JP7017423B2 - Rotational press-fitting fluid injection device for steel pipe piles and rotary press-fitting method for steel pipe piles - Google Patents

Rotational press-fitting fluid injection device for steel pipe piles and rotary press-fitting method for steel pipe piles Download PDF

Info

Publication number
JP7017423B2
JP7017423B2 JP2018014670A JP2018014670A JP7017423B2 JP 7017423 B2 JP7017423 B2 JP 7017423B2 JP 2018014670 A JP2018014670 A JP 2018014670A JP 2018014670 A JP2018014670 A JP 2018014670A JP 7017423 B2 JP7017423 B2 JP 7017423B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
fluid
parallel
rotary press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018014670A
Other languages
Japanese (ja)
Other versions
JP2018123670A (en
Inventor
精男 北村
正明 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIKEN LTD.
Original Assignee
GIKEN LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIKEN LTD. filed Critical GIKEN LTD.
Publication of JP2018123670A publication Critical patent/JP2018123670A/en
Application granted granted Critical
Publication of JP7017423B2 publication Critical patent/JP7017423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

本発明は、回転圧入鋼管杭の流体噴射装置及びこれを用いた鋼管杭の回転圧入工法に関する。 The present invention relates to a fluid injection device for rotary press-fitting steel pipe piles and a rotary press-fitting method for steel pipe piles using the same.

従来、鋼管杭の回転圧入工法において鋼管杭先端の掘削ビットの冷却や鋼管杭の周面摩擦低減のため、鋼管杭に水やエアー等(滑材含む)の流体を供給し地盤に噴射する流体噴射装置を装備することが行われている(特許文献1)。
鋼管杭に取り付けられ流体噴射位置まで流体を供給する配管の利用方法としては、配管を鋼管杭に溶接して鋼管杭と一緒に土中に残置する方法や、鋼管杭打設完了後に配管のみ引抜回収し再利用する方法などがある。
特許文献2,3には、2重管により水と空気を別々に供給し、水と空気を同位置から同方向へ噴射する装置が記載されている。(特許文献2,3はウォータージェット併用による鋼矢板圧入)
Conventionally, in the rotary press-fitting method of steel pipe piles, a fluid such as water or air (including slipper) is supplied to the steel pipe piles and injected into the ground in order to cool the excavation bit at the tip of the steel pipe piles and reduce the peripheral friction of the steel pipe piles. Equipped with an injection device (Patent Document 1).
As a method of using the pipe attached to the steel pipe pile and supplying the fluid to the fluid injection position, the pipe is welded to the steel pipe pile and left in the soil together with the steel pipe pile, or only the pipe is pulled out after the steel pipe pile is placed. There is a method of collecting and reusing.
Patent Documents 2 and 3 describe a device that separately supplies water and air by a double pipe and injects water and air from the same position in the same direction. (Patent Documents 2 and 3 are press-fitted steel sheet piles by using a water jet together)

特許第4242251号公報Japanese Patent No. 4242251 特開2004-60163号公報Japanese Unexamined Patent Publication No. 2004-60163 実用新案登録第3039558号公報Utility Model Registration No. 3039558 Gazette

しかしながら、鋼管杭を回転圧入する際には、掘削ビットにより環状に地盤を掘削して鋼管杭内に地盤が残ることを考慮すると、径が大きくなる傾向がある多重管は、特に3系統以上の流路を構成しようとするとき、鋼管杭の内周面からの突出量が大きくなり、鋼管杭の回転圧入の際の抵抗量や掘削量が増大する。また、流体を噴射する方向や深さ位置を任意に異ならせることが難しく、流体を噴射する方向や深さ位置を異ならせた構成としても複雑化や大型化することが避け難いとともに、一旦そのような構成を一体的に構成すると流体を噴射する方向や深さ位置を独立して調整したり、独立して任意に変更したりすることができないという問題がある。 However, when the steel pipe pile is rotationally press-fitted, considering that the ground remains in the steel pipe pile by excavating the ground in an annular shape with an excavation bit, the number of multiple pipes that tend to have a large diameter is particularly three or more. When trying to construct a flow path, the amount of protrusion from the inner peripheral surface of the steel pipe pile becomes large, and the amount of resistance and the amount of excavation at the time of rotational press-fitting of the steel pipe pile increase. In addition, it is difficult to arbitrarily change the direction and depth position of injecting the fluid, and it is inevitable that the configuration will be complicated and large even if the direction and depth position of injecting the fluid are different. If such a configuration is integrally configured, there is a problem that the direction and depth position of injecting the fluid cannot be adjusted independently or arbitrarily changed independently.

本発明は以上の従来技術における問題に鑑みてなされたものであって、鋼管杭の回転圧入を補助するための流体を供給し噴射する流体供給パイプの設置の容易化、自由度の向上を図るとともに、回転圧入の際の抵抗量や掘削量を削減し、もって流体補助回転圧入工法の効率化を図ることを課題とする。 The present invention has been made in view of the above problems in the prior art, and aims to facilitate the installation of a fluid supply pipe for supplying and injecting a fluid for assisting the rotational press-fitting of a steel pipe pile, and to improve the degree of freedom. At the same time, it is an object to reduce the amount of resistance and the amount of excavation at the time of rotary press-fitting, thereby improving the efficiency of the fluid auxiliary rotary press-fitting method.

以上の課題を解決するための請求項1記載の発明は、鋼管杭に装備され、当該鋼管杭の回転圧入を補助するための流体を供給し噴射する回転圧入鋼管杭の流体噴射装置において、
流体供給源に接続され、前記流体供給源からの流体を給送する流路を形成し、該流体の噴射口が設けられ、前記鋼管杭の長手方向に沿って延設される流体供給パイプを複数本備え、
少なくとも2本の前記流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が前記鋼管杭の内周面に接して前記鋼管杭内に設置されており、
前記並列パイプは、互いに前記噴射口からの噴射方向、前記噴射口の前記鋼管杭の長手方向に沿った深さ位置又は接続される流体供給源が異なり、
前記並列パイプを構成する独立パイプのそれぞれを前記鋼管杭の内周面に固定するための固定具を備え、
前記固定具は、
一端部又は両端部が前記鋼管杭の内周面に溶接され、前記独立パイプの周溝に掛けられる部分を有する固定バンドと、
前記鋼管杭の内周面に接触して前記独立パイプを自身の中心軸回りに回転しないように係止する係止部材と、を有し、
当該係止部材は、前記独立パイプの外周面上であって、当該外周面と前記鋼管杭の内周面との接触位置の両側の二か所に固着されると共に、当該係止部材は、前記鋼管杭の内周面に接触しており、
前記固定バンドは、前記周溝に落ち込み、前記独立パイプの外径から突出しないように掛けられている回転圧入鋼管杭の流体噴射装置である。
請求項2記載の発明は、
鋼管杭に装備され、当該鋼管杭の回転圧入を補助するための流体を供給し噴射する回転圧入鋼管杭の流体噴射装置において、
流体供給源に接続され、前記流体供給源からの流体を給送する流路を形成し、該流体の噴射口が設けられ、前記鋼管杭の長手方向に沿って延設される流体供給パイプを複数本備え、
少なくとも2本の前記流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が前記鋼管杭の内周面に接して前記鋼管杭内に設置されており、
前記並列パイプは、互いに前記噴射口からの噴射方向、前記噴射口の前記鋼管杭の長手方向に沿った深さ位置又は接続される流体供給源が異なり、
前記並列パイプを構成する独立パイプのそれぞれを前記鋼管杭の内周面に固定するための固定具を備え、
前記固定具は、
一端部又は両端部が前記鋼管杭の内周面に溶接され、前記独立パイプの周溝に掛けられる部分を有する固定バンドと、
前記鋼管杭の内周面に接触して前記独立パイプを自身の中心軸回りに回転しないように係止する係止部材と、を有し、
当該係止部材は、前記周溝に固着配置され、前記鋼管杭の内周面に沿った鋼管受け面で前記鋼管杭の内周面に接触しており、
前記固定バンドは、前記周溝に落ち込み、前記独立パイプの外径から突出しないように掛けられている回転圧入鋼管杭の流体噴射装置である。
噴射方向は、流体供給パイプの設置位置における鋼管杭の径方向に対する相対角度で定まる。
The invention according to claim 1 for solving the above problems is in a fluid injection device for a rotary press-fit steel pipe pile, which is equipped on a steel pipe pile and supplies and injects a fluid for assisting the rotary press-fitting of the steel pipe pile.
A fluid supply pipe connected to a fluid supply source, forming a flow path for feeding fluid from the fluid supply source, provided with an injection port for the fluid, and extending along the longitudinal direction of the steel pipe pile. With multiple
At least two of the fluid supply pipes are parallel pipes independently separated from each other and provided in parallel, and both of them are installed in the steel pipe pile with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile.
The parallel pipes differ from each other in the injection direction from the injection port, the depth position of the injection port along the longitudinal direction of the steel pipe pile, or the fluid supply source to be connected.
A fixture for fixing each of the independent pipes constituting the parallel pipe to the inner peripheral surface of the steel pipe pile is provided.
The fixture is
A fixing band having a portion where one end or both ends is welded to the inner peripheral surface of the steel pipe pile and hung on the peripheral groove of the independent pipe.
It has a locking member that contacts the inner peripheral surface of the steel pipe pile and locks the independent pipe so as not to rotate around its own central axis.
The locking member is fixed on the outer peripheral surface of the independent pipe at two places on both sides of the contact position between the outer peripheral surface and the inner peripheral surface of the steel pipe pile, and the locking member is It is in contact with the inner peripheral surface of the steel pipe pile and
The fixing band is a fluid injection device for a rotary press-fit steel pipe pile that falls into the peripheral groove and is hung so as not to protrude from the outer diameter of the independent pipe .
The invention according to claim 2 is
In a fluid injection device for rotary press-fit steel pipe piles, which is equipped on steel pipe piles and supplies and injects fluid to assist the rotary press-fitting of the steel pipe piles.
A fluid supply pipe connected to a fluid supply source, forming a flow path for feeding fluid from the fluid supply source, provided with an injection port for the fluid, and extending along the longitudinal direction of the steel pipe pile. With multiple
At least two of the fluid supply pipes are parallel pipes independently separated from each other and provided in parallel, and both of them are installed in the steel pipe pile with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile.
The parallel pipes differ from each other in the injection direction from the injection port, the depth position of the injection port along the longitudinal direction of the steel pipe pile, or the fluid supply source to be connected.
A fixture for fixing each of the independent pipes constituting the parallel pipe to the inner peripheral surface of the steel pipe pile is provided.
The fixture is
A fixing band having a portion where one end or both ends is welded to the inner peripheral surface of the steel pipe pile and hung on the peripheral groove of the independent pipe.
It has a locking member that contacts the inner peripheral surface of the steel pipe pile and locks the independent pipe so as not to rotate around its own central axis.
The locking member is fixedly arranged in the peripheral groove, and is in contact with the inner peripheral surface of the steel pipe pile at the steel pipe receiving surface along the inner peripheral surface of the steel pipe pile.
The fixing band is a fluid injection device for a rotary press-fit steel pipe pile that falls into the peripheral groove and is hung so as not to protrude from the outer diameter of the independent pipe.
The injection direction is determined by the relative angle with respect to the radial direction of the steel pipe pile at the installation position of the fluid supply pipe.

請求項3記載の発明は、前記並列パイプの前記固定具による固定構造は、前記鋼管杭に対して前記並列パイプを引き上げることにより固定解除が可能にされ、これにより前記並列パイプを破壊することなく回収可能であり、
前記並列パイプを構成する独立パイプのそれぞれには、当該パイプの長手方向に引き上げ力を加えるための吊り環が付設されている請求項1又は請求項2に記載の回転圧入鋼管杭の流体噴射装置である。
According to the third aspect of the present invention, the fixing structure of the parallel pipe by the fixing tool can be released from the fixing by pulling the parallel pipe with respect to the steel pipe pile, whereby the parallel pipe is not destroyed. It is recoverable and
The fluid injection device for a rotary press-fit steel pipe pile according to claim 1 or 2 , wherein each of the independent pipes constituting the parallel pipe is provided with a suspension ring for applying a pulling force in the longitudinal direction of the pipe. Is.

請求項4記載の発明は、前記複数本の流体供給パイプのそれぞれは、前記流体供給源に接続される部分と、前記噴射口が設けられる部分との間に、当該流体供給パイプの中心軸回りに回転可能に又は同中心軸回りの任意角度で流路を接続する流路継手を有する請求項1から請求項3のうちいずれか一項に記載の回転圧入鋼管杭の流体噴射装置である。 According to the fourth aspect of the present invention, each of the plurality of fluid supply pipes is rotated around the central axis of the fluid supply pipe between a portion connected to the fluid supply source and a portion provided with the injection port. The fluid injection device for a rotary press-fit steel pipe pile according to any one of claims 1 to 3, further comprising a flow path joint that is rotatable or at an arbitrary angle around the same central axis.

請求項5記載の発明は、前記流体供給パイプは、前記噴射口に至るまでの逆止弁部品及び/又はノズル部品を着脱可能に連結する接続構造を有する請求項1から請求項4のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置である。 The invention according to claim 5 is any one of claims 1 to 4 , wherein the fluid supply pipe has a connection structure for detachably connecting a check valve component and / or a nozzle component up to the injection port. The fluid injection device for the rotary press-fit steel pipe pile according to the first aspect.

請求項6記載の発明は、前記鋼管杭の回転に伴う前記流体供給源と前記流体供給パイプとの相対回転を許容するための前記鋼管杭の上端に設置可能な回転流路継手を備え、前記複数本の流体供給パイプのそれぞれは、当該回転流路継手を介して前記流体供給源に接続される請求項1から請求項5のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置である。 The invention according to claim 6 comprises a rotary flow path joint that can be installed at the upper end of the steel pipe pile to allow relative rotation between the fluid supply source and the fluid supply pipe accompanying the rotation of the steel pipe pile. The fluid injection device for a rotary press-fit steel pipe pile according to any one of claims 1 to 5 , wherein each of the plurality of fluid supply pipes is connected to the fluid supply source via the rotary flow path joint. be.

請求項7記載の発明は、前記複数本の流体供給パイプのそれぞれと前記回転流路継手とを接続するホースを備える請求項6に記載の回転圧入鋼管杭の流体噴射装置である。 The invention according to claim 7 is the fluid injection device for a rotary press-fit steel pipe pile according to claim 6 , further comprising a hose connecting each of the plurality of fluid supply pipes and the rotary flow path joint.

請求項8記載の発明は、前記並列パイプを構成し、隣り合う配置の独立パイプ同士を、外側から二部材で挟み込むことで軸方向の任意の相対位置で結束固定する取外し可能な結束具を備える請求項1から請求項7のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置である。 The invention according to claim 8 comprises a removable binding tool that constitutes the parallel pipe and binds and fixes independent pipes arranged adjacent to each other at arbitrary relative positions in the axial direction by sandwiching them from the outside with two members. The fluid injection device for a rotary press-fitted steel pipe pile according to any one of claims 1 to 7 .

請求項9記載の発明は、前記鋼管杭の内周面に固着されて、前記並列パイプに対して前記鋼管杭の周方向に隣接配置され、前記鋼管杭の下端部において、当該鋼管杭の回転圧入に伴う土砂等の衝突から前記並列パイプを防護する防護壁部材を備え、
前記並列パイプから見て前記防護壁部材に近い前記周方向は、前記鋼管杭の下端に固定された掘削ビットにより特定される掘削方向であり、
前記並列パイプは、前記防護壁部材を介さず互いに隣接して配置され
前記掘削方向の逆方向から見て、前記防護壁部材は、前記並列パイプを当該並列パイプよりも広い幅で覆う請求項1から請求項8のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置である。
The invention according to claim 9 is fixed to the inner peripheral surface of the steel pipe pile and is arranged adjacent to the parallel pipe in the circumferential direction of the steel pipe pile, and the rotation of the steel pipe pile is performed at the lower end portion of the steel pipe pile. Equipped with a protective wall member that protects the parallel pipes from collisions such as earth and sand due to press fitting .
The circumferential direction close to the protective wall member when viewed from the parallel pipe is the excavation direction specified by the excavation bit fixed to the lower end of the steel pipe pile.
The parallel pipes are arranged adjacent to each other without the protective wall member .
The fluid of the rotary press-fit steel pipe pile according to any one of claims 1 to 8 , wherein the protective wall member covers the parallel pipe with a width wider than that of the parallel pipe when viewed from the direction opposite to the excavation direction. It is an injection device.

請求項10記載の発明は、前記鋼管杭の内周面に固着されて、前記並列パイプの先端部に対して前記鋼管杭の長手方向に隣接配置され、圧入方向下方からの土砂等の衝突から前記並列パイプを防護する壁となる防護壁部材を備え、
下方から見て、前記防護壁部材は、前記並列パイプを覆う請求項1から請求項9のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置である。
The invention according to claim 10 is fixed to the inner peripheral surface of the steel pipe pile, is arranged adjacent to the tip of the parallel pipe in the longitudinal direction of the steel pipe pile, and is caused by collision of earth and sand from below in the press-fitting direction. A protective wall member that serves as a wall for protecting the parallel pipes is provided.
Seen from below, the protective wall member is the fluid injection device for a rotary press-fit steel pipe pile according to any one of claims 1 to 9 , which covers the parallel pipe .

請求項11記載の発明は、請求項1から請求項10のうちいずれか一に記載の流体噴射装置を装備した鋼管杭の回転圧入工法であって、
前記流体噴射装置により流体を噴射しながら前記鋼管杭を地盤に回転圧入する流体補助回転圧入工程を実行する鋼管杭の回転圧入工法である。
The invention according to claim 11 is a rotary press-fitting method for a steel pipe pile equipped with the fluid injection device according to any one of claims 1 to 10 .
This is a rotary press-fitting method for steel pipe piles, which executes a fluid auxiliary rotary press-fitting process in which the steel pipe pile is rotationally press-fitted into the ground while injecting fluid by the fluid injection device.

請求項12記載の発明は、
鋼管杭に装備され、当該鋼管杭の回転圧入を補助するための流体を供給し噴射する回転圧入鋼管杭の流体噴射装置であって、流体供給源に接続され、前記流体供給源からの流体を給送する流路を形成し、該流体の噴射口が設けられ、前記鋼管杭の長手方向に沿って延設される流体供給パイプを複数本備え、少なくとも2本の前記流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が前記鋼管杭の内周面に接して前記鋼管杭内に設置されており、前記並列パイプは、互いに前記噴射口からの噴射方向、前記噴射口の前記鋼管杭の長手方向に沿った深さ位置又は接続される流体供給源が異なる回転圧入鋼管杭の流体噴射装置を、装備した鋼管杭の回転圧入工法であって、
前記流体噴射装置により流体を噴射しながら前記鋼管杭を地盤に回転圧入する流体補助回転圧入工程を実行し、
前記並列パイプの一端部を挿入するホルダー部と車輪を支持する車輪支持部とを備える車輪ユニットを前記パイプの一端部に装着し、
前記車輪ユニットは、前記ホルダー部に並列パイプの一端部を挿入することで、前記車輪の車軸が前記並列パイプの中心軸上に配置され、
地盤への圧入前の横倒しに置かれた前記鋼管杭の一端開口に、前記並列パイプの前記一端部を挿入し、前記車輪を前記鋼管杭の内周面に接地させて前記鋼管杭の内部を他端開口の方へ向かって長手方向に走行させることにより、当該一端部を当該他端開口近傍に導入し、
その後、前記車輪を前記一端部から取り外し、
その後、前記並列パイプを前記鋼管杭内周面に固定し、
その後、前記流体補助回転圧入工程を実行する鋼管杭の回転圧入工法である。
請求項13記載の発明は、請求項12に記載の鋼管杭の回転圧入工法であって、
前記並列パイプの噴射口をすべて覆う大きさの前記ホルダー部を有する前記車輪ユニットを前記並列パイプの一端部に装着して、前記並列パイプの前記一端部を前記鋼管杭の他端開口近傍に導入する鋼管杭の回転圧入工法である。
The invention according to claim 12 is
A fluid injection device for a rotary press-fit steel pipe pile that is equipped on a steel pipe pile and supplies and injects a fluid to assist the rotary press-fitting of the steel pipe pile, and is connected to a fluid supply source to supply a fluid from the fluid supply source. A flow path for feeding is formed, an injection port for the fluid is provided, and a plurality of fluid supply pipes extending along the longitudinal direction of the steel pipe pile are provided, and at least two of the fluid supply pipes are connected to each other. The parallel pipes are independently separated and provided in parallel, and both of them are installed in the steel pipe pile with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile, and the parallel pipes are mutually separated from the injection port. A rotary press-fitting method for steel pipe piles equipped with a fluid injection device for rotary press-fit steel pipe piles having different injection directions, depth positions along the longitudinal direction of the steel pipe piles at the injection port, or connected fluid supply sources.
A fluid auxiliary rotary press-fitting step of rotationally press-fitting the steel pipe pile into the ground while injecting fluid by the fluid injection device is executed.
A wheel unit including a holder for inserting one end of the parallel pipe and a wheel support for supporting the wheel is attached to one end of the pipe .
In the wheel unit, by inserting one end of the parallel pipe into the holder portion, the axle of the wheel is arranged on the central axis of the parallel pipe.
The one end of the parallel pipe is inserted into one end opening of the steel pipe pile placed on its side before being press-fitted into the ground, and the wheel is grounded to the inner peripheral surface of the steel pipe pile to make the inside of the steel pipe pile. By traveling in the longitudinal direction toward the other end opening, the one end is introduced in the vicinity of the other end opening.
After that, the wheel is removed from the one end portion, and the wheel is removed.
After that, the parallel pipe is fixed to the inner peripheral surface of the steel pipe pile, and the parallel pipe is fixed to the inner peripheral surface of the steel pipe pile.
After that, it is a rotary press-fitting method for steel pipe piles that executes the fluid auxiliary rotary press-fitting step.
The invention according to claim 13 is the rotary press-fitting method for steel pipe piles according to claim 12.
The wheel unit having the holder portion having a size covering all the injection ports of the parallel pipe is attached to one end of the parallel pipe, and the one end of the parallel pipe is introduced in the vicinity of the other end opening of the steel pipe pile. This is a rotary press-fitting method for steel pipe piles.

本発明の回転圧入鋼管杭の流体噴射装置によれば、流体供給パイプを複数本備え、そのうち少なくとも2本の流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が鋼管杭の内周面に接して鋼管杭内に設置されるから、2重管を用いることなく少なくとも2系統の流路を確保でき、鋼管杭への設置が容易であり、独立して噴射口の方向や位置を自由に選択できる。
その結果、鋼管杭の内周面からの流体供給パイプの突出量を小さく抑え、従って鋼管杭の回転圧入の際の抵抗量や掘削量を減らすことができ、地盤状況等に応じて適切な位置、方向に噴射口を設けることができ、流体補助回転圧入工法の効率化を図ることができる。
According to the fluid injection device of the rotary press-fit steel pipe pile of the present invention, a plurality of fluid supply pipes are provided, and at least two of them are parallel pipes which are independently separated from each other and are provided in parallel, and both of them. Since the outer peripheral surface is in contact with the inner peripheral surface of the steel pipe pile and is installed in the steel pipe pile, at least two flow paths can be secured without using a double pipe, and the installation on the steel pipe pile is easy and independent. The direction and position of the injection port can be freely selected.
As a result, the amount of protrusion of the fluid supply pipe from the inner peripheral surface of the steel pipe pile can be suppressed to a small size, and therefore the amount of resistance and the amount of excavation during rotational press-fitting of the steel pipe pile can be reduced. The injection port can be provided in the direction of the pipe, and the efficiency of the fluid auxiliary rotary press-fitting method can be improved.

本発明の一実施形態に係る回転圧入鋼管杭の側視図である。It is a side view of the rotary press-fitting steel pipe pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る回転圧入鋼管杭の上面図である。It is a top view of the rotary press-fitting steel pipe pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流体噴射装置の流体供給パイプの上端部とホースとの接続部分を示す側視図である。It is a side view which shows the connection part of the upper end part of the fluid supply pipe of the fluid injection device which concerns on one Embodiment of this invention, and a hose. 本発明の一実施形態に係る回転圧入鋼管杭の底面図(a)、及び本発明の他の一実施形態に係る回転圧入鋼管杭の底面図(b)である。It is the bottom view (a) of the rotary press-fitting steel pipe pile which concerns on one Embodiment of this invention, and is the bottom view (b) of the rotary press-fitting steel pipe pile which concerns on another Embodiment of this invention. 本発明の一実施形態に係る流体供給パイプの下端部を含む部分の斜視図である。It is a perspective view of the part including the lower end part of the fluid supply pipe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流体供給パイプの下端部の鋼管杭に対する配置図である。It is a layout drawing with respect to the steel pipe pile of the lower end part of the fluid supply pipe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流体供給パイプの固定構造を示す斜視図である。It is a perspective view which shows the fixed structure of the fluid supply pipe which concerns on one Embodiment of this invention. 本発明の一実施形態に係る流体供給パイプの固定構造を示すパイプ中心軸に垂直な断面図である。It is sectional drawing which shows the fixed structure of the fluid supply pipe which concerns on one Embodiment of this invention, and is perpendicular to the pipe central axis. 本発明の一実施形態に係る流体供給パイプの結束構造を示すパイプ中心軸に垂直な断面図である。It is sectional drawing which shows the binding structure of the fluid supply pipe which concerns on one Embodiment of this invention, and is perpendicular to the pipe central axis. 本発明の一実施形態に係り、流体供給パイプの回転圧入鋼管杭への設置工程を示す側視図である。It is a side view which shows the installation process of the fluid supply pipe to the rotary press-fit steel pipe pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係り、流体供給パイプの回転圧入鋼管杭への設置工程を示す側視図である。It is a side view which shows the installation process of the fluid supply pipe to the rotary press-fit steel pipe pile which concerns on one Embodiment of this invention. 本発明の一実施形態に係り、流体供給パイプの下端部とこれに取り付けられた車輪ユニットの構造図である。FIG. 3 is a structural diagram of a lower end portion of a fluid supply pipe and a wheel unit attached to the lower end portion according to an embodiment of the present invention. 本発明の一実施形態に係り、流体供給パイプの回転圧入鋼管杭への設置工程を示す側視図である。It is a side view which shows the installation process of the fluid supply pipe to the rotary press-fit steel pipe pile which concerns on one Embodiment of this invention. 本発明の他の一実施形態に係る流体供給パイプの下端部を含む部分の斜視図である。It is a perspective view of the part including the lower end part of the fluid supply pipe which concerns on another Embodiment of this invention. 本発明の他の一実施形態に係る流体供給パイプの固定構造を示すパイプ中心軸に垂直な断面図である。It is sectional drawing which shows the fixed structure of the fluid supply pipe which concerns on another Embodiment of this invention, and is perpendicular to the pipe central axis.

以下に本発明の一実施形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings. The following is an embodiment of the present invention and does not limit the present invention.

まず、本発明の一実施形態の回転圧入鋼管杭の流体噴射装置1につき説明する。
図1、図2等に示すように流体噴射装置1は、鋼管杭10に装備されるものである。鋼管杭10は、杭回転圧入引抜機によって地盤に回転圧入されるものである。回転圧入工法に関する技術は従来のものであるが、その要点を言及すると次の通りである。杭回転圧入引抜機は、上下動及び把持部が回転する杭チャック装置を備え、同杭チャック装置により鋼管杭10の外周部を外側から把持して圧入力と回転力を加える。鋼管杭10は同杭チャック装置に挿入される形で把持される。杭回転圧入引抜機は、既設の鋼管杭の上端を内側から把持するクランプ装置を備えており、同クランプ装置により既設の鋼管杭の上端を把持して回転圧入の際の反力を得る。杭回転圧入引抜機は、同クランプ装置により固定されるベースに対して油圧力により同杭チャック装置の上下動及び把持部の回転動を行う。
このような回転圧入用の鋼管杭10としては、先端部に掘削ビット11が固定されており、杭回転圧入引抜機による回転圧入に伴い掘削ビット11が環状に地盤を掘削して地盤に鋼管杭10の侵入空間を切り開く。
First, a fluid injection device 1 for a rotary press-fit steel pipe pile according to an embodiment of the present invention will be described.
As shown in FIGS. 1, 2 and the like, the fluid injection device 1 is mounted on the steel pipe pile 10. The steel pipe pile 10 is rotationally press-fitted into the ground by a pile rotary press-fitting / pulling machine. The technology related to the rotary press-fitting method is conventional, but the main points are as follows. The pile rotary press-fitting / pulling machine is provided with a pile chuck device that moves up and down and the grip portion rotates, and the pile chuck device grips the outer peripheral portion of the steel pipe pile 10 from the outside to apply pressure input and rotational force. The steel pipe pile 10 is gripped so as to be inserted into the pile chuck device. The pile rotary press-fitting / pulling machine is equipped with a clamp device that grips the upper end of the existing steel pipe pile from the inside, and the clamp device grips the upper end of the existing steel pipe pile to obtain a reaction force at the time of rotary press-fitting. The pile rotary press-fitting / pulling machine moves the pile chuck device up and down and rotates the grip portion by hydraulic pressure with respect to the base fixed by the clamp device.
The excavation bit 11 is fixed to the tip of the steel pipe pile 10 for such rotary press-fitting, and the excavation bit 11 excavates the ground in an annular shape with the rotary press-fitting by the pile rotary press-fitting / drawing machine to make a steel pipe pile in the ground. Cut through 10 intrusion spaces.

流体噴射装置1は、以上のような鋼管杭の回転圧入工法において鋼管杭10の先端の掘削ビット11の冷却や鋼管杭10の周面摩擦低減などにより鋼管杭10の回転圧入を補助するために、鋼管杭10に水やエアー等(滑材含む)の流体を供給し地盤に噴射する。
本実施形態の流体噴射装置1は、ウォーターポンプ、エアコンプレッサー等の流体供給源(不図示、鋼管杭の外に設置)に接続される複数本の流体供給パイプを備える。本実施形態では、複数本の流体供給パイプは次の構成である。
まず、互いに独立分離して並列に設けられる並列パイプ(20,30)を備える。独立パイプ20と独立パイプ30とによって並列パイプ(20,30)が構成される。
独立パイプ20は単管である。すなわち、独立パイプ20は、他の流体供給パイプを内部に配置していたり、他の流体供給パイプの内部に配置されていたりしない。
一方、独立パイプ30の内部には流体供給パイプが配置されており、独立パイプ30とその内部パイプ40(図3,図5において破線で図示)により2重管の形態となっている。
独立パイプ20と独立パイプ30とは、互いに独立している。すなわち、一方が他方の内部に配置されることはなく、互いに外部の配管である。
独立パイプ20と独立パイプ30とは、分離している。したがって、互いの相対的位置を自由に変更できる。
The fluid injection device 1 assists the rotary press-fitting of the steel pipe pile 10 by cooling the excavation bit 11 at the tip of the steel pipe pile 10 and reducing the peripheral friction of the steel pipe pile 10 in the rotary press-fitting method of the steel pipe pile as described above. , A fluid such as water or air (including a sliding material) is supplied to the steel pipe pile 10 and injected into the ground.
The fluid injection device 1 of the present embodiment includes a plurality of fluid supply pipes connected to a fluid supply source (not shown, installed outside a steel pipe pile) such as a water pump and an air compressor. In the present embodiment, the plurality of fluid supply pipes have the following configuration.
First, parallel pipes (20, 30) that are independently separated from each other and provided in parallel are provided. A parallel pipe (20, 30) is formed by the independent pipe 20 and the independent pipe 30.
The independent pipe 20 is a single pipe. That is, the independent pipe 20 does not have another fluid supply pipe arranged inside or is not arranged inside another fluid supply pipe.
On the other hand, a fluid supply pipe is arranged inside the independent pipe 30, and the independent pipe 30 and its internal pipe 40 (shown by a broken line in FIGS. 3 and 5) form a double pipe.
The independent pipe 20 and the independent pipe 30 are independent of each other. That is, one is not arranged inside the other, but is a pipe outside each other.
The independent pipe 20 and the independent pipe 30 are separated from each other. Therefore, the relative positions of each other can be freely changed.

独立パイプ20と独立パイプ30の特徴は、他の流体供給パイプの内部に配置されていないことである。したがって、独立パイプ20及び独立パイプ30は共にその外周面が鋼管杭10の内周面に接して鋼管杭10内に設置されている。
以上のように本実施形態において流体供給パイプは3本で構成される。すなわち、独立パイプ20と、独立パイプ30と、独立パイプ30内の内部パイプ40である。
これら3本の流体供給パイプはそれぞれ、上端部が流体供給源に接続され、流体供給源からの流体を給送する流路を形成し、下端部に該流体の噴射口が設けられ、鋼管杭10の長手方向に沿って延設される。
独立パイプ20は、その内部に流路を形成し、この流路に給送する流体として水が適用される。
独立パイプ30は、その内部に流路を形成する。但し、内部パイプ40の設置空間が除かれる。この流路に給送する流体として空気が適用される。
内部パイプ40は、その内部に流路を形成し、この流路に給送する流体として水が適用される。
A feature of the independent pipe 20 and the independent pipe 30 is that they are not arranged inside other fluid supply pipes. Therefore, both the independent pipe 20 and the independent pipe 30 are installed in the steel pipe pile 10 with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile 10.
As described above, in the present embodiment, the fluid supply pipe is composed of three pipes. That is, the independent pipe 20, the independent pipe 30, and the internal pipe 40 in the independent pipe 30.
The upper end of each of these three fluid supply pipes is connected to the fluid supply source to form a flow path for supplying the fluid from the fluid supply source, and the fluid injection port is provided at the lower end portion of the steel pipe pile. It is extended along the longitudinal direction of 10.
The independent pipe 20 forms a flow path inside the independent pipe 20, and water is applied as a fluid to be fed to this flow path.
The independent pipe 30 forms a flow path inside the independent pipe 30. However, the installation space of the internal pipe 40 is excluded. Air is applied as the fluid to be fed to this flow path.
The internal pipe 40 forms a flow path inside the flow path, and water is applied as a fluid to be supplied to the flow path.

以上のような構成の並列パイプ(20,30)を備える流体噴射装置1によれば、2重管を用いることなく少なくとも2系統の流路を確保できる。本実施形態では、2重管を用いているが、2重管を用いない場合、すなわち、上記内部パイプ40を排した場合でも、2系統の流路を確保できる。独立パイプ20及び独立パイプ30のうちいずれか一方又は双方に対して、1本の内部パイプを設置した場合、3~4系統の流路を確保できる。例えば、1本の外管の内部に2本の内管を設置した場合、その外径が大きくなり、鋼管杭の内周面からの流体供給パイプの突出量が大きくなるため、鋼管杭の回転圧入の際の抵抗量や掘削量が増大する事となる。
また、3系統の流路を確保するために1本の外管の内部に2本の内管を設置した場合、独立して噴射口の方向や位置を自由に選択できる構成とすることは困難である。
また、独立パイプ20と独立パイプ30とは分離しており、互いの相対的位置を自由に変更できるから、独立して噴射口の方向や位置を自由に選択できる。
本発明は、少なくとも2本が並列パイプである。したがって本実施形態に拘わらず、独立パイプを3本有した3並列パイプの構成や、それ以上の並列数の構成を実施してもよい。
According to the fluid injection device 1 provided with the parallel pipes (20, 30) having the above configuration, it is possible to secure at least two flow paths without using a double pipe. In the present embodiment, the double pipe is used, but even when the double pipe is not used, that is, even when the internal pipe 40 is removed, two flow paths can be secured. When one internal pipe is installed for either one or both of the independent pipe 20 and the independent pipe 30, 3 to 4 systems of flow paths can be secured. For example, when two inner pipes are installed inside one outer pipe, the outer diameter thereof becomes large and the amount of protrusion of the fluid supply pipe from the inner peripheral surface of the steel pipe pile becomes large, so that the steel pipe pile rotates. The amount of resistance and the amount of excavation during press fitting will increase.
In addition, when two inner pipes are installed inside one outer pipe in order to secure three flow paths, it is difficult to configure the configuration so that the direction and position of the injection port can be freely selected independently. Is.
Further, since the independent pipe 20 and the independent pipe 30 are separated from each other and their relative positions can be freely changed, the direction and position of the injection port can be freely selected independently.
In the present invention, at least two pipes are parallel pipes. Therefore, regardless of the present embodiment, a configuration of three parallel pipes having three independent pipes or a configuration of a larger number of parallel pipes may be implemented.

さて、流体噴射装置1のその他の構成部分につきさらに説明する。
図1、図2に示すようにスイベルジョイント50は、流体供給源からの各ホース(不図示)が接続される各流路継手51を有する上部52と、パイプ20,30,40の上端部に接続されるホース21,31,41が接続される下部53とが相対回転する回転流路継手である。スイベルジョイント50は、鋼管杭10の回転に伴う流体供給源と流体供給パイプ(20,30,40)との相対回転を許容するためのものである。
スイベルジョイント50は、鋼管杭10の上端に架設された架台54に支持されて、鋼管杭10の上端開口の中央部に配置されている。このようにしてスイベルジョイント50は、鋼管杭10の上端に設置可能である。
複数本の流体供給パイプ(20,30,40)のそれぞれは、スイベルジョイント50を介して流体供給源に接続される。
また、流体噴射装置1は、複数本の流体供給パイプ(20,30,40)のそれぞれとスイベルジョイント50とを接続するホース21,31,41を備える。ホース21,31,41により、流体供給パイプ(20,30,40)とスイベルジョイント50とを無理なく接続可能である。
なお、スイベルジョイント50の上部52に一端が固定されたサポートアーム55は、
各流路継手51に接続する流体供給源からの各ホースを保持するためのものである。サポートアーム55の自由端に掛け金56が設けられており、これにホースが掛けられ、鋼管杭10に干渉しないように、鋼管杭10の外径より外に保持される。
Now, the other components of the fluid injection device 1 will be further described.
As shown in FIGS. 1 and 2, the swivel joint 50 is provided at the upper end 52 having each flow path joint 51 to which each hose (not shown) from the fluid supply source is connected, and at the upper ends of the pipes 20, 30 and 40. It is a rotary flow path joint that rotates relative to the lower portion 53 to which the connected hoses 21, 31, and 41 are connected. The swivel joint 50 is for allowing the relative rotation between the fluid supply source and the fluid supply pipes (20, 30, 40) accompanying the rotation of the steel pipe pile 10.
The swivel joint 50 is supported by a gantry 54 erected at the upper end of the steel pipe pile 10 and is arranged at the center of the upper end opening of the steel pipe pile 10. In this way, the swivel joint 50 can be installed at the upper end of the steel pipe pile 10.
Each of the plurality of fluid supply pipes (20, 30, 40) is connected to the fluid supply source via the swivel joint 50.
Further, the fluid injection device 1 includes hoses 21, 31, 41 for connecting each of the plurality of fluid supply pipes (20, 30, 40) to the swivel joint 50. The fluid supply pipes (20, 30, 40) and the swivel joint 50 can be easily connected by the hoses 21, 31, 41.
The support arm 55, one end of which is fixed to the upper portion 52 of the swivel joint 50, is
It is for holding each hose from the fluid supply source connected to each flow path joint 51. A latch 56 is provided at the free end of the support arm 55, and a hose is hung on the latch 56, which is held outside the outer diameter of the steel pipe pile 10 so as not to interfere with the steel pipe pile 10.

図1、さらに詳細を図7,図8に示す固定バンド61,62は、独立パイプ20,30のそれぞれを鋼管杭10の内周面に固定するための固定具である。図7,図8に示すように、固定バンド61,62は、独立パイプ20,30のそれぞれに設けられた固定バンド保持用の周溝22,32に掛けられ、鋼管杭10の内周面に一端部が溶接される片持ちタイプである。固定バンド61,62は周溝22,32に落ち込み、独立パイプ20,30の外径から突出せず、鋼管杭10の回転圧入時の抵抗にならない。
また、図8に示すように独立パイプ20,30の外周面にパイプ用台座(係止部材)63,64が固着されている。パイプ用台座63,64のパイプ受け面63a、64aが、周溝22,32の部分のパイプ外周面に溶接により固着されている。固定バンド61,62により押されられることで、鋼管受け面63b,64bは鋼管杭10の内周面に座り、独立パイプ20,30が自身の中心軸回りに回転しないように保持する。これにより、噴射方向A,B,Cを一定方向に保持しておくことができる。また、独立パイプ20,30が回転しようとすると、パイプ用台座63,64が固定バンド61,62に当たりその回転を止める。
独立パイプ20,30を軸方向に引けば、固定バンド61,62が変形し、独立パイプ20,30が固定バンド61,62から離脱可能である。
すなわち、並列パイプ(20,30)の固定バンド61,62による固定構造は、鋼管杭10に対して並列パイプ(20,30)を引き上げることにより固定解除が可能にされ、これにより並列パイプ(20,30)を破壊することなく回収可能である。このような固定構造は、鋼管杭10の内周面に両端部が溶接される両持ちタイプの固定バンドによっても可能である。この場合、独立パイプ20,30を引き上げることで固定バンドを切り、独立パイプ20,30を固定バンドから離脱させる。この場合も周溝22,32を適用し、周溝22,32に固定バンドを掛けて固定しておくことで、独立パイプ20,30の引き上げ力が周溝22,32で固定バンドに確実に伝わり固定バンドを切ることができる。
図1、図3に示すように独立パイプ20,30のそれぞれの上端部には、当該パイプの長手方向に引き上げ力を効率よく加えるための吊り環23,33が付設されている。この吊り環23,33に吊りフックを引っ掛ける等して独立パイプ20,30を引き上げて回収する。
The fixing bands 61 and 62 shown in FIGS. 1 and 7 and 8 in more detail are fixing tools for fixing the independent pipes 20 and 30 to the inner peripheral surface of the steel pipe pile 10. As shown in FIGS. 7 and 8, the fixing bands 61 and 62 are hung on the peripheral grooves 22 and 32 for holding the fixing bands provided in the independent pipes 20 and 30, respectively, and are hung on the inner peripheral surface of the steel pipe pile 10. It is a cantilever type in which one end is welded. The fixing bands 61 and 62 fall into the peripheral grooves 22 and 32, do not protrude from the outer diameters of the independent pipes 20 and 30, and do not become resistance when the steel pipe pile 10 is rotationally press-fitted.
Further, as shown in FIG. 8, pipe pedestals (locking members) 63 and 64 are fixed to the outer peripheral surfaces of the independent pipes 20 and 30. The pipe receiving surfaces 63a and 64a of the pipe pedestals 63 and 64 are fixed to the pipe outer peripheral surfaces of the peripheral grooves 22 and 32 by welding. By being pushed by the fixing bands 61 and 62, the steel pipe receiving surfaces 63b and 64b sit on the inner peripheral surface of the steel pipe pile 10 and hold the independent pipes 20 and 30 so as not to rotate around their own central axis. As a result, the injection directions A, B, and C can be held in a fixed direction. Further, when the independent pipes 20 and 30 try to rotate, the pipe pedestals 63 and 64 hit the fixed bands 61 and 62 and stop the rotation.
If the independent pipes 20 and 30 are pulled in the axial direction, the fixed bands 61 and 62 are deformed, and the independent pipes 20 and 30 can be separated from the fixed bands 61 and 62.
That is, the fixing structure of the parallel pipes (20, 30) by the fixing bands 61 and 62 can be released by pulling up the parallel pipes (20, 30) with respect to the steel pipe pile 10, whereby the parallel pipes (20) can be released. , 30) can be recovered without destroying it. Such a fixing structure is also possible by a double-sided type fixing band in which both ends are welded to the inner peripheral surface of the steel pipe pile 10. In this case, the fixed band is cut by pulling up the independent pipes 20 and 30, and the independent pipes 20 and 30 are separated from the fixed band. In this case as well, by applying the peripheral grooves 22 and 32 and fixing the peripheral grooves 22 and 32 with a fixing band, the pulling force of the independent pipes 20 and 30 is surely applied to the fixed band at the peripheral grooves 22 and 32. It is possible to cut the fixed band.
As shown in FIGS. 1 and 3, suspension rings 23 and 33 for efficiently applying a pulling force in the longitudinal direction of the independent pipes 20 and 30 are attached to the upper ends of the independent pipes 20 and 30, respectively. The independent pipes 20 and 30 are pulled up and collected by hooking a hanging hook on the hanging rings 23 and 33.

図1に示すように独立パイプ20は、先端からパイプ20a、パイプ20b、パイプ20c、・・・というように複数のパイプを連接した分解式であり、延長が可能である。これは、独立パイプ20の先端位置の変更への対応、長さの異なる鋼管杭10への対応、鋼管杭10が継ぎ足されて長くなることへの対応などの対応力を得るために有効である。また、分解することで人手による持ち運びや取扱いを容易にする、損傷した部分のみを交換できるなどの利点がある。
独立パイプ30も、先端からパイプ30a、パイプ30b、パイプ30c、・・・というように複数のパイプを連接した分解式であり、同様である。独立パイプ30内には内部パイプ40が配置されている。この内部パイプ40も独立パイプ30と同じ個所で分解する分解式である。
As shown in FIG. 1, the independent pipe 20 is a disassembled type in which a plurality of pipes are connected from the tip such as a pipe 20a, a pipe 20b, a pipe 20c, and so on, and can be extended. This is effective for responding to changes in the tip position of the independent pipe 20, responding to steel pipe piles 10 having different lengths, responding to the addition of steel pipe piles 10 and making them longer, and the like. .. In addition, there are advantages such as easy manual carrying and handling by disassembling, and replacement of only the damaged part.
The independent pipe 30 is also a disassembled type in which a plurality of pipes are connected from the tip such as a pipe 30a, a pipe 30b, a pipe 30c, and so on, and is the same. An internal pipe 40 is arranged in the independent pipe 30. This internal pipe 40 is also a disassembly type that decomposes at the same location as the independent pipe 30.

複数本の流体供給パイプ20,30,40のそれぞれは、流体供給源に接続される上端部と、噴射口が設けられる下端部との間に、当該流体供給パイプの中心軸回りに回転可能に又は同中心軸回りの任意角度で流路を接続する流路継手を有する。なお、独立パイプ30と内部パイプ40とは2重管用の流路継手で共通化して実施する。
すなわち、パイプ20aとパイプ20bとの接続に用いる流路継手である。また、パイプ30aとパイプ30bとの接続に用いる流路継手であり、この場合、内部パイプ40の継手構造も一体にされる。
例えば、パイプ20aとパイプ20bとの接続を、パイプ20aの一端部に設けたネジ部と、パイプ20bの一端部に設けたネジ部との螺合締結とすると、しっかり締結した際のパイプ20aとパイプ20bとの中心軸回りの接続角度を任意に選べない。
したがって、流体供給パイプの噴射口が設けられる下端部において噴射口の噴射方向を所定方向としている場合、流体供給源に接続される上端部においてホースの接続方向を所定方向としている場合などは、噴射方向が変わってしまう、ホースの延出方向が変わってしまうという不都合、それらの方向を変えなければパイプ20aとパイプ20bとをしっかり締結できないという不都合がある。
そのため、流体供給パイプの中心軸回りに回転可能に流路を接続する回転流路継手か、又は同中心軸回りの任意角度で流路を接続する流路継手を適用する。
Each of the plurality of fluid supply pipes 20, 30, and 40 can rotate around the central axis of the fluid supply pipe between the upper end portion connected to the fluid supply source and the lower end portion provided with the injection port. Alternatively, it has a flow path joint that connects the flow paths at an arbitrary angle around the same central axis. The independent pipe 30 and the internal pipe 40 are shared by a flow path joint for a double pipe.
That is, it is a flow path joint used for connecting the pipe 20a and the pipe 20b. Further, it is a flow path joint used for connecting the pipe 30a and the pipe 30b, and in this case, the joint structure of the internal pipe 40 is also integrated.
For example, if the connection between the pipe 20a and the pipe 20b is a screw fastening between a threaded portion provided at one end of the pipe 20a and a threaded portion provided at one end of the pipe 20b, the connection with the pipe 20a when firmly fastened is assumed. The connection angle around the central axis with the pipe 20b cannot be arbitrarily selected.
Therefore, when the injection direction of the injection port is set to the predetermined direction at the lower end portion where the injection port of the fluid supply pipe is provided, or when the connection direction of the hose is set to the predetermined direction at the upper end portion connected to the fluid supply source, the injection is performed. There are inconveniences that the direction changes, the extension direction of the hose changes, and that the pipe 20a and the pipe 20b cannot be firmly fastened unless those directions are changed.
Therefore, a rotary flow path joint that rotatably connects the flow path around the central axis of the fluid supply pipe, or a flow path joint that connects the flow path at an arbitrary angle around the center axis is applied.

図5、図6等に示すように、独立パイプ20の下端部は、噴射口26に至るまでに逆止弁部品24、ノズル部品25が接続されている。すなわち、この場合、ノズル部品25が噴射口26を構成する。独立パイプ20は、このような逆止弁部品24及びノズル部品25を着脱可能に連結する接続構造27を有する。接続構造27としては、ネジ式等の配管継手構造を適宜に適用すればよい。逆止弁部品24を排して、ノズル部品25を直接に接続構造27に接続可能である。独立パイプ20の下端部に、適宜必要な流路部品を装着して実施でき、ノズルの交換なども容易である。
図5に示すように内部パイプ40の下端部も同様に噴射口46に至るまでに逆止弁部品44、ノズル部品45が接続されており、接続構造47に着脱可能である。
接続構造27は、独立パイプ20の下端部に切られた雄螺子が、締結ナット、逆止弁部品24の上部接続口の順で螺入した構造であるので、逆止弁部品24及びノズル部品25を軸回り回転させて噴射方向Aを調整し、上記締結ナットを逆止弁部品24側に締結して噴射方向Aを固定することができる。
接続構造47についても同様である。すなわち、接続構造47は、内部パイプ40の下端部に切られた雄螺子が、締結ナット、逆止弁部品44の上部接続口の順で螺入した構造であるので、逆止弁部品44及びノズル部品45を軸回りに回転させて噴射方向Bを調整し、上記締結ナットを逆止弁部品44側に締結して噴射方向Bを固定することができる。この調整機構の具体的構成は一例である。
特に、噴射口36と噴射口46との間に、噴射方向Cと噴射方向Bとを相対的に回転させる機構を設けることによって、噴射方向Cと噴射方向Bとを互いに独立して調整することができる。
As shown in FIGS. 5 and 6, the check valve component 24 and the nozzle component 25 are connected to the lower end of the independent pipe 20 up to the injection port 26. That is, in this case, the nozzle component 25 constitutes the injection port 26. The independent pipe 20 has a connection structure 27 for detachably connecting such a check valve component 24 and a nozzle component 25. As the connection structure 27, a pipe joint structure such as a screw type may be appropriately applied. The check valve component 24 can be eliminated and the nozzle component 25 can be directly connected to the connection structure 27. It can be carried out by appropriately attaching necessary flow path parts to the lower end of the independent pipe 20, and it is easy to replace the nozzle.
As shown in FIG. 5, the lower end portion of the internal pipe 40 is also connected to the check valve component 44 and the nozzle component 45 up to the injection port 46, and is detachable from the connection structure 47.
The connection structure 27 has a structure in which a male screw cut at the lower end of the independent pipe 20 is screwed in in the order of the fastening nut and the upper connection port of the check valve component 24. Therefore, the check valve component 24 and the nozzle component The injection direction A can be adjusted by rotating 25 around the axis, and the fastening nut can be fastened to the check valve component 24 side to fix the injection direction A.
The same applies to the connection structure 47. That is, the connection structure 47 has a structure in which a male screw cut at the lower end of the internal pipe 40 is screwed in in the order of the fastening nut and the upper connection port of the check valve component 44. The injection direction B can be adjusted by rotating the nozzle component 45 about an axis, and the fastening nut can be fastened to the check valve component 44 side to fix the injection direction B. The specific configuration of this adjustment mechanism is an example.
In particular, by providing a mechanism for relatively rotating the injection direction C and the injection direction B between the injection port 36 and the injection port 46, the injection direction C and the injection direction B can be adjusted independently of each other. Can be done.

図6に示すように、掘削ビットを保持するリング部材12に穿設された孔12aを介して、噴射口26が鋼管杭10の径方向外方に向けられている。すなわち、噴射口26からの噴射方向Aが、鋼管杭10の径方向外方である。
図5に示すように、噴射口46が鋼管杭10の周方向に向けられている。すなわち、噴射口46からの噴射方向Bが、鋼管杭10の周方向である。
独立パイプ30の下端部に設けられた噴射口36からの噴射方向Cは、図5に示すように鋼管杭10の周方向である。なお、独立パイプ30の下端部についても、逆止弁部品やノズル部品を着脱可能に連結する接続構造を設けて置き、適宜に接続して機能を変更してもよい。
As shown in FIG. 6, the injection port 26 is directed outward in the radial direction of the steel pipe pile 10 through the hole 12a formed in the ring member 12 that holds the excavation bit. That is, the injection direction A from the injection port 26 is outward in the radial direction of the steel pipe pile 10.
As shown in FIG. 5, the injection port 46 is directed in the circumferential direction of the steel pipe pile 10. That is, the injection direction B from the injection port 46 is the circumferential direction of the steel pipe pile 10.
The injection direction C from the injection port 36 provided at the lower end of the independent pipe 30 is the circumferential direction of the steel pipe pile 10 as shown in FIG. The lower end of the independent pipe 30 may also be provided with a connection structure for detachably connecting check valve parts and nozzle parts, and may be appropriately connected to change the function.

鋼管杭の長手方向に沿った深さ位置については、深い方から噴射口26、噴射口46、噴射口36の順であり、異なっている。
接続される流体供給源については、独立パイプ20は高圧水ポンプ、内部パイプ40は高圧水ポンプ、独立パイプ30はエアコンプレッサーであるが、独立パイプ20が接続される高圧水ポンプと、内部パイプ40が接続される高圧水ポンプは共通でもよいし、異なっていてもよい。後者の場合、能力や機能の異なるポンプを接続したりできる。独立パイプ20と内部パイプ40とで供給する流体物質(混合物の組成など)を異ならせてもよい。
The depth positions of the steel pipe piles along the longitudinal direction are different in the order of the injection port 26, the injection port 46, and the injection port 36 from the deepest side.
Regarding the fluid supply source to be connected, the independent pipe 20 is a high-pressure water pump, the internal pipe 40 is a high-pressure water pump, and the independent pipe 30 is an air compressor. The high-pressure water pumps to which are connected may be common or different. In the latter case, pumps with different capacities and functions can be connected. The fluid substances (composition of the mixture, etc.) supplied by the independent pipe 20 and the internal pipe 40 may be different.

図1、図4及び図5に示すように防護壁部材70が鋼管杭の内周面に固着されている。
防護壁部材70は、並列パイプ(20,30)に対して鋼管杭10の周方向に隣接配置されており、鋼管杭10の回転圧入に伴う土砂等の衝突から並列パイプ(20,30)を防護する。そのため、図4に示すように防護壁部材70は、並列パイプ(20,30)に対して鋼管杭10の回転方向Rで前方に隣接する。すなわち、図4に示すように並列パイプ(20,30)から見て防護壁部材70に近い周方向R1は、鋼管杭10の下端に固定された掘削ビット11により特定される掘削方向R2である。これらの方向R,R1,R2が同方向である。また、防護壁部材70は、図4(a)に示されるように独立パイプ20、独立パイプ30に対して個別に設けられるものではない。したがって、並列パイプ(20,30)、すなわち、独立パイプ20と独立パイプ30とは、防護壁部材を介さず互いに隣接して配置されている。これに対して図4(b)に示す配置例にあっては、防護壁部材70は、独立パイプ20、独立パイプ30に対して個別に設けられる。独立パイプ20と独立パイプ30との間に防護壁部材を配置すると、独立パイプ20と独立パイプ30とを後述の結束具80により結束して一体的にする、一体的にして設置したり、回収したりすることが難しくなる。その代り図4(b)に示すように独立パイプ20と独立パイプ30とを周方向に任意の長さで離して配置することができ、配置の自由度が増す。
As shown in FIGS. 1, 4 and 5, the protective wall member 70 is fixed to the inner peripheral surface of the steel pipe pile.
The protective wall member 70 is arranged adjacent to the parallel pipe (20, 30) in the circumferential direction of the steel pipe pile 10, and the parallel pipe (20, 30) is provided from the collision of earth and sand due to the rotational press-fitting of the steel pipe pile 10. Protect. Therefore, as shown in FIG. 4, the protective wall member 70 is adjacent to the parallel pipe (20, 30) in front of the parallel pipe (20, 30) in the rotation direction R of the steel pipe pile 10. That is, as shown in FIG. 4, the circumferential direction R1 close to the protective wall member 70 when viewed from the parallel pipes (20, 30) is the excavation direction R2 specified by the excavation bit 11 fixed to the lower end of the steel pipe pile 10. .. These directions R, R1 and R2 are in the same direction. Further, the protective wall member 70 is not individually provided for the independent pipe 20 and the independent pipe 30 as shown in FIG. 4A. Therefore, the parallel pipes (20, 30), that is, the independent pipe 20 and the independent pipe 30 are arranged adjacent to each other without the protective wall member. On the other hand, in the arrangement example shown in FIG. 4B, the protective wall member 70 is individually provided for the independent pipe 20 and the independent pipe 30. When the protective wall member is arranged between the independent pipe 20 and the independent pipe 30, the independent pipe 20 and the independent pipe 30 are bundled and integrated by the binding tool 80 described later, and can be installed or collected integrally. It becomes difficult to do. Instead, as shown in FIG. 4B, the independent pipe 20 and the independent pipe 30 can be arranged apart from each other by an arbitrary length in the circumferential direction, and the degree of freedom of arrangement is increased.

図5に示すように、独立パイプ20の先端部には、長手方向に隣接して防護壁部材71が設置されている、同様に独立パイプ30の先端部には、長手方向に隣接して防護壁部材72が設置されている。これにより、圧入方向下方からの土砂等の衝突から並列パイプ(20,30)を防護する。 As shown in FIG. 5, a protective wall member 71 is installed adjacent to the tip of the independent pipe 20 in the longitudinal direction, and similarly, the tip of the independent pipe 30 is protected adjacent to the longitudinal direction. A wall member 72 is installed. This protects the parallel pipes (20, 30) from collisions of earth and sand from below in the press-fitting direction.

図1、図9に示すように結束具80により、並列パイプを構成する独立パイプ20、30同士を軸方向の任意の相対位置で結束固定する。これにより、独立パイプ20と独立パイプ30との相対的な軸方向位置、噴射方向(各パイプ自身の中心軸回りの回転角)を固定できる。並列パイプ(20,30)を鋼管杭10に設置する前から、鋼管杭10の外での作業において、このような結束具80を用いて結束しておくことで、独立パイプ20と独立パイプ30との相対的な軸方向位置、噴射方向を地盤状況等に応じた所望の位置、方向に固定でき、作業性が良好である。
並列パイプ(20,30)を鋼管杭10から回収した際には、結束具80も共に回収されるもので、回収後必要により結束具80を取り外し、独立パイプ20、独立パイプ30を再利用することができる。そのため、結束具80は取り外し可能なものとする(図示ではボルト、ナットにより取り外し可能)。
As shown in FIGS. 1 and 9, the binding tool 80 binds and fixes the independent pipes 20 and 30 constituting the parallel pipes at arbitrary relative positions in the axial direction. Thereby, the relative axial position and injection direction (rotation angle around the central axis of each pipe itself) between the independent pipe 20 and the independent pipe 30 can be fixed. Before installing the parallel pipes (20, 30) on the steel pipe pile 10, the independent pipe 20 and the independent pipe 30 can be bound by using such a binding tool 80 in the work outside the steel pipe pile 10. The relative axial position and injection direction can be fixed to a desired position and direction according to the ground condition and the like, and workability is good.
When the parallel pipes (20, 30) are recovered from the steel pipe pile 10, the binding tool 80 is also recovered. After the recovery, the binding tool 80 is removed if necessary, and the independent pipe 20 and the independent pipe 30 are reused. be able to. Therefore, the binding tool 80 is removable (removable by bolts and nuts in the figure).

次に、鋼管杭の回転圧入工法につき説明する。
流体補助回転圧入工程を実施する前に次のようにして並列パイプを鋼管杭10に設置する。
図10に示すように並列パイプ(20,30)をクレーンにより吊り上げ、地盤への圧入前の横倒しに置かれた鋼管杭10の上端開口付近まで移動させる。
次に図11(a)に示すように並列パイプ(20,30)の一端部に車輪91を装着する。本実施形態では、車輪91を装着する一端部は、噴射口(26,36,46)を有する下端部とする。また、作業性を良好とするために、図12に示すように噴射口(26,36,46)を有する下端部が挿入されて保持されるホルダー部92と、ホルダー部92と一体の車輪支持部93とを備える車輪ユニット90を適用する。
このホルダー部92に並列パイプ(20,30)の下端部を挿入することで、車輪91の車軸が並列パイプ(20,30)の略中心軸上に配置される。また、並列パイプ(20,30)の下端部がホルダー部92により覆われ保護される。そのため、噴射口(26,36,46)をすべて覆う大きさのホルダー部92を適用することが好ましい。
Next, the rotary press-fitting method for steel pipe piles will be described.
Before carrying out the fluid auxiliary rotary press-fitting process, parallel pipes are installed in the steel pipe pile 10 as follows.
As shown in FIG. 10, the parallel pipes (20, 30) are lifted by a crane and moved to the vicinity of the upper end opening of the steel pipe pile 10 placed on its side before being press-fitted into the ground.
Next, as shown in FIG. 11A, the wheels 91 are mounted on one end of the parallel pipes (20, 30). In the present embodiment, one end portion for mounting the wheel 91 is a lower end portion having an injection port (26, 36, 46). Further, in order to improve workability, as shown in FIG. 12, a holder portion 92 having a lower end portion having an injection port (26, 36, 46) inserted and held, and a wheel support integrally with the holder portion 92 are supported. A wheel unit 90 including a portion 93 is applied.
By inserting the lower end portion of the parallel pipe (20, 30) into the holder portion 92, the axle of the wheel 91 is arranged on the substantially central axis of the parallel pipe (20, 30). Further, the lower end portions of the parallel pipes (20, 30) are covered and protected by the holder portion 92. Therefore, it is preferable to apply the holder portion 92 having a size that covers all of the injection ports (26, 36, 46).

次に図11(a)(b)に示すようにクレーンにより並列パイプ(20,30)を下降させながら、車輪91を鋼管杭10の内周面に接地させ、さらに並列パイプ(20,30)を下降させて、鋼管杭10の内部を下端開口の方へ向かって長手方向に車輪91を走行させる。さらに図13(a)に示すようにクレーンの吊フックを吊り環23,33から外した後は、人手により鋼管杭10の内部を下端開口の方へ向かって長手方向に車輪91を走行させる。以上の車輪91の走行により、並列パイプ(20,30)の下端部を鋼管杭10の下端開口近傍に導入する。 Next, as shown in FIGS. 11A and 11B, the parallel pipes (20, 30) are lowered by a crane, the wheels 91 are grounded to the inner peripheral surface of the steel pipe pile 10, and the parallel pipes (20, 30) are further grounded. Is lowered to drive the wheel 91 in the longitudinal direction toward the lower end opening inside the steel pipe pile 10. Further, as shown in FIG. 13A, after the suspension hook of the crane is removed from the suspension rings 23 and 33, the wheels 91 are manually driven inside the steel pipe pile 10 toward the lower end opening in the longitudinal direction. By traveling the wheels 91 as described above, the lower end portion of the parallel pipe (20, 30) is introduced in the vicinity of the lower end opening of the steel pipe pile 10.

その後、図13(b)に示すように車輪ユニット90を並列パイプ(20,30)の下端部から取り外す。
その後、図13(c)に示すように並列パイプ(20,30)を鋼管杭10の内周面に固定する。このとき、上述した固定バンド61,62を用い、固定バンド61,62を周溝22,32に掛け、固定バンド61,62の一端部を鋼管杭10の内周面に溶接することで並列パイプ(20,30)を鋼管杭10の内周面に固定する。
その後、適宜、ホース21,31,41の接続、スイベルジョイント50の設置及び接続、スイベルジョイント50から流体供給源までの流路の接続等を行って準備を完了する。
その後、流体補助回転圧入工程を実行する。
流体補助回転圧入工程においては、流体噴射装置1により流体を噴射しながら杭回転圧入引抜機によって鋼管杭10を地盤に回転圧入する。
流体補助回転圧入工程後、吊り環23,33に吊りフックを引っ掛ける等して独立パイプ20,30を引き上げ、固定バンド61,62から離脱させて回収する。杭回転圧入引抜機の杭チャック装置に連結したワイヤーロープの一端の吊りフックを吊り環23,33に引っ掛けて杭チャック装置を上昇させることにより、杭チャック装置の上昇力によって独立パイプ20,30を容易に引き上げ回収することができる。
After that, as shown in FIG. 13 (b), the wheel unit 90 is removed from the lower end portion of the parallel pipes (20, 30).
After that, as shown in FIG. 13 (c), the parallel pipes (20, 30) are fixed to the inner peripheral surface of the steel pipe pile 10. At this time, using the above-mentioned fixed bands 61 and 62, the fixed bands 61 and 62 are hung on the peripheral grooves 22 and 32, and one end of the fixed bands 61 and 62 is welded to the inner peripheral surface of the steel pipe pile 10 to form a parallel pipe. (20, 30) is fixed to the inner peripheral surface of the steel pipe pile 10.
After that, the preparation is completed by appropriately connecting the hoses 21, 31, 41, installing and connecting the swivel joint 50, connecting the flow path from the swivel joint 50 to the fluid supply source, and the like.
After that, the fluid auxiliary rotary press-fitting step is executed.
In the fluid auxiliary rotary press-fitting step, the steel pipe pile 10 is rotationally press-fitted into the ground by the pile rotary press-fitting / pulling machine while injecting the fluid by the fluid injection device 1.
After the fluid auxiliary rotary press-fitting step, the independent pipes 20 and 30 are pulled up by hooking the suspension hooks on the suspension rings 23 and 33, and the independent pipes 20 and 30 are separated from the fixing bands 61 and 62 for recovery. By hooking the hanging hook at one end of the wire rope connected to the pile chuck device of the pile rotary press-fitting / pulling machine to the suspension rings 23 and 33 to raise the pile chuck device, the independent pipes 20 and 30 are raised by the ascending force of the pile chuck device. It can be easily pulled up and collected.

(変形例)
なお、図5に示した独立パイプ30に噴射口36が一つ設けられた構成においては、独立パイプ30を異なる深さ位置に噴射口36が設けられたパイプに交換することで、噴射口36の深さ位置を変更することができる。
一方、図14に示すように独立パイプ30に2つ以上の噴射口36を異なる深さ位置に設け、これを選択することで噴射口36の深さ位置を変更することができる。その選択は、選択しないものに栓をすることで行う。例えば、図14に示すように噴射口36に雌螺子を切っておいて、ネジプラグ49を噴射口36に螺入することで栓をすることができる。
(Modification example)
In the configuration in which the independent pipe 30 is provided with one injection port 36 as shown in FIG. 5, the independent pipe 30 is replaced with a pipe having the injection port 36 at a different depth position, whereby the injection port 36 is provided. You can change the depth position of.
On the other hand, as shown in FIG. 14, two or more injection ports 36 are provided at different depth positions in the independent pipe 30, and the depth position of the injection port 36 can be changed by selecting the two or more injection ports 36. The selection is made by plugging the unselected ones. For example, as shown in FIG. 14, a female screw is cut in the injection port 36, and the screw plug 49 can be screwed into the injection port 36 to plug it.

また、上記においては、独立パイプ20,30の回転を防止する係止部材として、パイプ用台座63,64を用いたが、同等に機能すれば係止部材の形状、構造等は問わない。
例えば、図15に示すように、独立パイプ20,30の外周面に固着される1対の丸棒65,65を係止部材とすることができる。この場合、1対の丸棒65,65は、取り付けられる独立パイプ20,30の軸方向に平行で、互いに離して配置される。互いに離す距離は、図15に示すように1対の丸棒65,65が双方とも同時に鋼管杭10の内周面に接触可能な距離とする。1対の丸棒65,65の独立パイプ20,30への取り付けは、溶接等により行う。
以上のように、パイプ用台座63,64、1対の丸棒65,65等の係止部材は、独立パイプ20,30の外周面に固着され、鋼管杭10の内周面に接触し、独立パイプ20,30を自身の中心軸回りに回転しないように係止する。
Further, in the above, the pipe pedestals 63 and 64 are used as the locking members for preventing the rotation of the independent pipes 20 and 30, but the shape and structure of the locking members do not matter as long as they function in the same manner.
For example, as shown in FIG. 15, a pair of round bars 65, 65 fixed to the outer peripheral surfaces of the independent pipes 20 and 30 can be used as the locking member. In this case, the pair of round bars 65, 65 are arranged parallel to the axial direction of the independent pipes 20 and 30 to be attached and separated from each other. As shown in FIG. 15, the distance separated from each other is such that the pair of round bars 65, 65 can both contact the inner peripheral surface of the steel pipe pile 10 at the same time. The pair of round bars 65, 65 is attached to the independent pipes 20, 30 by welding or the like.
As described above, the locking members such as the pipe pedestals 63, 64 and the pair of round bars 65, 65 are fixed to the outer peripheral surfaces of the independent pipes 20 and 30 and come into contact with the inner peripheral surface of the steel pipe pile 10. The independent pipes 20 and 30 are locked so as not to rotate around their own central axis.

(効果)
以上の実施形態によれば、3本の流体供給パイプ20,30,40を備え、そのうち2本の流体供給パイプ20,30は、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が鋼管杭10の内周面に接して鋼管杭10内に設置されるから、2重管を用いることなく(内部パイプ40を排した場合でも)少なくとも2系統の流路を確保でき、鋼管杭10への設置が容易であり、独立して噴射口の方向や位置を自由に選択できる。
並列パイプを構成する各独立パイプは、小径に構成することが容易であり、鋼管杭10の内周面に接して設置されるから、鋼管杭10の内周面からの突出量を小さく抑え(防護壁部材を適用する場合、防護壁部材の突出量も小さく抑え)、従って鋼管杭10の回転圧入の際の抵抗量や掘削量を減らすことができ、鋼管杭10の回転圧入施工の効率化を図ることができる。
以上の実施形態にあっては、並列パイプを2本の流体供給パイプにより構成した2並列構成を実施したが、並列パイプを3本の流体供給パイプにより構成した3並列構成、並列パイプを4本の流体供給パイプにより構成した4並列構成、さらにそれ以上の並列数の構成を実施してもよい。その際、並列パイプを単管のみで構成することで流体供給パイプの小径化を極めることが容易である。
(effect)
According to the above embodiment, three fluid supply pipes 20, 30 and 40 are provided, of which two fluid supply pipes 20 and 30 are parallel pipes independently separated from each other and provided in parallel, and together. Since the outer peripheral surface is in contact with the inner peripheral surface of the steel pipe pile 10 and is installed in the steel pipe pile 10, it is possible to secure at least two flow paths without using a double pipe (even if the internal pipe 40 is removed). , It is easy to install on the steel pipe pile 10, and the direction and position of the injection port can be freely selected independently.
Since each independent pipe constituting the parallel pipe is easily configured to have a small diameter and is installed in contact with the inner peripheral surface of the steel pipe pile 10, the amount of protrusion from the inner peripheral surface of the steel pipe pile 10 is suppressed to a small size ( When the protective wall member is applied, the amount of protrusion of the protective wall member is also suppressed to a small size). Can be planned.
In the above embodiment, a two-parallel configuration in which the parallel pipes are composed of two fluid supply pipes is implemented, but three parallel configurations in which the parallel pipes are composed of three fluid supply pipes and four parallel pipes are implemented. 4 parallel configurations configured by the fluid supply pipes of the above, and a configuration of a larger number of parallels may be implemented. At that time, it is easy to reduce the diameter of the fluid supply pipe by forming the parallel pipe with only a single pipe.

1 流体噴射装置
10 鋼管杭
11 掘削ビット
12 リング部材
20,30,40 流体供給パイプ
21,31,41 ホース
22,32 周溝
23,33 吊り環
24 逆止弁部品
25 ノズル部品
26 噴射口
27 接続構造
36 噴射口
44 逆止弁部品
45 ノズル部品
46 噴射口
47 接続構造
50 スイベルジョイント(回転流路継手)
61,62 固定バンド(固定具)
70 防護壁部材
80 結束具
90 車輪ユニット
91 車輪
A 噴射方向
B 噴射方向
C 噴射方向
R 回転方向
1 Fluid injection device 10 Steel pipe pile 11 Excavation bit 12 Ring member 20, 30, 40 Fluid supply pipe 21, 31, 41 Hose 22, 32 Circumferential groove 23, 33 Suspension ring 24 Check valve component 25 Nozzle component 26 Injection port 27 Connection Structure 36 Injection port 44 Check valve parts 45 Nozzle parts 46 Injection port 47 Connection structure 50 Swivel joint (rotary flow path joint)
61,62 Fixture (fixture)
70 Protective wall member 80 Bundling tool 90 Wheel unit 91 Wheel A Injection direction B Injection direction C Injection direction R Rotation direction

Claims (13)

鋼管杭に装備され、当該鋼管杭の回転圧入を補助するための流体を供給し噴射する回転圧入鋼管杭の流体噴射装置において、
流体供給源に接続され、前記流体供給源からの流体を給送する流路を形成し、該流体の噴射口が設けられ、前記鋼管杭の長手方向に沿って延設される流体供給パイプを複数本備え、
少なくとも2本の前記流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が前記鋼管杭の内周面に接して前記鋼管杭内に設置されており、
前記並列パイプは、互いに前記噴射口からの噴射方向、前記噴射口の前記鋼管杭の長手方向に沿った深さ位置又は接続される流体供給源が異なり、
前記並列パイプを構成する独立パイプのそれぞれを前記鋼管杭の内周面に固定するための固定具を備え、
前記固定具は、
一端部又は両端部が前記鋼管杭の内周面に溶接され、前記独立パイプの周溝に掛けられる部分を有する固定バンドと、
前記鋼管杭の内周面に接触して前記独立パイプを自身の中心軸回りに回転しないように係止する係止部材と、を有し、
当該係止部材は、前記独立パイプの外周面上であって、当該外周面と前記鋼管杭の内周面との接触位置の両側の二か所に固着されると共に、当該係止部材は、前記鋼管杭の内周面に接触しており、
前記固定バンドは、前記周溝に落ち込み、前記独立パイプの外径から突出しないように掛けられている回転圧入鋼管杭の流体噴射装置。
In a fluid injection device for rotary press-fit steel pipe piles, which is equipped on steel pipe piles and supplies and injects fluid to assist the rotary press-fitting of the steel pipe piles.
A fluid supply pipe connected to a fluid supply source, forming a flow path for feeding fluid from the fluid supply source, provided with an injection port for the fluid, and extending along the longitudinal direction of the steel pipe pile. With multiple
At least two of the fluid supply pipes are parallel pipes independently separated from each other and provided in parallel, and both of them are installed in the steel pipe pile with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile.
The parallel pipes differ from each other in the injection direction from the injection port, the depth position of the injection port along the longitudinal direction of the steel pipe pile, or the fluid supply source to be connected.
A fixture for fixing each of the independent pipes constituting the parallel pipe to the inner peripheral surface of the steel pipe pile is provided.
The fixture is
A fixing band having a portion where one end or both ends is welded to the inner peripheral surface of the steel pipe pile and hung on the peripheral groove of the independent pipe.
It has a locking member that contacts the inner peripheral surface of the steel pipe pile and locks the independent pipe so as not to rotate around its own central axis.
The locking member is fixed on the outer peripheral surface of the independent pipe at two places on both sides of the contact position between the outer peripheral surface and the inner peripheral surface of the steel pipe pile, and the locking member is It is in contact with the inner peripheral surface of the steel pipe pile and
The fixing band is a fluid injection device for a rotary press-fit steel pipe pile that falls into the peripheral groove and is hung so as not to protrude from the outer diameter of the independent pipe .
鋼管杭に装備され、当該鋼管杭の回転圧入を補助するための流体を供給し噴射する回転圧入鋼管杭の流体噴射装置において、
流体供給源に接続され、前記流体供給源からの流体を給送する流路を形成し、該流体の噴射口が設けられ、前記鋼管杭の長手方向に沿って延設される流体供給パイプを複数本備え、
少なくとも2本の前記流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が前記鋼管杭の内周面に接して前記鋼管杭内に設置されており、
前記並列パイプは、互いに前記噴射口からの噴射方向、前記噴射口の前記鋼管杭の長手方向に沿った深さ位置又は接続される流体供給源が異なり、
前記並列パイプを構成する独立パイプのそれぞれを前記鋼管杭の内周面に固定するための固定具を備え、
前記固定具は、
一端部又は両端部が前記鋼管杭の内周面に溶接され、前記独立パイプの周溝に掛けられる部分を有する固定バンドと、
前記鋼管杭の内周面に接触して前記独立パイプを自身の中心軸回りに回転しないように係止する係止部材と、を有し、
当該係止部材は、前記周溝に固着配置され、前記鋼管杭の内周面に沿った鋼管受け面で前記鋼管杭の内周面に接触しており、
前記固定バンドは、前記周溝に落ち込み、前記独立パイプの外径から突出しないように掛けられている回転圧入鋼管杭の流体噴射装置。
In a fluid injection device for rotary press-fit steel pipe piles, which is equipped on steel pipe piles and supplies and injects fluid to assist the rotary press-fitting of the steel pipe piles.
A fluid supply pipe connected to a fluid supply source, forming a flow path for feeding fluid from the fluid supply source, provided with an injection port for the fluid, and extending along the longitudinal direction of the steel pipe pile. With multiple
At least two of the fluid supply pipes are parallel pipes independently separated from each other and provided in parallel, and both of them are installed in the steel pipe pile with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile.
The parallel pipes differ from each other in the injection direction from the injection port, the depth position of the injection port along the longitudinal direction of the steel pipe pile, or the fluid supply source to be connected.
A fixture for fixing each of the independent pipes constituting the parallel pipe to the inner peripheral surface of the steel pipe pile is provided.
The fixture is
A fixing band having a portion where one end or both ends is welded to the inner peripheral surface of the steel pipe pile and hung on the peripheral groove of the independent pipe.
It has a locking member that contacts the inner peripheral surface of the steel pipe pile and locks the independent pipe so as not to rotate around its own central axis.
The locking member is fixedly arranged in the peripheral groove, and is in contact with the inner peripheral surface of the steel pipe pile at the steel pipe receiving surface along the inner peripheral surface of the steel pipe pile.
The fixing band is a fluid injection device for a rotary press-fit steel pipe pile that falls into the peripheral groove and is hung so as not to protrude from the outer diameter of the independent pipe .
前記並列パイプの前記固定具による固定構造は、前記鋼管杭に対して前記並列パイプを引き上げることにより固定解除が可能にされ、これにより前記並列パイプを破壊することなく回収可能であり、
前記並列パイプを構成する独立パイプのそれぞれには、当該パイプの長手方向に引き上げ力を加えるための吊り環が付設されている請求項1又は請求項2に記載の回転圧入鋼管杭の流体噴射装置。
The fixing structure of the parallel pipe by the fixing tool can be released from the fixing by pulling the parallel pipe with respect to the steel pipe pile, whereby the parallel pipe can be recovered without being destroyed.
The fluid injection device for a rotary press-fit steel pipe pile according to claim 1 or 2 , wherein each of the independent pipes constituting the parallel pipe is provided with a suspension ring for applying a pulling force in the longitudinal direction of the pipe. ..
前記複数本の流体供給パイプのそれぞれは、前記流体供給源に接続される部分と、前記噴射口が設けられる部分との間に、当該流体供給パイプの中心軸回りに回転可能に又は同中心軸回りの任意角度で流路を接続する流路継手を有する請求項1から請求項3のうちいずれか一項に記載の回転圧入鋼管杭の流体噴射装置。 Each of the plurality of fluid supply pipes is rotatable around the central axis of the fluid supply pipe or has the same central axis between the portion connected to the fluid supply source and the portion provided with the injection port. The fluid injection device for a rotary press-fit steel pipe pile according to any one of claims 1 to 3 , which has a flow path joint for connecting the flow paths at an arbitrary angle of rotation. 前記流体供給パイプは、前記噴射口に至るまでの逆止弁部品及び/又はノズル部品を着脱可能に連結する接続構造を有する請求項1から請求項4のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置。 The rotary press-fit steel pipe according to any one of claims 1 to 4 , wherein the fluid supply pipe has a connection structure for detachably connecting a check valve component and / or a nozzle component up to the injection port. Fluid injection device for piles. 前記鋼管杭の回転に伴う前記流体供給源と前記流体供給パイプとの相対回転を許容するための前記鋼管杭の上端に設置可能な回転流路継手を備え、前記複数本の流体供給パイプのそれぞれは、当該回転流路継手を介して前記流体供給源に接続される請求項1から請求項5のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置。 Each of the plurality of fluid supply pipes is provided with a rotary flow path joint that can be installed at the upper end of the steel pipe pile to allow relative rotation between the fluid supply source and the fluid supply pipe with the rotation of the steel pipe pile. Is a fluid injection device for a rotary press-fit steel pipe pile according to any one of claims 1 to 5 , which is connected to the fluid supply source via the rotary flow path joint. 前記複数本の流体供給パイプのそれぞれと前記回転流路継手とを接続するホースを備える請求項6に記載の回転圧入鋼管杭の流体噴射装置。 The fluid injection device for a rotary press-fit steel pipe pile according to claim 6 , further comprising a hose connecting each of the plurality of fluid supply pipes and the rotary flow path joint. 前記並列パイプを構成し、隣り合う配置の独立パイプ同士を、外側から二部材で挟み込むことで軸方向の任意の相対位置で結束固定する取外し可能な結束具を備える請求項1から請求項7のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置。 17 . _ The fluid injection device for the rotary press-fit steel pipe pile according to any one of them. 前記鋼管杭の内周面に固着されて、前記並列パイプに対して前記鋼管杭の周方向に隣接配置され、前記鋼管杭の下端部において、当該鋼管杭の回転圧入に伴う土砂等の衝突から前記並列パイプを防護する防護壁部材を備え、
前記並列パイプから見て前記防護壁部材に近い前記周方向は、前記鋼管杭の下端に固定された掘削ビットにより特定される掘削方向であり、
前記並列パイプは、前記防護壁部材を介さず互いに隣接して配置され
前記掘削方向の逆方向から見て、前記防護壁部材は、前記並列パイプを当該並列パイプよりも広い幅で覆う請求項1から請求項8のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置。
It is fixed to the inner peripheral surface of the steel pipe pile and is arranged adjacent to the parallel pipe in the circumferential direction of the steel pipe pile. A protective wall member that protects the parallel pipes is provided.
The circumferential direction close to the protective wall member when viewed from the parallel pipe is the excavation direction specified by the excavation bit fixed to the lower end of the steel pipe pile.
The parallel pipes are arranged adjacent to each other without the protective wall member .
The fluid of the rotary press-fit steel pipe pile according to any one of claims 1 to 8 , wherein the protective wall member covers the parallel pipe with a width wider than that of the parallel pipe when viewed from the direction opposite to the excavation direction. Injection device.
前記鋼管杭の内周面に固着されて、前記並列パイプの先端部に対して前記鋼管杭の長手方向に隣接配置され、圧入方向下方からの土砂等の衝突から前記並列パイプを防護する壁となる防護壁部材を備え、
下方から見て、前記防護壁部材は、前記並列パイプを覆う請求項1から請求項9のうちいずれか一に記載の回転圧入鋼管杭の流体噴射装置。
A wall that is fixed to the inner peripheral surface of the steel pipe pile, is arranged adjacent to the tip of the parallel pipe in the longitudinal direction of the steel pipe pile, and protects the parallel pipe from collisions such as earth and sand from below in the press-fitting direction. Equipped with a protective wall member
The fluid injection device for a rotary press-fit steel pipe pile according to any one of claims 1 to 9 , wherein the protective wall member covers the parallel pipe when viewed from below .
請求項1から請求項10のうちいずれか一に記載の流体噴射装置を装備した鋼管杭の回転圧入工法であって、
前記流体噴射装置により流体を噴射しながら前記鋼管杭を地盤に回転圧入する流体補助回転圧入工程を実行する鋼管杭の回転圧入工法。
A rotary press-fitting method for steel pipe piles equipped with the fluid injection device according to any one of claims 1 to 10 .
A rotary press-fitting method for steel pipe piles, which executes a fluid auxiliary rotary press-fitting process in which the steel pipe pile is rotationally press-fitted into the ground while injecting fluid by the fluid injection device.
鋼管杭に装備され、当該鋼管杭の回転圧入を補助するための流体を供給し噴射する回転圧入鋼管杭の流体噴射装置であって、流体供給源に接続され、前記流体供給源からの流体を給送する流路を形成し、該流体の噴射口が設けられ、前記鋼管杭の長手方向に沿って延設される流体供給パイプを複数本備え、少なくとも2本の前記流体供給パイプは、互いに独立分離して並列に設けられる並列パイプであるとともに、共にその外周面が前記鋼管杭の内周面に接して前記鋼管杭内に設置されており、前記並列パイプは、互いに前記噴射口からの噴射方向、前記噴射口の前記鋼管杭の長手方向に沿った深さ位置又は接続される流体供給源が異なる回転圧入鋼管杭の流体噴射装置を、装備した鋼管杭の回転圧入工法であって、
前記流体噴射装置により流体を噴射しながら前記鋼管杭を地盤に回転圧入する流体補助回転圧入工程を実行し、
前記並列パイプの一端部を挿入するホルダー部と車輪を支持する車輪支持部とを備える車輪ユニットを前記パイプの一端部に装着し、
前記車輪ユニットは、前記ホルダー部に並列パイプの一端部を挿入することで、前記車輪の車軸が前記並列パイプの中心軸上に配置され、
地盤への圧入前の横倒しに置かれた前記鋼管杭の一端開口に、前記並列パイプの前記一端部を挿入し、前記車輪を前記鋼管杭の内周面に接地させて前記鋼管杭の内部を他端開口の方へ向かって長手方向に走行させることにより、当該一端部を当該他端開口近傍に導入し、
その後、前記車輪を前記一端部から取り外し、
その後、前記並列パイプを前記鋼管杭内周面に固定し、
その後、前記流体補助回転圧入工程を実行する鋼管杭の回転圧入工法。
A fluid injection device for a rotary press-fit steel pipe pile that is equipped on a steel pipe pile and supplies and injects a fluid to assist the rotary press-fitting of the steel pipe pile, and is connected to a fluid supply source to supply a fluid from the fluid supply source. A flow path for feeding is formed, an injection port for the fluid is provided, and a plurality of fluid supply pipes extending along the longitudinal direction of the steel pipe pile are provided, and at least two of the fluid supply pipes are connected to each other. The parallel pipes are independently separated and provided in parallel, and both of them are installed in the steel pipe pile with their outer peripheral surfaces in contact with the inner peripheral surface of the steel pipe pile, and the parallel pipes are mutually separated from the injection port. A rotary press-fitting method for steel pipe piles equipped with a fluid injection device for rotary press-fit steel pipe piles having different injection directions, depth positions along the longitudinal direction of the steel pipe piles at the injection port, or connected fluid supply sources.
A fluid auxiliary rotary press-fitting step of rotationally press-fitting the steel pipe pile into the ground while injecting fluid by the fluid injection device is executed.
A wheel unit including a holder for inserting one end of the parallel pipe and a wheel support for supporting the wheel is attached to one end of the pipe .
In the wheel unit, by inserting one end of the parallel pipe into the holder portion, the axle of the wheel is arranged on the central axis of the parallel pipe.
The one end of the parallel pipe is inserted into one end opening of the steel pipe pile placed on its side before being press-fitted into the ground, and the wheel is grounded to the inner peripheral surface of the steel pipe pile to make the inside of the steel pipe pile. By traveling in the longitudinal direction toward the other end opening, the one end is introduced in the vicinity of the other end opening.
After that, the wheel is removed from the one end portion, and the wheel is removed.
After that, the parallel pipe is fixed to the inner peripheral surface of the steel pipe pile, and the parallel pipe is fixed to the inner peripheral surface of the steel pipe pile.
After that, a rotary press-fitting method for steel pipe piles for executing the fluid auxiliary rotary press-fitting step.
前記並列パイプの噴射口をすべて覆う大きさの前記ホルダー部を有する前記車輪ユニットを前記並列パイプの一端部に装着して、前記並列パイプの前記一端部を前記鋼管杭の他端開口近傍に導入する請求項12に記載の鋼管杭の回転圧入工法。 The wheel unit having the holder portion having a size covering all the injection ports of the parallel pipe is attached to one end of the parallel pipe, and the one end of the parallel pipe is introduced in the vicinity of the other end opening of the steel pipe pile. The rotary press-fitting method for steel pipe piles according to claim 12.
JP2018014670A 2017-02-01 2018-01-31 Rotational press-fitting fluid injection device for steel pipe piles and rotary press-fitting method for steel pipe piles Active JP7017423B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017016560 2017-02-01
JP2017016560 2017-02-01

Publications (2)

Publication Number Publication Date
JP2018123670A JP2018123670A (en) 2018-08-09
JP7017423B2 true JP7017423B2 (en) 2022-02-08

Family

ID=63109447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014670A Active JP7017423B2 (en) 2017-02-01 2018-01-31 Rotational press-fitting fluid injection device for steel pipe piles and rotary press-fitting method for steel pipe piles

Country Status (1)

Country Link
JP (1) JP7017423B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172978B2 (en) * 2019-12-24 2022-11-16 Jfeスチール株式会社 Steel pipe, steel pipe structure, method for constructing steel pipe structure
JP7302585B2 (en) * 2020-12-18 2023-07-04 Jfeスチール株式会社 Steel pipe pile, construction method of the steel pipe pile, design method of the steel pipe pile, manufacturing method of the steel pipe pile

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039558U (en) 1996-12-27 1997-07-22 美好 忠平 Sheet pile driving equipment
JP2001140254A (en) 1999-11-11 2001-05-22 Kajima Corp Water jet boring device
JP2001342624A (en) 2000-03-29 2001-12-14 Nippon Steel Corp Rotary jacked pile, method for burying rotary jacked pile, and foot protection method for for the rotary jacked pile
JP3096237U (en) 2003-03-04 2003-09-12 株式会社建機総業 High pressure nozzle with check valve
JP2004060163A (en) 2002-07-25 2004-02-26 Johi:Kk Sheet pile burying auxiliary device and its method
JP2005127095A (en) 2003-10-27 2005-05-19 Nippon Steel Corp Open ended steel pipe pile for rotatingly jacking and rotatingly jacking method for open ended steel pipe pile
JP2010248823A (en) 2009-04-17 2010-11-04 Shinichi Yamashita Method of removing earth retaining member
JP2015137472A (en) 2014-01-21 2015-07-30 株式会社技研製作所 Steel pipe pile and press-in method for the same
JP2016030925A (en) 2014-07-28 2016-03-07 大成建設株式会社 Pile driving method and pile
EP3561181A1 (en) 2018-04-23 2019-10-30 Ørsted Wind Power A/S Foundation for a structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217646B2 (en) * 1972-07-28 1977-05-17
JPS5152610A (en) * 1974-11-01 1976-05-10 Kajima Corp Kokankuino uchikomikoho oyobisono sochi
JPS58117197A (en) * 1981-12-29 1983-07-12 株式会社奥村組 Method of piping muddy-water feed and discharge pipe in method of muddy water type propelling construction
JPS58204223A (en) * 1982-05-21 1983-11-28 Kajima Corp Method and apparatus for burying and settling steel pipe by water-flow type excavation
JPH076000Y2 (en) * 1992-11-13 1995-02-15 株式会社技研製作所 Water jet hose

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3039558U (en) 1996-12-27 1997-07-22 美好 忠平 Sheet pile driving equipment
JP2001140254A (en) 1999-11-11 2001-05-22 Kajima Corp Water jet boring device
JP2001342624A (en) 2000-03-29 2001-12-14 Nippon Steel Corp Rotary jacked pile, method for burying rotary jacked pile, and foot protection method for for the rotary jacked pile
JP2004060163A (en) 2002-07-25 2004-02-26 Johi:Kk Sheet pile burying auxiliary device and its method
JP3096237U (en) 2003-03-04 2003-09-12 株式会社建機総業 High pressure nozzle with check valve
JP2005127095A (en) 2003-10-27 2005-05-19 Nippon Steel Corp Open ended steel pipe pile for rotatingly jacking and rotatingly jacking method for open ended steel pipe pile
JP2010248823A (en) 2009-04-17 2010-11-04 Shinichi Yamashita Method of removing earth retaining member
JP2015137472A (en) 2014-01-21 2015-07-30 株式会社技研製作所 Steel pipe pile and press-in method for the same
JP2016030925A (en) 2014-07-28 2016-03-07 大成建設株式会社 Pile driving method and pile
EP3561181A1 (en) 2018-04-23 2019-10-30 Ørsted Wind Power A/S Foundation for a structure

Also Published As

Publication number Publication date
JP2018123670A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US20020112890A1 (en) Conduit pulling apparatus and method for use in horizontal drilling
JP7017423B2 (en) Rotational press-fitting fluid injection device for steel pipe piles and rotary press-fitting method for steel pipe piles
US7861804B2 (en) Sleeve arrangement
JP2005002785A (en) Cutting tool
JP2014503763A (en) Pipe crusher
JP4829950B2 (en) Steel pipe erection jig and steel pipe installation method
US20180038394A1 (en) Strainer assembly for a fluid tank
JP2009085000A (en) Hydraulic piping fixing device for small rotation type excavator
KR20160003469A (en) Connecting apparatus of composit pile
JP5789158B2 (en) Cylinder equipment for construction machinery
US20170349415A1 (en) Modular hoist drum for power shovel
JP5829729B1 (en) Penetration device for steel pipe pile with tip wing
JP5369159B2 (en) Rain guard for welding steel pipe piles
JP6590346B2 (en) Drilling attachment, drilling machine, tunnel wall surface drilling method
JP4378206B2 (en) Steel pipe erection jig and steel pipe installation method
JP6892749B2 (en) Connection device, pipe work system, and pile press-fitting system
JP7475239B2 (en) Fluid supply device and method for embedding tubular body
JP3233834U (en) Casing fall prevention mechanism for underground excavation casing
JP5451697B2 (en) Construction machinery
JP2004204677A5 (en)
JP6243609B2 (en) Tunnel construction method
CN215170041U (en) Bolt type shield pipe connecting piece and shield pipe
JP7192596B2 (en) Cutter bit device and cutter bit changer
JP6577759B2 (en) Pipe connection method
KR20180000028A (en) Auger drill for replacement screw

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7017423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150