JP7015433B1 - Method for modifying liquid medium using granular ceramics for modifying liquid medium - Google Patents

Method for modifying liquid medium using granular ceramics for modifying liquid medium Download PDF

Info

Publication number
JP7015433B1
JP7015433B1 JP2021094142A JP2021094142A JP7015433B1 JP 7015433 B1 JP7015433 B1 JP 7015433B1 JP 2021094142 A JP2021094142 A JP 2021094142A JP 2021094142 A JP2021094142 A JP 2021094142A JP 7015433 B1 JP7015433 B1 JP 7015433B1
Authority
JP
Japan
Prior art keywords
liquid medium
water
ceramics
bubbles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021094142A
Other languages
Japanese (ja)
Other versions
JP2022186095A (en
Inventor
一石 佐藤
勝美 石川
秀子 宮脇
Original Assignee
日本治水株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本治水株式会社 filed Critical 日本治水株式会社
Priority to JP2021094142A priority Critical patent/JP7015433B1/en
Application granted granted Critical
Publication of JP7015433B1 publication Critical patent/JP7015433B1/en
Publication of JP2022186095A publication Critical patent/JP2022186095A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

【課題】高いエネルギーを必要とする機械操作を利用することなく、低いエネルギー操作である液状媒体中で粒状セラミックスを液流によって流動、相互摩擦及び衝突させることによって、液状媒体中に超微細気泡を生成する。【解決手段】シリカ100重量部に対して、アルミナ10~95重量部を含み、アルカリ金属及び/またはアルカリ土類金属を含有する酸化物の焼結体からなる見かけ密度が1.6~4.0g/cm3、粒径が0.1~10mmであり、BET法による比表面積がセラミックスの表面部分において0.01~1.0m2/gである粒状セラミックス1を使用し、液状媒体中で粒状セラミックス1を液流によって流動、相互摩擦、衝突させることによって、液状媒体中に超微細気泡を生成する。【選択図】図1PROBLEM TO BE SOLVED: To create ultrafine bubbles in a liquid medium by flowing, mutual friction and colliding granular ceramics with a liquid flow in a liquid medium which is a low energy operation without utilizing a mechanical operation requiring high energy. Generate. An apparent density of an oxide sintered body containing 10 to 95 parts by weight of alumina and containing an alkali metal and / or an alkaline earth metal with respect to 100 parts by weight of silica is 1.6 to 4. Granular ceramics 1 having a particle size of 0 g / cm3, a particle size of 0.1 to 10 mm, and a specific surface area of 0.01 to 1.0 m2 / g on the surface portion of the ceramics by the BET method are used, and the granular ceramics are used in a liquid medium. By flowing, mutual friction, and collision with 1 by a liquid flow, ultrafine bubbles are generated in the liquid medium. [Selection diagram] Fig. 1

Description

本発明は,液状媒体改質用粒状セラミックス及び液状媒体中に微細気泡を生成する方法及び生成した微細気泡を含有した液状媒体に関する。 The present invention relates to granular ceramics for modifying a liquid medium, a method for generating fine bubbles in the liquid medium, and a liquid medium containing the generated fine bubbles.

液状媒体中で閉じた界面に囲まれた気体は気泡と呼ばれている。気泡はその大きさによっていくつかに分類されている。一般的には直径がμmオーダーの気泡がマイクロバブルと考えられるが、生理活性分野、流体物理分野など取り扱う分野によって対象とする大きさが異なるようである。ファインバブル学会連合によると、国際標準化機構(ISO)が統一した,大きさによる気泡の分類名が紹介されている。すなわち、気泡を球相当と考えて、その直径が100μm未満の気泡は微細気泡(ファインバブル)、それより大きい気泡は非微細気泡に分類されて微細気泡はさらにその直径が1~100μmの気泡をマイクロバブル、直径が1μm未満の気泡を超微細気泡(ウルトラファインバブルあるいはナノバブル)と呼ぶことで統一されたことを報告している。 A gas surrounded by a closed interface in a liquid medium is called a bubble. Bubbles are classified into several types according to their size. Generally, bubbles with a diameter on the order of μm are considered to be microbubbles, but it seems that the target size differs depending on the fields handled such as the bioactive field and the fluid physics field. According to the Association of Fine Bubble Society, the classification names of bubbles by size, which are unified by the International Organization for Standardization (ISO), are introduced. That is, the bubbles are considered to be equivalent to spheres, and bubbles having a diameter of less than 100 μm are classified as fine bubbles, and bubbles larger than the size are classified as non-fine bubbles. It is reported that microbubbles and bubbles with a diameter of less than 1 μm are unified by calling them ultrafine bubbles (ultrafine bubbles or nanobubbles).

液状媒体中に存在するこれら気泡の挙動はその大きさによって大きく異なることが知られている。以下、液状媒体を水として説明する。空気を内包した気泡の場合、非微細気泡は水中で球形を保つことができずに変形を伴い、静止した水中でもジグザグ運動やらせん運動を伴いながら上昇して自由水面まで浮上した後は破裂して大気と混合する。 It is known that the behavior of these bubbles existing in a liquid medium varies greatly depending on their size. Hereinafter, the liquid medium will be described as water. In the case of air-encapsulated bubbles, non-fine bubbles cannot keep a spherical shape in water and are deformed, and even in stationary water, they rise with zigzag motion and spiral motion, rise to the free water surface, and then burst. And mix with the atmosphere.

マイクロバブルは水中を浮上する速さが非微細気泡に比べて十分遅いため、水中の溶存ガス濃度が高くない水中では水と長時間接触する。このため水深が十分ある場合は水中への空気の溶解が進んでやがては水中で消滅する。 Since microbubbles float in water much slower than non-fine bubbles, they come into contact with water for a long time in water where the concentration of dissolved gas in the water is not high. Therefore, if the water depth is sufficient, the air dissolves in the water and eventually disappears in the water.

超微細気泡は浮力による上昇する速さが超微細気泡のブラウン運動の速さに比べて小さくなり、浮上せずに何らかの刺激を与えなければ数ヶ月を超える期間の間、準安定に存在し続けることがこれまでに明らかにされている。 The speed of rise of ultrafine bubbles due to buoyancy is smaller than the speed of Brownian motion of ultrafine bubbles, and they continue to exist metastable for a period of more than several months unless some stimulus is given without ascending. It has been clarified so far.

現在、微細気泡は水処理、農業、工業、医療、環境改善、食品及び水産業などの多くの分野、さらには日常生活でも利用されている。例えば,微細気泡を含有した水を浄化・除染、医療、食品加工、工業プロセス等に利用した具体例が、成書「微細気泡の最新技術Vol.2 進展するマイクロ・ナノバブルの基礎研究と拡がる産業利用:株式会社オフィス東和編:エヌ・ティー・エス (2014)」に記載されている。 Currently, microbubbles are used in many fields such as water treatment, agriculture, industry, medical care, environmental improvement, food and fisheries, and even in daily life. For example, specific examples of using water containing fine bubbles for purification / decontamination, medical care, food processing, industrial processes, etc. will be expanded with the book "Latest Technology for Fine Bubbles Vol.2 Basic Research on Advanceing Micro / Nano Bubbles". Industrial use: Office Towa Co., Ltd .: NTS (2014) ”.

水中に微細気泡を製造する技術は、例えば以下のような方法がこれまでに知られている。 As a technique for producing fine bubbles in water, for example, the following methods have been known so far.

例えば、特許文献1には、旋回液流式超微細気泡発生方法が記載されている。これは、マイクロバブル発生装置の円筒内に水とともに同伴された気体が円筒内側面に設けられた複数の環状溝による強いせん断流によって微細化され、マイクロバブルとともに超微細気泡を生成させる方法である。 For example, Patent Document 1 describes a swirling liquid flow type ultrafine bubble generation method. This is a method in which a gas entrained with water in the cylinder of the microbubble generator is miniaturized by a strong shear flow due to a plurality of annular grooves provided on the inner side surface of the cylinder to generate ultrafine bubbles together with the microbubbles. ..

また、特許文献2には、スタティックミキサー式超微細気泡発生方法が記載されている。これは、ハニカム状の凹凸を持つ円板型スタティックミキサーを配管内に複数用いる方法である。各円板のハニカム状の凹凸によって構成された複雑な屈曲流路に気泡を含む水が通過すると、大きなせん断流が生じて水中の気泡は次々と粉砕されると同時に、この気液2相流は分岐と合流のため気泡の粉砕が迅速に進行し、水中に超微細気泡が生成する。 Further, Patent Document 2 describes a static mixer type method for generating ultrafine bubbles. This is a method of using a plurality of disk-type static mixers having honeycomb-shaped irregularities in the pipe. When water containing bubbles passes through a complicated bending flow path composed of honeycomb-shaped irregularities on each disk, a large shear flow is generated and the bubbles in the water are crushed one after another, and at the same time, this gas-liquid two-phase flow. Due to branching and merging, bubbles are rapidly crushed and ultrafine bubbles are generated in the water.

特許文献3には,加圧溶解方式超微細気泡発生方法が記載されている。これは,ポンプで昇圧しながら配管内に圧送された水の圧力を制御することによって配管外部からガスを吸引させたあと、水中に気体を最大限溶解させる加圧工程を導入する。気体の溶解によって飽和した水は減圧工程を経て、溶存気体が微細気泡となって水中に現れる。この水を再度ポンプで吸引して循環・停止させることによって水中に超微細気泡が生成する。 Patent Document 3 describes a pressure melting method for generating ultrafine bubbles. This introduces a pressurizing process that sucks gas from the outside of the pipe by controlling the pressure of the water pumped into the pipe while boosting the pressure with a pump, and then dissolves the gas in the water as much as possible. The water saturated by the dissolution of the gas undergoes a decompression process, and the dissolved gas becomes fine bubbles and appears in the water. By sucking this water again with a pump to circulate and stop it, ultrafine bubbles are generated in the water.

特許第4129290号公報Japanese Patent No. 4129290 特許第6046465号公報Japanese Patent No. 6046465 特許第6104201号公報Japanese Patent No. 6104201

微細気泡の最新技術Vol.2 進展するマイクロ・ナノバブルの基礎研究と拡がる産業利用:株式会社オフィス東和編:エヌ・ティー・エス(2014)The latest technology for fine bubbles Vol. 2 Basic research on evolving micro / nano bubbles and expanding industrial use: Office Towa Co., Ltd .: NTS (2014)

上述した超微細気泡発生方法は、気液混合液状媒体にせん断力あるいは加圧・減圧による圧力制御操作によって液状媒体中に含まれる気泡を微細化して、超微細気泡を発生させる技術である。 The above-mentioned method for generating ultrafine bubbles is a technique for generating ultrafine bubbles by micronizing the bubbles contained in the liquid medium by a pressure control operation by shearing force or pressurization / depressurization in the gas-liquid mixed liquid medium.

本発明者らは、鋭意研究を重ねた結果、液状媒体に対して上記のような高いエネルギーを必要とする機械操作を利用することなく、低いエネルギー操作である液状媒体中で粒状セラミックスを液流によって流動、相互摩擦及び衝突させることによって、液状媒体中に超微細気泡を生成する全く新しい方法を見出し、本発明を完成するに至った。 As a result of diligent research, the present inventors have made a flow of granular ceramics in a liquid medium, which is a low-energy operation, without utilizing the above-mentioned mechanical operation that requires high energy for the liquid medium. We have found a completely new method for generating ultrafine bubbles in a liquid medium by flowing, mutual friction and collision with each other, and have completed the present invention.

すなわち本発明は、これまでの超微細気泡生成方法とは異なり、液状媒体中で粒状セラミックスを液流によって流動、相互摩擦及び衝突させることによって液状媒体中に超微細気泡を生成する方法および超微細気泡を含有する液状媒体を提供することを目的とする。 That is, the present invention is different from the conventional method for generating ultrafine bubbles, and is a method for generating ultrafine bubbles in a liquid medium by flowing, mutual friction and colliding the granular ceramics with a liquid flow in a liquid medium. It is an object of the present invention to provide a liquid medium containing bubbles.

上記目的を達成するために、本発明の液状媒体改質用粒状セラミックスを用いた液状媒体の改質方法は、シリカ100重量部に対してアルミナ10~95重量部を含み、アルカリ金属及び/またはアルカリ土類金属を含有する酸化物の焼結体からなる見かけ密度が1.6~3.5g/cm、粒径が0.1~1.0mm及び、BET法による比表面積が0.01~1.0m/gである表面が平滑な硬質の球状のセラミックス粒子を、収納容器の体積に対して10~70%となるように投入すると共に、気液混合液状媒体を導入した後、セラミックス粒子を流動、相互摩擦及び/又は衝突させることによって超微細気泡を生成することを第1の特徴とする。また、気液混合液状媒体が水溶液類であることを第2の特徴とする。さらに、超微細気泡のメジアン径が1μm未満であることを第3の特徴とする。












In order to achieve the above object, the method for modifying a liquid medium using the granular ceramics for modifying a liquid medium of the present invention contains 10 to 95 parts by weight of alumina with respect to 100 parts by weight of silica, and contains an alkali metal and / or The apparent density of the sintered body of oxide containing alkaline earth metal is 1.6 to 3.5 g / cm 3 , the particle size is 0.1 to 1.0 mm , and the specific surface area by the BET method is 0 . Hard spherical ceramic particles having a smooth surface of 01 to 1.0 m 2 / g were charged so as to be 10 to 70% of the volume of the storage container, and a gas-liquid mixed liquid medium was introduced. After that, the first feature is to generate ultrafine bubbles by flowing, mutual friction and / or colliding the ceramic particles. The second feature is that the gas-liquid mixed liquid medium is an aqueous solution . Further, the third feature is that the median diameter of the hyperfine bubbles is less than 1 μm .












本発明によれば、従来の高いエネルギーを必要とする機械操作を利用することなく、液状媒体中で粒状セラミックスを液流によって流動、相互摩擦、衝突させることによって、液状媒体中に超微細気泡を生成する新しい方法とおよび超微細気泡を含有する液状媒体を提供することができる。 According to the present invention, ultrafine bubbles are created in a liquid medium by flowing, mutual friction, and colliding the granular ceramics in a liquid medium with a liquid flow without utilizing the conventional machine operation requiring high energy. It is possible to provide a new method for producing and a liquid medium containing ultrafine bubbles.

本発明において使用する液状媒体改質用セラミックスは主にシリカとアルミナ成分で構成され、加えてアルカリ金属及び/又はアルカリ土類金属を含有する酸化物(系鉱石(鉱物))で構成される。この種の酸化物(系鉱石)は、例えば、天然鉱石においては、曹長石(NaAlSiО)、灰長石(CaAlSiО)またはカリ長石(KAlSiО)の固溶体である長石類、金雲母[KMg[(AlSi)О10](ОH)]または白雲母[KAl[(AlSi)О10](ОH)]などの雲母類、その他花崗岩などを挙げることができる。さらに金属酸化物として、鉄、銅、チタン、ジルコニウム及び銀などの酸化物を目的に応じて使用することもできる。 The ceramic for modifying a liquid medium used in the present invention is mainly composed of silica and an alumina component, and is further composed of an oxide (based ore (mineral)) containing an alkali metal and / or an alkaline earth metal. This type of oxide (series ore) is, for example, in natural ore, a solid solution of albite (NaAlSi 3 О 3 ), anorthite (CaAl 2 Si 2 О 8 ) or potash feldspar (KAlSi 3 О 8 ). Feldspars, phlogopites such as phlogopite [(AlSi 3 ) О10 ] ( ОH ) 2 ] or muscovite [ KAl2 [(AlSi 3 ) О10 ] (ОH) 2 ], and other granites. be able to. Further, as the metal oxide, oxides such as iron, copper, titanium, zirconium and silver can also be used depending on the purpose.

本発明の粒状セラミックスは、主にシリカとアルミナで構成されるが、好ましくはシリカを主成分、アルミナを主副成分とし、アルカリ金属、アルカリ土類金属等の酸化物を含む混合物を焼成、造粒して製造される。 The granular ceramics of the present invention are mainly composed of silica and alumina, but preferably silica is the main component and alumina is the main sub-component, and a mixture containing oxides such as alkali metals and alkaline earth metals is fired and produced. Manufactured in grains.

シリカとアルミナの割合は、シリカ100重量部に対してアルミナが10~95重量部、好ましくは20~80重量部とする。これは適用する使用環境や用途等にもよるが、アルミナが20重量部より少なくなるにつれ、焼結後の粒状セラミックスの機械強度が低下する傾向がみられ、80重量部より多くなるにつれ、所定の焼結体の機械強度や密度を得るのに必要な焼成温度が高くなる傾向がみられる。これらの傾向は、特に10重量部より少なくなるか、95重量部を超えるとさらに顕著になるため好ましくない。また、本処理の効果を上げるセラミックス表面の表面電荷を与える点を考慮すると、シリカ含量が多い組成物の方が効果的であり、アルミナ含量は上記の限定範囲内で、より少ない場合が更に好適である。 The ratio of silica to alumina is 10 to 95 parts by weight, preferably 20 to 80 parts by weight, based on 100 parts by weight of silica. This depends on the usage environment and application to which it is applied, but as the amount of alumina decreases to less than 20 parts by weight, the mechanical strength of the sintered granular ceramics tends to decrease, and as the amount increases to more than 80 parts by weight, it becomes predetermined. There is a tendency for the firing temperature required to obtain the mechanical strength and density of the sintered body to increase. These tendencies are not preferable because they become more remarkable especially when the amount is less than 10 parts by weight or when the amount exceeds 95 parts by weight. Further, considering that the surface charge of the ceramic surface that enhances the effect of this treatment is given, the composition having a large silica content is more effective, and the alumina content is more preferably within the above-mentioned limited range and less. Is.

アルカリ金属、アルカリ土類金属は粒状セラミックスの全重量に対して、0.1~10重量%、好ましくは0.5~3重量%の範囲とする。これはシリカとアルミナの成分比率やその全体成分量等にもよるが、アルカリ金属及びアルカリ土類金属の合計量が0.5重量%より少なくなるにつれ、焼結性の改善が不足する傾向にあり、3重量%を超えて増加するにつれ、水処理等に際して溶出成分が多くなり、溶出成分による弊害が現れる傾向がある。これらの傾向は0.1重量%より少なくなるか10重量%を超えるとさらに顕著になるので好ましくない。 The alkali metal and alkaline earth metal are in the range of 0.1 to 10% by weight, preferably 0.5 to 3% by weight, based on the total weight of the granular ceramics. This depends on the component ratio of silica and alumina and the total component amount thereof, but as the total amount of alkali metal and alkaline earth metal becomes less than 0.5% by weight, the improvement of sinterability tends to be insufficient. As the amount increases by more than 3% by weight, the amount of eluted components increases during water treatment and the like, and there is a tendency for adverse effects due to the eluted components to appear. These tendencies are less than 0.1% by weight or more than 10% by weight, which is not preferable.

金属酸化物は、シリカ、アルミナ、アルカリ金属酸化物、アルカリ土類酸化物の他にチタン、ジルコニウム、銀、銅、鉄などの酸化物が目的に応じて利用される。適用条件にもよるが、金属酸化物の粒径が0.1μmより小さくなると、焼結工程での焼成収縮の幅が大きくなって生産性が低下する。粒径が10μmを超えると、焼結後に必要な強度の粒状セラミックスを得るのが困難になるので好ましくない。 As the metal oxide, oxides such as titanium, zirconium, silver, copper and iron are used depending on the purpose in addition to silica, alumina, alkali metal oxide and alkaline earth oxide. Although it depends on the application conditions, when the particle size of the metal oxide is smaller than 0.1 μm, the width of the firing shrinkage in the sintering step becomes large and the productivity decreases. If the particle size exceeds 10 μm, it becomes difficult to obtain granular ceramics having the required strength after sintering, which is not preferable.

粒状セラミックスは、セラミックスの表面部分におけるBET法による比表面積が0.01~1.0m/gに形成されるのが好適である。比表面積が0.01m/gより小さくなると、液状媒体との接触面積が減少して改質効率が低下する傾向がみられ、1m/gより大きくなると、粒状セラミックスが脆弱になり、セラミックス同士の衝突時に磨耗しやすく、耐久性が低下する傾向がみられる。 The granular ceramics are preferably formed so that the specific surface area of the surface portion of the ceramics by the BET method is 0.01 to 1.0 m 2 / g. When the specific surface area is smaller than 0.01 m 2 / g, the contact area with the liquid medium tends to decrease and the reforming efficiency tends to decrease, and when it is larger than 1 m 2 / g, the granular ceramics become fragile and the ceramics become fragile. It tends to wear out when it collides with each other, and its durability tends to decrease.

見掛け密度は1.6~3.5g/cmに形成されるのが好適である。見掛け密度が1.6g/cmより小さくなると、粒状セラミックスの機械強度が低下して、セラミックス同士の衝突時に磨耗したり欠けたりする傾向やセラミックス同士が液状媒体中で衝突後に沈降・流動し難くなる傾向がみられ、3.5g/cmより大きくなると、沈降速度が速いため、セラミックスの流動状態が低下して、液状媒体の改質効果が低下する傾向がみられる。 The apparent density is preferably formed at 1.6 to 3.5 g / cm 3 . When the apparent density is smaller than 1.6 g / cm 3 , the mechanical strength of the granular ceramics decreases, and the ceramics tend to wear or chip when they collide with each other, and the ceramics do not easily settle or flow after collision in a liquid medium. When it is larger than 3.5 g / cm 3 , the settling speed is high, so that the flow state of the ceramics is lowered and the reforming effect of the liquid medium is tended to be lowered.

粒径は0.1~10mmに形成されるのが好適である。粒径が0.1mmより小さくなると、流動する粒状セラミックスの運動エネルギーが小さいため、セラミックスが衝突した際の改質効果が低下する傾向がみられ、10mmより大きくなると、粒状セラミックスを流動化させるのに必要なエネルギーが増加するだけでなく、セラミックス同士の衝突点が少なくなり、衝突による液状媒体の改質効果が低下する傾向がみられる。 The particle size is preferably formed to be 0.1 to 10 mm. When the particle size is smaller than 0.1 mm, the kinetic energy of the flowing granular ceramics is small, so the modification effect when the ceramics collide tends to decrease. When the particle size is larger than 10 mm, the granular ceramics are fluidized. Not only does the energy required for the ceramics increase, but the number of collision points between the ceramics decreases, and the effect of modifying the liquid medium due to the collision tends to decrease.

本発明の液状媒体改質用粒状セラミックスの製造方法は、前記金属酸化物を10μm以下に微粉砕し、この微粉末に水または有機溶媒等を加えて湿式混練したのち粒径0.1~10mmの球形状に転動造粒して、1000℃以上の温度で焼成して球状の粒状セラミックスとする工程を経る。このため、得られた粒状セラミックスは高強度で耐久性に優れ、液状媒体中に溶出成分が容易に溶出しない化学的安定性に優れており、見かけ密度が1.6~4.0の特性を有する。 In the method for producing granular ceramics for modifying a liquid medium of the present invention, the metal oxide is finely pulverized to 10 μm or less, water or an organic solvent is added to the fine powder, and the mixture is wet-kneaded and then has a particle size of 0.1 to 10 mm. It undergoes a step of rolling and granulating into a spherical shape and firing at a temperature of 1000 ° C. or higher to form spherical granular ceramics. Therefore, the obtained granular ceramics have high strength and excellent durability, excellent chemical stability in which the eluted components do not easily elute into the liquid medium, and have an apparent density of 1.6 to 4.0. Have.

本発明の超微細気泡を含有する改質液状媒体の生成方法を実施するための粒状セラミックス投入容器を模式的に示す概略図である。It is a schematic diagram schematically showing the granular ceramics input container for carrying out the method of producing the modified liquid medium containing the ultrafine bubbles of this invention. 評価用セラミックス処理水の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the ceramics treated water for evaluation.

以下、図面に示す実施例に基づいて本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described based on the examples shown in the drawings.

図1に超微細気泡を含有する改質液状媒体の生成方法を実施するための粒状セラミックス投入容器の一例を示す。例えば、粒状セラミックスをステンレス鋼製の円筒状容器2内に投入し、この容器2の下部から液状媒体を導入して、液状媒体の液流により粒状セラミックス1を液中で流動、相互摩擦、衝突させて液状媒体を改質する。容器1内の上部と下部には、液状媒体を通過させるが粒状セラミックス1を通過させないメッシュ状の仕切り板5、6を設ける。3は液状媒体の導入口であり、4は生成された改質液状媒体の排出口である。このように粒状セラミックスが被液状媒体の流れによって液状媒体中で流動して、互いに摩擦及び/又は衝突させることが可能な処理方法であれば、液状媒体の改質方法はどのような方法であってもかまわない。 FIG. 1 shows an example of a granular ceramics charging container for carrying out a method for producing a modified liquid medium containing ultrafine bubbles. For example, granular ceramics are put into a cylindrical container 2 made of stainless steel, a liquid medium is introduced from the lower part of the container 2, and the granular ceramics 1 are flowed in the liquid by the liquid flow of the liquid medium, mutual friction, and collision. To reform the liquid medium. Mesh-shaped partition plates 5 and 6 that allow the liquid medium to pass through but not the granular ceramics 1 are provided at the upper and lower portions in the container 1. Reference numeral 3 is an inlet for the liquid medium, and 4 is an outlet for the generated modified liquid medium. Any method can be used to modify the liquid medium as long as the granular ceramics can flow in the liquid medium by the flow of the liquid medium and can rub and / or collide with each other. It doesn't matter.

以下,本発明の液中における超微細気泡の生成方法が顕著に効果を発揮する液状媒体が水の場合について、具体的に説明する。 Hereinafter, the case where the liquid medium in which the method for generating ultrafine bubbles in the liquid of the present invention is remarkably effective is water will be specifically described.

本発明において使用される粒状セラミックスの大きさは、粒径0.1~10mmのものが好ましく、用途に応じて、これらの粒径の粒子を混合するあるいは特定の粒径範囲の粒子に選別して使用してもよい。粒状セラミックスを処理原水の水流により水中で流動させるには、粒状セラミックスを、容器内の仕切り板5、6で仕切られたセラミック収容室内の体積に対して粒状セラミックス全体の体積がその10~70%となるように容器内に投入するのが好ましい。10%未満では改質効果が小さく、70%を超えて投入すると流動が妨げられて相互摩擦、衝突が不十分となりやすい。さらに好ましくは体積率が30~50%の範囲で投入する。 The size of the granular ceramics used in the present invention is preferably 0.1 to 10 mm in particle size, and particles of these particle sizes are mixed or sorted into particles in a specific particle size range depending on the application. May be used. In order to make the granular ceramic flow in water by the water flow of the treated raw water, the volume of the granular ceramic is 10 to 70% of the volume of the ceramic accommodating chamber partitioned by the partition plates 5 and 6 in the container. It is preferable to put it in the container so as to be. If it is less than 10%, the reforming effect is small, and if it exceeds 70%, the flow is hindered and mutual friction and collision tend to be insufficient. More preferably, the volume fraction is charged in the range of 30 to 50%.

粒状セラミックスは適度の流動を与える水流中の流速下におかれることが望ましい。弱い水流下では、粒状セラミックスに適度の流動を与えることができない。粒状セラミックスは水中を流動し、回転しながら流れるのが効果的である。例えば、3~4回転して容器の上部まで舞い上がり、また数回転して容器の下部に達するという流動を繰り返し、その間に粒状セラミックス相互の摩擦、衝突が生じることが理想的である。 It is desirable that the granular ceramics be placed under a flow velocity in a water stream that gives an appropriate flow. Under a weak water flow, it is not possible to give an appropriate flow to the granular ceramics. It is effective that the granular ceramics flow in water and flow while rotating. For example, it is ideal that the flow of three to four rotations soaring up to the upper part of the container and several rotations reaching the lower part of the container is repeated, during which friction and collision between the granular ceramics occur.

処理原水は、改質水の用途に応じて、水道水、イオン交換水、蒸留水、工業用水、雨水、地下水、河川水、生活排水、産業排水、海水及びそれら由来の水、さらに水溶液や前記処理原水を溶媒とするコロイド溶液から選択された少なくとも1種類以上の液状媒体とそれらの混合物であってもかまわない。また、水のように改質されるものであれば、エタノールやガソリン、軽油、重油等の有機溶媒でもよく、液状媒体の種類は特に限定されない。 The treated raw water includes tap water, ion-exchanged water, distilled water, industrial water, rainwater, groundwater, river water, domestic wastewater, industrial wastewater, seawater and water derived from them, as well as aqueous solutions and the above, depending on the use of reformed water. It may be at least one liquid medium selected from a colloidal solution using the treated raw water as a solvent and a mixture thereof. Further, as long as it is reformed like water, an organic solvent such as ethanol, gasoline, light oil, or heavy oil may be used, and the type of the liquid medium is not particularly limited.

微細気泡中に含有させる気体の種類も前記の液状媒体同様に特に限定されるものではなく、例えば、空気以外に、酸素、オゾン、窒素、二酸化炭素、水素、塩素、アルゴン、ヘリウムなどが選択可能であり、それらの群より選ばれる2種以上の混合気体であってもよい。液状媒体中に微細気泡を内包可能なものであれば、基本的には液状媒体と気体の種類を選ばない。 The type of gas contained in the fine bubbles is not particularly limited as in the liquid medium described above, and for example, oxygen, ozone, nitrogen, carbon dioxide, hydrogen, chlorine, argon, helium and the like can be selected in addition to air. It may be a mixed gas of two or more kinds selected from those groups. Basically, any type of liquid medium and gas can be used as long as fine bubbles can be contained in the liquid medium.

図2に示すフローチャートにより、評価用セラミックス処理水の製造工程を説明する。島津エネルギー分散型蛍光X線分析装置を使用して分析した金属成分重量濃度が、Si(32.3%)、Al(10.3%)、Fe(2.53%)、Ca(1.72%)、K(1.72%)、Na(1.07%)、その他1%未満のMg、Cu、Snなどを含有する酸化物系の天然鉱石7を粒径10μm以下に微粉砕し(ステップS1)、この微粉末をエタノール8と共にボールミル9で湿式混練した後(ステップS2)、粒径約3mmの球形状に造粒成形し(ステップS3)、1150~1200℃の温度で焼成した(ステップS4)。得られた焼結体1は褐色光沢を有しており、表面が平滑な硬質の球状粒子であり、アルキメデス法で測定した見掛け密度は2.4g/cmであった。また、BET法により測定したその表面の比表面積は0.49m/gであった。 The manufacturing process of the ceramic-treated water for evaluation will be described with reference to the flowchart shown in FIG. The metal component weight concentrations analyzed using the Shimadzu energy dispersion type fluorescent X-ray analyzer are Si (32.3%), Al (10.3%), Fe (2.53%), Ca (1.72%). %), K (1.72%), Na (1.07%), and other oxide-based natural ores 7 containing less than 1% Mg, Cu, Sn, etc. are finely pulverized to a particle size of 10 μm or less (%). In step S1), this fine powder was wet-kneaded with ethanol 8 in a ball mill 9 (step S2), granulated into a spherical shape having a particle size of about 3 mm (step S3), and fired at a temperature of 1150 to 1200 ° C. (step S1). Step S4). The obtained sintered body 1 had a brown luster, was hard spherical particles having a smooth surface, and had an apparent density of 2.4 g / cm 3 measured by the Archimedes method. The specific surface area of the surface measured by the BET method was 0.49 m 2 / g.

次に、純水製造装置(商品名:Milli-Q Academic A10:Millipore社製)から採取したイオン交換水10を22℃、空気雰囲気下で500mLのメジューム瓶(容器)2の収容体積に対して80%を占める量となるように静かに入れた後(ステップS5)、さらに容器の収容体積に対して20%を占める量となるように上記焼結体(粒状セラミックス)1を静かに入れた。その後、この容器2を上下に静かに90秒間転回させて水処理を行い透明なセラミックス処理水11を得た(ステップS6)。 Next, ion-exchanged water 10 collected from a pure water production device (trade name: Milli-Q Ceramic A10: manufactured by Millipore) was added to the storage volume of a 500 mL medium bottle (container) 2 at 22 ° C. in an air atmosphere. After gently adding the mixture so as to occupy 80% (step S5), the above-mentioned sintered body (granular ceramics) 1 was gently added so as to occupy 20% of the contained volume of the container. .. Then, the container 2 was gently rotated up and down for 90 seconds to perform water treatment to obtain transparent ceramics-treated water 11 (step S6).

この透明なセラミックス処理水11に対して、遠心分離機(商品名:ユニバーサル遠心分離機Model5922:KUBOTA社製)12を使用して、22℃、8500rpm、5分間の条件下で遠心分離操作を行った後(ステップS7)、得られた遠心分離処理済みの水が入った容器の上澄み水13を採取した。その後、このセラミックス処理水をメンブレンフィルター14に通過させて、不純物を除去した後、別のメジューム瓶に入れて、5℃に温調された冷蔵庫内に5日間保管して評価用セラミックス処理水15とした。 A centrifuge (trade name: Universal Centrifuge Model 5922: manufactured by KUBOTA) 12 is used to centrifuge the transparent ceramics-treated water 11 under the conditions of 22 ° C., 8500 rpm, and 5 minutes. After that (step S7), the supernatant water 13 of the container containing the obtained water that had been centrifuged was collected. Then, this ceramic-treated water is passed through a membrane filter 14 to remove impurities, then placed in another medium bottle and stored in a refrigerator heated to 5 ° C. for 5 days to evaluate the ceramic-treated water 15. And said.

この評価用セラミックス処理水に対して、市販されている緑色レーザーポインター(波長532nm)を使用して、緑色レーザー光を照射したところ、レーザー光の輝線が見られ、レーザー光路が明確に観察された。 When a commercially available green laser pointer (wavelength 532 nm) was used to irradiate this evaluation ceramics-treated water with a green laser beam, a bright line of the laser beam was observed and the laser optical path was clearly observed. ..

さらに、この評価用セラミックス処理水に含まれる超微細気泡のメジアン径、個数濃度、ゼータ電位の測定を行った。測定に使用した装置は、マイクロトラック・ベル株式会社製の(商品名:ZetaView画像解析式粒子追跡法ゼータ電位、粒度径分布、個数カウント測定装置)であり、測定温度は22℃である。 Furthermore, the median diameter, number concentration, and zeta potential of the ultrafine bubbles contained in the ceramics-treated water for evaluation were measured. The device used for the measurement is a (trade name: ZetaView image analysis type particle tracking method zeta potential, particle size diameter distribution, number count measuring device) manufactured by Microtrac Bell Co., Ltd., and the measuring temperature is 22 ° C.

[比較例]
比較例として,セラミックス処理前の原水である純水製造装置(商品名:Milli-Q Academic A10:Millipore社製)から採取したイオン交換水に対して、緑色レーザー光を照射したところ、レーザー光の輝線は見られなかった。また、粒状セラミックス処理後5日が経過した評価用セラミックス処理水と、原水であるイオン交換水中に含まれる超微細気泡のメジアン径、個数濃度、ゼータ電位を測定した。その結果を表1に示す。
[Comparison example]
As a comparative example, when ion-exchanged water collected from a pure water production device (trade name: Milli-Q Academic A10: manufactured by Millipore), which is raw water before ceramics treatment, was irradiated with green laser light, the laser light was emitted. No bright lines were seen. In addition, the median diameter, number concentration, and zeta potential of the ultrafine bubbles contained in the evaluation ceramics-treated water 5 days after the granular ceramics treatment and the ion-exchanged water which was the raw water were measured. The results are shown in Table 1.

Figure 0007015433000002
Figure 0007015433000002

表1から分かるように、セラミックス処理前の原水(イオン交換水)は、超微細気泡の各種物性値を定量できなかったが、評価用セラミックス処理水中には超微細気泡が含まれていた。 As can be seen from Table 1, the raw water (ion-exchanged water) before the ceramics treatment could not quantify various physical property values of the ultrafine bubbles, but the ceramics-treated water for evaluation contained the ultrafine bubbles.

次にセラミックス処理水中に含まれる超微細気泡の安定性評価を行った。使用したセラミックスおよびセラミックス処理水の作製方法は、実施例1と同様である。なお、評価用セラミックス処理水は5℃に温調した冷蔵庫内に5日間および14日間保管したものを用い、セラミックス処理水中に含まれる超微細気泡の個数濃度、ゼータ電位を測定した。その結果を表2に示す。 Next, the stability of ultrafine bubbles contained in the ceramic-treated water was evaluated. The method for producing the ceramics and the ceramic-treated water used is the same as in Example 1. The ceramic-treated water for evaluation was stored in a refrigerator whose temperature was adjusted to 5 ° C. for 5 days and 14 days, and the number concentration of ultrafine bubbles contained in the ceramic-treated water and the zeta potential were measured. The results are shown in Table 2.

Figure 0007015433000003
Figure 0007015433000003

表2から分かるように、評価用セラミックス処理水中に含まれる超微細気泡は、気泡生成操作から5日、14日経過後も水中に安定して存在していた。 As can be seen from Table 2, the ultrafine bubbles contained in the ceramic-treated water for evaluation were stably present in the water 5 to 14 days after the bubble generation operation.

本発明は、微細気泡を含有する液状媒体の製造方法及び生成した微細気泡を含有した液状媒体を提供するものであり、水処理、農業、工業、医療、環境改善、食品及び水産業などの多くの産業で利用される可能性を有する。 The present invention provides a method for producing a liquid medium containing fine bubbles and a liquid medium containing the generated fine bubbles, and is used in many fields such as water treatment, agriculture, industry, medical care, environmental improvement, food and fisheries. Has the potential to be used in the industry of.

1 粒状セラミックス(焼結体)
2 容器(流路管)
3 処理水導入口
4 活性水排出口
5 仕切り板
6 仕切り板
7 天然鉱石
8 エタノール
9 ボールミル
10イオン交換水
11セラミックス処理水
12遠心分離機
13上澄み水
14メンブレンフィルター
15評価用セラミックス処理水
1 Granular ceramics (sintered body)
2 Container (flow path pipe)
3 Treated water inlet 4 Activated water outlet 5 Partition plate 6 Partition plate 7 Natural ore 8 Ethanol 9 Ball mill 10 Ion-exchanged water 11 Ceramics treated water 12 Centrifugal separator 13 Clear water 14 Membrane filter 15 Ceramics treated water for evaluation

Claims (3)

シリカ100重量部に対してアルミナ10~95重量部を含み、アルカリ金属及び/またはアルカリ土類金属を含有する酸化物の焼結体からなる見かけ密度が1.6~3.5g/cm、粒径が0.1~1.0mm及び、BET法による比表面積が0.01~1.0m/gである表面が平滑な硬質の球状のセラミックス粒子を、収納容器の体積に対して10~70%となるように投入すると共に、気液混合液状媒体を導入した後、セラミックス粒子を流動、相互摩擦及び/又は衝突させることによって超微細気泡を生成することを特徴とする液状媒体の改質方法。 The apparent density of the sintered body of an oxide containing 10 to 95 parts by weight of alumina with respect to 100 parts by weight of silica and containing an alkali metal and / or an alkaline earth metal is 1.6 to 3.5 g / cm 3 . The particle size is 0.1 to 1.0 mm , and the specific surface area by the BET method is 0 . Hard spherical ceramic particles having a smooth surface of 01 to 1.0 m 2 / g were charged so as to be 10 to 70% of the volume of the storage container, and a gas-liquid mixed liquid medium was introduced. After that, a method for modifying a liquid medium, which comprises producing ultrafine bubbles by flowing, mutual friction and / or colliding ceramic particles. 気液混合液状媒体が水溶液類であることを特徴とする請求項1記載の液状媒体の改質方法。 The method for modifying a liquid medium according to claim 1 , wherein the gas-liquid mixture liquid medium is an aqueous solution . 超微細気泡のメジアン径が1μm未満であることを特徴とする請求項1又は請求項2記載の液状媒体の改質方法。 The method for modifying a liquid medium according to claim 1 or 2 , wherein the median diameter of the ultrafine bubbles is less than 1 μm .
JP2021094142A 2021-06-04 2021-06-04 Method for modifying liquid medium using granular ceramics for modifying liquid medium Active JP7015433B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021094142A JP7015433B1 (en) 2021-06-04 2021-06-04 Method for modifying liquid medium using granular ceramics for modifying liquid medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021094142A JP7015433B1 (en) 2021-06-04 2021-06-04 Method for modifying liquid medium using granular ceramics for modifying liquid medium

Publications (2)

Publication Number Publication Date
JP7015433B1 true JP7015433B1 (en) 2022-02-03
JP2022186095A JP2022186095A (en) 2022-12-15

Family

ID=80808963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021094142A Active JP7015433B1 (en) 2021-06-04 2021-06-04 Method for modifying liquid medium using granular ceramics for modifying liquid medium

Country Status (1)

Country Link
JP (1) JP7015433B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824606A (en) * 1994-07-11 1996-01-30 Nippon Gijutsu Kaihatsu Center:Kk Apparatus for automatic generation of water containing fine air bubble
JPH08196882A (en) * 1995-01-26 1996-08-06 Nippon Gijutsu Kaihatsu Center:Kk Formation of fine bubble liquid
JP2004182574A (en) * 2002-12-06 2004-07-02 Asahi Kasei Corp Particulate ceramics and method of manufacturing the same
KR20140132117A (en) * 2013-05-07 2014-11-17 신희종 Micro bubble forming device to use ceramic ball

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824606A (en) * 1994-07-11 1996-01-30 Nippon Gijutsu Kaihatsu Center:Kk Apparatus for automatic generation of water containing fine air bubble
JPH08196882A (en) * 1995-01-26 1996-08-06 Nippon Gijutsu Kaihatsu Center:Kk Formation of fine bubble liquid
JP2004182574A (en) * 2002-12-06 2004-07-02 Asahi Kasei Corp Particulate ceramics and method of manufacturing the same
KR20140132117A (en) * 2013-05-07 2014-11-17 신희종 Micro bubble forming device to use ceramic ball

Also Published As

Publication number Publication date
JP2022186095A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
Azevedo et al. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications
Azari et al. Magnetic multi-walled carbon nanotubes-loaded alginate for treatment of industrial dye manufacturing effluent: adsorption modelling and process optimisation by central composite face-central design
Kyzas et al. Flotation in water and wastewater treatment
Jiang et al. Synthesis of chitosan/MCM-48 and β-cyclodextrin/MCM-48 composites as bio-adsorbents for environmental removal of Cd2+ ions; kinetic and equilibrium studies
Cao et al. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite
Daryabor et al. Solvent extraction of cadmium and zinc from sulphate solutions: Comparison of mechanical agitation and ultrasonic irradiation
Fu et al. Effect of sodium alginate on reverse flotation of hematite and its mechanism
Lv et al. Clean utilization of waste rocks as a novel adsorbent to treat the beneficiation wastewater containing arsenic and fluorine
Gholizadeh et al. High specific surface area γ-Al2O3 nanoparticles synthesized by facile and low-cost co-precipitation method
CA2933984A1 (en) Inorganic cellular monobloc cation-exchange materials, the preparation method thereof, and separation method using same
Chang et al. Enhancing the ion flotation removal of Cu (Ⅱ) via regulating the oxidation degree of nano collector-graphene oxide
Yadav et al. A novel approach for the synthesis of vaterite and calcite from incense sticks ash waste and their potential for remediation of dyes from aqueous solution
Ma et al. Fabrication of amino-functionalized magnetic graphene oxide nanocomposites for adsorption of Ag (I) from aqueous solution
JP7015433B1 (en) Method for modifying liquid medium using granular ceramics for modifying liquid medium
Terdputtakun et al. Adsorption characteristics of leonardite for removal of Cd (II) and Zn (II) from aqueous solutions
Yang et al. Enhancing the efficiency of wastewater treatment by addition of Fe-based amorphous alloy powders with H 2 O 2 in ferrofluid
Abushawish et al. In-depth analysis of MgAl layered double oxide AC composite for sulfate removal from United Arab Emirates Ground Water: Synthesis optimization, fixed-bed performance, and economic feasibility
Liu et al. A Review on Removal of Iron Impurities from Quartz Mineral
Zhou et al. Enhanced accumulation of bitumen residue in a highly concentrated tailings flow by microbubbles from in-situ catalytic decomposition of hydrogen peroxide
Ni'mah et al. The Adsorption of Pb (II) Using Silica Gel Synthesized from Chemical Bottle Waste: Optimization Using Box-Behnken Design.
Mohammed et al. Batch and circulated fluidized bed adsorption of nickel ions on algae: equilibrium, thermodynamic and mass transfer studies
Prasad A hand book on engineering chemistry: a text book for diploma students
Mehrvar et al. Magnetically modified activated carbon prepared from pine cones for treatment of wastewater containing heavy metals
Ibrahiem et al. Microstructure of gamma-ray developed polymeric nanocomposite respecting cesium and cobalt removal from aqueous solutions
Wang et al. Filtration of polystyrene nanoplastics with different functional groups by natural mineral materials: Performance and mechanisms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7015433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150