patent Document 1 is intended to search for an electric leakage point, it is possible to grasp the state of the circuit before the ground fault occurs, that is, the state in which the insulation is normal or deteriorated. It is difficult to do.

本発明は、かかる事情を鑑みてなされたものであり、電力回路が正常な状態、絶縁が劣化した状態、地絡が発生した状態、対地静電容量が変化した状態のいずれであっても、その状態を監視することのできる装置及びプログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, regardless of whether the power circuit is in a normal state, insulation is deteriorated, a ground fault has occurred, or the capacitance to ground has changed. It is an object of the present invention to provide a device and a program capable of monitoring the state.

本発明によれば、電力回路の地絡電流を検出又は監視する装置であって、零相電流測定部と位相差特定部と初期値保持部と相特定部とを備え、前記零相電流測定部は、前記電力回路の零相電流の大きさを測定可能に構成され、前記位相差特定部は、前記電力回路の所定部分の電圧に基づいて該電圧と前記零相電流測定部が測定した零相電流との位相差を特定可能に構成され、前記初期値保持部は、前記電力回路の初期状態における零相電流を複素数で表現した値を初期零相電流値として記憶保持し、前記相特定部は、前記零相電流測定部が測定した零相電流の大きさと前記位相差特定部が特定した位相差とに基づいて前記電力回路の零相電流を複素数で表現した値と前記初期値保持部が記憶保持する初期零相電流値との差を算出し、該算出した差の偏角が前記電力回路の種別に応じて定めた複数の範囲のいずれに属するかを判定し、該判定の結果に基づいて前記電力回路の零相電流の発生相とその原因を特定可能に構成される、装置が提供される。 According to the present invention, it is a device that detects or monitors the ground fault current of the power circuit, and includes a zero-phase current measuring unit, a phase difference specifying unit, an initial value holding unit, and a phase specifying unit, and measures the zero-phase current. The unit is configured to be able to measure the magnitude of the zero-phase current of the power circuit, and the phase difference specifying unit measures the voltage and the zero-phase current measuring unit based on the voltage of a predetermined portion of the power circuit. The phase difference from the zero-phase current can be specified, and the initial value holding unit stores and holds a value expressed by a complex number of the zero-phase current in the initial state of the power circuit as the initial zero-phase current value, and holds the phase. The specific unit is a value expressed by a complex number and the initial value of the zero-phase current of the power circuit based on the magnitude of the zero-phase current measured by the zero-phase current measuring unit and the phase difference specified by the phase difference specifying unit. The difference from the initial zero-phase current value stored and retained by the holding unit is calculated, and it is determined which of the plurality of ranges determined according to the type of the power circuit the deviation angle of the calculated difference belongs to, and the determination is made. An apparatus is provided which is configured to be able to identify the generated phase of the zero-phase current of the power circuit and its cause based on the result of the above.

本発明の実施形態に係る監視装置10の構成を示した図である。It is a figure which showed the structure of the monitoring apparatus 10 which concerns on embodiment of this invention. 電力回路の例を示した図である。It is a figure which showed the example of the electric power circuit. 三相4線回路の等価回路を示した図である。It is a figure which showed the equivalent circuit of a three-phase four-wire circuit. 初期零相電流値を複素平面上に表した図である。It is the figure which showed the initial zero-phase current value on the complex plane. 零相電流を複素平面上に表した例を示した図である。It is a figure which showed the example which represented the zero-phase current on a complex plane. 零相電流と初期零相電流値IRB0の差を複素平面上で表したものである。The difference between the zero-phase current and the initial zero-phase current value IRB0 is represented on the complex plane. 図6に示した電流IR1~電流IR5を120度回転した複素平面を示した図である。It is a figure which showed the complex plane which rotated the current IR1 to the current IR5 shown in FIG. 6 by 120 degrees. 図6に示した電流IR1~電流IR5を240度回転した複素平面を示した図である。It is a figure which showed the complex plane which rotated the current IR1 to the current IR5 shown in FIG. 6 by 240 degrees. 偏角の範囲を説明するための図である。It is a figure for demonstrating the range of declination. 三相3線回路の等価回路を示した図である。It is a figure which showed the equivalent circuit of a three-phase three-wire circuit. 回転処理部15による回転処理後の位相を示した図である。It is a figure which showed the phase after the rotation processing by the rotation processing unit 15. 初期零相電流と零相電流を複素平面上に示した図である。It is the figure which showed the initial zero-phase current and the zero-phase current on the complex plane. 偏角の領域を示した図である。It is a figure which showed the area of the declination. 電流分離の例を示した図である。It is a figure which showed the example of the current separation. 電流分離の例を示した図である。It is a figure which showed the example of the current separation. 電流分離の例を示した図である。It is a figure which showed the example of the current separation. 電流分離の例を示した図である。It is a figure which showed the example of the current separation. 監視装置10の運用の流れを示すフローチャートである。It is a flowchart which shows the operation flow of the monitoring apparatus 10. 監視装置10の動作の流れを示すフローチャートである。It is a flowchart which shows the operation flow of the monitoring apparatus 10. 監視装置10の動作の流れを示すフローチャートである。It is a flowchart which shows the operation flow of the monitoring apparatus 10.

以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The various features shown in the embodiments shown below can be combined with each other.

1.装置構成
まず、本発明の実施形態に係る装置について説明する。なお、ここでは、地絡電流を監視する監視装置を例として説明するが、監視装置の一部を省略することで、地絡電流を検出する検出装置とすることもできる。図1は、本発明の実施形態に係る監視装置10の構成を示した図である。
1. 1. Device Configuration First, the device according to the embodiment of the present invention will be described. Here, a monitoring device for monitoring the ground fault current will be described as an example, but by omitting a part of the monitoring device, the detection device for detecting the ground fault current can also be used. FIG. 1 is a diagram showing a configuration of a monitoring device 10 according to an embodiment of the present invention.

同図に示すように、監視装置10は、零相電流測定部11、位相差特定部12、初期値保持部13、相特定部14、回転処理部15、電流解析部16及び入出力部17を有している。 As shown in the figure, the monitoring device 10 includes a zero-phase current measuring unit 11, a phase difference specifying unit 12, an initial value holding unit 13, a phase specifying unit 14, a rotation processing unit 15, a current analysis unit 16, and an input / output unit 17. have.

零相電流測定部11は、電力回路の零相電流の大きさを測定可能に構成される。零相電流の測定は、例えば、電力回路の変圧器の中性点、または端子の一端のB種接地の接地線や、幹線ケーブルの送電部等の零相電流を測定可能な位置に零相変流器を設置し、この零相変流器を介して零相電流を測定する。 The zero-phase current measuring unit 11 is configured to be capable of measuring the magnitude of the zero-phase current of the power circuit. The zero-phase current can be measured at a position where the zero-phase current can be measured, such as the neutral point of a transformer in a power circuit, the grounding wire of class B grounding at one end of a terminal, or the transmission section of a trunk cable. A current transformer is installed and the zero-phase current is measured through this zero-phase current transformer.

位相差特定部12は、電力回路の所定部分の電圧に基づいて該電圧と零相電流測定部11が測定した零相電流との位相差を特定可能に構成される。例えば、位相差特定部12は、電力回路の電圧として、変圧器の中性点と一端子の間の電圧、または端子間の電圧、または変圧器の一端子とD種接地、またはC種接地の間の電圧等のいずれかの電圧を取得する。 The phase difference specifying unit 12 is configured to be able to specify the phase difference between the voltage and the zero-phase current measured by the zero-phase current measuring unit 11 based on the voltage of a predetermined portion of the power circuit. For example, the phase difference specifying unit 12 may use the voltage between the neutral point of the transformer and one terminal, the voltage between the terminals, or one terminal of the transformer and class D ground, or class C ground as the voltage of the power circuit. Get any voltage, such as the voltage between.

初期値保持部13は、電力回路の初期状態における零相電流を特定可能な値を初期値として記憶保持する。初期値は、例えば、電力回路、つまり、電気設備の竣工時等の設備が健全な状態で、対地静電容量を測定し、測定した対地静電容量に基づいて零相電流を算出することで得られる。また、電気設備が健全な状態において零相電流測定部11が測定した零相電流と位相差特定部12が特定した位相差とに基づいて算出された値を初期値として初期値保持部13に記憶保持させるようにしてもよい。電気設備が健全な状態の値を記憶保持させることで、対地絶縁の劣化や対地静電容量の変化が徐々に進行した場合でも、漏洩電流の検出等を行うことができる。 The initial value holding unit 13 stores and holds a value that can specify the zero-phase current in the initial state of the power circuit as an initial value. The initial value is, for example, by measuring the ground capacitance in a sound state of the power circuit, that is, when the electrical equipment is completed, and calculating the zero-phase current based on the measured ground capacitance. can get. Further, the initial value holding unit 13 uses a value calculated based on the zero-phase current measured by the zero-phase current measuring unit 11 and the phase difference specified by the phase difference specifying unit 12 in a sound state of the electrical equipment as the initial value. The memory may be retained. By storing and retaining the values in a sound state of the electrical equipment, it is possible to detect the leakage current even when the deterioration of the ground insulation or the change of the ground capacitance gradually progresses.

初期値保持部13に記憶保持させる初期値は、電力回路の初期状態における零相電流を複素数で表現した値であってもよい。複素数で表現した値とは、複素数表示やフェーザ表示とも称される表示方法であり、極形式(複素数を絶対値と偏角を用いて表わした形)を用いてもよい。 The initial value stored and stored in the initial value holding unit 13 may be a value expressed by a complex number of the zero-phase current in the initial state of the power circuit. The value expressed by a complex number is a display method also called a complex number display or a phasor display, and a polar form (a form in which a complex number is expressed by using an absolute value and an argument) may be used.

また、電力回路が高圧と、特別高圧と、超高圧とのいずれかに対応し、ケーブル又はバスダクトを含む場合には、初期値保持部13は、ケーブル又はバスダクトの対地静電容量値または対地静電容量値に基づいて算出される零相電流を複素数で表現した値を初期値として記憶保持するようにしてもよい。 Further, when the power circuit corresponds to any of high voltage, extra high voltage, and ultra high voltage and includes a cable or a bus duct, the initial value holding unit 13 is the ground capacitance value or the ground static of the cable or the bus duct. A value expressed by a complex number of the zero-phase current calculated based on the capacitance value may be stored and held as an initial value.

同様に、電力回路が低圧であり、地中に埋設されたケーブル又は屋内に敷設されたバスダクトを含む場合には、初期値保持部13は、ケーブル又はバスダクトの対地静電容量値または対地静電容量値に基づいて算出される零相電流を複素数で表現した値を初期値として記憶保持するようにしてもよい。 Similarly, when the power circuit is low voltage and includes a cable buried in the ground or a bus duct laid indoors, the initial value holding unit 13 is the ground capacitance value or ground capacitance of the cable or bus duct. A value expressed by a complex number of the zero-phase current calculated based on the capacitance value may be stored and held as an initial value.

ケーブル又はバスダクトの対地静電容量値は、例えば、ケーブル又はバスダクトの仕様から単位長さあたりの対地静電容量を特定し、これに線路長を乗じることで算出することができる。そして、電力回路が健全な状態では、当該回路の絶縁も良好であるため、絶縁抵抗を無限大であると想定して、零相電流を算出することができる。なお、対地静電容量値の算出に際しては、絶縁抵抗を十分大きな値、例えば、100(MΩ)~1000(MΩ)であるものとして取り扱う。 The ground capacitance value of the cable or bus duct can be calculated, for example, by specifying the ground capacitance per unit length from the specifications of the cable or bus duct and multiplying this by the line length. Then, when the power circuit is in a sound state, the insulation of the circuit is also good, so that the zero-phase current can be calculated assuming that the insulation resistance is infinite. In calculating the capacitance value to ground, the insulation resistance is treated as having a sufficiently large value, for example, 100 (MΩ) to 1000 (MΩ).

相特定部14は、零相電流測定部11が測定した零相電流の大きさと位相差特定部12が特定した位相差とに基づいて電力回路の零相電流を複素数で表現した値と初期値保持部13が記憶保持する初期値から特定される零相電流を複素数で表現した値との差を算出し、算出した差の偏角が電力回路の種別に応じて定めた複数の範囲のいずれに属するかを判定し、判定の結果に基づいて電力回路の零相電流の発生原因となる相を特定可能に構成される。なお、相特定部14の具体的な動作については後述する。 The phase specifying unit 14 is a value and an initial value expressing the zero phase current of the power circuit as a complex number based on the magnitude of the zero phase current measured by the zero phase current measuring unit 11 and the phase difference specified by the phase difference specifying unit 12. The difference between the zero-phase current specified by the holding unit 13 and the value expressed by a complex number is calculated from the initial value, and the deviation angle of the calculated difference is any of a plurality of ranges determined according to the type of the power circuit. It is configured so that it can be determined whether or not it belongs to, and the phase that causes the generation of the zero-phase current of the power circuit can be specified based on the result of the determination. The specific operation of the phase specifying unit 14 will be described later.

回転処理部15は、相特定部14の一部であり、相特定部14が算出した差の偏角を電力回路の種別に応じた角度だけ回転可能に構成される。例えば、低圧と、特別高圧と、超高圧とのいずれかの中性点接地の三相3線回路と、低圧の中性点接地の三相4線回路と、低圧又は高圧の非接地の三相3線回路とのいずれかである場合には、回転処理部15は、差の偏角を120度回転させる処理と差の偏角を240度回転させる処理とを行う。また、電力回路が変圧器の低圧側が三角巻線で1相接地の三相3線回路であるとともに、変圧器の高圧側がスター型巻線である場合には、回転処理部15は、差の偏角を-30度または-60度回転させる処理を行い、電力回路が変圧器の低圧側が三角巻線で1相接地の三相3線回路であるとともに、変圧器の高圧側が三角巻線である場合には、回転処理部15は、差の偏角を-60度または-120度回転させる処理を行う。これにより、相特定部14は、回転処理部15で回転された差の偏角に基づいて電力回路の零相電流の発生原因となる相を特定することとなる。 The rotation processing unit 15 is a part of the phase specifying unit 14, and is configured to be able to rotate the declination angle of the difference calculated by the phase specifying unit 14 by an angle corresponding to the type of the power circuit. For example, a low voltage, extra high voltage, or ultra high voltage neutral point grounded three-phase three-wire circuit, a low voltage neutral point grounded three-phase four-wire circuit, and a low-voltage or high-voltage ungrounded three-wire circuit. In the case of any of the phase 3-wire circuits, the rotation processing unit 15 performs a process of rotating the difference deviation angle by 120 degrees and a process of rotating the difference deviation angle by 240 degrees. Further, when the power circuit is a three-phase three-wire circuit in which the low-voltage side of the transformer is a triangular winding and one-phase grounded, and the high-voltage side of the transformer is a star-shaped winding, the rotation processing unit 15 makes a difference. The deviation angle is rotated by -30 degrees or -60 degrees, and the power circuit is a three-phase three-wire circuit with a triangular winding on the low-voltage side of the transformer and one-phase grounding, and a triangular winding on the high-voltage side of the transformer. In the case of a line, the rotation processing unit 15 performs a process of rotating the deviation angle of the difference by -60 degrees or −120 degrees. As a result, the phase specifying unit 14 identifies the phase that causes the generation of the zero-phase current in the power circuit based on the declination of the difference rotated by the rotation processing unit 15.

ところで、三相変圧器の星型巻線と三角巻線の電圧には30度の位相差がある。その結果、同一相の地絡電流や、低圧側三角巻線の1相接地回路の対地静電容量による常時の地絡電流にも30度の位相差が生じる。従って、回転処理部15は、電力回路全体の変圧器構成による位相関係に基づく処理を行っている。 By the way, there is a phase difference of 30 degrees between the voltage of the star winding and the triangular winding of the three-phase transformer. As a result, a phase difference of 30 degrees occurs in the ground fault current of the same phase and the constant ground fault current due to the ground capacitance of the one-phase grounding circuit of the low-voltage side triangular winding. Therefore, the rotation processing unit 15 performs processing based on the phase relationship due to the transformer configuration of the entire power circuit.

電流解析部16は、相特定部14が算出した差を、相特定部14が特定した相の抵抗分電流値と静電容量電流値とに分離可能に構成される。なお、電流解析部16具体的な動作については後述する。 The current analysis unit 16 is configured to be able to separate the difference calculated by the phase identification unit 14 into the resistance component current value and the capacitance current value of the phase specified by the phase identification unit 14. The specific operation of the current analysis unit 16 will be described later.

入出力部17は、監視装置10のユーザインタフェイスとなるもので、操作指示の受付や、監視結果の表示等を行う。また、入出力部17は、監視結果として相特定部14が特定した相の全てを表示可能に構成されるとともに、相特定部14が特定した相に別の電力回路から、その回路の対地静電容量を介して、電流が流入したことを表示可能に構成される。別の電力回路から電流が流入した場合、複数の相に逆向き(逆相)の電流が流れることから、その可能性を表示することが可能となる。 The input / output unit 17 serves as a user interface for the monitoring device 10, and receives operation instructions, displays monitoring results, and the like. Further, the input / output unit 17 is configured to be able to display all the phases specified by the phase specifying unit 14 as a monitoring result, and from another power circuit to the phase specified by the phase specifying unit 14, static electricity of the circuit. It is configured so that it can be displayed that a current has flowed through the electric capacity. When a current flows in from another power circuit, the current flows in the opposite direction (opposite phase) in a plurality of phases, so that the possibility can be displayed.

2.電力回路の概要
次に、監視装置10を設置する電力回路の例について、その概要を説明する。図2は、電力回路の例を示した図である。
2. 2. Outline of power circuit Next, an outline of an example of a power circuit in which the monitoring device 10 is installed will be described. FIG. 2 is a diagram showing an example of a power circuit.

同図に示した例では、商用電源20に、変圧器21と変圧器22と変圧器23とが接続されている。商用電源20は、厳密には、変圧器であり、この変圧器と、変圧器21、変圧器22、変圧器23の間は、高圧、例えば、6.6kVの電力回路であり、変圧器21、変圧器22、変圧器23のそれぞれを介して、低圧、例えば、210Vの電力回路と接続されている。 In the example shown in the figure, the transformer 21, the transformer 22, and the transformer 23 are connected to the commercial power supply 20. Strictly speaking, the commercial power source 20 is a transformer, and between the transformer and the transformer 21, the transformer 22, and the transformer 23 is a high voltage power circuit of, for example, 6.6 kV, and the transformer 21. , A low voltage, for example, 210V power circuit is connected to each of the transformer 22 and the transformer 23.

高圧の電力回路は、一般に、非接地であるが、接地形計器用変圧器(EVT)やコンデンサー形地絡検出装置(ZPD)を介して中性点が接地されているともいえるものである。監視装置10は、中性点接地、非接地のいずれにも対応可能である。 The high-voltage power circuit is generally ungrounded, but it can be said that the neutral point is grounded via a grounded instrument transformer (EVT) or a capacitor-type ground fault detector (ZPD). The monitoring device 10 can handle both neutral point grounding and non-grounding.

また、変圧器21には、負荷24と負荷25が接続されており、この変圧器21と負荷24及び負荷25の間の回路が低圧の電力回路となる。また、変圧器22には、負荷26と負荷27が接続されており、この変圧器22と負荷26及び負荷27の間の回路が低圧の電力回路となる。同様に、変圧器23には、負荷28と負荷29が接続されており、この変圧器23と負荷28及び負荷29の間の回路が低圧の電力回路となる。監視装置10は、これらの低圧の電力回路にも対応可能である。なお、変圧器21は、Y(星型)-△(三角)巻線の変圧器であり、変圧器22は、△-△巻線の変圧器、変圧器23は、△-Y巻線の変圧器であるものとする。 Further, the load 24 and the load 25 are connected to the transformer 21, and the circuit between the transformer 21 and the load 24 and the load 25 is a low voltage power circuit. Further, the load 26 and the load 27 are connected to the transformer 22, and the circuit between the transformer 22 and the load 26 and the load 27 becomes a low voltage power circuit. Similarly, the load 28 and the load 29 are connected to the transformer 23, and the circuit between the transformer 23 and the load 28 and the load 29 is a low voltage power circuit. The monitoring device 10 can also handle these low-voltage power circuits. The transformer 21 is a Y (star-shaped)-△ (triangular) winding transformer, the transformer 22 is a △-△ winding transformer, and the transformer 23 is a △ -Y winding transformer. It shall be a transformer.

3.三相4線回路等
次に、電力回路が低圧、特別高圧、超高圧のいずれかの中性点接地の三相3線回路、低圧の中性点接地の三相4線回路、低圧又は高圧の非接地の三相3線回路の場合の監視装置10の動作について説明する。なお、ここでは、三相4線回路を例として説明する。図3は、三相4線回路の等価回路を示した図である。なお、同図に示した等価回路は、図2に示した変圧器23の二次側回路に相当する。
3. 3. Three-phase four-wire circuit, etc. Next, the power circuit is a low-voltage, extra-high-voltage, or ultra-high-voltage neutral-point grounded three-phase three-wire circuit, low-voltage neutral-point grounded three-phase four-wire circuit, low-voltage or high-voltage. The operation of the monitoring device 10 in the case of the ungrounded three-phase three-wire circuit will be described. Here, a three-phase four-wire circuit will be described as an example. FIG. 3 is a diagram showing an equivalent circuit of a three-phase four-wire circuit. The equivalent circuit shown in FIG. 2 corresponds to the secondary circuit of the transformer 23 shown in FIG.

同図に示した等価回路では、ER、ES、ETは、それぞれ、R相の電源、S相の電源、T相の電源を表し、RR、RS、RT、RNは、それぞれ、R相の絶縁抵抗、S相の絶縁抵抗、T相の絶縁抵抗、N相(中性相)の絶縁抵抗を表し、CR、CS、CT、CNは、それぞれ、R相の対地静電容量、S相の対地静電容量、T相の対地静電容量、N相の対地静電容量を表している。また、RBは、B種接地抵抗、RCは、C種接地抵抗を表している。なお、電力回路は、配線の距離が長く、分布定数回路として扱うことが適切であるが、ここでは、説明の簡易化のために、集中定数回路としている。 In the equivalent circuit shown in the figure, ER, ES, and ET represent R-phase power supply, S-phase power supply, and T-phase power supply, respectively, and RR, RS, RT, and RN represent R-phase insulation, respectively. Represents resistance, S-phase insulation resistance, T-phase insulation resistance, and N-phase (neutral phase) insulation resistance, where CR, CS, CT, and CN represent the R-phase ground capacitance and S-phase ground, respectively. It represents the capacitance, the T-phase ground capacitance, and the N-phase ground capacitance. Further, RB represents a class B ground resistance, and RC represents a class C ground resistance. It should be noted that the power circuit has a long wiring distance, and it is appropriate to treat it as a distributed constant circuit, but here, for the sake of simplification of the explanation, it is a lumped constant circuit.

図3に示した等価回路に監視装置10を設置する場合、零相電流測定部11は、B種接地抵抗RBを流れる電流を測定する。位相差特定部12は、R相の電圧ERを取得する。電圧ERは、変圧器の中性点と一端子間の電圧、または端子間の電圧、または変圧器の一端子とD種接地、またはC種接地間の電圧等のいずれかで測定可能である。 When the monitoring device 10 is installed in the equivalent circuit shown in FIG. 3, the zero-phase current measuring unit 11 measures the current flowing through the class B grounding resistance RB. The phase difference specifying unit 12 acquires the R-phase voltage ER. The voltage ER can be measured by either the neutral point of the transformer and the voltage between one terminal, the voltage between the terminals, or the voltage between one terminal of the transformer and the D-class ground, or the C-class ground, and the like. ..

初期値保持部13に記憶保持する初期零相電流値は、電力回路が健全な状態、つまり、図3に示した等価回路では、各相の絶縁抵抗、RR、RS、RT、RNの値が十分に大きい場合の値である。なお、図3に示した等価回路が理想的なものであれば、各相の対地静電容量、CR、CS、CT、CNの値が等しく、零相電流は流れないが、実際には、CR、CS、CT、CNの値は等しくないため、零相電流が流れることになる。 The initial zero-phase current value stored and stored in the initial value holding unit 13 is a state in which the power circuit is in a sound state, that is, in the equivalent circuit shown in FIG. 3, the values of the insulation resistance, RR, RS, RT, and RN of each phase are set. This is the value when it is large enough. If the equivalent circuit shown in FIG. 3 is ideal, the values of the capacitance to ground, CR, CS, CT, and CN of each phase are the same, and the zero-phase current does not flow, but in reality, Since the values of CR, CS, CT, and CN are not equal, a zero-phase current will flow.

初期値保持部13に記憶保持する初期零相電流値は、例えば、図4にIRB0で示すようになる。図4は、初期零相電流値を複素平面上に表した図である。初期零相電流値IRB0は、その偏角がθである。なお、図4は、R相の電圧を基準としているため、R相の電圧の偏角は、0度となる。 The initial zero-phase current value stored and stored in the initial value holding unit 13 is shown by IRB0 in FIG. 4, for example. FIG. 4 is a diagram showing the initial zero-phase current value on the complex plane. The declination angle of the initial zero-phase current value IRB0 is θ. Since FIG. 4 is based on the R-phase voltage, the declination of the R-phase voltage is 0 degrees.

続いて、電力回路で絶縁の劣化や地絡の発生、対地静電容量の変化等によって、零相電流が変化した場合を説明する。零相電流は、零相電流測定部11と位相差特定部12により、複素数による表現が可能となるが、これを複素平面上に表すと、図5に示すようになる。図5は、零相電流を複素平面上に表した例を示した図である。 Next, a case where the zero-phase current changes due to deterioration of insulation, occurrence of ground fault, change in capacitance to ground, etc. in the power circuit will be described. The zero-phase current can be expressed by a complex number by the zero-phase current measuring unit 11 and the phase difference specifying unit 12, and this can be expressed on a complex plane as shown in FIG. FIG. 5 is a diagram showing an example in which the zero-phase current is represented on a complex plane.

例えば、電力回路のR相の絶縁が劣化した場合やR相に地絡が発生した場合には、図5に示す零相電流IRB1が流れることになる。T相の絶縁が劣化した場合やT相に地絡が発生した場合には、図5に示す零相電流IRB2が流れることになる。S相の絶縁が劣化した場合やS相に地絡が発生した場合には、図5に示す零相電流IRB3が流れることになる。また、R相の対地静電容量が大きくなった場合には、図5に示す零相電流IRB4が流れ、S相の絶縁の劣化と対地静電容量の増大が同時に生じた場合には、図5に示す零相電流IRB5が流れることになる。なお、当然のことであるが、零相電流IRB1、零相電流IRB2、零相電流IRB3、零相電流IRB4及び零相電流IRB5は、同時に流れることはない。 For example, when the insulation of the R phase of the power circuit deteriorates or when a ground fault occurs in the R phase, the zero-phase current IRB1 shown in FIG. 5 flows. When the insulation of the T phase deteriorates or when a ground fault occurs in the T phase, the zero-phase current IRB2 shown in FIG. 5 flows. When the insulation of the S phase deteriorates or when a ground fault occurs in the S phase, the zero-phase current IRB3 shown in FIG. 5 flows. Further, when the ground capacitance of the R phase becomes large, the zero-phase current IRB4 shown in FIG. 5 flows, and when the deterioration of the insulation of the S phase and the increase of the ground capacitance occur at the same time, FIG. The zero-phase current IRB5 shown in 5 will flow. As a matter of course, the zero-phase current IRB1, the zero-phase current IRB2, the zero-phase current IRB3, the zero-phase current IRB4, and the zero-phase current IRB5 do not flow at the same time.

この図5に示した零相電流IRB1、零相電流IRB2、零相電流IRB3、零相電流IRB4及び零相電流IRB5は、初期零相電流値IRB0を含むものである。したがって、零相電流と初期零相電流値IRB0の差が電力回路で絶縁の劣化や地絡の発生、対地静電容量の変化等によって生じた電流となる。 The zero-phase current IRB1, the zero-phase current IRB2, the zero-phase current IRB3, the zero-phase current IRB4, and the zero-phase current IRB5 shown in FIG. 5 include the initial zero-phase current value IRB0. Therefore, the difference between the zero-phase current and the initial zero-phase current value IRB0 is the current generated by deterioration of insulation, occurrence of ground fault, change in capacitance to ground, etc. in the power circuit.

そこで、相特定部14は、まず、零相電流と初期零相電流値IRB0の差を算出する。この算出結果を複素平面上に表すと、図6に示すようになる。図6は、零相電流と初期零相電流値IRB0の差を複素平面上で表したものである。 Therefore, the phase specifying unit 14 first calculates the difference between the zero-phase current and the initial zero-phase current value IRB0. The calculation result is shown in FIG. 6 on a complex plane. FIG. 6 shows the difference between the zero-phase current and the initial zero-phase current value IRB0 on the complex plane.

零相電流IRB1と初期零相電流値IRB0の差、つまり、IRB1-IRB0は、電流IR1となる。同様に、零相電流IRB2と初期零相電流値IRB0の差(IRB2-IRB0)は、電流IR2、零相電流IRB3と初期零相電流値IRB0の差(IRB3-IRB0)は、電流IR3、零相電流IRB4と初期零相電流値IRB0の差(IRB4-IRB0)は、電流IR4、零相電流IRB5と初期零相電流値IRB0の差(IRB5-IRB0)は、電流IR5となる。 The difference between the zero-phase current IRB1 and the initial zero-phase current value IRB0, that is, IRB1-IRB0 is the current IR1. Similarly, the difference between the zero-phase current IRB2 and the initial zero-phase current value IRB0 (IRB2-IRB0) is the current IR2, and the difference between the zero-phase current IRB3 and the initial zero-phase current value IRB0 (IRB3-IRB0) is the current IR3, zero. The difference between the phase current IRB4 and the initial zero-phase current value IRB0 (IRB4-IRB0) is the current IR4, and the difference between the zero-phase current IRB5 and the initial zero-phase current value IRB0 (IRB5-IRB0) is the current IR5.

続いて、相特定部14は、算出した零相電流と初期零相電流値IRB0の差を120度及び240度回転する。図7は、図6に示した電流IR1~電流IR5を120度回転した複素平面を示した図である。また、図8は、図6に示した電流IR1~電流IR5を240度回転した複素平面を示した図である。 Subsequently, the phase specifying unit 14 rotates the difference between the calculated zero-phase current and the initial zero-phase current value IRB0 by 120 degrees and 240 degrees. FIG. 7 is a diagram showing a complex plane obtained by rotating the currents IR1 to IR5 shown in FIG. 6 by 120 degrees. Further, FIG. 8 is a diagram showing a complex plane obtained by rotating the currents IR1 to IR5 shown in FIG. 6 by 240 degrees.

図6に示した電流IR1、電流IR2、電流IR3、電流IR4、電流IR5を120度回転すると、図7に示すようになる。この場合には、複素平面の実軸は、S相の電圧と一致する。 When the current IR1, the current IR2, the current IR3, the current IR4, and the current IR5 shown in FIG. 6 are rotated by 120 degrees, the results are shown in FIG. In this case, the real axis of the complex plane coincides with the voltage of the S phase.

また、図6に示した電流IR1、電流IR2、電流IR3、電流IR4、電流IR5を240度回転すると、図8に示すようになる。この場合には、複素平面の実軸は、T相の電圧と一致する。 Further, when the current IR1, the current IR2, the current IR3, the current IR4, and the current IR5 shown in FIG. 6 are rotated by 240 degrees, the results are shown in FIG. In this case, the real axis of the complex plane coincides with the voltage of the T phase.

次に、相特定部14が、零相電流が変化した原因となる相を特定する。相の特定は、回転処理を施していない電流と、120度の回転処理を施した電流と、240度の回転処理を施した電流のうち、偏角が-30度よりも大きく90度以下である電流に基づいて行う。 Next, the phase specifying unit 14 identifies the phase that causes the change in the zero-phase current. The phase is specified when the declination angle is larger than -30 degrees and 90 degrees or less among the current not subjected to the rotation treatment, the current subjected to the rotation treatment of 120 degrees, and the current subjected to the rotation treatment of 240 degrees. It is based on a certain current.

ここで、-30度よりも大きく90度以下となる範囲について説明する。図9は、偏角の範囲を説明するための図である。 Here, a range larger than -30 degrees and 90 degrees or less will be described. FIG. 9 is a diagram for explaining the range of the declination.

同図に示すように、電流に対して回転処理を施していない場合、基準となる偏角が0度の軸は、R相の実軸に相当する軸となる。また、偏角が90度となる軸は、R相の虚軸に相当し、偏角が-30度となる軸は、S相の虚軸に相当する。したがって、電流の偏角が-30度よりも大きく90度よりも小さい場合は、この電流に少なくともR相の抵抗分電流が含まれていることとなり、電流の偏角が90度の場合は、この電流はR相の静電容量分電流であることとなる。つまり、電流に回転処理を施していない場合に、当該電流の偏角が-30度よりも大きく90度以下であれば、少なくともR相に変化が生じてことが判明する。 As shown in the figure, when the rotation process is not applied to the current, the axis having the reference declination angle of 0 degrees is the axis corresponding to the actual axis of the R phase. The axis having a declination of 90 degrees corresponds to the imaginary axis of the R phase, and the axis having the declination of −30 degrees corresponds to the imaginary axis of the S phase. Therefore, if the deviation angle of the current is larger than -30 degrees and smaller than 90 degrees, it means that this current includes at least the resistance component current of the R phase, and if the deviation angle of the current is 90 degrees, This current is the current corresponding to the capacitance of the R phase. That is, when the current is not subjected to the rotation processing, if the declination angle of the current is larger than -30 degrees and 90 degrees or less, it is found that at least the R phase is changed.

また、電流に対して120度の回転処理を施している場合、基準となる偏角が0度の軸は、S相の実軸に相当する軸となる。また、偏角が90度となる軸は、S相の虚軸に相当し、偏角が-30度となる軸は、T相の虚軸に相当する。したがって、電流の偏角が-30度よりも大きく90度よりも小さい場合は、この電流に少なくともS相の抵抗分電流が含まれていることとなり、電流の偏角が90度の場合は、この電流はS相の静電容量分電流であることとなる。つまり、電流に120度の回転処理を施した場合に、当該電流の偏角が-30度よりも大きく90度以下であれば、少なくともS相に変化が生じてことが判明する。 Further, when the rotation process of 120 degrees is applied to the current, the axis having the reference declination angle of 0 degrees is the axis corresponding to the actual axis of the S phase. The axis having a declination of 90 degrees corresponds to the imaginary axis of the S phase, and the axis having the declination of −30 degrees corresponds to the imaginary axis of the T phase. Therefore, if the deviation angle of the current is larger than -30 degrees and smaller than 90 degrees, it means that this current includes at least the resistance component current of the S phase, and if the deviation angle of the current is 90 degrees, This current is the current corresponding to the capacitance of the S phase. That is, when the current is subjected to a rotation process of 120 degrees, if the declination angle of the current is larger than −30 degrees and 90 degrees or less, it is found that at least the S phase is changed.

同様に、電流に対して240度の回転処理を施している場合、基準となる偏角が0度の軸は、T相の実軸に相当する軸となる。また、偏角が90度となる軸は、T相の虚軸に相当し、偏角が-30度となる軸は、R相の虚軸に相当する。したがって、電流の偏角が-30度よりも大きく90度よりも小さい場合は、この電流に少なくともT相の抵抗分電流が含まれていることとなり、電流の偏角が90度の場合は、この電流はT相の静電容量分電流であることとなる。つまり、電流に240度の回転処理を施した場合に、当該電流の偏角が-30度よりも大きく90度以下であれば、少なくともT相に変化が生じてことが判明する。 Similarly, when the rotation process of 240 degrees is applied to the current, the axis having the reference declination angle of 0 degrees is the axis corresponding to the actual axis of the T phase. The axis having a declination of 90 degrees corresponds to the imaginary axis of the T phase, and the axis having the declination of −30 degrees corresponds to the imaginary axis of the R phase. Therefore, if the deviation angle of the current is larger than -30 degrees and smaller than 90 degrees, it means that this current includes at least the resistance component current of the T phase, and if the deviation angle of the current is 90 degrees, This current is the current corresponding to the capacitance of the T phase. That is, when the current is subjected to a rotation process of 240 degrees, if the declination angle of the current is larger than −30 degrees and 90 degrees or less, it is found that at least the T phase is changed.

したがって、前述の電流IR1は、回転処理を施していない状態で偏角が0度なので、R相の電流と判断される。同様に、電流IR2は、240度の回転処理を施した状態で偏角が0度なのでT相の電流と判断され、電流IR3は、120度の回転処理を施した状態で偏角が0度なのでSの相の電流と判断される。また、電流IR4は、回転処理を施していない状態で偏角が90度なので、R相の電流と判断され、電流IR5は、120度の回転処理を施した状態で偏角が30度なのでSの相の電流と判断される。 Therefore, the above-mentioned current IR1 is determined to be an R-phase current because the declination angle is 0 degrees in the state where the rotation processing is not performed. Similarly, the current IR2 is judged to be a T-phase current because the declination is 0 degrees in the state of being rotated by 240 degrees, and the current IR3 is judged to be the current of the T phase, and the declination of the current IR3 is 0 degrees in the state of being rotated by 120 degrees. Therefore, it is judged to be the current of the S phase. Further, the current IR4 is determined to be an R-phase current because the declination angle is 90 degrees in the state where the rotation process is not performed, and the current IR5 is S because the declination angle is 30 degrees in the state where the rotation process is performed at 120 degrees. It is judged to be the current of the phase.

次に、電流解析部16が零相電流と初期零相電流値IRB0の差の解析を行う。この解析では、差の電流の偏角が0度の場合は、R相の抵抗分電流(回転処理なしの場合)、S相の抵抗分電流(120度回転の場合)、T相の抵抗分電流(240度回転の場合)と判断する。また、差の電流の偏角が90度の場合は、R相の静電容量分電流(回転処理なしの場合)、S相の静電容量分電流(120度回転の場合)、T相の静電容量分電流(240度回転の場合)と判断する。 Next, the current analysis unit 16 analyzes the difference between the zero-phase current and the initial zero-phase current value IRB0. In this analysis, when the deviation angle of the difference current is 0 degrees, the resistance component current of the R phase (when no rotation processing is performed), the resistance component current of the S phase (when rotating 120 degrees), and the resistance component of the T phase. Judged as current (in the case of 240 degree rotation). When the deviation angle of the difference current is 90 degrees, the R phase capacitance current (without rotation processing), the S phase capacitance current (120 degree rotation), and the T phase It is determined that the current is the capacitance component (in the case of 240 degree rotation).

差の電流の偏角が0度よりも大きく90度よりも小さい場合には、R相の抵抗分電流と静電容量分電流の合成(回転処理なしの場合)、S相の抵抗分電流と静電容量分電流の合成(120度回転の場合)、T相の抵抗分電流と静電容量分電流の合成(240度回転の場合)と判断し、これらを分離する。 When the deviation angle of the difference current is larger than 0 degrees and smaller than 90 degrees, the combination of the resistance component current of the R phase and the capacitance component current (without rotation processing), and the resistance component current of the S phase It is determined that the capacitance component current is combined (in the case of 120-degree rotation) and the T-phase resistance component current and the capacitance component current are combined (in the case of 240-degree rotation), and these are separated.

また、差の電流の偏角が-30度よりも大きく0度よりも小さい場合には、R相の抵抗分電流とS相の静電容量分電流の合成(回転処理なしの場合)、S相の抵抗分電流とT相の静電容量分電流の合成(120度回転の場合)、T相の抵抗分電流とR相の静電容量分電流の合成(240度回転の場合)と判断し、これらを分離する。 When the deviation angle of the difference current is larger than -30 degrees and smaller than 0 degrees, the combination of the resistance component current of the R phase and the capacitance component current of the S phase (when no rotation processing is performed), S. Judgment is the combination of the resistance component current of the phase and the capacitance component current of the T phase (in the case of 120 degree rotation), and the combination of the resistance component current of the T phase and the capacitance component current of the R phase (in the case of 240 degree rotation). And separate these.

抵抗分電流と静電容量分電流の分離は、複素数の演算により行う。なお、複素数の演算に代えて複素ベクトルを用いたベクトル演算により抵抗分電流と静電容量分電流の分離を行うようにしてもよい。 Separation of resistance current and capacitance current is performed by complex number calculation. Instead of the complex number calculation, the resistance component current and the capacitance component current may be separated by a vector operation using a complex vector.

ところで、図6乃至図8に示した電流の複素平面での表示は説明のために用いたものであるが、これらを入出力部17に画面表示するようにしてもよい。電力回路等の電気設備の管理は、通常、電気主任技術者等の技術者が行うため、複素平面での表示は、これら技術者が直感的に電力回路の状態を把握する一助となる。 By the way, the display of the currents shown in FIGS. 6 to 8 on the complex plane is used for explanation, but these may be displayed on the screen in the input / output unit 17. Since the management of electrical equipment such as electric power circuits is usually performed by engineers such as chief electrical engineers, the display on the complex plane helps these engineers to intuitively grasp the state of the electric power circuit.

4.三相3線回路
次に、電力回路が変圧器の低圧側が三角巻線で1相接地の三相3線回路の場合の監視装置10の動作について説明する。図10は、三相3線回路の等価回路を示した図である。なお、同図に示した等価回路は、図2に示した変圧器21の二次側回路または変圧器22の二次側回路に相当する。
4. Three-phase three-wire circuit Next, the operation of the monitoring device 10 will be described when the power circuit is a three-phase three-wire circuit in which the low-voltage side of the transformer is a triangular winding and one-phase grounded. FIG. 10 is a diagram showing an equivalent circuit of a three-phase three-wire circuit. The equivalent circuit shown in FIG. 2 corresponds to the secondary circuit of the transformer 21 or the secondary circuit of the transformer 22 shown in FIG.

同図に示した等価回路では、ERS、EST、ETRは、それぞれ、R相-S相間の電源、S相-T相間の電源、T相-R相間の電源を表し、RR、RS、RTは、それぞれ、R相の絶縁抵抗、S相の絶縁抵抗、T相の絶縁抵抗を表し、CR、CS、CTは、それぞれ、R相の対地静電容量、S相の対地静電容量、T相の対地静電容量を表している。また、RBは、B種接地抵抗、RDは、D種接地抵抗を表している。なお、電力回路は、配線の距離が長く、分布定数回路として扱うことが適切であるが、ここでは、説明の簡易化のために、集中定数回路としている。 In the equivalent circuit shown in the figure, ERS, EST, and ETR represent the power supply between the R phase and the S phase, the power supply between the S phase and the T phase, and the power supply between the T phase and the R phase, respectively. Represents the insulation resistance of the R phase, the insulation resistance of the S phase, and the insulation resistance of the T phase, respectively. CR, CS, and CT represent the capacitance to ground of the R phase, the capacitance to ground of the S phase, and T, respectively. It represents the phase capacitance to ground. Further, RB represents a class B ground resistance, and RD represents a class D ground resistance. It should be noted that the power circuit has a long wiring distance, and it is appropriate to treat it as a distributed constant circuit, but here, for the sake of simplification of the explanation, it is a lumped constant circuit.

図10に示した等価回路に監視装置10を設置する場合、零相電流測定部11は、B種接地抵抗RBを流れる電流を測定する。なお、零相電流測定部11は、幹線ケーブルの送電部から零相電流を取得してもよいが、その場合は、図10中のTとRTの間のケーブルと、RとRRの間のケーブルと、SとRSの間のケーブルとのそれぞれを流れる電流の合計の電流を取得する。また、位相差特定部12は、前述したのと同様に、変圧器23の二次側回路のR相の電圧ERを取得する。 When the monitoring device 10 is installed in the equivalent circuit shown in FIG. 10, the zero-phase current measuring unit 11 measures the current flowing through the class B grounding resistance RB. The zero-phase current measuring unit 11 may acquire the zero-phase current from the power transmission unit of the trunk cable, but in that case, the cable between T and RT in FIG. 10 and between R and RR. Obtain the total current of the currents flowing through each of the cable and the cable between S and RS. Further, the phase difference specifying unit 12 acquires the voltage ER of the R phase of the secondary circuit of the transformer 23 in the same manner as described above.

図2に示した等価回路の商用電源20、及びEB(B種接地)は変圧器21、変圧器22、変圧器23に対して共通なので、商用電源20の星型巻線(変圧器21の一次側巻線と同じ)のR相電圧位相(変圧器23の二次側巻線のR相電圧位相と同じ)を基準とする。 その結果、変圧器21の二次回路のS相-R相間の電圧位相は基準より30度進んでおり、変圧器22の二次回路のS相-R相間の電圧位相は基準より60度進んでいる。 Since the commercial power supply 20 and EB (class B grounding) of the equivalent circuit shown in FIG. 2 are common to the transformer 21, the transformer 22, and the transformer 23, the star-shaped winding of the commercial power supply 20 (transformer 21). The R-phase voltage phase (same as the R-phase voltage phase of the secondary winding of the transformer 23) of the primary winding (same as the primary winding) is used as a reference. As a result, the voltage phase between the S phase and the R phase of the secondary circuit of the transformer 21 is advanced by 30 degrees from the reference, and the voltage phase between the S phase and the R phase of the secondary circuit of the transformer 22 is advanced by 60 degrees from the reference. I'm out.

したがって、監視装置10は、まず、回転処理部15が各電流の回転処理を行う。回転処理部15は、対象となる回路が変圧器22の二次側回路であれば、-30度の回転処理を行い、対象となる変圧器23の二次側回路であれば、-60度の回転処理を行う。 Therefore, in the monitoring device 10, first, the rotation processing unit 15 performs rotation processing of each current. If the target circuit is the secondary side circuit of the transformer 22, the rotation processing unit 15 performs rotation processing of -30 degrees, and if the target circuit is the secondary side circuit of the transformer 23, the rotation processing unit 15 performs -60 degrees. Rotation processing is performed.

図11は、回転処理部15による回転処理後の位相を示した図である。回転処理部15による回転処理の結果、S相-R相間の電圧の位相、つまり、R相の抵抗成分電流に対応するR相実軸が0度となる。したがって、R相の静電容量分に対応するR相虚軸が90度となり、T相の抵抗成分電流に対応するT相実軸が60度となり、T相の静電容量分に対応するT相虚軸が150度となる。 FIG. 11 is a diagram showing the phase after the rotation processing by the rotation processing unit 15. As a result of the rotation processing by the rotation processing unit 15, the phase of the voltage between the S phase and the R phase, that is, the R phase real axis corresponding to the resistance component current of the R phase becomes 0 degrees. Therefore, the R-phase imaginary axis corresponding to the capacitance of the R-phase is 90 degrees, the real axis of the T-phase corresponding to the resistance component current of the T-phase is 60 degrees, and the T corresponding to the capacitance of the T-phase is T. The phase imaginary axis is 150 degrees.

続いて、初期零相電流と零相電流について説明する。図12は、初期零相電流と零相電流を複素平面上に示した図である。 Next, the initial zero-phase current and the zero-phase current will be described. FIG. 12 is a diagram showing the initial zero-phase current and the zero-phase current on the complex plane.

初期値保持部13に記憶保持する初期零相電流値は、電力回路が健全な状態、つまり、図10に示した等価回路では、各相の絶縁抵抗、RR、RS、RTの値が十分に大きい場合の値であり、S相をB種接地しているため、R相の対地静電容量CRとT相の対地静電容量CTを合成した対地静電容量に起因して流れる電流となる。このため、初期値保持部13に記憶保持している初期零相電流値IRB0の偏角は、R相虚軸とT相虚軸の間、つまり、90度以上150度以下となる。 The initial zero-phase current value stored and stored in the initial value holding unit 13 is in a state where the power circuit is sound, that is, in the equivalent circuit shown in FIG. 10, the insulation resistance, RR, RS, and RT values of each phase are sufficiently sufficient. This is a value when the value is large, and since the S phase is grounded to class B, the current flows due to the ground capacitance obtained by combining the ground capacitance CR of the R phase and the ground capacitance CT of the T phase. .. Therefore, the declination of the initial zero-phase current value IRB0 stored and stored in the initial value holding unit 13 is between the R-phase imaginary axis and the T-phase imaginary axis, that is, 90 degrees or more and 150 degrees or less.

零相電流が変化した場合、例えば、図12に示すような零相電流IRB11が測定された場合、相特定部14は、零相電流IRB11と初期零相電流値IRB0の差である電流IR11を算出する。 When the zero-phase current changes, for example, when the zero-phase current IRB11 as shown in FIG. 12 is measured, the phase identification unit 14 determines the current IR11 which is the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0. calculate.

次に、相特定部14による回路に変化が生じた相の特定について説明する。相特定部14は、零相電流IRB11と初期零相電流値IRB0の差の電流である電流IR11の偏角が、予め定めたいずれの領域に含まれるかによって、回路に変化が生じた相の特定を行う。図13は、偏角の領域を示した図である。 Next, the phase identification unit 14 will explain the identification of the phase in which the circuit has changed. The phase specifying unit 14 is a phase in which the circuit has changed depending on which region contains the declination of the current IR11, which is the current of the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0. Make a specific. FIG. 13 is a diagram showing a region of declination.

図13に示すように、偏角の領域は、領域Aから領域Fまでの6領域がある。領域Aは、偏角が-90度(270度)よりも大きく0度以下の領域である。領域Aのうち、偏角が0度の部分は、R相実軸と一致する。 As shown in FIG. 13, there are six declination regions from region A to region F. The region A is a region having a declination angle of more than −90 degrees (270 degrees) and 0 degrees or less. The portion of the region A whose declination angle is 0 degrees coincides with the real axis of the R phase.

また、領域Bは、偏角が0度よりも大きく60度以下の領域である。領域Bのうち、偏角が60度の部分は、T相実軸と一致する。 Further, the region B is a region where the declination angle is larger than 0 degrees and 60 degrees or less. The portion of the region B having an argument of 60 degrees coincides with the T-phase real axis.

領域Cは、偏角が60度よりも大きく90度以下の領域である。領域Cのうち、偏角が90度の部分は、R相虚軸と一致する。 The region C is a region having a declination angle of more than 60 degrees and 90 degrees or less. The portion of the region C whose declination angle is 90 degrees coincides with the R-phase imaginary axis.

領域Dは、偏角が90度よりも大きく、初期値保持部13に保持している初期零相電流値IRB0の偏角以下の領域である。 The region D is a region in which the declination angle is larger than 90 degrees and is equal to or less than the declination angle of the initial zero-phase current value IRB0 held in the initial value holding unit 13.

領域Eは、偏角が初期値保持部13に保持している初期零相電流値IRB0の偏角よりも大きく、150度以下の領域である。領域Eのうち、偏角が150度の部分は、T相虚軸と一致する。 The region E is a region in which the declination is larger than the declination of the initial zero-phase current value IRB0 held in the initial value holding unit 13 and is 150 degrees or less. The portion of the region E having an argument of 150 degrees coincides with the T-phase imaginary axis.

領域Fは、偏角が150度よりも大きく、270度(-90度)以下の領域である。 The region F is a region having an argument larger than 150 degrees and 270 degrees (−90 degrees) or less.

零相電流IRB11と初期零相電流値IRB0の差の電流IR11の偏角が領域Aに含まれる場合には、電流解析部16は、差の電流IR11をR相の抵抗分電流と、初期零相電流値IRB0の偏角と同じ偏角の直線を軸としたR相及びT相の静電容量分電流とに分離する。 When the deviation angle of the current IR11 of the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0 is included in the region A, the current analysis unit 16 uses the difference current IR11 as the resistance component current of the R phase and the initial zero. The phase current value is separated into the R phase and T phase capacitance currents about a straight line with the same deviation angle as the deviation angle of IRB0.

また、相特定部14は、電流解析部16が分離した電流のうちR相の抵抗分電流が大きい場合には、R相の絶縁の劣化またはR相における地絡の発生と判定し、R相及びT相の静電容量分電流が大きい場合には、初期零相電流値IRB0が流れる原因であったR相とT相の静電容量の減少と判定する。なお、入出力部17には、相特定部14が特定した零相電流IRB11の増加の原因、例えば、R相の絶縁の劣化またはR相における地絡の発生のみでなく、相特定部14が特定しなかった原因、例えば、R相とT相の静電容量の減少についても画面表示するようにしてもよい。つまり、零相電流IRB11の増加の原因となる可能性を全て列記して表示するようにしてもよい。 Further, when the resistance component current of the R phase is large among the currents separated by the current analysis unit 16, the phase specifying unit 14 determines that the insulation of the R phase has deteriorated or a ground fault has occurred in the R phase, and the R phase has been determined. When the current is large by the capacitance of the T phase, it is determined that the capacitance of the R phase and the T phase, which was the cause of the initial zero-phase current value IRB0, is reduced. In the input / output unit 17, not only the cause of the increase in the zero-phase current IRB11 specified by the phase identification unit 14, for example, deterioration of the insulation of the R phase or the occurrence of a ground fault in the R phase, but also the phase identification unit 14 is provided. The cause not specified, for example, the decrease in the capacitance of the R phase and the T phase may be displayed on the screen. That is, all the possibilities that cause an increase in the zero-phase current IRB11 may be listed and displayed.

零相電流IRB11と初期零相電流値IRB0の差の電流IR11の偏角が領域Bに含まれる場合には、電流解析部16は、次の4通りに電流IR11を分離する。 When the declination of the current IR11, which is the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0, is included in the region B, the current analysis unit 16 separates the current IR11 in the following four ways.

電流解析部16は、まず、電流IR11を、図14に示すように、電流IR11Aと電流IR11Bとに分離する。電流IR11Aは、R相の抵抗分電流であり、電流IR11Bは、R相の静電容量分電流である。 First, the current analysis unit 16 separates the current IR11 into a current IR11A and a current IR11B as shown in FIG. The current IR11A is the resistance component current of the R phase, and the current IR11B is the capacitance component current of the R phase.

また、電流解析部16は、電流IR11を、図15に示すように、電流IR11Cと電流IR11Dとに分離する。電流IR11Cは、T相の抵抗分電流であり、電流IR11Dは、T相の静電容量分電流である。 Further, the current analysis unit 16 separates the current IR11 into the current IR11C and the current IR11D as shown in FIG. The current IR11C is a T-phase resistance component current, and the current IR11D is a T-phase capacitance component current.

また、電流解析部16は、電流IR11を、図16に示すように、電流IR11Eと電流IR11Fとに分離する。電流IR11Eは、T相の抵抗分電流であり、電流IR11Fは、初期零相電流値IRB0の偏角と同じ偏角の直線軸としたR相とT相の静電容量分電流である。 Further, the current analysis unit 16 separates the current IR11 into a current IR11E and a current IR11F as shown in FIG. The current IR11E is the resistance component current of the T phase, and the current IR11F is the capacitance component current of the R phase and the T phase having the same declination as the declination of the initial zero-phase current value IRB0.

さらに、電流解析部16は、電流IR11を、図17に示すように、電流IR11Gと電流IR11Hとに分離する。電流IR11Gは、R相の抵抗分電流であり、電流IR11Hは、T相の抵抗分電流である。 Further, the current analysis unit 16 separates the current IR11 into a current IR11G and a current IR11H as shown in FIG. The current IR11G is the resistance component current of the R phase, and the current IR11H is the resistance component current of the T phase.

相特定部14は、電流解析部16が分離した電流の値の大きさに基づいて、零相電流IRB11の増加の原因を特定する。具体的には、R相の抵抗分電流が大きい場合には、R相の絶縁の劣化またはR相における地絡の発生と判定し、R相の静電容量分電流が大きい場合には、R相の静電容量の増大と判定し、T相の抵抗分電流が大きい場合には、T相の絶縁の劣化またはT相における地絡の発生と判定し、T相の静電容量分電流が大きい場合には、T相の静電容量の増大と判定し、R相及びT相の静電容量分電流が大きい場合には、初期零相電流値IRB0が流れる原因であったR相とT相の静電容量の減少と判定する。また、R相の抵抗分電流とT相の抵抗分電流がともに大きい場合には、R相とT相の2相地絡と判定する。なお、入出力部17には、零相電流IRB11の増加の原因となる可能性を全て列記して表示するようにしてもよい。 The phase specifying unit 14 identifies the cause of the increase in the zero-phase current IRB 11 based on the magnitude of the value of the current separated by the current analysis unit 16. Specifically, when the resistance current of the R phase is large, it is determined that the insulation of the R phase has deteriorated or the ground fault has occurred in the R phase, and when the capacitance current of the R phase is large, R If it is determined that the capacitance of the phase has increased and the resistance component current of the T phase is large, it is determined that the insulation of the T phase has deteriorated or a ground fault has occurred in the T phase, and the capacitance component current of the T phase has increased. If it is large, it is determined that the capacitance of the T phase is increased, and if the current is large by the capacitance of the R phase and the T phase, the initial zero phase current value IRB0 is the cause of the flow of the R phase and T. Judged as a decrease in the capacitance of the phase. When both the resistance component current of the R phase and the resistance component current of the T phase are large, it is determined to be a two-phase ground fault of the R phase and the T phase. The input / output unit 17 may list and display all the possibilities that cause an increase in the zero-phase current IRB11.

零相電流IRB11と初期零相電流値IRB0の差の電流IR11の偏角が領域Cに含まれる場合には、電流解析部16は、差の電流IR11をT相の抵抗分電流とR相の静電容量分電流、T相の抵抗分電流とT相の静電容量分電流、T相の静電容量分電流とT相の静電容量分電流の3通りに分離する。相特定部14は、電流解析部16が分離した電流の値の大きさに基づいて、零相電流IRB11の増加の原因を特定する。 When the deviation angle of the current IR11 of the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0 is included in the region C, the current analysis unit 16 uses the difference current IR11 as the T-phase resistance component current and the R-phase. It is separated into three types: electrostatic capacity current, T-phase resistance current and T-phase electrostatic capacity current, and T-phase electrostatic capacity current and T-phase electrostatic capacity current. The phase specifying unit 14 identifies the cause of the increase in the zero-phase current IRB 11 based on the magnitude of the value of the current separated by the current analysis unit 16.

零相電流IRB11と初期零相電流値IRB0の差の電流IR11の偏角が領域Dに含まれる場合には、電流解析部16は、差の電流IR11をR相の静電容量分電流とR相及びT相の静電容量分電流、
R相及びT相の静電容量分電流とT相の静電容量分電流、R相の静電容量分電流とT相の静電容量分電流の3通りに分離する。相特定部14は、電流解析部16が分離した電流の値の大きさに基づいて、零相電流IRB11の増加の原因を特定する。
When the deviation angle of the current IR11 of the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0 is included in the region D, the current analysis unit 16 uses the difference current IR11 as the R-phase capacitance current and R. Phase and T-phase capacitance current,
It is separated into three types: R-phase and T-phase capacitance component currents and T-phase capacitance component currents, and R-phase capacitance component currents and T-phase capacitance component currents. The phase specifying unit 14 identifies the cause of the increase in the zero-phase current IRB 11 based on the magnitude of the value of the current separated by the current analysis unit 16.

零相電流IRB11と初期零相電流値IRB0の差の電流IR11の偏角が領域Eに含まれる場合には、電流解析部16は、差の電流IR11をR相の静電容量分電流とR相及びT相の静電容量分電流、
R相及びT相の静電容量分電流とT相の静電容量分電流、R相の静電容量分電流とT相の静電容量分電流の3通りに分離する。相特定部14は、電流解析部16が分離した電流の値の大きさに基づいて、零相電流IRB11の増加の原因を特定する。
When the deviation angle of the current IR11 of the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0 is included in the region E, the current analysis unit 16 uses the difference current IR11 as the R-phase capacitance current and R. Phase and T-phase capacitance current,
It is separated into three types: R-phase and T-phase capacitance component currents and T-phase capacitance component currents, and R-phase capacitance component currents and T-phase capacitance component currents. The phase specifying unit 14 identifies the cause of the increase in the zero-phase current IRB 11 based on the magnitude of the value of the current separated by the current analysis unit 16.

零相電流IRB11と初期零相電流値IRB0の差の電流IR11の偏角が領域Fに含まれる場合には、電流解析部16は、差の電流IR11をT相の静電容量分電流とR相及びT相の静電容量分電流とに分離する。相特定部14は、電流解析部16が分離した電流の値の大きさに基づいて、零相電流IRB11の増加の原因を特定する。 When the deviation angle of the current IR11 of the difference between the zero-phase current IRB11 and the initial zero-phase current value IRB0 is included in the region F, the current analysis unit 16 uses the difference current IR11 as the T-phase capacitance current and R. It is separated into the current for the capacitance of the phase and the T phase. The phase specifying unit 14 identifies the cause of the increase in the zero-phase current IRB 11 based on the magnitude of the value of the current separated by the current analysis unit 16.

なお、三相3線回路の場合も、監視装置10は、複素平面上に電流を表すような表示を入出力部17に行わせてもよい。 Even in the case of a three-phase three-wire circuit, the monitoring device 10 may cause the input / output unit 17 to display a current on a complex plane.

5.他回路による地絡の発生
ところで、実際には、対地静電容量が大きい場合、各相の対地静電容量が変化しなくとも、静電容量分電流が大きく変化し、零相電流IRBの増加の原因として特定される場合がある。これは、他の電力回路で地絡が発生した場合、例えば、監視装置10が変圧器21の二次側回路の一方を監視している際に変圧器21の他方の二次側回路に地絡が発生した場合に生じる現象である。
5. Occurrence of ground faults due to other circuits In reality, when the ground capacitance is large, even if the ground capacitance of each phase does not change, the current changes significantly by the capacitance and the zero-phase current IRB increases. May be identified as the cause of. This means that if a ground fault occurs in another power circuit, for example, when the monitoring device 10 is monitoring one of the secondary circuits of the transformer 21, it will be grounded in the other secondary circuit of the transformer 21. This is a phenomenon that occurs when entanglement occurs.

監視装置10が監視している電力回路とは他の電力回路に地絡が生じた場合、大地と監視装置10が監視している電力回路の対地静電容量を含む回路が形成されることがあり、この場合には、監視装置10は、静電容量分電流の変化を検出することとなる。 What is the power circuit monitored by the monitoring device 10? When a ground fault occurs in another power circuit, a circuit including the ground and the ground capacitance of the power circuit monitored by the monitoring device 10 may be formed. In this case, the monitoring device 10 will detect the change in the current by the capacitance.

このとき、監視装置10が監視している電力回路の対地静電容量が大きい場合、それ自体は変化しなくても、検出される電流は、初期零相電流値IRB0の偏角の軸に沿ったもの(初期零相電流値IRB0の偏角と同じ偏角またはその偏角と180度異なる偏角であらわされる電流)となる。 At this time, when the capacitance to ground of the power circuit monitored by the monitoring device 10 is large, the detected current is along the axis of the declination of the initial zero-phase current value IRB0 even if it does not change itself. (The current represented by the same declination as the declination of the initial zero-phase current value IRB0 or the declination 180 degrees different from the declination).

したがって、監視装置10は、入出力部17に零相電流の増加の原因となる可能性を全て列記して画面表示する際に、他の電力回路での地絡発生の可能性も列記し、零相電流の増加の原因の特定を容易に把握できるようにしてもよい。 Therefore, when the monitoring device 10 lists all the possibilities of causing an increase in the zero-phase current in the input / output unit 17 and displays it on the screen, it also lists the possibility of ground faults in other power circuits. It may be possible to easily identify the cause of the increase in the zero-phase current.

6.監視装置10の運用の流れ
次に、監視装置10の運用の流れについて説明する。図18は、監視装置10の運用の流れを示すフローチャートである。
6. Operation flow of the monitoring device 10 Next, the operation flow of the monitoring device 10 will be described. FIG. 18 is a flowchart showing the operation flow of the monitoring device 10.

(S101)
監視装置10の運用に際しては、まず、対象となる配線路の健全化試験を行う。この健全化試験では、配線路の絶縁が十分であることを確認する。
(S101)
When operating the monitoring device 10, first, a soundness test of the target wiring line is performed. In this sanitization test, it is confirmed that the insulation of the wiring line is sufficient.

(S102でNO、S103)
健全化試験に合格しなかった場合は、配線路の工事等を含む健全化処理を行う。
(NO in S102, S103)
If it does not pass the sanitization test, it will be sanitized including the construction of wiring lines.

(S102でYES、S104)
健全化試験に合格した場合は、続いて初期値の測定を行う。測定する値は、配線路の各相の対地静電容量と、所定の部分の電圧である。なお、対地静電容量の測定に代えて、監視装置10を動作させて初期零相電流値IRB0を測定するようにしてもよい。
(YES in S102, S104)
If the soundness test is passed, the initial value is subsequently measured. The values to be measured are the capacitance to ground of each phase of the wiring line and the voltage of a predetermined portion. Instead of measuring the capacitance to ground, the monitoring device 10 may be operated to measure the initial zero-phase current value IRB0.

(S105)
初期値の測定が終了すると、測定した値に基づいて、初期零相電流値IRB0を算出し、算出した値を監視装置10に入力する。なお、監視装置10を動作させて初期零相電流値IRB0を測定した場合には、この処理を省略することができる。
(S105)
When the measurement of the initial value is completed, the initial zero-phase current value IRB0 is calculated based on the measured value, and the calculated value is input to the monitoring device 10. When the monitoring device 10 is operated and the initial zero-phase current value IRB0 is measured, this process can be omitted.

(S106)
初期値の入力が終了すると、監視装置10を動作させ、運用を開始する。
(S106)
When the input of the initial value is completed, the monitoring device 10 is operated and the operation is started.

7.監視装置10の動作の流れ
次に、監視装置10の動作の流れを説明する。図19及び図20は、監視装置10の動作の流れを示すフローチャートである。
7. Operation flow of the monitoring device 10 Next, the operation flow of the monitoring device 10 will be described. 19 and 20 are flowcharts showing the operation flow of the monitoring device 10.

(S201)
監視装置10は、動作を開始すると、零相電流測定部11が測定した零相電流を取得する。
(S201)
When the monitoring device 10 starts operation, the monitoring device 10 acquires the zero-phase current measured by the zero-phase current measuring unit 11.

(S202)
続いて、監視装置10は、前述した方法による計算を行う。
(S202)
Subsequently, the monitoring device 10 performs the calculation by the method described above.

(S203)
そして、その計算結果を保存する。
(S203)
Then, the calculation result is saved.

(S204でNO)
零相電流を取得と、計算処理、計算結果の保存は、計算結果のうち所定の電流値が監視レベルを超過しない限り、定期的または連続して行う。
(NO in S204)
Acquisition of zero-phase current, calculation processing, and storage of calculation results are performed periodically or continuously as long as the predetermined current value of the calculation results does not exceed the monitoring level.

(S204でYES)
一方、計算結果のうち所定の電流値、例えば、各相の抵抗分電流値が監視レベルを超過した場合には、地絡が発生したと判定する。
(YES in S204)
On the other hand, when a predetermined current value in the calculation result, for example, the resistance current value of each phase exceeds the monitoring level, it is determined that a ground fault has occurred.

(S205)
監視装置10は、地絡が発生したと判定した場合に、遮断器を動作させるための遮断信号を出力する。
(S205)
When it is determined that a ground fault has occurred, the monitoring device 10 outputs a circuit breaker signal for operating the circuit breaker.

(S206)
続いて、警報信号を出力する。
(S206)
Subsequently, an alarm signal is output.

(S207)
そして、S203で保存した計算結果等を入出力部17に表示し、動作を終了する。
(S207)
Then, the calculation result and the like saved in S203 are displayed on the input / output unit 17, and the operation is terminated.

(S301でYES、S302)
また、地絡が発生していない状態で、管理者等により情報表示の要求があった場合には、S203で保存した計算結果を取得する。
(YES in S301, S302)
Further, when the administrator or the like requests information display in a state where no ground fault has occurred, the calculation result saved in S203 is acquired.

(S303)
そして、取得した計算結果等を入出力部17に表示する。
(S303)
Then, the acquired calculation result or the like is displayed on the input / output unit 17.

(S304でYES、S305)
入出力部17に表示した画面等は、所定時間の経過に伴って消去する。もちろん、管理者等の操作により、画面を消去しても良い。
(YES in S304, S305)
The screen or the like displayed on the input / output unit 17 is erased with the lapse of a predetermined time. Of course, the screen may be erased by an operation of an administrator or the like.

以上説明した構成と処理により、電力回路に絶縁の劣化や対地静電容量の変化が生じた場合や地絡が発生した場合に、これらの発生した相とその原因を容易に特定することが可能となる。 With the configuration and processing described above, it is possible to easily identify the phases in which they occur and their causes when insulation deteriorates in the power circuit, changes in capacitance to ground occur, or ground faults occur. Will be.

また、電力の送電部に設置する零相変流器(ZCT)が検出する地絡電流の大きさと地絡点の地絡電流の大きさに2倍以上の差を生じることがあるため、 零相電流そのままを検出する現行の地絡電流検出技術では地絡点の電流を正確に検出できないが、監視装置10では、地絡点の電流を正確に検出することができる。 In addition, there may be a difference of more than double between the magnitude of the ground fault current detected by the zero-phase current transformer (ZCT) installed in the power transmission section and the magnitude of the ground fault current at the ground fault point. The current ground fault current detection technique that detects the phase current as it is cannot accurately detect the current at the ground fault point, but the monitoring device 10 can accurately detect the current at the ground fault point.

なお、以上説明した監視装置10は、計測器、漏電遮断器(ELCB)、配線用遮断器(MCCB)、絶縁監視装置、地絡継電器等に組み込む形で、利用することも可能である。 The monitoring device 10 described above can also be used by incorporating it into a measuring instrument, an earth-leakage circuit breaker (ELCB), a molded case circuit breaker (MCCB), an insulation monitoring device, a ground relay, or the like.

<その他>
本発明は、以下の態様でも実施可能である。
<Others>
The present invention can also be implemented in the following aspects.

コンピュータを、電力回路の地絡電流を検出又は監視する装置として機能させるプログラムであって、前記監視装置は、零相電流取得部と位相差特定部と初期値保持部と相特定部とを備え、前記零相電流取得部は、前記電力回路の零相電流の大きさを取得可能に構成され、前記位相差特定部は、前記電力回路の所定部分の電圧に基づいて該電圧と前記零相電流取得部が取得した零相電流との位相差を特定可能に構成され、前記初期値保持部は、前記電力回路の初期状態における零相電流を複素数で表現した値を初期零相電流値として記憶保持し、前記相特定部は、前記零相電流取得部が取得した零相電流の大きさと前記位相差特定部が特定した位相差とに基づいて前記電力回路の零相電流を複素数で表現した値と前記初期値保持部が記憶保持する初期零相電流値との差を算出し、該算出した差の偏角が前記電力回路の種別に応じて定めた複数の範囲のいずれに属するかを判定し、該判定の結果に基づいて前記電力回路の零相電流の発生相とその原因を特定可能に構成される、プログラム。 A program that causes a computer to function as a device for detecting or monitoring a ground fault current in a power circuit, the monitoring device including a zero-phase current acquisition unit, a phase difference specifying unit, an initial value holding unit, and a phase specifying unit. The zero-phase current acquisition unit is configured to be able to acquire the magnitude of the zero-phase current of the power circuit, and the phase difference specifying unit has the voltage and the zero-phase based on the voltage of a predetermined portion of the power circuit. The initial value holding unit is configured so that the phase difference from the zero-phase current acquired by the current acquisition unit can be specified, and the initial value holding unit uses a value expressed by a complex number of the zero-phase current in the initial state of the power circuit as the initial zero-phase current value. The phase identification unit expresses the zero-phase current of the power circuit as a complex number based on the magnitude of the zero-phase current acquired by the zero-phase current acquisition unit and the phase difference specified by the phase difference identification unit. The difference between the calculated value and the initial zero-phase current value stored and held by the initial value holding unit is calculated, and which of the plurality of ranges determined according to the type of the power circuit belongs to the deviation angle of the calculated difference. A program configured to be able to identify the generated phase of the zero-phase current of the power circuit and its cause based on the result of the determination.

10 :監視装置
11 :零相電流測定部
12 :位相差特定部
13 :初期値保持部
14 :相特定部
15 :回転処理部
16 :電流解析部
17 :入出力部
20 :商用電源
21 :変圧器
22 :変圧器
23 :変圧器
24 :負荷
25 :負荷
26 :負荷
27 :負荷
28 :負荷
29 :負荷
IR1 :電流
IR2 :電流
IR3 :電流
IR4 :電流
IR5 :電流
IR10 :電流
IRB0 :初期零相電流値
IRB1 :零相電流
IRB2 :零相電流
IRB3 :零相電流
IRB4 :零相電流
IRB5 :零相電流
IRB11 :零相電流
10: Monitoring device 11: Zero-phase current measuring unit 12: Phase difference specifying unit 13: Initial value holding unit 14: Phase specifying unit 15: Rotation processing unit 16: Current analysis unit 17: Input / output unit 20: Commercial power supply 21: Transformation Instrument 22: Transformer 23: Transformer 24: Load 25: Load 26: Load 27: Load 28: Load 29: Load IR1: Current IR2: Current IR3: Current IR4: Current IR5: Current IR10: Current IRB0: Initial zero phase Current value IRB1: Zero-phase current IRB2: Zero-phase current IRB3: Zero-phase current IRB4: Zero-phase current IRB5: Zero-phase current IRB11: Zero-phase current

Claims (12)

電力回路の地絡電流を検出又は監視する装置であって、
零相電流測定部と位相差特定部と初期値保持部と相特定部とを備え、
前記零相電流測定部は、前記電力回路の零相電流の大きさを測定可能に構成され、
前記位相差特定部は、前記電力回路の所定部分の電圧に基づいて該電圧と前記零相電流測定部が測定した零相電流との位相差を特定可能に構成され、
前記初期値保持部は、前記電力回路の初期状態における零相電流を特定可能な値を初期値として記憶保持し、
前記相特定部は、前記零相電流測定部が測定した零相電流の大きさと前記位相差特定部が特定した位相差とに基づいて前記電力回路の零相電流を複素数で表現した値と、前記初期値保持部が記憶保持する初期値から特定される零相電流を複素数で表現した値との差を算出し、該算出した差の偏角が前記電力回路の種別に応じて定めた複数の範囲のいずれに属するかを判定し、該判定の結果に基づいて前記電力回路の零相電流の発生相とその原因を特定可能に構成される、
装置。
A device that detects or monitors the ground fault current of a power circuit.
It is equipped with a zero-phase current measuring unit, a phase difference specifying unit, an initial value holding unit, and a phase specifying unit.
The zero-phase current measuring unit is configured to be capable of measuring the magnitude of the zero-phase current of the power circuit.
The phase difference specifying unit is configured to be able to specify the phase difference between the voltage and the zero-phase current measured by the zero-phase current measuring unit based on the voltage of a predetermined portion of the power circuit.
The initial value holding unit stores and holds a value that can specify the zero-phase current in the initial state of the power circuit as an initial value.
The phase specifying unit includes a value expressed by a complex number of the zero phase current of the power circuit based on the magnitude of the zero phase current measured by the zero phase current measuring unit and the phase difference specified by the phase difference specifying unit. A plurality of values obtained by calculating the difference between the zero-phase current specified by the initial value holding unit and the value expressed by a complex number and having the deviation angle of the calculated difference determined according to the type of the power circuit. It is configured so that it can be determined which of the ranges of the above, and based on the result of the determination, the generated phase of the zero-phase current of the power circuit and its cause can be identified.
Device.
前記初期値保持部は、前記電力回路の絶縁性能が健全時の初期状態において前記零相電流測定部が測定した零相電流の大きさと前記位相差特定部が特定した位相差とを複素数で表現した値を初期値として記憶保持する請求項1に記載の装置。 The initial value holding unit expresses the magnitude of the zero-phase current measured by the zero-phase current measuring unit and the phase difference specified by the phase difference specifying unit in a complex number in the initial state when the insulation performance of the power circuit is sound. The apparatus according to claim 1, wherein the value obtained is stored and retained as an initial value. 前記電力回路は、高圧と、特別高圧と、超高圧とのいずれかに対応し、ケーブル又はバスダクトを含み、
前記初期値保持部は、前記ケーブル又は前記バスダクトの対地静電容量値または該対地静電容量値に基づいて算出される零相電流を複素数で表現した値を初期値として記憶保持する請求項1に記載の装置。
The power circuit corresponds to either high voltage, extra high voltage, or ultra high voltage and includes a cable or bus duct.
The initial value holding unit stores and holds as an initial value a value expressed by a complex number of a zero-phase current calculated based on the ground capacitance value of the cable or the bus duct or the ground capacitance value. The device described in.
前記電力回路は、低圧であり、地中に埋設されたケーブル又は屋内に敷設されたバスダクトを含み、
前記初期値保持部は、前記ケーブル又は前記バスダクトの対地静電容量値または該対地静電容量値に基づいて算出される零相電流を複素数で表現した値を初期値として記憶保持する請求項1に記載の装置。
The power circuit is low voltage and includes cables buried underground or bus ducts laid indoors.
The initial value holding unit stores and holds as an initial value a value expressed by a complex number of a zero-phase current calculated based on the ground capacitance value of the cable or the bus duct or the ground capacitance value. The device described in.
電流解析部を更に備え、
前記電流解析部は、前記相特定部が算出した差を、前記相特定部が特定した相の抵抗分電流値と静電容量電流値とに分離可能に構成される
請求項1乃至請求項4のいずれか1項に記載の装置。
Further equipped with a current analysis unit,
Claims 1 to 4 are configured such that the current analysis unit can separate the difference calculated by the phase identification unit into the resistance component current value and the capacitance current value of the phase specified by the phase identification unit. The device according to any one of the above items.
前記相特定部は、回転処理部を備え、
前記回転処理部は、前記差の偏角を前記電力回路の種別に応じた角度だけ回転可能に構成され、
前記相特定部は、前記回転処理部で回転された差の偏角に基づいて前記電力回路の零相電流の発生原因となる相を特定する
請求項1乃至請求項5のいずれか1項に記載の装置。
The phase specifying unit includes a rotation processing unit.
The rotation processing unit is configured to be able to rotate the declination angle of the difference by an angle corresponding to the type of the power circuit.
The phase specifying unit is according to any one of claims 1 to 5, which specifies a phase that causes a zero-phase current to be generated in the power circuit based on the declination of the difference rotated by the rotation processing unit. The device described.
前記電力回路は、低圧と、特別高圧と、超高圧とのいずれかの中性点接地の三相3線回路と、低圧の中性点接地の三相4線回路と、低圧又は高圧の非接地の三相3線回路とのいずれかであり、
前記回転処理部は、前記差の偏角を120度回転させる処理と前記差の偏角を240度回転させる処理とを行う
請求項6に記載の装置。
The power circuit includes a three-phase three-wire circuit with either low voltage, extra high voltage, or ultra-high voltage grounded neutral, a three-phase four-wire circuit grounded with low voltage neutral, and low-voltage or high-voltage non-voltage. It is one of the grounded three-phase three-wire circuits,
The apparatus according to claim 6, wherein the rotation processing unit performs a process of rotating the argument of the difference by 120 degrees and a process of rotating the argument of the difference by 240 degrees.
前記電力回路は、変圧器の低圧側が三角巻線で1相接地の三相3線回路であるとともに、前記変圧器の高圧側がスター型巻線であり、
前記回転処理部は、前記差の偏角を-30度または-60度回転させる処理を行う
請求項6に記載の装置。
The power circuit is a three-phase three-wire circuit with a triangular winding on the low-voltage side of the transformer and one-phase grounding, and a star-type winding on the high-voltage side of the transformer.
The device according to claim 6, wherein the rotation processing unit performs a process of rotating the declination angle of the difference by -30 degrees or -60 degrees.
前記電力回路は、変圧器の低圧側が三角巻線で1相接地の三相3線回路であるとともに、前記変圧器の高圧側が三角巻線であり、
前記回転処理部は、前記差の偏角を-60度または-120度回転させる処理を行う
請求項6に記載の装置。
The power circuit is a three-phase three-wire circuit with a triangular winding on the low-voltage side of the transformer and one-phase grounding, and a triangular winding on the high-voltage side of the transformer.
The device according to claim 6, wherein the rotation processing unit performs a process of rotating the declination angle of the difference by -60 degrees or −120 degrees.
入出力部をさらに備え、
前記入出力部は、前記相特定部が特定した相とその原因を1又は複数表示可能に構成される請求項1乃至請求項9のいずれか1項に記載の装置。
With more input / output
The device according to any one of claims 1 to 9, wherein the input / output unit is configured to be capable of displaying one or more of the phase specified by the phase specifying unit and its cause.
前記入出力部は、前記相特定部が特定した相に前記電力回路以外の電力回路から電流が流入した可能性を表示可能に構成される請求項10に記載の装置。 The device according to claim 10, wherein the input / output unit is configured to be able to display the possibility that a current has flowed into the phase specified by the phase specifying unit from a power circuit other than the power circuit. コンピュータを、電力回路の地絡電流を検出又は監視する装置として機能させるプログラムであって、
前記装置は、零相電流取得部と位相差特定部と初期値保持部と相特定部とを備え、
前記零相電流取得部は、前記電力回路の零相電流の大きさを取得可能に構成され、
前記位相差特定部は、前記電力回路の所定部分の電圧に基づいて該電圧と前記零相電流取得部が取得した零相電流との位相差を特定可能に構成され、
前記初期値保持部は、前記電力回路の初期状態における零相電流を特定可能な値を初期値として記憶保持し、
前記相特定部は、前記零相電流取得部が取得した零相電流の大きさと前記位相差特定部が特定した位相差とに基づいて前記電力回路の零相電流を複素数で表現した値と、前記初期値保持部が記憶保持する初期値から特定される零相電流を複素数で表現した値との差を算出し、該算出した差の偏角が前記電力回路の種別に応じて定めた複数の範囲のいずれに属するかを判定し、該判定の結果に基づいて前記電力回路の零相電流の発生相とその原因を特定可能に構成される、
プログラム。
A program that causes a computer to function as a device for detecting or monitoring the ground fault current of a power circuit.
The device includes a zero-phase current acquisition unit, a phase difference specifying unit, an initial value holding unit, and a phase specifying unit.
The zero-phase current acquisition unit is configured to be able to acquire the magnitude of the zero-phase current of the power circuit.
The phase difference specifying unit is configured to be able to specify the phase difference between the voltage and the zero-phase current acquired by the zero-phase current acquisition unit based on the voltage of a predetermined portion of the power circuit.
The initial value holding unit stores and holds a value that can specify the zero-phase current in the initial state of the power circuit as an initial value.
The phase specifying unit includes a value expressed by a complex number of the zero phase current of the power circuit based on the magnitude of the zero phase current acquired by the zero phase current acquiring unit and the phase difference specified by the phase difference specifying unit. A plurality of values obtained by calculating the difference between the zero-phase current specified by the initial value holding unit and the value expressed by a complex number and having the deviation angle of the calculated difference determined according to the type of the power circuit. It is configured so that it can be determined which of the ranges of the above, and based on the result of the determination, the generated phase of the zero-phase current of the power circuit and its cause can be identified.
program.
JP2019141054A 2019-04-09 2019-07-31 Equipment and programs Active JP7021748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/015612 WO2020209242A1 (en) 2019-04-09 2020-04-07 Device and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074312 2019-04-09
JP2019074312 2019-04-09

Publications (2)

Publication Number Publication Date
JP2020173242A JP2020173242A (en) 2020-10-22
JP7021748B2 true JP7021748B2 (en) 2022-02-17

Family

ID=72831096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019141054A Active JP7021748B2 (en) 2019-04-09 2019-07-31 Equipment and programs

Country Status (1)

Country Link
JP (1) JP7021748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022131086A1 (en) * 2020-12-14 2022-06-23

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038316A (en) 2007-04-23 2007-09-19 国电南京自动化股份有限公司 Circuit protection order component phase selectiing method using both end information
CN201740840U (en) 2010-08-13 2011-02-09 苏州市电通电力电子有限公司 Earth fault phase identification device in three-phase unearthed system
JP2014066563A (en) 2012-09-25 2014-04-17 Chugoku Electric Power Co Inc:The Ac control circuit insulation-monitoring device
JP2018004596A (en) 2016-07-08 2018-01-11 東北電力株式会社 Ground fault detector
JP2018515758A (en) 2015-04-30 2018-06-14 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Fault location detection and distance protection device and related methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676486B2 (en) * 1996-03-25 2005-07-27 株式会社キューヘン Ground fault detection device
JP3274616B2 (en) * 1997-02-07 2002-04-15 ニシム電子工業株式会社 Transmission line fault voltage detection method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038316A (en) 2007-04-23 2007-09-19 国电南京自动化股份有限公司 Circuit protection order component phase selectiing method using both end information
CN201740840U (en) 2010-08-13 2011-02-09 苏州市电通电力电子有限公司 Earth fault phase identification device in three-phase unearthed system
JP2014066563A (en) 2012-09-25 2014-04-17 Chugoku Electric Power Co Inc:The Ac control circuit insulation-monitoring device
JP2018515758A (en) 2015-04-30 2018-06-14 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Fault location detection and distance protection device and related methods
JP2018004596A (en) 2016-07-08 2018-01-11 東北電力株式会社 Ground fault detector

Also Published As

Publication number Publication date
JP2020173242A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US8823307B2 (en) System for detecting internal winding faults of a synchronous generator, computer program product and method
US7345488B2 (en) Apparatus and method for determining a faulted phase of a three-phase ungrounded power system
CN101251568B (en) System and method for determining location of phase-to-earth fault
AU2007324283C1 (en) Power supply monitoring system
KR102061929B1 (en) Method for detecting an open-phase condition of a transformer
EP1089081A2 (en) Method for computational determination of ground fault distance in an electrical power distribution network having a ring configuration
EP1992954A1 (en) Method for determining location of phase-to-earth fault
US9933487B2 (en) System and method for detecting, localizing, and quantifying stator winding faults in AC motors
US20150346266A1 (en) System and method for pulsed ground fault detection and localization
CN105467268B (en) Directional detection of ground faults in an electric power distribution network
WO2006124743A1 (en) Method and apparatus for improving operational reliability during a loss of a phase voltage
MX2014010385A (en) Leveraging inherent redundancy in a multifunction ied.
US20150124358A1 (en) Feeder power source providing open feeder detection for a network protector by shifted neutral
RU2719278C1 (en) Method of determining the point and distance to single-phase ground fault in 6-35 kv electric networks with isolated or compensated neutral line
Vieira et al. High impedance fault detection and location in distribution networks using smart meters
KR101986221B1 (en) 3-phase 4-wire electrical installation hot-line insulation resistance measurement method and device
JP4599120B2 (en) Electrical installation insulation monitoring device and method
JP7021748B2 (en) Equipment and programs
US20140309953A1 (en) Method for Locating of Single-Phase-to-Ground Faults of Ungrounded Power Distribution Systems
Baldwin et al. Analysis of fault locating signals for high-impedance grounded systems
JP5889992B2 (en) High voltage insulation monitoring method and high voltage insulation monitoring device
WO2020209242A1 (en) Device and program
Atsever et al. A faulty feeder selection method for distribution network with unintentional resonance in zero sequence circuit
Shen et al. Grounding transformer application, modeling, and simulation
Lavorin et al. Selecting directional elements for impedance-grounded distribution systems

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190801

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7021748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150