JP7020847B2 - Polyamide powder for selective sintering method - Google Patents

Polyamide powder for selective sintering method Download PDF

Info

Publication number
JP7020847B2
JP7020847B2 JP2017191545A JP2017191545A JP7020847B2 JP 7020847 B2 JP7020847 B2 JP 7020847B2 JP 2017191545 A JP2017191545 A JP 2017191545A JP 2017191545 A JP2017191545 A JP 2017191545A JP 7020847 B2 JP7020847 B2 JP 7020847B2
Authority
JP
Japan
Prior art keywords
polyamide
powder
polyamide powder
excess
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017191545A
Other languages
Japanese (ja)
Other versions
JP2018059093A (en
Inventor
ディークマン ヴォルフガング
グレーベ マイク
バウマン フランツ-エーリッヒ
モンスハイマー ズィルヴィア
キューティング ベアトリス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60080579&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7020847(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of JP2018059093A publication Critical patent/JP2018059093A/en
Application granted granted Critical
Publication of JP7020847B2 publication Critical patent/JP7020847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Polyamides (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

本発明は、粉末床溶融結合(Powder Bed Fusion)法において使用するためのポリアミド粉末、およびそれらの使用に関する。さらに、本発明は、成形体ならびにそれらの製造に関する。 The present invention relates to polyamide powders for use in the Powder Bed Fusion method, and their use. Furthermore, the present invention relates to molded articles and their manufacture.

生成的製造法(Generative Fertigungsverfahren)は、しばしば付加製造(Additive Manufacturing)またはラピッドプロトタイピングとも呼ばれ、三次元物体を迅速かつ安価に製造できるために使用される。この製造は、コンピュータ上のデータモデルに基づき直接、無形の(formlos)(液体、粉末等)または中間的な形状の(formneutral)(帯状、ワイヤ状)材料から、化学的および/または物理的なプロセスを用いて行われる。殊にポリマー粉末、例えばポリアミド粉末は、無形材料として適している。 Generative Fertigungsverfahren, often referred to as Additive Manufacturing or Rapid Prototyping, is used to produce 3D objects quickly and inexpensively. This production is chemically and / or physically made from intangible (formlos) (liquids, powders, etc.) or intermediately shaped (formneutral) (strips, wires) materials based on a data model on a computer. It is done using a process. In particular, polymer powders, such as polyamide powders, are suitable as intangible materials.

該粉末床溶融結合技術はとりわけ、直接金属レーザー焼結(DMLS)、電子ビーム溶融(EBM)、選択的加熱焼結(Selective Heat Sintering, SHS)、選択的レーザー溶融(SLM)、選択的レーザー焼結(SLS)、選択的吸収焼結(Selective Absorbing Sintering, SAS)および選択的抑制焼結(Selective Inhibition Sintering, SIS)を含む。 The powder bed melt bonding techniques include, among other things, direct metal laser sintering (DMLS), electron beam melting (EBM), selective heat sintering (SHS), selective laser melting (SLM), and selective laser baking. Includes SLS, Selective Absorbing Sintering (SAS) and Selective Inhibition Sintering (SIS).

該ポリアミド粉末を、その溶融温度を通常10~20K下回り行われる成形体製造の際に使用することにより、老化現象が生じうる。この際に、そのアミン末端基とカルボン酸末端基とが互いに反応し、かつそのポリアミド鎖の延長を引き起こす。該粉末の再度の加工はもはや不可能であるので、加工されなかった粉末は、交換されるべきである。 An aging phenomenon can occur by using the polyamide powder in the production of a molded product whose melting temperature is usually lower than that of 10 to 20 K. At this time, the amine terminal group and the carboxylic acid terminal group react with each other and cause the extension of the polyamide chain. The unprocessed powder should be replaced, as reprocessing of the powder is no longer possible.

造形過程中に、生じる物体は、未凝固粉末からなり、該物体を包囲する粉末床の内部に静止し、かつこの粉末により支えられる。その結果として、造形過程の終了後に、通例、かなりの量の未凝固粉末が存在するので、このいわゆる古い粉末は、可能な限り、さらなる造形過程のために使用することが望ましい。しかしながら、その未消費粉末は、造形過程中に長い期間にわたって、その溶融温度を僅かに下回る高温に暴露されているので、これらの環境条件により、該粉末が老化プロセスを受ける可能性があり、その際に熱的および/または熱酸化的に損傷されるという問題がある。そのうえ、連鎖延長、ひいては分子量増加が起こりうる。このことは、さらなる造形過程のために、この古い粉末を新しい粉末と混合しなければならないことをまねく。 During the modeling process, the resulting object consists of unsolidified powder, rests inside a powder bed surrounding the object, and is supported by this powder. As a result, after the end of the modeling process, there is usually a significant amount of unsolidified powder, so it is desirable to use this so-called old powder for further modeling processes wherever possible. However, since the unconsumed powder is exposed to high temperatures just below its melting temperature for a long period of time during the molding process, these environmental conditions can cause the powder to undergo an aging process. There is the problem of thermal and / or thermal oxidative damage. Moreover, chain extension and thus increased molecular weight can occur. This leads to the need to mix this old powder with the new powder for further shaping process.

欧州特許出願公開第2368696号明細書(EP 2368696 A1)(米国特許出願公開第2011/237731号明細書(US 2011/237731 A1))には、粉末床溶融結合法において使用できるポリアミド12粉末が記載されている。該粉末は、異なる2種のポリアミド12からなる混合物である。その第一ポリアミド12は、10%未満のISO 307による粘度数の増加を有し、それに対して、その第二ポリアミド12は、15%以上の粘度数の増加により特徴付けられている(それぞれ窒素雰囲気下で20時間;該ポリアミドはそれぞれ、それらの溶融温度を10℃下回る温度に暴露された)。この際に、第二ポリアミド12との該混合物中の該第一ポリアミド12の割合が10~30質量%である場合に好ましい。 European Patent Application Publication No. 2368696 (EP 2368696 A1) (US Patent Application Publication No. 2011/237731 (US 2011/237731 A1)) describes polyamide 12 powders that can be used in powder bed melt bonding methods. Has been done. The powder is a mixture of two different polyamides 12. The first polyamide 12 has an increase in viscosity number due to ISO 307 of less than 10%, whereas the second polyamide 12 is characterized by an increase in viscosity number of 15% or more (each nitrogen). 20 hours under atmosphere; each of the polyamides was exposed to a temperature 10 ° C. below their melting temperature). At this time, it is preferable that the ratio of the first polyamide 12 in the mixture with the second polyamide 12 is 10 to 30% by mass.

しかしながら、異なる性質の2種のポリアミドからなる粉末混合物の該使用は不利である。該第一ポリアミドが、該粘度の僅かな増加を示すのに対して、該第二ポリアミドが、該粘度の極めて高い増加を有する。これは、時間が経つにつれて極端な不均質性をまねき、最終的に双方の該ポリアミドの粘度増加が明らかにばらばらになる。その結果は、粉末床溶融結合法により製造された、不均質かつ異方性の機械的性質を有する成形体である。そのうえ、該成形体は、機械的な特性値、殊に破断伸びのばらつきがより大きくなりうる。 However, the use of a powder mixture consisting of two polyamides with different properties is disadvantageous. The first polyamide shows a slight increase in its viscosity, whereas the second polyamide has a very high increase in its viscosity. This leads to extreme inhomogeneity over time, and eventually the increase in viscosity of both polyamides is clearly disjointed. The result is a molded body with heterogeneous and anisotropic mechanical properties produced by the powder bed melt bonding method. Moreover, the compact may have greater variation in mechanical property values, especially breaking elongation.

欧州特許出願公開第2368696号明細書(EP 2368696 A1)(米国特許出願公開第2011/237731号明細書(US 2011/237731 A1))European Patent Application Publication No. 2368696 (EP 2368696 A1) (US Patent Application Publication No. 2011/237731 (US 2011/237731 A1)) 米国特許第5932687号明細書(US5932687)U.S. Pat. No. 5,923,687 (US5932687)

それゆえ、本発明の課題は、粉末床溶融結合法において使用することができ、その際に、ポリアミド粉末およびそれから製造された成形体が均質な性質を示す、ポリアミド粉末を提供することにあった。そのうえ、その加工されなかった粉末を再度利用できるべきである。これにより、コストを低下させることができ、かつ環境に優しくすることができる。得られる成形体は、一定かつ均質な機械的性質、例えば破断伸び、寸法精度、シャープなエッジおよびプロセスのロバストネスを有するべきである。 Therefore, an object of the present invention has been to provide a polyamide powder that can be used in a powder bed melt bonding method, wherein the polyamide powder and the molded product produced from the polyamide powder exhibit homogeneous properties. .. Moreover, the unprocessed powder should be available again. As a result, the cost can be reduced and the environment can be friendly. The resulting molding should have constant and homogeneous mechanical properties such as elongation at break, dimensional accuracy, sharp edges and process robustness.

それに応じて、先行技術の欠点を有しない、粉末床溶融結合法用のポリアミド粉末が見出された。該ポリアミドは、1.55~1.75のISO 307による溶液粘度を有する。そのうえ、該溶液粘度の増加は、該ポリアミド粉末が窒素雰囲気下で24h、その溶融温度を10℃下回る温度に暴露される際に、10~40%、好ましくは20%~30%である。 Accordingly, polyamide powders for powder bed melt bonding methods have been found that do not have the drawbacks of the prior art. The polyamide has a solution viscosity according to ISO 307 of 1.55 to 1.75. Moreover, the increase in solution viscosity is 10-40%, preferably 20% -30%, when the polyamide powder is exposed to a temperature below its melting temperature of 10 ° C. for 24 hours under a nitrogen atmosphere.

窒素雰囲気下で24hの、その溶融温度を10℃下回る温度は、成形体の製造のための造形空間中で支配的である実際の条件をシミュレートする試験条件である。これにより、異なる材料の比較可能性が保証される。 A temperature of 24 hours under a nitrogen atmosphere, 10 ° C. below its melting temperature, is a test condition that simulates the actual conditions predominant in the molding space for the manufacture of the compact. This guarantees the comparability of different materials.

前記課題は、24hの期間にわたって該溶液粘度の僅かでかつ一様な増加のみを示すポリアミド粉末によって解決された。それにより、該粉末は繰り返し再使用することができる。生じる成形体は、均質で等方性の機械的性質を示す。 The problem was solved with a polyamide powder showing only a slight and uniform increase in the viscosity of the solution over a period of 24 hours. Thereby, the powder can be reused repeatedly. The resulting molding exhibits homogeneous and isotropic mechanical properties.

該溶液粘度は、ISO 307に従い、次のパラメーターに基づいて2回測定で測定される:Schott AVS Pro、溶剤m-クレゾール酸性(m-Kresol sauer)、容量法、溶解温度100℃、溶解時間2h、ポリマー濃度5g/L、測定温度25℃。 The solution viscosity is measured in two measurements according to ISO 307 based on the following parameters: Schott AVS Pro, solvent m-Kresol sauer, volumetric method, dissolution temperature 100 ° C., dissolution time 2h , Polymer concentration 5 g / L, measurement temperature 25 ° C.

該溶液粘度の増加を測定するために、該粉末を、窒素下で24h、その溶融温度を10℃下回る温度に暴露する。それぞれの該粉末の溶液粘度は、引き続き、前記のように求められる。 To measure the increase in solution viscosity, the powder is exposed to nitrogen for 24 hours at a temperature below its melting temperature by 10 ° C. The solution viscosity of each of the powders is subsequently determined as described above.

該溶融温度は、DIN 53765に従い示差走査熱量測定法(DSC)により求められる。標準的には、1回目の昇温の溶融温度である。その加熱速度および冷却速度はそれぞれ20K/分である。該測定を、Perkin Elmar製のDSC 7を用いて行った。 The melting temperature is determined by differential scanning calorimetry (DSC) according to DIN 53765. Standardly, it is the melting temperature of the first temperature rise. The heating rate and the cooling rate are 20 K / min, respectively. The measurement was performed using DSC 7 manufactured by Perkin Elmar.

好ましくは、該ポリアミドは、過剰のアミン末端基または過剰のカルボン酸末端基のいずれかを有する。該過剰は、ジアミンまたはジカルボン酸、好ましくはジカルボン酸により達成することができる。そのうえ、モノアミンまたはモノカルボン酸、好ましくはモノカルボン酸をさらに添加することができる。該ポリアミド粉末の質量を基準として、該末端基の一方の過剰は、該末端基の他方に比べて、20~60mmol/kgである。 Preferably, the polyamide has either an excess amine end group or an excess carboxylic acid end group. The excess can be achieved with a diamine or a dicarboxylic acid, preferably a dicarboxylic acid. Moreover, monoamines or monocarboxylic acids, preferably monocarboxylic acids, can be further added. Based on the mass of the polyamide powder, the excess of one of the end groups is 20-60 mmol / kg as compared to the other of the end groups.

該ポリアミド粉末は、ポリアミド粉末1gあたり、好ましくは1000pL~30000pL、好ましくは3000pL~25000pLおよびより好ましくは5000pL~20000pLの液体を吸収する。 The polyamide powder absorbs a liquid of preferably 1000 pL to 30000 pL, preferably 3000 pL to 25000 pL, and more preferably 5000 pL to 20000 pL per 1 g of the polyamide powder.

該ポリアミド粉末のより良好な加工性を達成するために、添加剤を添加することが有利でありうる。このような添加剤は、例えば流動助剤であってよい。特に好ましくは、該ポリアミド粉末は、該ポリアミド粉末の全質量を基準として、0.05~5質量%、好ましくは0.1~1質量%の添加剤を有する。流動助剤は、例えば、フュームドシリカ、ステアリン酸塩または文献から公知の他の流動助剤、例えばリン酸三カルシウム、ケイ酸カルシウム、Al、MgO、MgCOまたはZnOであってよい。フュームドシリカは、例えば、Evonik Industries AG製のAerosil(登録商標)の商標名で供給されている。 It may be advantageous to add additives in order to achieve better processability of the polyamide powder. Such additives may be, for example, fluid aids. Particularly preferably, the polyamide powder has an additive of 0.05 to 5% by mass, preferably 0.1 to 1% by mass, based on the total mass of the polyamide powder. The flow aid may be, for example, fumed silica, stearate or other flow aid known from the literature, such as tricalcium phosphate, calcium silicate, Al2O3 , MgO , MgCO 3 or ZnO. .. Fumed silica is supplied, for example, under the trade name Aerosil® manufactured by Evonik Industries AG.

そのような一部の無機の流動助剤または他の添加剤に加え、またはそれらの代わりに、該ポリアミド粉末は、無機充填材も有することができる。そのような充填材(Fuellkoerper)の使用は、これらが結合の際の処理を通じてこれらの形状を本質的に維持し、ひいては該成形体の収縮を低下させるという利点を有する。そのうえ、充填材の該使用により、例えば、該物体の可塑性および物理的性質を変更することが可能である。そして、金属粉末を有する粉末材料の使用により、該物体の透明度および色だけなく、磁気的性質または電気的性質も調節することができる。フィラー(Fuellstoffe)もしくは充填材として、該粉末材料は、例えばガラス粒子、セラミック粒子または金属粒子を有することができる。典型的なフィラーは、例えば金属粒、アルミニウム粉末、スチールショットまたはガラスビーズである。特に好ましくは、充填材としてガラスビーズを有する粉末材料が使用される。好ましい実施変型において、本発明による粉末材料は、該ポリアミド粉末の全質量を基準として、1~70質量%、好ましくは5~50質量%および極めて特に好ましくは10~40質量%の充填材を有する。 In addition to, or in lieu of, some such inorganic fluidizing aids or other additives, the polyamide powder can also have an inorganic filler. The use of such fillers has the advantage that they essentially maintain their shape throughout the process during bonding and thus reduce the shrinkage of the part. Moreover, the use of the filler can, for example, change the plasticity and physical properties of the object. And by using a powder material having a metal powder, it is possible to adjust not only the transparency and color of the object, but also the magnetic or electrical properties. As a filler (Fuellstoffe) or filler, the powder material can have, for example, glass particles, ceramic particles or metal particles. Typical fillers are, for example, metal grains, aluminum powder, steel shots or glass beads. Particularly preferably, a powder material having glass beads is used as a filler. In a preferred embodiment, the powder material according to the invention has 1 to 70% by weight, preferably 5 to 50% by weight, and very particularly preferably 10 to 40% by weight, based on the total mass of the polyamide powder. ..

該ポリアミド粉末の適したポリアミドは、常用かつ公知のポリアミドであってよい。ポリアミドは、ホモポリアミドおよびコポリアミドを含む。適したポリアミドまたはコポリアミドは、ポリアミド6、11、12、1013、1012、66、46、613、106、11/1010、1212および12/1012から選択されている。好ましいポリアミドは、ポリアミド11、12、1013、1012、66、613、11/1010、1212および12/1012から選択されており、特に好ましくはポリアミド11または12および極めて特に好ましくはポリアミド12である。 A suitable polyamide for the polyamide powder may be a commonly used and known polyamide. Polyamides include homopolyamides and copolyamides. Suitable polyamides or copolyamides are selected from polyamides 6, 11, 12, 1013, 1012, 66, 46, 613, 106, 11/1010, 1212 and 12/1012. Preferred polyamides are selected from polyamides 11, 12, 1013, 1012, 66, 613, 11/1010, 1212 and 12/1012, particularly preferably polyamide 11 or 12 and very particularly preferably polyamide 12.

通常、焼結法において使用されるポリアミド粉末は、できるだけ小さいBET表面積を有するべきである。先行技術には、その値が例えば7m/g未満を示すべきであることが開示されている。本発明によるポリアミド粉末は、DIN ISO 9277により測定して、少なくとも1m/g、好ましくは少なくとも2.5m/g、特に好ましくは少なくとも5.5m/g、極めて特に好ましくは少なくとも7m/gおよび殊に7.5m/g~30m/gのBET表面積を有するべきである。特に好ましい実施態様には、少なくとも7m/g、好ましくは7.5m/g~30m/gのBET表面積を有するポリアミドが含まれる。該測定は、Micromeritics TriStar 3000装置を用い、窒素ガス吸着、非連続の容量法、約0.05~約0.20の相対圧P/P0での7測定点、He(99.996%)を用いる死容積の校正、真空下で23℃で1h+80℃で16hの試料調製、脱ガスされた試料を基準とした比表面積で行い、評価をマルチポイント測定により行った。 Generally, the polyamide powder used in the sintering method should have as small a BET surface area as possible. The prior art discloses that the value should indicate, for example, less than 7 m 2 / g. The polyamide powder according to the invention is at least 1 m 2 / g, preferably at least 2.5 m 2 / g, particularly preferably at least 5.5 m 2 / g, very particularly preferably at least 7 m 2 / g, as measured by DIN ISO 9277. It should have a BET surface area of g and in particular 7.5 m 2 / g to 30 m 2 / g. Particularly preferred embodiments include polyamides having a BET surface area of at least 7 m 2 / g, preferably 7.5 m 2 / g to 30 m 2 / g. The measurement was performed using a Micromeritics TriStar 3000 device, nitrogen gas adsorption, discontinuous volumetric method, 7 measurement points at a relative pressure P / P0 of about 0.05 to about 0.20, He (99.996%). The dead volume to be used was calibrated, the sample was prepared at 23 ° C. for 1h + 80 ° C. for 16h under vacuum, and the specific surface area was measured based on the degassed sample, and the evaluation was performed by multipoint measurement.

好ましい実施態様において、該ポリアミド粉末は、少なくとも0.02cm/gの累積細孔容積分布および少なくとも2.8m/gのBET表面積、好ましくは少なくとも0.04cm/gの累積細孔容積分布および少なくとも5.8m/gのBET表面積、より好ましくは少なくとも0.05cm/gの累積細孔容積分布および少なくとも10m/gのBET表面積および特に好ましくは少なくとも0.07cm/gの累積細孔容積分布および少なくとも13m/gのBET表面積を有する。 In a preferred embodiment, the polyamide powder has a cumulative pore volume distribution of at least 0.02 cm 3 / g and a BET surface area of at least 2.8 m 2 / g, preferably a cumulative pore volume distribution of at least 0.04 cm 3 / g. And at least 5.8 m 2 / g BET surface area, more preferably at least 0.05 cm 3 / g cumulative pore volume distribution and at least 10 m 2 / g BET surface area and particularly preferably at least 0.07 cm 3 / g cumulative. It has a pore volume distribution and a BET surface area of at least 13 m 2 / g.

該ポリアミド粉末の質量平均粒径d50は、レーザー回折により測定して、好ましくは100μm以下、好ましくは10μm~80μmであるべきである(Malvern Mastersizer 3000;その湿式分散は水中に湿式分散して行った、屈折率および青色光値は1.52で固定;ミー理論による評価;乾式測定、粉末20~40gをScirocco乾式分散ユニットにより計量供給;振動トラフ(Ruettelrinne)の供給レート70%、分散空気圧3bar;試料の測定時間5秒(5000の個別測定))。このような直径を有するポリマーは、ポリマー粉末とも呼ばれる。 The mass average particle size d50 of the polyamide powder should be preferably 100 μm or less, preferably 10 μm to 80 μm as measured by laser diffraction (Malvern Mastersizer 3000; its wet dispersion is wet-dispersed in water). In addition, the refractive index and blue light value are fixed at 1.52; evaluation by Me theory; dry measurement, 20-40 g of powder is measured and supplied by Scirocco dry dispersion unit; supply rate of vibration trough (Ruettelrinne) is 70%, dispersed air pressure is 3 bar. Sample measurement time 5 seconds (5000 individual measurements). Polymers with such diameters are also referred to as polymer powders.

10.48μm未満の粒径を有するポリアミド粉末(超微粒子)が少量で存在することが有利である。超微粒子の割合は、ポリアミド粉末の全質量を基準としてそれぞれ、3質量%未満、好ましくは1.5質量%未満および特に好ましくは0.75質量%未満であるべきである。これにより、そのダスト発生が低下し、かつその加工性(プロセス性)の改善が可能になる。超微粒子の分離は、例えば分級により、行うことができる。 It is advantageous that a small amount of polyamide powder (ultrafine particles) having a particle size of less than 10.48 μm is present. The proportion of ultrafine particles should be less than 3% by weight, preferably less than 1.5% by weight and particularly preferably less than 0.75% by weight, based on the total mass of the polyamide powder. As a result, the dust generation is reduced and the processability (processability) can be improved. Separation of ultrafine particles can be performed, for example, by classification.

さらに、かさ密度が、DIN 53466に従い測定して300g/L~600g/Lであるポリアミド粉末が好ましい。 Further, polyamide powder having a bulk density of 300 g / L to 600 g / L as measured according to DIN 53466 is preferable.

さらに、35mN/m以下、好ましくは25mN/m~32mN/mの表面エネルギーを有するポリアミドが、好ましいポリアミドである。該表面エネルギーは、ウォッシュバーン(Washburn)式の使用による毛管上昇法およびオーウェンス(Owens)、ウェント(Wendt)、ラベル(Rabel)およびケルブレ(Kaelble)による評価法に従って接触角測定により求められる。このようなポリアミド粉末は、可能な限り均一な流動性を有し、このことが該成形体の高い寸法安定性をもたらす。 Further, a polyamide having a surface energy of 35 mN / m or less, preferably 25 mN / m to 32 mN / m, is a preferable polyamide. The surface energy is determined by contact angle measurement according to the capillary ascending method using the Washburn formula and the evaluation method by Owens, Wendt, Rabel and Kaelble. Such polyamide powders have as uniform fluidity as possible, which results in high dimensional stability of the molding.

該ポリアミド粉末およびその組成物は、製造された粉末の粉砕によるかまたは沈殿プロセス(再沈殿)により、得ることができ、その際に該沈殿プロセスが好ましい。 The polyamide powder and its composition can be obtained by grinding the produced powder or by a precipitation process (reprecipitation), wherein the precipitation process is preferred.

該沈殿プロセスにおいて、該ポリアミドは、高められた温度の作用下で少なくとも部分的に溶解され、引き続き、温度低下により沈殿析出される。ポリアミドのための適した溶剤は、例えばアルコール、例えばエタノールである。米国特許第5932687号明細書(US5932687)には、例えば、適したプロセス条件が挙げられている。その所望の性質の調節のために、得られた懸濁液を、その沈殿析出後に10分~180分、その沈殿温度を2~4K上回る温度で放置することが有利である。 In the precipitation process, the polyamide is at least partially dissolved under the action of increased temperature and subsequently precipitated and precipitated by lowering the temperature. Suitable solvents for polyamides are, for example, alcohols, such as ethanol. U.S. Pat. No. 5,923,687 (US5932687) lists, for example, suitable process conditions. In order to adjust the desired properties, it is advantageous to leave the resulting suspension for 10 to 180 minutes after the precipitation and precipitation, at a temperature 2 to 4 K above the precipitation temperature.

本発明のさらなる対象は、前記のポリアミド粉末の製造方法である。該方法は、モノマーのポリアミドへの重合および/または重縮合(工程a)および粉砕または再沈殿による粉末製造(工程b)を含む。工程aにおいて、アミン末端基過剰の達成のためのジアミン、またはカルボン酸末端基過剰の達成のためのジカルボン酸のいずれかが、調節剤として添加される。該ジアミンもしくはジカルボン酸は、好ましくは、該末端基の一方の過剰が、該末端基の他方に対して、20~60mmol/kg(該ポリアミド粉末の質量を基準とする)である割合で添加される。付加的に、モノアミンまたはモノカルボン酸を使用することができる。 A further object of the present invention is the method for producing the above-mentioned polyamide powder. The method comprises polymerization and / or polycondensation of the monomer on polyamide (step a) and powder production by grinding or reprecipitation (step b). In step a, either a diamine for achieving an excess of amine end groups or a dicarboxylic acid for achieving an excess of carboxylic acid end groups is added as a modifier. The diamine or dicarboxylic acid is preferably added at a rate of 20-60 mmol / kg (based on the mass of the polyamide powder) to the other of the terminal groups, preferably in excess of one of the terminal groups. To. Additionally, monoamines or monocarboxylic acids can be used.

適したモノマーは、例えば、該ポリアミド6、11、12、1013、1012、66、46、613、106、11/1010、1212および12/1012の製造に適しているモノマーである。 Suitable monomers are, for example, monomers suitable for the production of the polyamides 6, 11, 12, 1013, 1012, 66, 46, 613, 106, 11/1010, 1212 and 12/1012.

該過剰の末端基に調節するために適したモノアミンおよびモノカルボン酸は、好ましくは、該ポリアミドのモノマーと同じ数の炭素原子を有する。例えば、ブチルアミン、ヘキサンアミン、デカンアミンおよびドデカンアミンならびにカプロン酸、カプリン酸、ラウリン酸、トリデカン酸が挙げられる。 Suitable monoamines and monocarboxylic acids for adjusting to the excess terminal groups preferably have the same number of carbon atoms as the monomers of the polyamide. For example, butylamine, hexaneamine, decaneamine and dodecaneamine and caproic acid, caproic acid, lauric acid, tridecanoic acid can be mentioned.

該過剰の末端基に調節するために適したジアミンおよびジカルボン酸は、該ポリアミドのモノマーと同じかまたは異なっていてよい。例示的に、テトラメチレンジアミン、ヘキサメチレンジアミン、デカンジアミン、ドデカンジアミン、アジピン酸、セバシン酸、ドデカン酸、ブラシル酸が挙げられる。該ジアミンもしくはジカルボン酸が、該ポリアミドのモノマーと同じ数の炭素原子を有することが好ましい。 The diamine and dicarboxylic acid suitable for adjusting to the excess terminal group may be the same as or different from the monomer of the polyamide. Exemplary examples include tetramethylenediamine, hexamethylenediamine, decanediamine, dodecanediamine, adipic acid, sebacic acid, dodecanoic acid, and brassic acid. It is preferred that the diamine or dicarboxylic acid has the same number of carbon atoms as the monomer of the polyamide.

本発明の一実施態様において、該ポリアミドは、共沈により得ることができる。このためには、工程a)において、モノマー単位中に炭素原子4~14個を有するラクタムの重合によるかまたはモノマー単位中に炭素原子4~14個を有する対応するω-アミノカルボン酸の重縮合により製造されたAB型の少なくとも1種のポリアミドと、モノマー単位中にそれぞれ炭素原子4~14個を有するジアミンおよびジカルボン酸の重縮合により製造されたAABB型の少なくとも1種のポリアミドとが得られる。この際に、該粉末は、工程b)において、AB型の少なくとも1種の該ポリアミドおよびAABB型の少なくとも1種の該ポリアミドの共同沈殿により得られる。 In one embodiment of the invention, the polyamide can be obtained by coprecipitation. To do this, in step a), polycondensation of the corresponding ω-aminocarboxylic acid having 4-14 carbon atoms in the monomer unit or by polymerization of lactam having 4-14 carbon atoms in the monomer unit. At least one type AB polyamide produced by the above and at least one type AABB polyamide produced by polycondensation of a diamine and a dicarboxylic acid having 4 to 14 carbon atoms in each monomer unit can be obtained. .. At this time, the powder is obtained by co-precipitation of at least one AB type polyamide and at least one ABB type polyamide in step b).

本発明のさらなる対象は、成形体を製造するための粉末床溶融結合法における本発明によるポリアミド粉末の使用である。 A further object of the present invention is the use of the polyamide powder according to the present invention in the powder bed melt bonding method for producing a molded body.

さらに、少なくとも部分的に本発明によるポリアミド粉末から得られる成形体は、本発明のさらなる対象である。さらにまた、本発明によるポリアミド粉末が使用される、粉末床溶融結合法による成形体の製造方法も、同様に本発明の対象である。 Furthermore, moldings obtained, at least in part, from the polyamide powders according to the invention are further objects of the invention. Furthermore, a method for producing a molded product by a powder bed melt-bonding method, in which the polyamide powder according to the present invention is used, is also the subject of the present invention.

例1
ポリアミド12を製造した。モノマーとしてのラウロラクタムに加え、ドデカン酸を使用して、ジカルボン酸末端基の過剰を得た。該粉末を、沈殿プロセスにより得た。
Example 1
Polyamide 12 was produced. In addition to laurolactam as a monomer, dodecanoic acid was used to obtain an excess of dicarboxylic acid end groups. The powder was obtained by a precipitation process.

例2
ポリアミド12を製造した。モノマーとしてのラウロラクタムに加え、ドデカン酸を使用して、ジカルボン酸末端基の過剰を得た。該粉末を、沈殿プロセスにより得た。
Example 2
Polyamide 12 was produced. In addition to laurolactam as a monomer, dodecanoic acid was used to obtain an excess of dicarboxylic acid end groups. The powder was obtained by a precipitation process.

得られた粉末の溶融温度および溶液粘度を測定した。引き続き、該粉末を、窒素下で24h、その溶融温度を10℃下回る温度に暴露し、その溶液粘度を連続的に求めた。
例1によるポリアミドの溶融温度:185℃
例2によるポリアミドの溶融温度:185℃
老化のシミュレーションのための温度:175℃

Figure 0007020847000001
The melting temperature and solution viscosity of the obtained powder were measured. Subsequently, the powder was exposed to a temperature below the melting temperature of 10 ° C. for 24 hours under nitrogen, and the viscosity of the solution was continuously determined.
Melting temperature of polyamide according to Example 1: 185 ° C
Melting temperature of polyamide according to Example 2: 185 ° C
Temperature for aging simulation: 175 ° C
Figure 0007020847000001

Claims (12)

粉末床溶融結合法用のポリアミド粉末であって、該ポリアミドが、1.55~1.75のISO 307による溶液粘度と、該ポリアミドが窒素雰囲気下で24h、その溶融温度を10℃下回る温度に暴露される際に10%~40%の該溶液粘度の増加とを有し、かつ、ウォッシュバーン式の使用による毛管上昇法およびオーウェンス、ウェント、ラベルおよびケルブレによる評価法に従って接触角測定により求められる、該粉末の表面エネルギーが、35mN/m以下であり、かつ該ポリアミド中で、過剰のカルボン酸末端基が存在し、該過剰が20~60mmol/kgポリアミド粉末であり、かつ該ポリアミドが、ポリアミド6、11、12、1013、1012、66、46、613、106、11/1010、1212および12/1012から選択されていることを特徴とする、ポリアミド粉末。 Polyamide powder for powder bed melt bonding method, the polyamide has a solution viscosity of 1.55 to 1.75 according to ISO 307, and the polyamide has a temperature of 24 hours under a nitrogen atmosphere, which is 10 ° C lower than the melting temperature. It has a 10% -40% increase in the solution viscosity upon exposure and is determined by contact angle measurement according to the capillary ascending method by use of the washburn method and the evaluation method by Owens, Went, Label and Kerble. The surface energy of the powder is 35 mN / m or less , the excess carboxylic acid terminal group is present in the polyamide, the excess is 20 to 60 mmol / kg polyamide powder, and the polyamide is. , Polyamide 6, 11, 12, 1013, 1012, 66, 46, 613, 106, 11/1010, 1212 and 12/1012 . 該過剰がモノカルボン酸により達成されることを特徴とする、請求項記載のポリアミド粉末。 The polyamide powder according to claim 1 , wherein the excess is achieved by a monocarboxylic acid. 該ポリアミド粉末のBET表面積が、DIN ISO 9277に従い測定して、少なくとも1m/gを有することを特徴とする、請求項1または2記載のポリアミド粉末。 The polyamide powder according to claim 1 or 2 , wherein the BET surface area of the polyamide powder has at least 1 m 2 / g as measured according to DIN ISO 9277. 該ポリアミド粉末の質量平均粒径d50が、レーザー回折により測定して、100μm以下であることを特徴とする、請求項1からまでのいずれか1項記載のポリアミド粉末。 The polyamide powder according to any one of claims 1 to 3 , wherein the polyamide powder has a mass average particle size d 50 of 100 μm or less as measured by laser diffraction. かさ密度が、DIN 53466に測定して300g/L~600g/Lであることを特徴とする、請求項1からまでのいずれか1項記載のポリアミド粉末。 The polyamide powder according to any one of claims 1 to 4 , wherein the bulk density is 300 g / L to 600 g / L as measured by DIN 53466. ウォッシュバーン式の使用による毛管上昇法およびオーウェンス、ウェント、ラベルおよびケルブレによる評価法に従って接触角測定により求められる、該粉末の表面エネルギーが25mN/m~32mN/mであることを特徴とする、請求項1からまでのいずれか1項記載のポリアミド粉末。 The powder has a surface energy of 25 mN / m to 32 mN / m, which is determined by contact angle measurement according to the capillary ascending method by using the washburn method and the evaluation method by Owens, Went, Label and Kerble. The polyamide powder according to any one of claims 1 to 5 . 該ポリアミド粉末が、沈殿プロセスにより得られることを特徴とする、請求項1からまでのいずれか1項記載のポリアミド粉末。 The polyamide powder according to any one of claims 1 to 6 , wherein the polyamide powder is obtained by a precipitation process. 該ポリアミドが、ポリアミド6、11、12、1013、1012、66、46、613、106および12/1012の群から選択されていることを特徴とする、請求項1からまでのいずれか1項記載のポリアミド粉末。 One of claims 1 to 7 , wherein the polyamide is selected from the group of polyamides 6, 11, 12, 1013, 1012, 66, 46, 613, 106 and 12/1012. The polyamide powder described. a)モノマーを重合および/または重縮合してポリアミドを得る工程、
b)粉砕または再沈殿により粉末を製造する工程
を含む、請求項1からまでのいずれか1項記載のポリアミド粉末を製造する方法であって、
工程a)において、カルボン酸末端基過剰の達成のためのモノカルボン酸を、調節剤として添加することを特徴とする、ポリアミド粉末の製造方法。
a) Step of polymerizing and / or polycondensing the monomer to obtain a polyamide,
b) The method for producing a polyamide powder according to any one of claims 1 to 8 , which comprises a step of producing a powder by pulverization or reprecipitation.
A method for producing a polyamide powder, which comprises adding a monocarboxylic acid for achieving an excess of carboxylic acid terminal groups as a modifier in step a).
成形体を製造するための粉末床溶融結合法における、請求項1からまでのいずれか1項記載のポリアミド粉末の使用。 Use of the polyamide powder according to any one of claims 1 to 8 in a powder bed melt bonding method for producing a molded product. 請求項1からまでのいずれか1項記載のポリアミド粉末から少なくとも部分的に得られる、成形体。 A molded product obtained at least partially from the polyamide powder according to any one of claims 1 to 8 . 粉末床溶融結合法により成形体を製造する方法であって、請求項1からまでのいずれか1項記載のポリアミド粉末を使用することを特徴とする、成形体の製造方法。 A method for producing a molded product by a powder bed melt-bonding method, which comprises using the polyamide powder according to any one of claims 1 to 8 .
JP2017191545A 2016-09-30 2017-09-29 Polyamide powder for selective sintering method Active JP7020847B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016219082.2 2016-09-30
DE102016219082 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020150057A Division JP2020204040A (en) 2016-09-30 2020-09-07 Polyamide powder for selective sintering methods

Publications (2)

Publication Number Publication Date
JP2018059093A JP2018059093A (en) 2018-04-12
JP7020847B2 true JP7020847B2 (en) 2022-02-16

Family

ID=60080579

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017191545A Active JP7020847B2 (en) 2016-09-30 2017-09-29 Polyamide powder for selective sintering method
JP2020150057A Pending JP2020204040A (en) 2016-09-30 2020-09-07 Polyamide powder for selective sintering methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020150057A Pending JP2020204040A (en) 2016-09-30 2020-09-07 Polyamide powder for selective sintering methods

Country Status (6)

Country Link
US (1) US20180094103A1 (en)
EP (1) EP3301124B1 (en)
JP (2) JP7020847B2 (en)
CN (2) CN107880285A (en)
ES (1) ES2950359T3 (en)
PL (1) PL3301124T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219080A1 (en) 2016-09-30 2018-04-05 Evonik Degussa Gmbh Polyamide powder for selective sintering
EP3594272A1 (en) * 2018-07-10 2020-01-15 Basf Se Method for the continuous production of a polyamide powder
EP3608349A1 (en) 2018-08-06 2020-02-12 Rhodia Operations Particulate polyamide composition for powder bed fusion applications and methods for the preparation thereof
JP7338316B2 (en) 2018-08-31 2023-09-05 株式会社リコー RESIN POWDER AND METHOD FOR MANUFACTURING 3D MODEL
WO2020149840A1 (en) * 2019-01-16 2020-07-23 Hewlett-Packard Development Company, L.P. Three-dimensional printing
WO2024043029A1 (en) * 2022-08-23 2024-02-29 東レ株式会社 Polymer particles and polymer particle composition for producing three-dimensional shaped article, production method for polymer particles, and three-dimensional shaped article and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137465A (en) 2002-10-17 2004-05-13 Degussa Ag Sintering powder for selective laser-sintering, method for producing the same, method for producing formed product and formed product
JP2006104470A (en) 2004-10-01 2006-04-20 Degussa Ag Improved recyclable powder, method for producing the same and use of powder in production of three-dimensional article

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19708946A1 (en) 1997-03-05 1998-09-10 Huels Chemische Werke Ag Production of polyamide powder with narrow particle size distribution and low porosity
DE10330590A1 (en) * 2002-10-17 2004-04-29 Degussa Ag Sinter powder for selective laser-sintering, useful for the production of molded articles, comprises a polyamide having an excess of carboxylic end groups
DE102004024440B4 (en) * 2004-05-14 2020-06-25 Evonik Operations Gmbh Polymer powder with polyamide, use in a shaping process and molded body made from this polymer powder
DE102005007034A1 (en) 2005-02-15 2006-08-17 Degussa Ag Process for the production of molded parts while increasing the melt stiffness
DE102005053071A1 (en) 2005-11-04 2007-05-16 Degussa Process for the preparation of ultrafine powders based on polymaiden, ultrafine polyamide powder and their use
DE102008000755B4 (en) 2008-03-19 2019-12-12 Evonik Degussa Gmbh Copolyamide powder and its preparation, use of copolyamide powder in a molding process and molding, made from this copolyamide powder
EP2368696B2 (en) 2010-03-25 2018-07-18 EOS GmbH Electro Optical Systems Refreshening-optimised PA 12 powder for use in a generative layer construction procedure
DE102010062347A1 (en) 2010-04-09 2011-12-01 Evonik Degussa Gmbh Polymer powder based on polyamides, use in a molding process and molding, made from this polymer powder
DE102011078719A1 (en) 2011-07-06 2013-01-10 Evonik Degussa Gmbh Powder containing polymer-coated particles
EP3181615A1 (en) 2015-12-14 2017-06-21 Evonik Degussa GmbH Polymer powder for powder bed fusion method
DE102015016131A1 (en) 2015-12-14 2017-06-14 Evonik Degussa Gmbh Polymer composition for selective sintering processes
US10710301B2 (en) 2016-05-13 2020-07-14 Hewlett-Packard Development Company, L.P. Material sets
DE102016219080A1 (en) 2016-09-30 2018-04-05 Evonik Degussa Gmbh Polyamide powder for selective sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137465A (en) 2002-10-17 2004-05-13 Degussa Ag Sintering powder for selective laser-sintering, method for producing the same, method for producing formed product and formed product
JP2006104470A (en) 2004-10-01 2006-04-20 Degussa Ag Improved recyclable powder, method for producing the same and use of powder in production of three-dimensional article

Also Published As

Publication number Publication date
EP3301124A1 (en) 2018-04-04
JP2020204040A (en) 2020-12-24
US20180094103A1 (en) 2018-04-05
ES2950359T3 (en) 2023-10-09
CN107880285A (en) 2018-04-06
EP3301124B1 (en) 2023-04-26
CN115477770A (en) 2022-12-16
JP2018059093A (en) 2018-04-12
PL3301124T3 (en) 2023-09-04

Similar Documents

Publication Publication Date Title
JP7020847B2 (en) Polyamide powder for selective sintering method
US8840829B2 (en) Polymer powder with polyamide, use in a shaping process, and moldings produced from this polymer powder
US9132588B2 (en) Producing an item by the selective fusion of polymer powder layers
JP4587277B2 (en) Sintered powder for selective laser sintering, method for producing the same, method for producing molded body, and molded body
JP2021004361A (en) Polyamide powder for selective sintering methods
US8173258B2 (en) Powder with improved recycling properties, process for its production, and use of the powder in a process for producing three-dimensional objects
JP4518384B2 (en) Sintered powder for selective laser sintering, process for the production thereof, process for the production of compacts, and such compacts
JP2011202165A (en) Pa 12 powder optimized for regenerating for use in generative layer-wise manufacturing method
JP6907224B2 (en) Polyamide composition containing polyamide and additives
JP2011518938A (en) Method to widen the difference between the melting temperature and crystallization temperature of polyamide powder
JP6689383B2 (en) Polymer composition for selective sintering process
TW201805143A (en) Kaolin for mechanical reinforcement of polymeric laser sinter powder
WO2021090768A1 (en) Polymer powder for producing 3-dimensional model, method for producing 3-dimensional modeled object through powder bed melt bonding method using polymer powder, and 3-dimensional modeled object
JP2010168276A (en) Granular material, method for producing the same and use of the same
JP2022531096A (en) Polyamide powder particles and their use in powder agglomeration methods
WO2022181634A1 (en) Method for manufacturing three-dimensionally shaped article using resin granular material, three-dimensionally shaped article, and resin granular material
JP6466453B2 (en) Method for producing foam sheet
JP2022129658A (en) Thermoplastic resin particle, and method for manufacturing three-dimensional object by powder bed fusion coupling system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180820

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190805

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200907

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200915

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200928

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201204

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201214

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210621

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210906

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211011

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211129

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220105

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220203

R150 Certificate of patent or registration of utility model

Ref document number: 7020847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150