JP7020255B2 - Hydrogen filling method and hydrogen embrittlement characteristic evaluation method - Google Patents

Hydrogen filling method and hydrogen embrittlement characteristic evaluation method Download PDF

Info

Publication number
JP7020255B2
JP7020255B2 JP2018072084A JP2018072084A JP7020255B2 JP 7020255 B2 JP7020255 B2 JP 7020255B2 JP 2018072084 A JP2018072084 A JP 2018072084A JP 2018072084 A JP2018072084 A JP 2018072084A JP 7020255 B2 JP7020255 B2 JP 7020255B2
Authority
JP
Japan
Prior art keywords
sample
hydrogen
counter electrode
filling
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018072084A
Other languages
Japanese (ja)
Other versions
JP2019184293A (en
Inventor
裕嗣 崎山
朋彦 大村
徹志 千田
憲司 小林
宏太 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018072084A priority Critical patent/JP7020255B2/en
Publication of JP2019184293A publication Critical patent/JP2019184293A/en
Application granted granted Critical
Publication of JP7020255B2 publication Critical patent/JP7020255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、水素充填方法および水素脆化特性評価方法に関する。 The present invention relates to a hydrogen filling method and a hydrogen embrittlement characteristic evaluation method.

高強度鋼の開発において、水素により強度および靭性が劣化する水素脆化が大きな問題となっている。しかし、水素脆化に関係する材料組織的な変化は定かでなく、水素脆化のメカニズム解明が求められている。そして、そのためには、効率的に水素を鋼中に充填する方法の確立が必要となる。 In the development of high-strength steel, hydrogen embrittlement, in which the strength and toughness are deteriorated by hydrogen, has become a major problem. However, the structural changes in materials related to hydrogen embrittlement are uncertain, and elucidation of the mechanism of hydrogen embrittlement is required. For that purpose, it is necessary to establish a method for efficiently filling the steel with hydrogen.

鋼中に水素を充填する方法として、電気化学的に水素チャージを行う方法が一般的に用いられている(例えば、特許文献1~4を参照。)。 As a method of filling steel with hydrogen, a method of electrochemically charging hydrogen is generally used (see, for example, Patent Documents 1 to 4).

特開2004-309197号公報Japanese Unexamined Patent Publication No. 2004-309197 特開2013-124998号公報Japanese Unexamined Patent Publication No. 2013-124998 特開2013-124999号公報Japanese Unexamined Patent Publication No. 2013-124999 特開2016-57163号公報Japanese Unexamined Patent Publication No. 2016-57163

上記の方法においては、電解液中に試料および対極を浸漬し、それらの間に電位差を生じさせることによって、電気化学的に水素を試料に充填する。しかしながら、上記の文献においては、水素チャージを行う際の試験条件について十分に検討がなされておらず、より効率的に水素を試料中に充填するためには、改善の余地が残されている。 In the above method, the sample is electrochemically filled with hydrogen by immersing the sample and the counter electrode in the electrolytic solution and creating a potential difference between them. However, in the above-mentioned literature, the test conditions for hydrogen charging have not been sufficiently investigated, and there is room for improvement in order to fill the sample with hydrogen more efficiently.

本発明は、上記の問題を解決し、試料に効率的に水素を充填することができる方法、およびそれにより水素が充填された試料の水素脆化特性を評価する方法を提供することを目的とする。 It is an object of the present invention to provide a method for solving the above-mentioned problems and efficiently filling a sample with hydrogen, and a method for evaluating the hydrogen embrittlement property of the sample filled with hydrogen. do.

本発明は、上記の問題を解決するためになされたものであり、下記の水素充填方法および水素脆化特性評価方法を要旨とする。 The present invention has been made to solve the above problems, and the gist of the present invention is the following hydrogen filling method and hydrogen embrittlement characteristic evaluation method.

(1)金属相中にfcc相を体積%で、5~70%含む金属からなる試料への水素充填方法であって、
(a)前記試料および対極を電解液に浸漬する工程と、
(b)前記電解液の温度Tc(℃)を、前記試料の厚さt(mm)および前記試料の金属相中に含まれるfcc相の体積率Vγ(%)との関係において、下記(i)式を満足するように調整する工程と、
(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、
水素充填方法。
Tc>k×ln(t)+a ・・・(i)
但し、上記式中のkおよびaは、下記(ii)式および(iii)式より算出される値である。
k= 4×ln(Vγ)+10 ・・・(ii)
a=10×ln(Vγ)+30 ・・・(iii)
(1) A method for filling a sample made of a metal containing 5 to 70% of the fcc phase in the metal phase with hydrogen.
(A) The step of immersing the sample and the counter electrode in the electrolytic solution, and
(B) The temperature Tc (° C.) of the electrolytic solution is as follows (b) in relation to the thickness t (mm) of the sample and the volume fraction V γ (%) of the fcc phase contained in the metal phase of the sample. i) The process of adjusting the equation to satisfy it,
(C) The present invention comprises a step of creating a potential difference between the sample and the counter electrode and electrochemically filling the sample with hydrogen.
Hydrogen filling method.
Tc> k × ln (t) + a ... (i)
However, k and a in the above equation are values calculated from the following equations (ii) and (iii).
k = 4 × ln (V γ ) +10 ・ ・ ・ (ii)
a = 10 × ln (V γ ) +30 ・ ・ ・ (iii)

(2)前記(b)の工程において、前記電解液の温度を、さらに下記(iv)式を満足するように調整する、
上記(1)に記載の水素充填方法。
Tc≧32 ・・・(iv)
(2) In the step (b), the temperature of the electrolytic solution is further adjusted so as to satisfy the following equation (iv).
The hydrogen filling method according to (1) above.
Tc ≧ 32 ・ ・ ・ (iv)

(3)前記(b)の工程において、前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する、
上記(1)または(2)に記載の水素充填方法。
(3) In the step (b), the distance between the sample and the counter electrode is adjusted to be more than 0 mm and 100 mm or less.
The hydrogen filling method according to (1) or (2) above.

(4)試料の水素脆化特性を評価する方法であって、
上記(1)から(3)までのいずれかに記載される(a)~(c)の工程と、
(d)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
(4) A method for evaluating the hydrogen embrittlement characteristics of a sample.
The steps (a) to (c) described in any of the above (1) to (3) and
(D) A step of measuring the hydrogen concentration contained in the sample.
Hydrogen embrittlement characterization method.

(5)試料の水素脆化特性を評価する方法であって、
上記(1)から(3)までのいずれかに記載される(a)~(c)の工程と、
(e)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
(5) A method for evaluating the hydrogen embrittlement characteristics of a sample.
The steps (a) to (c) described in any of the above (1) to (3) and
(E) A step of applying stress to the sample.
Hydrogen embrittlement characterization method.

本発明によれば、試料に水素を効率的に充填することが可能となる。 According to the present invention, it is possible to efficiently fill a sample with hydrogen.

本発明の一実施形態に係る水素充填方法および水素脆化特性評価方法について、詳細に説明する。 The hydrogen filling method and the hydrogen embrittlement characteristic evaluation method according to the embodiment of the present invention will be described in detail.

本発明の一実施形態に係る水素充填方法は、(a)浸漬工程、(b)調整工程、および(c)水素充填工程を備える。各工程について詳しく説明する。 The hydrogen filling method according to the embodiment of the present invention includes (a) a dipping step, (b) an adjusting step, and (c) a hydrogen filling step. Each process will be described in detail.

(a)浸漬工程
浸漬工程においては、試料および対極を電解液に浸漬する。本発明において、試料は、金属相中にfcc相を体積%で、5~70%含む金属からなるものである。なお、fcc相としては、オーステナイトが挙げられる。また、試料の形状については特に制限はない。例えば、板状であってもよいし、円柱状であってもよい。
(A) Immersion step In the dipping step, the sample and the counter electrode are immersed in the electrolytic solution. In the present invention, the sample is made of a metal containing 5 to 70% by volume of the fcc phase in the metal phase. The fcc phase includes austenite. Further, the shape of the sample is not particularly limited. For example, it may be plate-shaped or columnar.

試料の寸法についても特に制限はないが、水素濃度測定の精度を安定させる観点から、0.5g以上であるのが好ましく、1g以上であるのがより好ましい。なお、試料表面に汚れまたは酸化皮膜等が付着していると、水素の充填が阻害されるおそれがある。そのため、試料表面は洗浄し、汚れおよび酸化皮膜等は除去しておくことが望ましい。 The size of the sample is not particularly limited, but from the viewpoint of stabilizing the accuracy of hydrogen concentration measurement, it is preferably 0.5 g or more, and more preferably 1 g or more. If dirt or an oxide film adheres to the sample surface, hydrogen filling may be hindered. Therefore, it is desirable to clean the surface of the sample to remove dirt and oxide film.

また、対極の材質についても特に制限はないが、例えば白金を用いることができる。対極の形状については特に制限はなく、例えば、線状(棒状)または板状のものを用いればよい。なお、試料全体に効率的に水素を充填するためには、試料の表面積に対する対極の表面積が下記(A)式を満足することが好ましい。
S2/S1≧0.1 ・・・(A)
但し、(A)式中の各記号の意味は以下のとおりである。
S1:試料の表面積(mm
S2:対極の表面積(mm
Further, the material of the counter electrode is not particularly limited, but platinum can be used, for example. The shape of the counter electrode is not particularly limited, and for example, a linear (rod-shaped) or plate-shaped one may be used. In order to efficiently fill the entire sample with hydrogen, it is preferable that the surface area of the counter electrode with respect to the surface area of the sample satisfies the following formula (A).
S2 / S1 ≧ 0.1 ・ ・ ・ (A)
However, the meaning of each symbol in the formula (A) is as follows.
S1: Surface area of sample (mm 2 )
S2: Surface area of counter electrode (mm 2 )

さらに、電解液の成分については特に制限はなく、酸性、中性またはアルカリ性のいずれでも構わない。簡便に準備できかつ導電しやすいものとしてNaCl溶液が好ましい。この時、導通が取れればNaClの濃度は問わないが、例えば、0.5質量%以上とすることが好ましい。 Further, the components of the electrolytic solution are not particularly limited and may be acidic, neutral or alkaline. A NaCl solution is preferable because it can be easily prepared and is easily conductive. At this time, the concentration of NaCl does not matter as long as conduction can be obtained, but it is preferably 0.5% by mass or more, for example.

加えて、水素をより多量に充填したい場合は、HCl、HSOなどの酸を用いてもよく、また、触媒毒であるチオシアンアンモニウム(NHSCN)、チオ尿素などを溶液に加えてもよい。一方、試料の腐食抑制の観点から、NaOHなどのアルカリ溶液を用いてもよい。 In addition, if you want to fill a larger amount of hydrogen, you may use an acid such as HCl, H 2 SO 4 , or add the catalytic poisons such as ammonium thiocyanate (NH 4 SCN) and thiourea to the solution. It is also good. On the other hand, from the viewpoint of suppressing corrosion of the sample, an alkaline solution such as NaOH may be used.

(b)調整工程
調整工程においては、電解液の温度を調整する。上述のように、本発明において、試料はfcc相を含む金属からなるものを対象としている。fcc相は水素が充填されにくいため、fcc相を含む試料に対して水素を効率的に充填するためには、電解液の温度を試料の厚さおよび含まれるfcc相の体積率との関係において、調整する必要がある。
(B) Adjustment step In the adjustment step, the temperature of the electrolytic solution is adjusted. As described above, in the present invention, the sample is intended to be made of a metal containing an fcc phase. Since the fcc phase is difficult to be filled with hydrogen, in order to efficiently fill the sample containing the fcc phase with hydrogen, the temperature of the electrolytic solution is related to the thickness of the sample and the volume fraction of the contained fcc phase. , Need to be adjusted.

具体的には、電解液の温度をTc(℃)、試料の厚さをt(mm)、試料の金属相中に含まれるfcc相の体積率をVγ(%)とした場合において、電解液の温度を、下記(i)式を満足するように調整する。
Tc>k×ln(t)+a ・・・(i)
但し、上記式中のkおよびaは、下記(ii)式および(iii)式より算出される値である。
k= 4×ln(Vγ)+10 ・・・(ii)
a=10×ln(Vγ)+30 ・・・(iii)
Specifically, when the temperature of the electrolytic solution is Tc (° C.), the thickness of the sample is t (mm), and the volume fraction of the fcc phase contained in the metal phase of the sample is V γ (%), electrolysis is performed. The temperature of the liquid is adjusted so as to satisfy the following formula (i).
Tc> k × ln (t) + a ... (i)
However, k and a in the above equation are values calculated from the following equations (ii) and (iii).
k = 4 × ln (V γ ) +10 ・ ・ ・ (ii)
a = 10 × ln (V γ ) +30 ・ ・ ・ (iii)

すなわち、試料の厚さが厚いほど、またfcc相の体積率が高いほど、電解液の温度を上げることにより、組織中への水素の拡散を促進させる必要がある。また、電解液の温度は、さらに下記(iv)式を満足するように調整することが好ましい。
Tc≧32 ・・・(iv)
That is, the thicker the sample and the higher the volume fraction of the fcc phase, the more it is necessary to promote the diffusion of hydrogen into the tissue by raising the temperature of the electrolytic solution. Further, it is preferable to adjust the temperature of the electrolytic solution so as to further satisfy the following equation (iv).
Tc ≧ 32 ・ ・ ・ (iv)

なお、本発明において、試料の内部の任意の点から試料表面までの長さが最短となる距離をLとし、Lの最大値をLmaxとした時に、2Lmaxを試料の厚さと定義する。すなわち、試料が板状の場合には板厚が、また、円柱状の場合には直径が、それぞれの厚さとなる。 In the present invention, 2L max is defined as the thickness of the sample, where L is the distance at which the length from an arbitrary point inside the sample to the surface of the sample is the shortest, and L max is the maximum value of L. That is, when the sample is plate-shaped, the plate thickness is the thickness, and when the sample is columnar, the diameter is the respective thickness.

さらに、fcc相の体積率は以下の方法により求めるものとする。まず、試料を1200番エミリー紙で研磨し、次いで、室温のフッ酸および過塩素酸の混酸溶液に浸漬して化学研磨することにより、厚さの4分の1を除去する。次に、研磨を施した試料表面に、矢澤武男ら(鉄と鋼、Vol.83(1997)No.1、pp.60-65)に準拠した方法でX線回折測定(Cu対陰極、管電圧30kV、管電流100mA)を実施し、fcc相に関しては(111)、(200)および(220)、bcc相またはbct相に関しては(110)、(200)および(211)のピーク強度を求め、矢澤武男らに準拠した方法でfcc相の体積率を算出する。 Further, the volume fraction of the fcc phase is determined by the following method. First, the sample is polished with No. 1200 Emily paper, and then it is immersed in a mixed acid solution of hydrofluoric acid and perchloric acid at room temperature and chemically polished to remove a quarter of the thickness. Next, X-ray diffraction measurement (Cu vs. cathode, tube) was performed on the polished sample surface by a method based on Takeo Yazawa et al. (Iron and Steel, Vol.83 (1997) No. 1, pp.60-65). A voltage of 30 kV and a tube current of 100 mA) were carried out, and the peak intensities of (111), (200) and (220) were obtained for the fcc phase, and (110), (200) and (211) were obtained for the bcc phase or the bct phase. , The volume ratio of the fcc phase is calculated by a method based on Takeo Yazawa et al.

調整工程においては、さらに、試料と対極との距離を調整してもよい。これまで、試料と対極との距離については、実験結果に大きく影響を及ぼす要素としては考えておらず、特別な検討はなされてこなかった。また、一般的には、発生する電界の均一性の観点からある程度の距離を確保すべきと考えられてきた。 In the adjusting step, the distance between the sample and the counter electrode may be further adjusted. So far, the distance between the sample and the counter electrode has not been considered as a factor that greatly affects the experimental results, and no special study has been made. In addition, it has generally been considered that a certain distance should be secured from the viewpoint of the uniformity of the generated electric field.

しかしながら、本発明者らが、試料および対極の距離と水素充填量との関係について検討を行った結果、従来の考えとは異なり、接触しない範囲で距離が近いほど水素充填量が増加する傾向にあることを見出した。 However, as a result of investigating the relationship between the distance between the sample and the counter electrode and the hydrogen filling amount, the present inventors tended to increase the hydrogen filling amount as the distance became shorter within the range of non-contact, unlike the conventional idea. I found that there is.

そのため、本発明においては、調整工程において、試料と対極との距離を、0mmを超えて100mm以下に調整することが好ましい。上記の距離は短ければ短い方が好ましく、50mm以下であることが好ましく、10mm以下であることがより好ましく、5mm以下であることがさらに好ましい。なお、試料と対極との接触を避ける必要があるため、その距離は1mm以上であることが好ましい。 Therefore, in the present invention, it is preferable to adjust the distance between the sample and the counter electrode to be more than 0 mm and 100 mm or less in the adjusting step. The shorter the distance, the shorter the distance, preferably 50 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less. Since it is necessary to avoid contact between the sample and the counter electrode, the distance is preferably 1 mm or more.

ここで、本発明において、試料と対極との距離とは、試料の表面上の任意の点と対極の表面上の任意の点との最短距離を指すものとする。 Here, in the present invention, the distance between the sample and the counter electrode refers to the shortest distance between an arbitrary point on the surface of the sample and an arbitrary point on the surface of the counter electrode.

(c)水素充填工程
水素充填工程においては、試料と対極との間に電位差を生じさせて、試料に電気化学的に水素を充填する。具体的には、試料および対極を、電線等を介して外部電源に接続し、試料と対極との間に電位差を生じさせて、試料を対極に対して負電位にすることによって、試料に水素が充填される。この際、例えば、外部電源にポテンショ/ガルバノスタットを用いることで、水素の充填を電流制御(定電流)で行うことができる。
(C) Hydrogen filling step In the hydrogen filling step, a potential difference is generated between the sample and the counter electrode, and the sample is electrochemically filled with hydrogen. Specifically, hydrogen is added to the sample by connecting the sample and the counter electrode to an external power source via an electric wire or the like, creating a potential difference between the sample and the counter electrode, and making the sample a negative potential with respect to the counter electrode. Is filled. At this time, for example, by using a potentiometer / galvanostat as an external power source, hydrogen filling can be performed by current control (constant current).

(d)水素濃度測定工程
本発明の一実施形態に係る水素脆化特性評価方法においては、上述の(a)~(c)の工程に加えて、試料に含まれる水素濃度を測定する工程を備える。水素濃度の測定は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填の前後の両方で行ってもよい。水素脆化特性を評価するための重要なパラメータの1つである試料中の水素濃度を測定することにより、試料の水素脆化特性を評価することが可能となる。
(D) Hydrogen concentration measurement step In the hydrogen embrittlement characteristic evaluation method according to the embodiment of the present invention, in addition to the steps (a) to (c) described above, a step of measuring the hydrogen concentration contained in the sample is performed. Be prepared. The measurement of the hydrogen concentration may be performed after the sample is filled with hydrogen by the method described above, or may be performed both before and after the hydrogen filling. By measuring the hydrogen concentration in the sample, which is one of the important parameters for evaluating the hydrogen embrittlement property, it is possible to evaluate the hydrogen embrittlement property of the sample.

試料中の水素濃度の測定方法については特に制限はなく、例えば、ガスクロマトグラフ式昇温脱離水素分析装置(TDA)を用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより求めることができる。 The method for measuring the hydrogen concentration in the sample is not particularly limited, and the sample is heated to 400 ° C. at a heating rate of 100 ° C./h using, for example, a gas chromatograph-type heated desorption hydrogen analyzer (TDA). Later, it can be determined by measuring the amount of released hydrogen.

(e)応力負荷工程
本発明の他の実施形態に係る水素脆化特性評価方法においては、上述の(a)~(c)の工程に加えて、試料に対して応力を負荷する工程を備える。試料に対する応力の負荷は、上述の方法によって試料に水素を充填した後に行ってもよいし、水素充填しながら行ってもよい。試料に負荷する応力の種類については特に制限されず、引張応力、圧縮応力、曲げ応力、ねじり応力のいずれであってもよい。そして、例えば、破断が生じた際の応力を測定することによって、試料の水素脆化特性を直接的に評価することが可能である。
(E) Stress loading step The hydrogen embrittlement characteristic evaluation method according to another embodiment of the present invention includes a step of loading a sample with stress in addition to the steps (a) to (c) described above. .. The stress load on the sample may be applied after the sample is filled with hydrogen by the above method, or may be performed while being filled with hydrogen. The type of stress applied to the sample is not particularly limited, and may be any of tensile stress, compressive stress, bending stress, and torsional stress. Then, for example, by measuring the stress at the time of fracture, it is possible to directly evaluate the hydrogen embrittlement property of the sample.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

低合金鋼であるJIS SUP7鋼を試料として用いて、水素の充填を行った。試料中に含まれるfcc相の体積率は10%で一定とした。試料の寸法および形状は、長さ20mm、幅10mm、厚さ0.3~2.0mmの薄板状とした。対極には、長さ30mm、幅10mm、厚さ0.2mmの薄板状の白金を用いた。そして、電解液には3%NaCl溶液を使用し、表1に示す温度に調整した。 Hydrogen filling was performed using JIS SUP7 steel, which is a low alloy steel, as a sample. The volume fraction of the fcc phase contained in the sample was constant at 10%. The dimensions and shape of the sample were a thin plate having a length of 20 mm, a width of 10 mm, and a thickness of 0.3 to 2.0 mm. As the counter electrode, thin plate-shaped platinum having a length of 30 mm, a width of 10 mm, and a thickness of 0.2 mm was used. Then, a 3% NaCl solution was used as the electrolytic solution, and the temperature was adjusted to the temperature shown in Table 1.

そして、電解液に上記の試料および対極を浸漬した後、試料と対極とが互いに平行であり、距離が30mmとなるようにそれぞれ配置した。そして、外部電源を用いて試料と対極との間に電位差を生じさせて、試料を対極に対して負電位にした。なお、外部電源としてはポテンショ/ガルバノスタットを用い、電流密度を1.0mA/cmとした。また、充填時間は48時間で一定とした。 Then, after immersing the above sample and counter electrode in the electrolytic solution, the sample and counter electrode were arranged so as to be parallel to each other and have a distance of 30 mm. Then, using an external power source, a potential difference was generated between the sample and the counter electrode to make the sample a negative potential with respect to the counter electrode. A potentiometer / galvanostat was used as an external power source, and the current density was set to 1.0 mA / cm 2 . The filling time was constant at 48 hours.

Figure 0007020255000001
Figure 0007020255000001

その後、各試料中に充填された水素濃度の測定を行った。具体的には、TDAを用いて、試料を100℃/hの昇温速度で400℃まで加熱した後、放出された水素量を測定することにより、試料中に充填された水素濃度を求めた。その結果を表1に併せて示す。 Then, the concentration of hydrogen filled in each sample was measured. Specifically, the concentration of hydrogen filled in the sample was determined by heating the sample to 400 ° C. at a heating rate of 100 ° C./h using TDA and then measuring the amount of hydrogen released. .. The results are also shown in Table 1.

表1を参照して、電解液の温度が(i)式を満足しない試験No.3および5においては、充填された水素濃度がそれぞれ0.51ppmおよび0.46ppmと低い結果となった。それに対して、(i)式を満足する本発明例の試験No.1、2、4、6および7では、水素濃度が0.67ppm以上となり良好な結果となった。 With reference to Table 1, the test No. 1 in which the temperature of the electrolytic solution does not satisfy the formula (i). In 3 and 5, the packed hydrogen concentration was as low as 0.51 ppm and 0.46 ppm, respectively. On the other hand, the test No. of the example of the present invention satisfying the formula (i). In 1, 2, 4, 6 and 7, the hydrogen concentration was 0.67 ppm or more, which was a good result.

さらに、低合金鋼であるJIS SUP7鋼を試料として用いて、水素の充填を行った。本実施例においては、試料中に含まれるfcc相の体積率は30%で一定とした。試料の寸法および形状は、長さ20mm、幅10mm、厚さ0.2~2.0mmの薄板状とした。対極には、長さ30mm、幅10mm、厚さ0.2mmの薄板状の白金を用いた。そして、電解液には3%NaCl溶液を使用し、表2に示す温度に調整した。試験条件は、充填時間を96時間で一定としたことを除いて実施例1と同じとした。 Further, hydrogen was filled using JIS SUP7 steel, which is a low alloy steel, as a sample. In this example, the volume fraction of the fcc phase contained in the sample was kept constant at 30%. The dimensions and shape of the sample were a thin plate having a length of 20 mm, a width of 10 mm, and a thickness of 0.2 to 2.0 mm. As the counter electrode, thin plate-shaped platinum having a length of 30 mm, a width of 10 mm, and a thickness of 0.2 mm was used. Then, a 3% NaCl solution was used as the electrolytic solution, and the temperature was adjusted to the temperature shown in Table 2. The test conditions were the same as in Example 1 except that the filling time was constant at 96 hours.

Figure 0007020255000002
Figure 0007020255000002

その後、実施例1と同じ方法により、試料中に充填された水素濃度を求めた。その結果を表2に併せて示す。 Then, the concentration of hydrogen filled in the sample was determined by the same method as in Example 1. The results are also shown in Table 2.

表2を参照して、電解液の温度が(i)式を満足しない試験No.9、10、12および14においては、充填された水素濃度が1.49ppm以下と低い結果となった。それに対して、(i)式を満足する本発明例の試験No.8、11および13では、水素濃度が1.94ppm以上となり良好な結果となった。 With reference to Table 2, the test No. in which the temperature of the electrolytic solution does not satisfy the formula (i). In 9, 10, 12 and 14, the packed hydrogen concentration was as low as 1.49 ppm or less. On the other hand, the test No. of the example of the present invention satisfying the formula (i). At 8, 11 and 13, the hydrogen concentration was 1.94 ppm or more, which was a good result.

本発明によれば、試料に水素を効率的に充填することが可能となる。また、本発明に係る水素充填方法を採用することにより、水素脆化特性の評価を効率的に行うことが可能となり、水素脆化のメカニズム解明に寄与することができる。 According to the present invention, it is possible to efficiently fill a sample with hydrogen. Further, by adopting the hydrogen filling method according to the present invention, it becomes possible to efficiently evaluate the hydrogen embrittlement characteristics and contribute to the elucidation of the mechanism of hydrogen embrittlement.

Claims (5)

金属相中にfcc相を体積%で、5~70%含む金属からなる試料への水素充填方法であって、
(a)前記試料および対極を電解液に浸漬する工程と、
(b)前記電解液の温度Tc(℃)を、前記試料の厚さt(mm)および前記試料の金属相中に含まれるfcc相の体積率Vγ(%)との関係において、下記(i)式を満足するように調整する工程と、
(c)前記試料と前記対極との間に電位差を生じさせて、前記試料に電気化学的に水素を充填する工程と、を備える、
水素充填方法。
Tc>k×ln(t)+a ・・・(i)
但し、上記式中のkおよびaは、下記(ii)式および(iii)式より算出される値である。
k= 4×ln(Vγ)+10 ・・・(ii)
a=10×ln(Vγ)+30 ・・・(iii)
A method for filling a sample made of a metal containing 5 to 70% of the fcc phase in the metal phase with hydrogen.
(A) The step of immersing the sample and the counter electrode in the electrolytic solution, and
(B) The temperature Tc (° C.) of the electrolytic solution is as follows (b) in relation to the thickness t (mm) of the sample and the volume fraction V γ (%) of the fcc phase contained in the metal phase of the sample. i) The process of adjusting the equation to satisfy it,
(C) The present invention comprises a step of creating a potential difference between the sample and the counter electrode and electrochemically filling the sample with hydrogen.
Hydrogen filling method.
Tc> k × ln (t) + a ... (i)
However, k and a in the above equation are values calculated from the following equations (ii) and (iii).
k = 4 × ln (V γ ) +10 ・ ・ ・ (ii)
a = 10 × ln (V γ ) +30 ・ ・ ・ (iii)
前記(b)の工程において、前記電解液の温度を、さらに下記(iv)式を満足するように調整する、
請求項1に記載の水素充填方法。
Tc≧32 ・・・(iv)
In the step (b), the temperature of the electrolytic solution is further adjusted so as to satisfy the following equation (iv).
The hydrogen filling method according to claim 1.
Tc ≧ 32 ・ ・ ・ (iv)
前記(b)の工程において、前記試料と前記対極との距離を、0mmを超えて100mm以下に調整する、
請求項1または請求項2に記載の水素充填方法。
In the step (b), the distance between the sample and the counter electrode is adjusted to be more than 0 mm and 100 mm or less.
The hydrogen filling method according to claim 1 or 2.
試料の水素脆化特性を評価する方法であって、
請求項1から請求項3までのいずれかに記載される(a)~(c)の工程と、
(d)前記試料に含まれる水素濃度を測定する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement properties of a sample.
The steps (a) to (c) according to any one of claims 1 to 3 and
(D) A step of measuring the hydrogen concentration contained in the sample.
Hydrogen embrittlement characterization method.
試料の水素脆化特性を評価する方法であって、
請求項1から請求項3までのいずれかに記載される(a)~(c)の工程と、
(e)前記試料に対して応力を負荷する工程と、を備える、
水素脆化特性評価方法。
A method for evaluating the hydrogen embrittlement properties of a sample.
The steps (a) to (c) according to any one of claims 1 to 3 and
(E) A step of applying stress to the sample.
Hydrogen embrittlement characterization method.
JP2018072084A 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method Active JP7020255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072084A JP7020255B2 (en) 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072084A JP7020255B2 (en) 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method

Publications (2)

Publication Number Publication Date
JP2019184293A JP2019184293A (en) 2019-10-24
JP7020255B2 true JP7020255B2 (en) 2022-02-16

Family

ID=68340693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072084A Active JP7020255B2 (en) 2018-04-04 2018-04-04 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method

Country Status (1)

Country Link
JP (1) JP7020255B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266782A (en) 2007-03-23 2008-11-06 Aichi Steel Works Ltd Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
US20120024077A1 (en) 2010-07-29 2012-02-02 Kyushu University, National University Corporation Inclusion rating method
WO2018055695A1 (en) 2016-09-21 2018-03-29 新日鐵住金株式会社 Steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203775A (en) * 1992-01-24 1993-08-10 Matsushita Electric Ind Co Ltd Low temperature nuclear fusion apparatus and method
JPH11241143A (en) * 1997-11-17 1999-09-07 Chuo Spring Co Ltd Spring improved in corrosion fatigue strength
JPH11271484A (en) * 1998-03-20 1999-10-08 Tadahiko Mizuno Reactant for generating energy and neutron due to electrolytic reaction in light and heavy water solution and method for generating energy and neutron using reactant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266782A (en) 2007-03-23 2008-11-06 Aichi Steel Works Ltd Steel for spring excellent in hydrogen embrittlement resistance and corrosion fatigue strength and high strength spring part using the same
US20120024077A1 (en) 2010-07-29 2012-02-02 Kyushu University, National University Corporation Inclusion rating method
WO2018055695A1 (en) 2016-09-21 2018-03-29 新日鐵住金株式会社 Steel sheet

Also Published As

Publication number Publication date
JP2019184293A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
Ghods et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement
Isaacs et al. In situ X‐Ray microprobe study of salt layers during anodic dissolution of stainless steel in chloride solution
Raja et al. Effects of dissolved oxygen on passive behavior of stainless alloys
JP4901662B2 (en) Test piece for evaluating hydrogen embrittlement of thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
Amin et al. Pitting corrosion studies on Al and Al–Zn alloys in SCN− solutions
US9625403B1 (en) Method of ascertaining fully grown passive film formation on steel rebar embedded in concrete
JP6354476B2 (en) Characterization method for hydrogen embrittlement of steel
Niu et al. Wear and corrosion behavior of Mg–Gd–Y–Zr alloy treated by mixed molten-salt bath
Lisenkov et al. Aluminum anodization in deionized water as electrolyte
US20200166476A1 (en) A reference electrode for electrochemical measurements at high temperatures
Venegas et al. On the influence of crystallographic texture on pitting corrosion in pipeline steels
JP7020255B2 (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
Guo et al. Characteristics and corrosion behavior of nickel‐phosphorus coatings deposited by a simplified bath
JP4823991B2 (en) Evaluation method for hydrogen embrittlement of thin steel sheet
JP2019184585A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
JP2020030187A (en) Hydrogen filling method and hydrogen embrittlement characteristics evaluation method
JP7172103B2 (en) Hydrogen filling method and hydrogen embrittlement property evaluation method
Tsutsumi et al. Reaction of calcium and phosphate ions with titanium, zirconium, niobium, and tantalum
Peng et al. Effects of H2SO4 content on electrochemical activation of etched tunnels on aluminum foil
JP6724761B2 (en) Hydrogen embrittlement evaluation apparatus, hydrogen embrittlement evaluation method, and test piece used therein
JP2021056132A (en) Method for filling hydrogen and method for evaluating embrittlement characteristic of hydrogen
Rosalbino et al. Influence of rare earth metals on the characteristics of anodic oxide films on aluminium and their dissolution behaviour in NaOH solution
Lai et al. Electrochemical and XPS studies on corrosion behaviours of AISI 304 and AISI 316 stainless steels under plastic deformation in sulphuric acid solution
JP2020134339A (en) Method for filling hydrogen and method for evaluating hydrogen embrittlement characterization
JP2021117012A (en) Hydrogen filling method and hydrogen embrittlement characteristic evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R151 Written notification of patent or utility model registration

Ref document number: 7020255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151