JP7015428B2 - State clustering coding method in vehicle connection control of charging station - Google Patents

State clustering coding method in vehicle connection control of charging station Download PDF

Info

Publication number
JP7015428B2
JP7015428B2 JP2020206712A JP2020206712A JP7015428B2 JP 7015428 B2 JP7015428 B2 JP 7015428B2 JP 2020206712 A JP2020206712 A JP 2020206712A JP 2020206712 A JP2020206712 A JP 2020206712A JP 7015428 B2 JP7015428 B2 JP 7015428B2
Authority
JP
Japan
Prior art keywords
charging
charging station
station
state
connection control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020206712A
Other languages
Japanese (ja)
Other versions
JP2021136859A (en
Inventor
子▲ユ▼ 唐
伝信 趙
道宏 方
昊 唐
明星 方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Anhui Normal University
Original Assignee
Hefei University of Technology
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology, Anhui Normal University filed Critical Hefei University of Technology
Publication of JP2021136859A publication Critical patent/JP2021136859A/en
Application granted granted Critical
Publication of JP7015428B2 publication Critical patent/JP7015428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Development Economics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明はスマート制御及び最適化の技術分野に関し、具体的には、充電スタンドステーションの車両接続制御における状態クラスタリング符号化方法に関する。 The present invention relates to the technical fields of smart control and optimization, and specifically to a state clustering coding method in vehicle connection control of a charging station.

近年、自動車の生産は従来のエネルギーを動力とする自動車から新エネルギー自動車へと移行しており、電気自動車は、新エネルギー自動車が発展する重要な分野として、巨大な潜在的需要と市場を持っている。充電スタンドは電気自動車に充電サービスを提供する重要なインフラ設備であり、電気自動車の市場保有量の大幅な増加に伴い、充電スタンドステーションを建設して、複数の充電スタンドの充電サービスを一括で運営管理する必要がある。風力発電や太陽光発電などの新エネルギーの普及率の増加に伴い、且つそれらの不規則性や間欠性という特性から、電力サービスのスマート性及び適応性を向上させるために、消費者の電力消費をどのようにして効率的に管理しかつ誘導するかが求められている。電気自動車は融通性がある重要な負荷の一つであり、電気自動車の充放電に対して合理的なスケジュール制御を行うことで、その電力消費者が電力市場のスケジュールに関与する潜在力が引き出される。例えば、各レベルのスケジュールセンターはエネルギー負荷予測データに基づいて電力ピークシェービング計画を立て、リアルタイムで電力料金を示すことにより、電気自動車の充電スタンドステーションの電力を合理的に消費するように誘導し、消費者が自発的にピークカットやピークシフトを活用することを促す。 In recent years, vehicle production has shifted from traditional energy-powered vehicles to new energy vehicles, and electric vehicles have huge potential demand and markets as an important area for new energy vehicles to develop. There is. Charging stations are an important infrastructure facility that provides charging services to electric vehicles. With the significant increase in the market holdings of electric vehicles, we will build charging station stations and operate charging services for multiple charging stations at once. Need to manage. With the increasing penetration rate of new energies such as wind power generation and solar power generation, and due to their irregularity and intermittentness, consumers' power consumption is to improve the smartness and adaptability of power services. How to efficiently manage and guide the energy is required. Electric vehicles are one of the most flexible and important loads, and rational schedule control over the charging and discharging of electric vehicles unlocks the potential for their power consumers to be involved in electricity market schedules. Is done. For example, a schedule center at each level can guide the power consumption of electric vehicle charging station stations by making a power peak shaving plan based on energy load prediction data and showing the power charge in real time. Encourage consumers to voluntarily take advantage of peak cuts and shifts.

従って、リアルタイムの電力ピークシェービング料金制御において、充電スタンドステーションの電気自動車スマート接続サービスシステムが、リアルタイムの電力ピークシェービング料金及びステーション内のすべての充電スタンドのオンラインサービス状態に基づいて、ランダムに到着する電気自動車の充電サービスリクエストに対して動的に自己適応し、すなわち、サービスに接続させるか否かをどのように制御するかにより、充電スタンドステーションの経済性を向上させ、電力ピークシェービングの要件に適応させることは、今後研究により解決が期待される重要な課題である。しかしながら、そのような車両の接続制御の課題を最適化する際に、充電スタンドステーションの自然な物理的状態に基づいて直接モデル化すると、状態空間の規模が大きくなり、「次元の呪い」の問題が存在し、時空間リソースを占有して、最適化効率及び制御効果に影響を及ぼす。 Therefore, in real-time power peak shaving charge control, the electric vehicle smart connection service system of the charging station station randomly arrives electricity based on the real-time power peak shaving charge and the online service status of all charging stations in the station. Dynamically self-adapt to vehicle charging service requests, i.e. improve the economics of charging station stations and adapt to power peak shaving requirements by controlling whether or not to connect to the service. It is an important issue that is expected to be solved by research in the future. However, when optimizing the task of connecting control of such vehicles, direct modeling based on the natural physical state of the charging stand station will increase the size of the state space and the problem of "curse of dimensionality". Exists and occupies spatiotemporal resources, affecting optimization efficiency and control effectiveness.

本発明は、前記従来技術に存在する欠点を解決するために、問題の特徴に基づいて、状態空間の規模を効果的に縮小し、接続制御の最適化における時空間リソースの要件を抑え、最適化効率及び制御効果を向上させることができる、充電スタンドステーションの車両接続制御における状態クラスタリング符号化方法を提供する。 In order to solve the shortcomings existing in the prior art, the present invention effectively reduces the scale of the state space based on the characteristics of the problem, suppresses the requirement of spatio-temporal resources in the optimization of connection control, and optimizes. Provided is a state clustering coding method in vehicle connection control of a charging station, which can improve the efficiency and control effect.

その課題を解決するために、本発明は下記の技術的解決手段を採用する。 In order to solve the problem, the present invention employs the following technical solutions.

本発明が提供する充電スタンドステーションの車両接続制御における状態符号化方法であって、J個の充電スタンドを有し、ランダムに到着するM種類の電気自動車に対して有料充電サービスを提供する充電スタンドステーション・サービスシステムに応用し、各充電スタンドはいずれもM種類の電気自動車の充電必要電力を満たし、1つの充電スタンドは1度に1台の電気自動車に対してのみ充電サービスを提供し、 It is a state coding method in the vehicle connection control of the charging station station provided by the present invention, and is a charging station having J charging stations and providing a pay charging service for M types of electric vehicles arriving at random. Applied to station service systems, each charging station meets the charging requirements of M types of electric vehicles, and one charging station provides charging service to only one electric vehicle at a time.

前記J個の充電スタンドをそれぞれCS1,CS2,…,CSj,…,CSJと表記し、M種類の電気自動車の充電必要電力をとP1,P2,…,Pm,…,PM表記し、但し、CSjは第j番目の充電スタンドを表し、Pmは第m種類の電気自動車の充電必要電力を表し、
第m種類の電気自動車の電池容量をEmと表記し、但し、m=1,2,…,Mであり、
The J charging stations are described as CS 1 , CS 2 , ..., CS j , ..., CS J , respectively, and the required power for charging M types of electric vehicles is P 1 , P 2 , ..., P m , ... , P M notation, where CS j represents the jth charging station and P m represents the required charging power of the mth type electric vehicle.
The battery capacity of the m-th type electric vehicle is expressed as Em, where m = 1,2, ..., M.

Figure 0007015428000001
Figure 0007015428000001

Figure 0007015428000002
Figure 0007015428000002

前記J個の充電スタンドのt時点での連携状態

Figure 0007015428000003
Coordination state of the J charging stands at time t
Figure 0007015428000003

Figure 0007015428000004
Figure 0007015428000004

Figure 0007015428000005
Figure 0007015428000005

Figure 0007015428000006
Figure 0007015428000006

Figure 0007015428000007
Figure 0007015428000007

Figure 0007015428000008
Figure 0007015428000008

Figure 0007015428000009
Figure 0007015428000009

Figure 0007015428000010
Figure 0007015428000010

Figure 0007015428000011
Figure 0007015428000011

Figure 0007015428000012
Figure 0007015428000012

Figure 0007015428000013
Figure 0007015428000013

Figure 0007015428000014
従来技術に比べて、本発明は下記の効果を有する。
Figure 0007015428000014
Compared with the prior art, the present invention has the following effects.

1、本発明は、まず、充電中の各車両が現在のSOCから満充電になるまでに必要な時間を、その充電サービスを提供する充電スタンドの状態、すなわち、サービス時間要件状態または残充電時間状態とすることで、電気自動車の電池の現在充電状態を充電スタンドの状態と見なす従来技術に比べて、充電スタンドのサービス状態の変化状況を直接反映することができる。 1. In the present invention, first, the time required for each charged vehicle to be fully charged from the current SOC is determined by the state of the charging station that provides the charging service, that is, the service time requirement state or the remaining charging time. By setting the state, it is possible to directly reflect the change state of the service state of the charging stand as compared with the conventional technique in which the current charging state of the battery of the electric vehicle is regarded as the state of the charging stand.

2、すべての充電スタンドを連携したサービス時間要求状態を離散化し、離散化された連携サービス時間要件状態として連立し、小さい順に並べ替え、充電スタンドステーションのクラスタリング状態を構成することにより、離散化イベント拡張クラスタリング状態の規模を効果的に減少させて、車両接続制御の最適化効率及び実行効果を向上させる。 2. Discretization event by discretizing the service time request state in which all charging stations are linked, arranging them as discrete cooperation service time requirement states, sorting them in ascending order, and configuring the clustering state of the charging station stations. The scale of the extended clustering state is effectively reduced to improve the optimization efficiency and execution effect of the vehicle connection control.

3、本発明が提供する状態クラスタリング符号化方法は、電気自動車の充放電に関する他の状況にも応用できる。 3. The state clustering coding method provided by the present invention can be applied to other situations related to charging and discharging of electric vehicles.

は本発明が提供する充電スタンドステーション・サービスシステムを示す図である。Is a diagram showing a charging station station service system provided by the present invention.

本実施例において、図1に示すように、充電スタンドステーションの車両接続制御における状態クラスタリング符号化方法は、J個の充電スタンド1、M種類のランダムに到着する電気自動車2、電力ピークシェービング料金計画3及び接続制御センター4からなる充電スタンドステーション・サービスシステムに応用され、各充電スタンドはいずれもM種類の電気自動車の充電電力の必要を満たすことができる。 In this embodiment, as shown in FIG. 1, the state clustering coding method in the vehicle connection control of the charging station is J charging stations 1, M types of randomly arriving electric vehicles 2, and a power peak shaving charge plan. It is applied to a charging station station service system consisting of 3 and a connection control center 4, and each charging station can meet the charging power requirement of M types of electric vehicles.

第j番目の充電スタンドをCSjと表記し、1度に1台の電気自動車のみに充電サービスを提供する。J個の充電スタンドをそれぞれ、CS1,CS2,…,CSj,…,CSJ、j=1,2,…,Jと表記する。 The jth charging station is referred to as CS j , and the charging service is provided to only one electric vehicle at a time. The J charging stands are written as CS 1 , CS 2 ,…, CS j ,…, CS J , j = 1,2,…, J, respectively.

Figure 0007015428000015
Figure 0007015428000015

Figure 0007015428000016
Figure 0007015428000016

Figure 0007015428000017
Figure 0007015428000017

Figure 0007015428000018
Figure 0007015428000018

Figure 0007015428000019
Figure 0007015428000019

Figure 0007015428000020
Figure 0007015428000020

Figure 0007015428000021
システム決定時間を、任意の電気自動車が到着する時間、すなわち、イベントが発生する時間と定義する。
Figure 0007015428000022
Figure 0007015428000021
The system decision time is defined as the time when any electric vehicle arrives, that is, the time when an event occurs.
Figure 0007015428000022

Figure 0007015428000023
該充電スタンドステーションの車両接続制御における初期状態符号化方法は、
Figure 0007015428000024
Figure 0007015428000023
The initial state coding method in the vehicle connection control of the charging station is
Figure 0007015428000024

Figure 0007015428000025
Figure 0007015428000025

Figure 0007015428000026
Figure 0007015428000026

Figure 0007015428000027
Figure 0007015428000027

Figure 0007015428000028
Figure 0007015428000028

該充電スタンドステーションの車両接続制御における状態クラスタリング符号化方法は、

Figure 0007015428000029
The state clustering coding method in the vehicle connection control of the charging station is
Figure 0007015428000029

Figure 0007015428000030
Figure 0007015428000030

Figure 0007015428000031
Figure 0007015428000031

Figure 0007015428000032
Figure 0007015428000032

Figure 0007015428000033
Figure 0007015428000033

Figure 0007015428000034
Figure 0007015428000034

Figure 0007015428000035
Figure 0007015428000035

充電スタンドステーションの車両接続制御プロセスは、
車両の到着イベントの発生を待ち、イベントが発生すると、ステップ8.2に移行するステップ8.1と、
The vehicle connection control process of the charging station station
Waiting for the arrival event of the vehicle, and when the event occurs, step 8.1 to move to step 8.2, and

Figure 0007015428000036
Figure 0007015428000036

Figure 0007015428000037
Figure 0007015428000037

Figure 0007015428000038
Figure 0007015428000038

Figure 0007015428000039
ステップ8.1へ移行するステップ8.6と、を含む。
Figure 0007015428000039
Includes step 8.6 to move to step 8.1.

Claims (1)

充電スタンドステーションの車両接続制御における状態符号化方法において、J個の充電スタンドを有し、ランダムに到着するM種類の電気自動車に対して有料充電サービスを提供する充電スタンドステーション・サービスシステムに応用され、各充電スタンドはM種類の電気自動車の充電必要電力を満たし、1つの充電スタンドが1度に1台の電気自動車に対してのみ充電サービスを提供し、
Figure 0007015428000040
Figure 0007015428000041
Figure 0007015428000042
前記J個の充電スタンドのt時点での連携状態を
Figure 0007015428000043
Figure 0007015428000044
Figure 0007015428000045
前記充電スタンドステーションの車両接続制御における状態クラスタリング符号化方法は、
Figure 0007015428000046
Figure 0007015428000047
Figure 0007015428000048
Figure 0007015428000049
Figure 0007015428000050
Figure 0007015428000051
Figure 0007015428000052
Figure 0007015428000053
ことを特徴とする充電スタンドステーションの車両接続制御における状態符号化方法。
In the state coding method for vehicle connection control of charging station stations, it is applied to charging station station service systems that have J charging stations and provide paid charging services for M types of electric vehicles that arrive randomly. , Each charging station meets the charging requirements of M types of electric vehicles, and one charging station provides charging service to only one electric vehicle at a time.
Figure 0007015428000040
Figure 0007015428000041
Figure 0007015428000042
The linked state of the J charging stands at the time of t
Figure 0007015428000043
Figure 0007015428000044
Figure 0007015428000045
The state clustering coding method in the vehicle connection control of the charging station is
Figure 0007015428000046
Figure 0007015428000047
Figure 0007015428000048
Figure 0007015428000049
Figure 0007015428000050
Figure 0007015428000051
Figure 0007015428000052
Figure 0007015428000053
A state coding method in vehicle connection control of a charging station station.
JP2020206712A 2020-02-21 2020-12-14 State clustering coding method in vehicle connection control of charging station Active JP7015428B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010106439.8 2020-02-21
CN202010106439.8A CN111284347B (en) 2020-02-21 2020-02-21 State clustering coding method in charging station vehicle access control

Publications (2)

Publication Number Publication Date
JP2021136859A JP2021136859A (en) 2021-09-13
JP7015428B2 true JP7015428B2 (en) 2022-02-03

Family

ID=71019089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020206712A Active JP7015428B2 (en) 2020-02-21 2020-12-14 State clustering coding method in vehicle connection control of charging station

Country Status (2)

Country Link
JP (1) JP7015428B2 (en)
CN (1) CN111284347B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665402B (en) * 2021-07-26 2023-06-20 华南理工大学 Ordered charging method for charging pile clusters based on battery charging characteristics
CN114148213B (en) * 2021-11-30 2024-03-01 西安理工大学 Method and system for processing interactive coordination comprehensive control of power grid and electric vehicle power grid
CN117709634A (en) * 2023-12-05 2024-03-15 江苏智融能源科技有限公司 Charging pile power resource management system and method based on big data

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215084A (en) 2012-03-30 2013-10-17 Toyota Infotechnology Center Co Ltd Vehicle charging control method and vehicle charging control system
JP2015141465A (en) 2014-01-27 2015-08-03 株式会社日立製作所 Management device and method of electric vehicle
CN105024432A (en) 2015-07-30 2015-11-04 浙江工业大学 Electric vehicle charge-discharge optimized dispatching method based on virtual electricity price

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064829B (en) * 2013-11-28 2016-04-06 清华大学 A kind of electric automobile real time charging method based on electric automobile cluster Charge Prediction
CN106712061B (en) * 2016-05-16 2019-02-01 浙江工业大学 A kind of in a few days priority scheduling method based on the schedulable ability of electric car
CN106056255A (en) * 2016-06-23 2016-10-26 海南电力技术研究院 Space-time joint scheduling ordered charging method and device
CN107749629B (en) * 2017-10-27 2021-06-18 深圳供电局有限公司 Charging pile access control method based on charging station load real-time scheduling
CN110509788B (en) * 2019-08-21 2022-12-02 三峡大学 Electric automobile group combination optimization charging and discharging method with deep peak regulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215084A (en) 2012-03-30 2013-10-17 Toyota Infotechnology Center Co Ltd Vehicle charging control method and vehicle charging control system
JP2015141465A (en) 2014-01-27 2015-08-03 株式会社日立製作所 Management device and method of electric vehicle
CN105024432A (en) 2015-07-30 2015-11-04 浙江工业大学 Electric vehicle charge-discharge optimized dispatching method based on virtual electricity price

Also Published As

Publication number Publication date
CN111284347B (en) 2021-06-08
CN111284347A (en) 2020-06-16
JP2021136859A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP7015428B2 (en) State clustering coding method in vehicle connection control of charging station
US10320203B2 (en) Adaptive charging algorithms for a network of electric vehicles
He et al. A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles
US11769094B2 (en) System and method for real-time distributed micro-grid optimization using price signals
CN108494034B (en) Calculation method for charging load distribution of electric automobile in power distribution network
Sousa et al. Day-ahead resource scheduling in smart grids considering vehicle-to-grid and network constraints
Zhang et al. Robust security constrained-optimal power flow using multiple microgrids for corrective control of power systems under uncertainty
Xu et al. Optimal scheduling and operation of load aggregator with electric energy storage in power markets
Kamalinia et al. Security-constrained expansion planning of fast-response units for wind integration
CN103840549B (en) Charging electric vehicle load space dispatching patcher and method
Yang et al. Resilient residential energy management with vehicle-to-home and photovoltaic uncertainty
CN102509167B (en) Photovoltaic power generation and energy management system based on virtual power plant
CN104981958A (en) System and methods for large scale charging of electric vehicles
CN103700041A (en) Cloud computation-based smart grid load prediction management platform
Ebadi et al. Techno-economic evaluation of transportable battery energy storage in robust day-ahead scheduling of integrated power and railway transportation networks
Xiang et al. Active energy management strategies for active distribution system
Wu et al. A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems
Qi et al. When shared autonomous electric vehicles meet microgrids: Citywide energy-mobility orchestration
Yi et al. Expansion planning of active distribution networks achieving their dispatchability via energy storage systems
Chen et al. Optimizing operations for large scale charging of electric vehicles
CN115765014A (en) Distribution network energy storage and data center planning method considering information physical coupling
Thomas et al. Smart house operation under PV and load demand uncertainty considering EV and storage utilization
Liu et al. Optimization design of nonstop power exchange system for hydrogen energy trains
Wei et al. Optimal control of plug-in hybrid electric vehicles with market impact and risk attitude
CN116090675B (en) Short-time charging scheduling method based on combination of block chain and neural network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222