JP7011008B2 - 吸気量測定装置およびエンジン - Google Patents

吸気量測定装置およびエンジン Download PDF

Info

Publication number
JP7011008B2
JP7011008B2 JP2020135352A JP2020135352A JP7011008B2 JP 7011008 B2 JP7011008 B2 JP 7011008B2 JP 2020135352 A JP2020135352 A JP 2020135352A JP 2020135352 A JP2020135352 A JP 2020135352A JP 7011008 B2 JP7011008 B2 JP 7011008B2
Authority
JP
Japan
Prior art keywords
intake air
pressure
intake
detecting means
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020135352A
Other languages
English (en)
Other versions
JP2021156276A (ja
Inventor
祐 鈴木
雅保 高見
勇樹 吉田
智大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to EP21774301.2A priority Critical patent/EP4130455A4/en
Priority to US17/786,518 priority patent/US11674478B2/en
Priority to PCT/JP2021/009372 priority patent/WO2021193036A1/ja
Priority to CN202180007248.9A priority patent/CN114945743A/zh
Publication of JP2021156276A publication Critical patent/JP2021156276A/ja
Application granted granted Critical
Publication of JP7011008B2 publication Critical patent/JP7011008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンの吸気配管を流れる吸気の流量を測定する吸気量測定装置およびエンジンに関する。
特許文献1には、MAFセンサを備えるエンジンの吸気制御装置が開示されている。特許文献1に記載されたMAFセンサは、ターボチャージャよりも上流側における吸気管に設けられ、吸気管を流れる吸気の流量を検出する。特許文献1に開示されたエンジンのように、一般的に、ディーゼルエンジン等の内燃機関では、吸気配管を流れる空気(吸気)の吸気量を検出する例えばホットワイヤ式の吸気量センサ(MAFセンサ)が吸気配管に設けられている。なお、吸気量は、吸気配管を流れる空気(吸気)の流量であり、吸入空気流量やMAFなどとも呼ばれる。
しかし、吸気配管に設けられた吸気量センサの出力特性は、吸気量センサよりも上流側の吸気系(例えば吸気配管)の形状に依存するという問題がある。吸気量センサよりも上流側の吸気系は、例えば産業用ディーゼルエンジン等に搭載されるアプリケーション毎に異なる。そのため、吸気量センサの校正作業が、エンジンに搭載されるアプリケーション毎に必要になり煩雑である。
特開2010-285957号公報
本発明は、前記課題を解決するためになされたものであり、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することを抑え、吸気の流量を安定的に測定することができる吸気量測定装置およびエンジンを提供することを目的とする。
前記課題は、直列で3つ以上の気筒を有するエンジンの吸気の流量を測定する吸気量測定装置であって、前記エンジンの前記気筒に前記吸気を分配する吸気分配手段と、前記吸気の温度を検出する温度検出手段と、前記吸気の圧力を検出する圧力検出手段と、前記温度検出手段から伝達された前記温度と前記圧力検出手段から伝達された前記圧力とに基づいて前記流量を演算する演算部と、を備え、前記吸気分配手段の長手方向は、前記エンジンの前記気筒が並ぶ方向に沿っており、前記吸気は、前記長手方向の一端から前記吸気分配手段に流入し、前記温度検出手段は、前記吸気分配手段の内部のうち、前記長手方向において前記一端から最も遠い位置に設けられた前記エンジンの第1気筒に接続された前記吸気分配手段の第1枝部と、前記長手方向において前記第1気筒の次に前記一端から遠い位置に設けられた前記エンジンの第2気筒に接続された前記吸気分配手段の第2枝部と、の間の位置にある前記吸気の前記温度を検出し、前記圧力検出手段は、前記第1枝部と前記第2枝部との間の前記位置にある前記吸気のうち前記温度検出手段により前記温度を検出される前記吸気よりも前記長手方向において前記一端に近い位置にある前記吸気の前記圧力であって吸気圧取得経路を通して取り出され伝わった前記圧力を検出することを特徴とする本発明に係る吸気量測定装置により解決される。
本発明に係る吸気量測定装置によれば、エンジンの気筒に吸気を分配する吸気分配手段の長手方向は、エンジンの気筒が並ぶ方向に沿っている。エンジンの吸気は、吸気分配手段の長手方向の一端から吸気分配手段に流入する。そして、演算部は、温度検出手段から伝達された吸気の温度と、圧力検出手段から伝達された吸気の圧力と、に基づいて吸気の流量を演算する。温度検出手段は、吸気分配手段の第1枝部と、吸気分配手段の第2枝部と、の間の位置にある吸気の温度を検出する。第1枝部は、吸気分配手段の長手方向において吸気分配手段の一端から最も遠い位置に設けられたエンジンの第1気筒に接続されている。第2枝部は、吸気分配手段の長手方向においてエンジンの第1気筒の次に吸気分配手段の一端から遠い位置に設けられたエンジンの第2気筒に接続されている。このように、温度検出手段は、吸気分配手段内の領域のうち吸気の流れが比較的安定した位置にある吸気の温度を検出する。そして、演算部は、吸気配管を流れる吸気の流量を検出する吸気量センサ(MAFセンサ)に依らず、温度検出手段から伝達された吸気の温度と、圧力検出手段から伝達された吸気の圧力と、に基づいて吸気の流量を演算する。これにより、本発明に係る吸気量測定装置は、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することを抑え、吸気の流量を安定的に測定することができる。
本発明に係る吸気量測定装置によれば、圧力検出手段は、温度検出手段と同様に、吸気分配手段内の領域のうち吸気の流れが比較的安定した位置にある吸気の圧力を検出する。そして、演算部は、吸気量センサ(MAFセンサ)に依らず、温度検出手段から伝達された吸気の温度と、圧力検出手段から伝達された吸気の圧力と、に基づいて吸気の流量を演算する。これにより、本発明に係る吸気量測定装置は、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することをより一層抑え、吸気の流量をより一層安定的に測定することができる。
本発明に係る吸気量測定装置によれば、圧力検出手段は、温度検出手段により温度を検出される吸気よりも吸気分配手段の長手方向において吸気分配手段の一端に近い位置にある吸気の圧力を検出する。そのため、圧力検出手段は、例えば吸気分配手段内に設置された温度検出手段のプローブなどにより流れが乱された位置にある吸気ではなく、流れが乱される前のより安定した位置にある吸気の圧力を検出する。そのため、圧力検出手段は、吸気の圧力をより安定的に検出することができる。これにより、本発明に係る吸気量測定装置は、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することをより一層抑え、吸気の流量をより一層安定的に測定することができる。
本発明に係る吸気量測定装置は、好ましくは、前記エンジンの排気を還流する排気還流手段と、前記排気還流手段を流れる前記排気と前記吸気分配手段を流れる前記吸気との差圧を検出し、前記演算部に伝達する差圧検出手段と、をさらに備え、前記演算部は、前記差圧検出手段から伝達された前記差圧にさらに基づいて前記流量を演算し、前記差圧検出手段は、前記第1枝部と前記第2枝部との間の前記位置にある前記吸気のうち前記温度検出手段により前記温度を検出される前記吸気よりも前記長手方向において前記一端に近い前記位置にある前記吸気の前記圧力であって前記吸気圧取得経路を通して取り出され伝わった前記圧力に基づいて前記差圧を検出することを特徴とする。
本発明に係る吸気量測定装置によれば、吸気量測定装置は、エンジンの排気を還流する排気還流手段と、差圧検出手段と、をさらに備える。演算部は、差圧検出手段から伝達された排気と吸気との差圧にさらに基づいて吸気の流量を演算する。差圧検出手段は、排気還流手段を流れる排気と、吸気分配手段を流れる吸気と、の差圧を検出し、演算部に伝達する。ここで、差圧検出手段は、第1枝部と第2枝部との間の位置にある吸気の圧力に基づいて排気と吸気との差圧を検出する。つまり、差圧検出手段による吸気の圧力の検出位置は、圧力検出手段による吸気の圧力の検出位置と同じ、すなわち第1枝部と第2枝部との間の位置である。これにより、エンジンの排気を還流する排気還流手段が設けられる場合において、本発明に係る吸気量測定装置は、吸気配管を流れる吸気の流量の演算精度を高めることができる。
本発明に係る吸気量測定装置によれば、差圧検出手段は、温度検出手段により温度を検出される吸気よりも吸気分配手段の長手方向において吸気分配手段の一端に近い位置にある吸気の圧力に基づいて排気と吸気との差圧を検出する。そのため、差圧検出手段は、例えば吸気分配手段内に設置された温度検出手段のプローブなどにより流れが乱された位置にある吸気ではなく、流れが乱される前のより安定した位置にある吸気の圧力に基づいて排気と吸気との差圧を検出する。そのため、差圧検出手段は、排気と吸気との差圧をより安定的に検出することができる。これにより、エンジンの排気を還流する排気還流手段が設けられる場合において、本発明に係る吸気量測定装置は、吸気配管を流れる吸気の流量の演算精度をより一層高めることができる。
本発明に係る吸気量測定装置において、好ましくは、前記差圧検出手段は、前記圧力検出手段により前記圧力を検出される前記吸気と前記長手方向において同じ位置にある前記吸気の前記圧力に基づいて前記差圧を検出することを特徴とする。
本発明に係る吸気量測定装置によれば、差圧検出手段は、圧力検出手段により圧力を検出される吸気と吸気分配手段の長手方向において同じ位置にある吸気の圧力に基づいて排気と吸気との差圧を検出する。つまり、差圧検出手段による吸気の圧力の検出位置は、圧力検出手段による吸気の圧力の検出位置と同じ、すなわち第1枝部と第2枝部とに亘る領域の位置である。そのため、差圧検出手段により差圧を検出するための吸気分配手段における吸気の圧力と、圧力検出手段により検出される吸気分配手段における吸気の圧力と、は互いに時間的に同期する。そのため、演算部は、吸気分配手段を流れる吸気の流量と、排気還流手段を流れる排気の流量と、を吸気分配手段における一系統すなわち同じ状態の系から算出する。これにより、エンジンの排気を還流する排気還流手段が設けられる場合において、本発明に係る吸気量測定装置は、吸気配管を流れる吸気の流量の演算精度をより一層高めることができる。
本発明に係る吸気量測定装置において、好ましくは、前記差圧検出手段は、前記排気還流手段を流れる前記排気を冷却する冷却手段と、前記冷却手段よりも下流側の前記排気還流手段を流れる前記排気の流量を調整する流量調整手段と、の間にある前記排気の圧力に基づいて前記差圧を検出することを特徴とする。
本発明に係る吸気量測定装置によれば、差圧検出手段は、冷却手段と、冷却手段よりも下流側に設けられた流量調整手段と、の間にある排気の圧力に基づいて排気と吸気との差圧を検出する。これにより、演算部は、差圧検出手段により伝達された差圧に基づいて冷却手段の劣化具合あるいは劣化程度を推定することができる。
本発明に係る吸気量測定装置は、好ましくは、前記冷却手段と前記流量調整手段との間における前記排気還流手段に設けられたスペーサをさらに備え、前記スペーサは、前記排気還流手段を流れる前記排気の流れに対して交差する方向に貫通して形成された孔を有し、前記差圧検出手段は、前記スペーサの前記孔を通して取り出された前記排気の圧力に基づいて前記差圧を検出することを特徴とする。
本発明に係る吸気量測定装置によれば、エンジンの排気を還流する排気還流手段が設けられる場合において、スペーサが、排気を冷却する冷却手段と、排気の流量を調整する流量調整手段と、の間における排気還流手段に設けられる。そして、差圧検出手段は、スペーサの孔を通して取り出された排気の圧力に基づいて差圧を検出する。そのため、排気の圧力を差圧検出手段に伝える配管等の経路が、冷却手段および流量調整手段から構造上の制約をほとんど受けることなく、スペーサに確実に接続可能とされている。また、冷却手段および流量調整手段の構造を変更しなくとも、スペーサの構造を変更することにより、排気の圧力を差圧検出手段に伝える種々の配管等の経路をスペーサに容易に接続することができる。さらに、スペーサの孔は、排気還流手段を流れる排気の流れに対して交差する方向に貫通して形成されている。そのため、スペーサの孔が排気に含まれる粒子状物質(PM:Particulate Matter)により閉塞することを抑えることができる。これにより、差圧検出手段は、排気の圧力(静圧)をより確実に取得し、排気の圧力(静圧)に基づいて差圧をより高い精度で検出することができる。
本発明に係る吸気量測定装置は、好ましくは、前記スペーサと前記差圧検出手段とに接続され前記孔を通して取り出された前記排気の圧力を前記差圧検出手段に伝える排気圧取得経路をさらに備え、前記排気圧取得経路のうちの少なくとも前記スペーサに接続された部分は、金属製であることを特徴とする。
本発明に係る吸気量測定装置によれば、排気圧取得経路が、スペーサと差圧検出手段とに接続され、スペーサの孔を通して取り出された排気の圧力を差圧検出手段に伝える。そして、排気圧取得経路のうちの少なくともスペーサに接続された部分は、金属製である。そのため、排気圧取得経路のうちのスペーサに接続された部分が、排気還流手段を流れる排気の熱により劣化したり硬化したりすることを抑えることができる。これにより、排気圧取得経路のうちのスペーサに接続された部分と、スペーサと、の間に隙間が生ずることを抑え、排気圧取得経路の外部の空気が排気圧取得経路の内部に進入することを抑えることができる。これにより、差圧検出手段は、差圧をより高い精度で検出することができる。また、排気圧取得経路のうちのスペーサに接続された部分が金属製であるため、排気圧取得経路をねじ構造を用いてスペーサに締結することができる。これにより、排気圧取得経路がスペーサから外れることを抑え、スペーサに対する排気圧取得経路の位置決めを容易に行うことができる。
また、前記課題は、吸気の流量を測定する吸気量測定装置を備え、直列で3つ以上の気筒を有するエンジンであって、前記吸気量測定装置は、前記エンジンの前記気筒に前記吸気を分配する吸気分配手段と、前記吸気の温度を検出する温度検出手段と、前記吸気の圧力を検出する圧力検出手段と、前記温度検出手段から伝達された前記温度と前記圧力検出手段から伝達された前記圧力とに基づいて前記流量を演算する演算部と、を有し、前記吸気分配手段の長手方向は、前記エンジンの前記気筒が並ぶ方向に沿っており、前記吸気は、前記長手方向の一端から前記吸気分配手段に流入し、前記温度検出手段は、前記吸気分配手段の内部のうち、前記長手方向において前記一端から最も遠い位置に設けられた前記エンジンの第1気筒に接続された前記吸気分配手段の第1枝部と、前記長手方向において前記第1気筒の次に前記一端から遠い位置に設けられた前記エンジンの第2気筒に接続された前記吸気分配手段の第2枝部と、の間の位置にある前記吸気の前記温度を検出し、前記圧力検出手段は、前記第1枝部と前記第2枝部との間の前記位置にある前記吸気のうち前記温度検出手段により前記温度を検出される前記吸気よりも前記長手方向において前記一端に近い位置にある前記吸気の前記圧力であって吸気圧取得経路を通して取り出され伝わった前記圧力を検出することを特徴とする本発明に係るエンジンにより解決される。
本発明に係る吸気量測定装置を備えたエンジンによれば、エンジンの気筒に吸気を分配する吸気分配手段の長手方向は、エンジンの気筒が並ぶ方向に沿っている。エンジンの吸気は、吸気分配手段の長手方向の一端から吸気分配手段に流入する。そして、演算部は、温度検出手段から伝達された吸気の温度と、圧力検出手段から伝達された吸気の圧力と、に基づいて吸気の流量を演算する。温度検出手段は、吸気分配手段の第1枝部と、吸気分配手段の第2枝部と、の間の位置にある吸気の温度を検出する。第1枝部は、吸気分配手段の長手方向において吸気分配手段の一端から最も遠い位置に設けられたエンジンの第1気筒に接続されている。第2枝部は、吸気分配手段の長手方向においてエンジンの第1気筒の次に吸気分配手段の一端から遠い位置に設けられたエンジンの第2気筒に接続されている。このように、温度検出手段は、吸気分配手段内の領域のうち吸気の流れが比較的安定した位置にある吸気の温度を検出する。そして、演算部は、吸気配管を流れる吸気の流量を検出する吸気量センサ(MAFセンサ)に依らず、温度検出手段から伝達された吸気の温度と、圧力検出手段から伝達された吸気の圧力と、に基づいて吸気の流量を演算する。これにより、本発明に係る吸気量測定装置を備えたエンジンは、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することを抑え、吸気の流量を安定的に測定することができる。
本発明に係る吸気量測定装置を備えたエンジンによれば、圧力検出手段は、温度検出手段と同様に、吸気分配手段内の領域のうち吸気の流れが比較的安定した位置にある吸気の圧力を検出する。そして、演算部は、吸気量センサ(MAFセンサ)に依らず、温度検出手段から伝達された吸気の温度と、圧力検出手段から伝達された吸気の圧力と、に基づいて吸気の流量を演算する。これにより、本発明に係る吸気量測定装置を備えたエンジンは、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することをより一層抑え、吸気の流量をより一層安定的に測定することができる。
本発明に係る吸気量測定装置を備えたエンジンによれば、圧力検出手段は、温度検出手段により温度を検出される吸気よりも吸気分配手段の長手方向において吸気分配手段の一端に近い位置にある吸気の圧力を検出する。そのため、圧力検出手段は、例えば吸気分配手段内に設置された温度検出手段のプローブなどにより流れが乱された位置にある吸気ではなく、流れが乱される前のより安定した位置にある吸気の圧力を検出する。そのため、圧力検出手段は、吸気の圧力をより安定的に検出することができる。これにより、本発明に係る吸気量測定装置を備えたエンジンは、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することをより一層抑え、吸気の流量をより一層安定的に測定することができる。
本発明によれば、吸気配管を流れる吸気の流量の測定結果が吸気配管の形状に依存することを抑え、吸気の流量を安定的に測定することができる吸気量測定装置およびエンジンを提供することができる。
本発明の実施形態に係る吸気量測定装置を備えるエンジンを示す模式図である。 本発明者が実施したCFD流体解析の乱流エネルギーの結果を例示する模式図である。 本発明者が実施したCFD流体解析の圧力の結果を例示する模式図である。 本発明者が実施したCFD流体解析の温度の結果を例示する模式図である。 本実施形態のスペーサおよび排気圧取得経路の具体的な構造例を示す斜視図である。 本実施形態のスペーサの構造例を示す断面図である。
以下に、本発明の好ましい実施形態を、図面を参照して詳しく説明する。
なお、以下に説明する実施形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。また、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。
(エンジン1の概要)
図1は、本発明の実施形態に係る吸気量測定装置を備えるエンジンを示す模式図である。
まず、本実施形態に係る吸気量測定装置を備えるエンジン1の概要を説明する。図1に示すエンジン1は、内燃機関であって、例えば産業用ディーゼルエンジンである。エンジン1は、例えばターボチャージャ付きの過給式の高出力な4気筒エンジン等の立型の直列の多気筒エンジンである。エンジン1は、例えば建設機械、農業機械、芝刈り機のような車両等に搭載される。
図1に示すエンジン1は、シリンダヘッド2と、吸気マニホールド(インテークマニホールド)3と、排気マニホールド(エキゾーストマニホールド)4と、ターボチャージャ5と、インテークスロットルバルブ(吸気調整部)6と、EGR(Exhaust Gas Recirculation:排気ガス再循環)バルブ7と、EGR冷却器8と、ECU(Electronic Control Unit:電子制御ユニット、制御部)100を有する吸気量測定装置200と、を備える。なお、EGRバルブ7、EGR冷却器8、および後述するEGRガス経路23のようなエンジン1の排気を還流する排気還流手段は、必ずしも設けられていなくともよい。「マニホールド」は、「マニホルド」とも呼ばれる。また、本実施形態の吸気マニホールド3は、本発明の「吸気分配手段」の一例である。本実施形態のECU100は、本発明の「演算部」の一例である。本実施形態のEGRバルブ7は、本発明の「流量調整手段」の一例である。本実施形態のEGR冷却器8は、本発明の「冷却手段」の一例である。
エンジン1のシリンダヘッド2は、例えば、第1気筒11と、第2気筒12と、第3気筒13と、第4気筒14と、を有する立型の直列の多気筒エンジンのシリンダヘッドである。本願明細書では、複数の気筒が並んだ方向すなわちクランク軸が延びた方向に沿ってみたとき、インテークスロットルバルブ6を通過した吸気ARと、EGRバルブ7を通過した排気還流ガスECGと、が互いに混合される部位(混合部)24から遠い位置に設けられた気筒から近い位置に設けられた気筒に向かって順に、第1気筒、第2気筒、第3気筒、第4気筒と称することにする。
図1に示すように、吸気マニホールド3は、吸気が流入する始端部351を一端に有する本管35と、本管35から分岐する第1枝管31、第2枝管32、第3枝管33および第4枝管34と、を有する。本実施形態の始端部351は、本発明の「一端」の一例である。本実施形態の第1枝管31、第2枝管32、第3枝管33および第4枝管34は、本発明の「第1枝部」、「第2枝部」、「第3枝部」および「第4枝部」のそれぞれの一例である。本管35の長手方向は、第1気筒11、第2気筒12、第3気筒13および第4気筒14が並んだ方向すなわちクランク軸が延びた方向に沿っている。吸気マニホールド3の第1枝管31と第2枝管32と第3枝管33と第4枝管34とは、第1気筒11と第2気筒12と第3気筒13と第4気筒14とに対して、それぞれ接続されている。第1気筒11と第2気筒12と第3気筒13と第4気筒14との各燃焼室には、燃料噴射弁15が設けられている。燃料噴射弁15は、コモンレール16に接続されている。図示しない燃料タンクの燃料は、燃料ポンプの動作により、コモンレール16に送られる。コモンレール16は、ECU100の制御により、燃料ポンプから送られてくる燃料を蓄圧する。コモンレール16において蓄圧された燃料は、各燃料噴射弁15から各燃焼室内に噴射される。
(ターボチャージャ5)
図1に示すように、ターボチャージャ5は、タービン5Tとブロア5Bとを有し、吸気マニホールド3へ送る吸気を過給する。すなわち、ブロア5Bの部分は、吸気配管20と吸気通路21とに接続されている。吸気通路21は、インテークスロットルバルブ6を介して、吸気マニホールド3のインレットフランジ22に接続されている。タービン5Tの部分は、排気通路4Bに接続されている。排気マニホールド4の排気通路4Bを通して導かれた排気ガスEGがターボチャージャ5のタービン5Tに供給されると、タービン5Tとブロア5Bとは、高速回転する。ブロア5Bが高速回転することで、ターボチャージャ5のブロア5Bに供給され圧縮された吸気ARは、吸気通路21を通じて吸気マニホールド3へ過給される。
タービン5Tから排出された排気ガスEGは、DPF(Diesel particulate filter:ディーゼル微粒子捕集フィルタ)19等を介してエンジン1の外部へ排出される。
図1に示すように、排気還流経路としてのEGRガス経路23の始端部23Mは、排気マニホールド4に接続されている。あるいは、EGRガス経路23の始端部23Mは、排気マニホールド4とタービン5Tとの間における排気通路4Bに接続されていてもよい。本実施形態のEGRガス経路23は、本発明の「排気還流手段」の一例である。EGRガス経路23の末端部23Nは、インテークスロットルバルブ6と吸気マニホールド3の始端部351との間におけるインレットフランジ22に接続されている。EGRガス経路23には、EGRバルブ7と、EGR冷却器8と、スペーサ400と、が設けられている。EGR冷却器8は、EGRガス経路23を流れる排気還流ガスECGを冷却する。
ECU100は、インテークスロットルバルブ6と、EGRバルブ7と、コモンレール16等の動作を制御する。インテークスロットルバルブ6は、アクセルペダルの踏み込み量に基づいて、ECU100の指令により、吸気マニホールド3のインレットフランジ22に供給する吸気ARの供給量を制御する。EGRバルブ7は、ECU100の指令により、排気マニホールド4から吸気マニホールド3のインレットフランジ22に供給する排気還流ガスECGの供給量を調整する。
(吸気量測定装置200)
次に、本実施形態に係る吸気量測定装置200について説明する。
吸気量測定装置200は、圧力センサ201と、温度センサ202と、EGR差圧センサ203と、ECU100と、を有する。本実施形態の圧力センサ201は、本発明の「圧力検出手段」の一例である。本実施形態の温度センサ202は、本発明の「温度検出手段」の一例である。本実施形態のEGR差圧センサ203は、本発明の「差圧検出手段」の一例である。
圧力センサ201は、吸気マニホールド3内に設置された第1測圧部213における混合吸気CYLの圧力Piを検出して、ECU100に伝達する。具体的には、配管などの吸気圧取得経路230が、吸気マニホールド3と、圧力センサ201およびEGR差圧センサ203と、に接続されている。圧力センサ201は、吸気圧取得経路230を通して取り出され伝わった第1測圧部213における混合吸気CYLの圧力Piを検出する。混合吸気CYLは、インテークスロットルバルブ6を通過した吸気ARと、EGRバルブ7を通過した排気還流ガスECGと、が互いに混合されたガスである。
温度センサ202は、吸気マニホールド3内に設置され、吸気マニホールド3内の混合吸気CYLの温度Tiを検出して、ECU100に伝達する。
EGR差圧センサ203は、第1測圧部213における混合吸気CYLの圧力Piと、EGRガス経路23内に設置された第2測圧部223における排気還流ガスECGの圧力Peと、の差圧PPを検出して、ECU100に伝達する。具体的には、図1に表したように、吸気圧取得経路230は、吸気マニホールド3から圧力センサ201およびEGR差圧センサ203に向かって、圧力センサ201に接続された部分と、EGR差圧センサ203に接続された部分と、に分岐している。EGR差圧センサ203は、吸気圧取得経路230を通して取り出され伝わった第1測圧部213における混合吸気CYLの圧力Piに基づいて差圧PPを検出する。つまり、EGR差圧センサ203は、圧力センサ201により圧力Piを検出される混合吸気CYLと同じ位置にある混合吸気CYLの圧力Piに基づいて差圧PPを検出する。言い換えれば、圧力センサ201およびEGR差圧センサ203は、吸気マニホールド3内において互いに時間的に同期した第1測圧部213における混合吸気CYLの圧力Piを検出する。また、第2測圧部223は、EGR冷却器8とEGRバルブ7との間におけるEGRガス経路23内に設置される。具体的には、配管などの排気圧取得経路500が、EGRガス経路23と、EGR差圧センサ203と、に接続されている。EGR差圧センサ203は、排気圧取得経路500を通して取り出され伝わった第2測圧部223における排気還流ガスECGの圧力Peに基づいて差圧PPを検出する。なお、第1測圧部213および温度センサ202の設置位置の詳細については、後述する。
図1に表したように、冷却手段としてのEGR冷却器8と、流量調整手段としてのEGRバルブ7と、の間におけるEGRガス経路23には、スペーサ400が設けられている。スペーサ400は、例えばステンレスや鉄等の耐熱性を有する金属で作られている。第2測圧部223は、好ましくは金属製のスペーサ400内に設定されている。排気圧取得経路500は、スペーサ400と、EGR差圧センサ203と、に接続されている。
排気圧取得経路500は、スペーサ400に接続されている第1部分501と、第1部分501に接続されるとともにEGR差圧センサ203に接続されている第2部分502と、を有する。排気圧取得経路500のうちの少なくともスペーサ400に接続された第1部分501は、例えばステンレスや鉄等の耐熱性を有する金属で作られている。排気圧取得経路500の残りの第2部分502は、可撓性を有する熱に強いエンジニアリングプラスチックやゴムなどの樹脂により作られている。スペーサ400および排気圧取得経路500の具体的な構造例については、図5を参照して説明し、スペーサ400の構造例については、図6を参照して説明する。
図5は、本実施形態のスペーサおよび排気圧取得経路の具体的な構造例を示す斜視図である。
図6は、本実施形態のスペーサの構造例を示す断面図である。
なお、図6は、EGRガス経路23を流れる排気還流ガスECGの流れ方向に対して垂直な切断面A-A(図5参照)における断面図である。
図5に表したように、スペーサ400は、EGR冷却器8とEGRバルブ7との間に取り付けられている。図5に表したEGRクーラーベース550は、シリンダヘッド2に固定されており、EGR冷却器8とEGRバルブ7とスペーサ400とを支持している。矢印で示す排気還流ガスECGは、EGRクーラーベース550、EGR冷却器8およびスペーサ400をこの順序に通り、EGRバルブ7へ送られる。
スペーサ400は、排気還流経路としてのEGRガス経路23において矢印で示す排気還流ガスECGの流れ方向の途中に配置されている。より具体的には、スペーサ400は、EGR冷却器8の末端部8Mと、EGRバルブ7の始端部7Nと、の間に配置されている。スペーサ400は、エンジン1の大型化を防ぐために、矢印で示す排気還流ガスECGの流れ方向に関して、できる限り薄い肉厚(例えば10mm程度の肉厚)になるように形成されている。
ところで、EGR差圧センサ203が、スペーサ400と排気圧取得経路500とを用いて、EGR冷却器8とEGRバルブ7との間から取り出された排気還流ガスECGの圧力Peに基づいて差圧PPを検出する理由のひとつは、EGR冷却器8の劣化を検知できるようにするためである。例えば、EGR冷却器8が少しでも粒子状物質により閉塞すると、EGR冷却器8と、EGR冷却器8よりも下流側に設けられたEGRバルブ7と、の間にある排気還流ガスECGの圧力Peに基づいた差圧PPが変化する。このため、排気圧取得経路500が、EGR冷却器8の下流側である末端部8Mと、EGRバルブ7の上流側である始端部7Nと、の間に設けられたスペーサ400に接続されている。そして、EGR差圧センサ203は、スペーサ400内の第2測圧部223にある排気還流ガスECGの圧力Peに基づいて差圧PPを検出する。
図6に表したように、排気圧取得経路500の第1部分501は、スペーサ400に接続される部分にオネジ部分503を有する。オネジ部分503がスペーサ400のメネジ部分404にねじ構造で締結されることにより、排気圧取得経路500の第1部分501は、スペーサ400に接続される。また、図5に表したように、排気圧取得経路500の第1部分501は、取付金具520を介してスペーサ400に支持されている。取付金具520は、ボルト521がスペーサ400のメネジ部分403に締結されることにより、スペーサ400に固定され排気圧取得経路500の第1部分501を支持する。取付金具520は、排気圧取得経路500の第1部分501の位置がずれることを抑えるとともに、排気圧取得経路500がエンジンの振動等によりスペーサ400およびEGR差圧センサ203から外れることを抑える。
図6に表したように、オネジ部分503の座面が接触するスペーサ400の取付面405と、取付金具520が載置されるスペーサ400の載置面406と、は、互いにスペーサ400の同じ側面(図6では左側面)に設けられている。これにより、作業者等は、排気圧取得経路500をスペーサ400に取り付ける作業と、取付金具520をスペーサ400に取り付ける作業と、をエンジン1の外部の互いに同じ側から接近し行うことができる。より好ましくは、スペーサ400の取付面405と、スペーサ400の載置面406と、は、互いに同一平面上に存在する。これにより、スペーサ400の取付面405と、スペーサ400の載置面406と、を互いに同じ工程で機械加工を行うことができるとともに、スペーサ400の構造の簡易化を図ることができる。
図6に表すように、スペーサ400は、排気還流ガスECGを通す円形状のガス通し孔401と、ガス通し孔401を挟んでガス通し孔401の両側の位置に設けられた2つの取付用の孔402,402と、スペーサ400内の第2測圧部223にある排気還流ガスECGの圧力Peを取り出すガス圧力取得孔410と、を有する。本実施形態のガス圧力取得孔410は、本発明の「孔」の一例である。
ガス通し孔401は、排気還流ガスECGを図6の紙面垂直方向に通す。また、例えば、図5に示すEGR冷却器8の末端部8Mに設けられた図示しない位置決めスタッドが孔402,402を通ることにより、スペーサ400は、スタッドを用いて末端部8M側に位置決めされている。
ガス圧力取得孔410は、EGRガス経路23を流れる排気還流ガスECGの流れに対して交差する方向、例えば、垂直方向TDにスペーサ400を貫通して形成されている。図6に表したスペーサ400の構造例では、ガス圧力取得孔410は、EGRガス経路23を流れる排気還流ガスECGの流れに対して垂直方向TDに形成され、メネジ部分404を介してスペーサ400を貫通している。本願明細書において、「ガス圧力取得孔410がスペーサ400を貫通する」とは、ガス圧力取得孔410がメネジ部分404などの他の孔を介してガス通し孔401とスペーサ400の外部とを連通させている状態を含むものとする。スペーサ400内の第2測圧部223にある排気還流ガスECGの圧力Peは、ガス圧力取得孔410を通して取り出され、排気圧取得経路500を通してEGR差圧センサ203に伝わる。言い換えれば、排気圧取得経路500は、ガス圧力取得孔410を通して取り出された排気還流ガスECGの圧力PeをEGR差圧センサ203に伝える。そして、EGR差圧センサ203は、スペーサ400のガス圧力取得孔410を通して取り出され排気圧取得経路500により伝えられた第2測圧部223における排気還流ガスECGの圧力Peと、吸気圧取得経路230を通して取り出され伝わった第1測圧部213における混合吸気CYLの圧力Piと、の差圧PPを検出する。
なお、ガス圧力取得孔410の軸心の方向は、EGRガス経路23を流れる排気還流ガスECGの流れに対して垂直方向TDに限定されるわけではない。ガス圧力取得孔410の軸心の方向は、EGRガス経路23を流れる排気還流ガスECGの流れに対して交差する方向であればよく、例えば、EGRガス経路23を流れる排気還流ガスECGの流れに逆らう方向の成分を有していてもよい。
ECU100は、EGR差圧センサ203により検出された差圧PPと、EGRバルブ7の開度と、に基づいて、排気還流経路としてのEGRガス経路23における排気還流ガスECGの排気還流空気量mfegrを算出する。排気還流空気量mfegrの算出の詳細については、後述する。
EGRクーラーベース550は、シリンダヘッド2およびEGR冷却器8の始端部8Nに固定されている。スペーサ400がEGRバルブ7とEGR冷却器8との間に設けられていても、エンジン1の大型化を抑制するために、EGRクーラーベース550の薄型化が図られている。このとき、EGRクーラーベース550の薄型化の前後においてEGRクーラーベース550の内部流路の断面積が変化することを抑え、EGRガス経路23を流れる排気還流ガスECGの流量、圧力および温度が変化することが抑えられている。例えば、EGRクーラーベース550の内部流路のうち最も狭い内部流路の断面積が、EGRクーラーベース550の薄型化の前後において同一に保たれている。これにより、EGRクーラーベース550の薄型化の前後において、第2測圧部223における排気還流ガスECGの圧力Peが変化することを抑えるとともに、EGR差圧センサ203により検出される差圧PPが変化することを抑えることができる。また、EGRクーラーベース550の薄型化の前後において、EGR(Exhaust Gas Recirculation:排気ガス再循環)の基本的性能が変化することを抑えることができる。
<吸気量測定装置200を用いた吸気配管20における吸気量mfairの演算例>
次に、吸気量測定装置200を用いた吸気配管20における吸気ARの流量(吸気量mfair)の演算例を説明する。
一般的に、ディーゼルエンジン等の内燃機関では、吸気配管を流れる空気(吸気)の吸気量を検出する吸気量センサ(MAFセンサ)が吸気配管に設けられている。なお、吸気量は、吸気配管を流れる空気(吸気)の流量であり、吸気流量やMAFなどとも呼ばれる。しかし、吸気配管に設けられた吸気量センサの出力特性は、吸気量センサよりも上流側の吸気系(例えば吸気配管)の形状に依存する。吸気量センサよりも上流側の吸気系は、例えば産業用ディーゼルエンジン等に搭載されるアプリケーション毎に異なる。そのため、吸気量センサの校正作業が、エンジンに搭載されるアプリケーション毎に必要になり煩雑である。
そこで、本実施形態に係る吸気量測定装置200において、ECU100は、次に説明するようにして、吸気配管20における吸気量mfairの測定結果が吸気配管20の形状に依存することを抑え、吸気配管20における吸気量mfairを安定的に測定する。
すなわち、本実施形態における吸気量演算方法では、ECU100は、まず、圧力センサ201の検出する吸気マニホールド3内の混合吸気CYLの圧力Piと、温度センサ202の検出する吸気マニホールド3内の混合吸気CYLの温度Tiと、に基づいて、図1に示す第1気筒11から第4気筒14までのシリンダ内へ供給される混合吸気CYLの流量(吸気量mfcyl)を算出する。具体的には、ECU100は、気体の状態方程式を用いて、混合吸気CYLの圧力Piと混合吸気CYLの温度Tiとに基づいて混合吸気CYLの吸気量mfcylを算出する。なお、EGRガス経路23のような排気還流手段を備えないエンジンにおいては、前述した吸気量mfcylが後述する吸気ARの吸気量mfairとなる。
次に、ECU100は、混合吸気CYLの吸気量mfcylと、排気還流ガスECGの排気還流空気量mfegrと、に基づいて、図1に示す吸気配管20を流れる吸気ARの吸気量mfairを算出する。具体的には、ECU100は、前述の算出された吸気量mfcylと、EGRガス経路23を流れる排気還流ガスECGの排気還流空気量mfegrと、の差を演算することにより、図1に示す吸気配管20を流れる吸気ARの吸気量mfairを算出する。
排気還流空気量mfegrは、EGRバルブ7の開度と、差圧PP(混合吸気CYLの圧力Piと排気還流ガスECGの圧力Peとの差圧)と、の関数として排気還流空気量テーブル(マップ)の形式でECU100のROM等に予め記憶されている。ECU100は、演算を行うときに、EGRバルブ7の開度と、EGR差圧センサ203により検出された差圧PPと、に応じて、ECU100のROM等に予め記憶された排気還流空気量テーブル(マップ)を読み込む。
このように、ECU100は、図1に示す圧力センサ201の検出する吸気マニホールド3内の混合吸気CYLの圧力Piと、温度センサ202の検出する吸気マニホールド3内の混合吸気CYLの温度Tiと、EGR差圧センサ203により検出される差圧PP(混合吸気CYLの圧力Piと排気還流ガスECGの圧力Peとの差圧)と、に基づいて、図1に示す吸気配管20における新規な吸気ARの吸気量mfairを演算することができる。
これにより、本実施形態に係る吸気量測定装置200およびエンジン1では、ECU100は、吸気量mfairの測定結果が吸気配管20の形状に依存することを抑え、吸気量mfairを安定的に測定することができる。
<第1測圧部213と温度センサ202の設定位置>
次に、図1~図4を参照して、第1測圧部213および温度センサ202の設定位置PSについて説明する。
図2は、本発明者が実施したCFD流体解析の乱流エネルギーの結果を例示する模式図である。
図3は、本発明者が実施したCFD流体解析の圧力の結果を例示する模式図である。
図4は、本発明者が実施したCFD流体解析の温度の結果を例示する模式図である。
なお、図2(A)、図3(A)および図4(A)は、第1気筒11の吸気工程時の解析結果を例示する模試図である。図2(B)、図3(B)および図4(B)は、第2気筒12の吸気工程時の解析結果を例示する模試図である。図2(C)、図3(C)および図4(C)は、第3気筒13の吸気工程時の解析結果を例示する模試図である。図2(D)、図3(D)および図4(D)は、第4気筒14の吸気工程時の解析結果を例示する模試図である。
吸気量mfairの測定結果が吸気配管20の形状に依存することをより一層抑え、吸気量mfairをより一層安定的に測定するために、第1測圧部213および温度センサ202は、吸気マニホールド3内において混合吸気CYLの脈動が比較的小さい位置、すなわち吸気マニホールド3内において混合吸気CYLの流れが比較的安定した位置に設置されることが望ましい。吸気マニホールド3内における混合吸気CYLの脈動は、エンジン1の吸気バルブ(図示せず)および排気バルブ(図示せず)の開閉動作や、吸気ARと排気還流ガスECGとの混合により影響を受ける。
そこで、本発明者は、吸気マニホールド3内における混合吸気CYLの乱流エネルギー、圧力および温度を確認するために、次に例示するようなCFD(数値流体力学:Computational Fluid Dynamics)流体解析を行った。
すなわち、解析条件概要(物理モデル)を説明すると、対象流体は、3次元気体(空気)であり、非圧縮性流体(密度一定)である。対象流体の流れは、乱流であるとともに、定常流れである。乱流モデルは、Realizable k-εモデルである。壁面近傍における対象流体の速度分布は、壁関数(2層All y+モデル)に基づいている。ソルバーは、分離型ソルバーである。伝熱計算は、行われない。基準計算格子サイズは、5mmである。
また、解析条件として、エンジンは、ターボディーゼルエンジンある。エンジンの定格回転は、2600rpmである。エンジンには、全負荷が掛かっている。エンジンは、EGRガス経路23とEGRバルブ7とEGR冷却器8とを有するEGR仕様のエンジンである。
解析対象とした吸気マニホールド3は、図2(A)~図4(D)に示すように、吸気が流入する始端部351を一端に有する本管35と、本管35から分岐する第1枝管31、第2枝管32、第3枝管33および第4枝管34と、を有する。本管35の長手方向は、第1気筒11、第2気筒12、第3気筒13および第4気筒14が並んだ方向すなわちクランク軸が延びた方向に沿っている。第1枝管31、第2枝管32、第3枝管33および第4枝管34は、それぞれエンジン1の第1気筒11、第2気筒12、第3気筒13および第4気筒14に接続される。
なお、図2(A)~図4(D)に表した例では、吸気マニホールド3は、第1枝管31、第2枝管32、第3枝管33および第4枝管34をそれぞれ2本ずつ有する。すなわち、それぞれ2本ずつの第1枝管31、第2枝管32、第3枝管33および第4枝管34が、エンジン1の第1気筒11、第2気筒12、第3気筒13および第4気筒14のそれぞれに接続される。但し、エンジン1の1つの気筒あたりに接続される吸気マニホールド3の枝管の数は、これだけに限定されるわけではない。例えば、それぞれ1本ずつの第1枝管31、第2枝管32、第3枝管33および第4枝管34が、エンジン1の第1気筒11、第2気筒12、第3気筒13および第4気筒14のそれぞれに接続されてもよい。
吸気マニホールド3の始端部351には、吸気を吸気マニホールド3に流入させるインレットフランジ22が接続される。インレットフランジ22は、エンジン1の排気ガスが還流されるEGRガス経路23を有する。EGRガス経路23により還流される排気ガスは、インレットフランジ22内の混合部24で吸気と混合された後に、吸気マニホールド3の始端部351に流入する。
以上説明した解析条件概要(物理モデル)および解析条件に基づいて実施したCFD流体解析による対象流体の乱流エネルギーの結果の例は、図2に表した通りである。また、CFD流体解析による対象流体の圧力の結果の例は、図3に表した通りである。また、CFD流体解析による対象流体の温度の結果の例は、図4に表した通りである。
図2(A)~図2(D)に表したように、第1気筒11、第2気筒12、第3気筒13および第4気筒14の吸気工程時のいずれについても、吸気マニホールド3内において、第3気筒13および第4気筒14の付近の対象流体の乱流エネルギーは、第1気筒11および第2気筒12の付近の対象流体の乱流エネルギーに比べて高い。乱流エネルギーは、対象流体の流れの乱れの大きさを表している。そのため、図2(A)~図2(D)に表した解析結果の例では、吸気マニホールド3内において、第3気筒13および第4気筒14の付近の流れ場は、第1気筒11および第2気筒12の付近の流れ場よりも不安定になりやすいことが示唆されている。言い換えれば、図2(A)~図2(D)に表した解析結果の例では、吸気マニホールド3内において、第1気筒11および第2気筒12の付近の対象流体の流れは、第3気筒13および第4気筒14の付近の対象流体の流れよりも安定していることが示唆されている。
具体的に説明すると、図2(A)に示すように、第1気筒11の吸気工程時には、第1枝管31の領域300、および第3枝管33から第4枝管34までの領域301、領域302、領域303および領域304における対象流体の乱流エネルギーが他の領域における対象流体の乱流エネルギーより高い。また、図2(B)に示すように、第2気筒12の吸気工程時には、第2枝管32の領域305、および第3枝管33から第4枝管34までの領域306、領域307および領域308における対象流体の乱流エネルギーが他の領域における対象流体の乱流エネルギーより高い。また、図2(C)に示すように、第3気筒13の吸気工程時には、第3枝管33から第4枝管34までの領域309および領域310における対象流体の乱流エネルギーが他の領域における対象流体の乱流エネルギーより高い。また、図2(D)に示すように、第4気筒14の吸気工程時には、第4枝管34の領域311における対象流体の乱流エネルギーが他の領域における対象流体の乱流エネルギーより高い。
図2(A)~図2(D)を参照すると、吸気マニホールド3内において、第1気筒11に接続された第1枝管31から第2気筒12に接続された第2枝管32に亘る領域W、特に、第1気筒11に接続された第1枝管31と第2気筒12に接続された第2枝管32との間の位置PSにおける対象流体の乱流エネルギーは、相対的に低い。そのため、吸気マニホールド3内の領域W、特に位置PSにおける対象流体の流れが相対的に安定していることが判る。
また、図3(A)~図3(D)に表したように、第1気筒11、第2気筒12、第3気筒13および第4気筒14の吸気工程時のいずれについても、吸気マニホールド3内において、第1気筒11および第2気筒12の付近の対象流体の圧力は、第3気筒13および第4気筒14の付近の対象流体の圧力よりも安定している。
具体的に説明すると、図3(A)に示すように、第1気筒吸気工程時には、領域Wにおける対象流体の圧力は、第1枝管31の領域321における対象流体の圧力よりも高く、第3枝管33から第4枝管34までの領域322および領域323における対象流体の圧力よりも低い。また、図3(B)に示すように、第2気筒吸気工程時には、領域Wにおける対象流体の圧力は、第2枝管32の領域324における対象流体の圧力よりも高く、第3枝管33から第4枝管34までの領域325および領域326における対象流体の圧力よりも低い。また、図3(C)に示すように、第3気筒吸気工程時には、領域Wにおける対象流体の圧力は、第3枝管33の領域327における対象流体の圧力よりも高く、第3枝管33から第4枝管34までの領域328および領域329における対象流体の圧力よりも低い。また、図3(D)に示すように、第4気筒吸気工程時には、領域Wにおける対象流体の圧力は、第3枝管33の領域331および領域332における対象流体の圧力よりも低く、第4枝管34の領域333および領域334における対象流体の圧力よりも高い。
図3(A)~図3(D)を参照すると、吸気マニホールド3内において、第1気筒11に接続された第1枝管31から第2気筒12に接続された第2枝管32に亘る領域W、特に、第1気筒11に接続された第1枝管31と第2気筒12に接続された第2枝管32との間の位置PSにおける対象流体の圧力の変動は、相対的に少ない。つまり、吸気マニホールド3内の領域W、特に位置PSにおける対象流体の圧力は、相対的に安定している。
また、図4(A)~図4(D)に表したように、第1気筒11、第2気筒12、第3気筒13および第4気筒14の吸気工程時のいずれについても、吸気マニホールド3内において、第1気筒11および第2気筒12の付近の対象流体の温度は、第3気筒13および第4気筒14の付近の対象流体の温度よりも安定している。
具体的に説明すると、図4(A)に示すように、第1気筒吸気工程時には、領域Wにおける対象流体の温度は、第3枝管33から第4枝管34までの領域341および領域342における対象流体の温度よりも低い。また、図4(B)に示すように、第2気筒吸気工程時には、領域Wにおける対象流体の温度は、第3枝管33から第4枝管34までの領域343および領域344における対象流体の温度よりも低い。また、図4(C)に示すように、第3気筒吸気工程時には、領域Wにおける対象流体の温度は、第1枝管31の領域345における対象流体の温度よりも高く、第3枝管33から第4枝管34までの領域346における対象流体の温度よりも低い。また、図4(D)に示すように、第4気筒吸気工程時には、領域Wにおける対象流体の温度は、第4枝管34の領域347、領域348および領域349における対象流体の温度よりも低い。
図4(A)~図4(D)を参照すると、吸気マニホールド3内において、第1気筒11に接続された第1枝管31から第2気筒12に接続された第2枝管32に亘る領域W、特に、第1気筒11に接続された第1枝管31と第2気筒12に接続された第2枝管32との間の位置PSにおける対象流体の温度の変動は、相対的に少ない。つまり、吸気マニホールド3内の領域W、特に位置PSにおける対象流体の温度は、相対的に安定している。
本発明者が実施したCFD流体解析の結果によれば、第1気筒11、第2気筒12、第3気筒13および第4気筒14が並んだ方向すなわち吸気マニホールド3の本管35の長手方向に沿ってみたとき、吸気マニホールド3内の領域のうち始端部351から遠い領域において、対象流体の乱流エネルギーが相対的に低く、対象流体の圧力および温度が相対的に安定している。そのため、第1測圧部213および温度センサ202は、第1気筒11、第2気筒12、第3気筒13および第4気筒14が並んだ方向すなわち吸気マニホールド3の本管35の長手方向に沿ってみたとき、吸気マニホールド3内の領域のうち始端部351から遠い領域に設置されることが好ましい。より具体的には、第1測圧部213および温度センサ202は、第1気筒11に接続された第1枝管31と第2気筒12に接続された第2枝管32とに亘る領域W、特に、第1気筒11に接続された第1枝管31と第2気筒12に接続された第2枝管32との間の位置PSに設置されることが好ましい。
本実施形態に係る吸気量測定装置200によれば、温度センサ202は、第1気筒11に接続された第1枝管31と、第2気筒12に接続された第2枝管32と、に亘る領域Wにある混合吸気CYLの温度Tiを検出する。前述したように、第1枝管31は、吸気マニホールド3の長手方向において吸気マニホールド3の始端部351から最も遠い位置に設けられた第1気筒11に接続されている。第2枝管32は、吸気マニホールド3の長手方向において第1気筒11の次に吸気マニホールド3の始端部351から遠い位置に設けられた第2気筒12に接続されている。そして、ECU100は、温度センサ202から伝達された混合吸気CYLの温度Tiと、圧力センサ201から伝達された混合吸気CYLの圧力Piと、に基づいて混合吸気CYLの吸気量mfcylおよび吸気ARの吸気量mfairを演算する。すなわち、EGRガス経路23のような排気還流手段を備えるエンジンにおいては、ECU100は、混合吸気CYLの吸気量mfcylと、排気還流ガスECGの排気還流空気量mfegrと、の差を演算することにより吸気ARの吸気量mfairを算出する。一方で、EGRガス経路23のような排気還流手段を備えないエンジンにおいては、ECU100は、混合吸気CYLの吸気量mfcylが吸気ARの吸気量mfairに相当するとして、吸気ARの吸気量mfairを算出する。
このように、温度センサ202は、吸気マニホールド3内の領域のうち混合吸気CYLの流れが比較的安定した領域にある混合吸気CYLの温度Tiを検出する。そして、ECU100は、吸気配管20を流れる吸気ARの流量を検出する吸気量センサ(MAFセンサ)に依らず、温度センサ202から伝達された混合吸気CYLの温度Tiと、圧力センサ201から伝達された混合吸気CYLの圧力Piと、に基づいて混合吸気CYLの吸気量mfcylおよび吸気ARの吸気量mfairを演算する。これにより、本実施形態に係る吸気量測定装置200は、吸気配管20を流れる吸気ARの吸気量mfairの測定結果が吸気配管20の形状に依存することを抑え、吸気ARの吸気量mfairを安定的に測定することができる。
また、圧力センサ201は、吸気マニホールド3内の領域のうち混合吸気CYLの流れが比較的安定した領域にある混合吸気CYLの圧力Piを検出する。そして、前述したように、ECU100は、吸気配管20を流れる吸気ARの流量を検出する吸気量センサ(MAFセンサ)に依らず、温度センサ202から伝達された混合吸気CYLの温度Tiと、圧力センサ201から伝達された混合吸気CYLの圧力Piと、に基づいて混合吸気CYLの吸気量mfcylおよび吸気ARの吸気量mfairを演算する。これにより、本実施形態に係る吸気量測定装置200は、吸気配管20を流れる吸気ARの吸気量mfairの測定結果が吸気配管20の形状に依存することをより一層抑え、吸気ARの吸気量mfairをより一層安定的に測定することができる。
また、図1に示すように、第1測圧部213は、吸気マニホールド3の長手方向において温度センサ202よりも吸気マニホールド3の始端部351に近い位置に設けられている。そのため、圧力センサ201は、温度センサ202により温度Tiを検出される混合吸気CYLよりも吸気マニホールド3の長手方向において始端部351に近い位置にある混合吸気CYLの圧力Piを検出する。そのため、圧力センサ201は、例えば吸気マニホールド3内に設置された温度センサ202のプローブなどにより流れが乱された領域にある混合吸気CYLではなく、流れが乱される前のより安定した領域にある混合吸気CYLの圧力Piを検出する。そのため、圧力センサ201は、混合吸気CYLの圧力Piをより安定的に検出することができる。これにより、本実施形態に係る吸気量測定装置200は、吸気配管20を流れる吸気ARの吸気量mfairの測定結果が吸気配管20の形状に依存することをより一層抑え、吸気ARの吸気量mfairをより一層安定的に測定することができる。
また、第1測圧部213が第1枝管31と第2枝管32とに亘る領域Wに設けられているため、EGR差圧センサ203は、吸気マニホールド3内の領域のうち混合吸気CYLの流れが比較的安定した領域にある混合吸気CYLの圧力Piと、EGRガス経路23内に設けられた第2測圧部223における排気還流ガスECGの圧力Peと、の差圧PPを検出する。そして、ECU100は、温度センサ202から伝達された混合吸気CYLの温度Tiと、圧力センサ201から伝達された混合吸気CYLの圧力Piと、EGR差圧センサ203にから伝達された差圧PPと、に基づいて混合吸気CYLの吸気量mfcylおよび吸気ARの吸気量mfairを演算する。これにより、エンジン1の排気を還流する排気還流手段が設けられる場合において、本実施形態に係る吸気量測定装置200は、吸気配管20を流れる吸気ARの吸気量mfairの演算精度を高めることができる。
また、第1測圧部213が吸気マニホールド3の長手方向において温度センサ202よりも吸気マニホールド3の始端部351に近い位置に設けられているため、EGR差圧センサ203は、温度センサ202により温度Tiを検出される混合吸気CYLよりも吸気マニホールド3の長手方向において始端部351に近い位置にある混合吸気CYLの圧力Piに基づいて差圧PPを検出する。そのため、EGR差圧センサ203は、例えば吸気マニホールド3内に設置された温度センサ202のプローブなどにより流れが乱された領域にある混合吸気CYLではなく、流れが乱される前のより安定した領域にある混合吸気CYLの圧力Piに基づいて差圧PPを検出する。そのため、EGR差圧センサ203は、差圧PPをより安定的に検出することができる。これにより、エンジン1の排気を還流する排気還流手段が設けられる場合において、本実施形態に係る吸気量測定装置200は、吸気配管20を流れる吸気ARの吸気量mfairの演算精度を高めることができる。
また、EGR差圧センサ203は、圧力センサ201により圧力Piを検出される混合吸気CYLと吸気マニホールド3の長手方向において同じ位置(すなわち第1測圧部213)にある混合吸気CYLの圧力Piに基づいて差圧PPを検出する。つまり、EGR差圧センサ203による混合吸気CYLの圧力Piの検出位置は、圧力センサ201による混合吸気CYLの圧力Piの検出位置と同じ、すなわち第1枝管31と第2枝管32とに亘る領域Wの位置である。そのため、EGR差圧センサ203により差圧PPを検出するための吸気マニホールド3における混合吸気CYLの圧力Piと、圧力センサ201により検出される吸気マニホールド3における混合吸気CYLの圧力Piと、は互いに時間的に同期する。そのため、ECU100は、混合吸気CYLの吸気量mfcylと、排気還流ガスECGの排気還流空気量mfegrと、を吸気マニホールド3における一系統すなわち同じ状態の系から算出する。これにより、エンジン1の排気を還流する排気還流手段が設けられる場合において、本実施形態に係る吸気量測定装置200は、吸気配管20を流れる吸気ARの吸気量mfairの演算精度を高めることができる。
また、第2測圧部223は、EGR冷却器8とEGRバルブ7との間におけるEGRガス経路23内に設けられている。そのため、EGR差圧センサ203は、EGR冷却器8とEGRバルブ7との間にある排気還流ガスECGの圧力Peに基づいて差圧PPを検出する。これにより、ECU100は、EGR差圧センサ203により伝達された差圧PPに基づいてEGR冷却器8の劣化具合あるいは劣化程度を推定することができる。
また、スペーサ400が、EGR冷却器8と、EGRバルブ7と、の間におけるEGRガス経路23に設けられている。そして、EGR差圧センサ203は、スペーサ400のガス圧力取得孔410を通して取り出された排気還流ガスECGの圧力Peに基づいて差圧PPを検出する。そのため、排気還流ガスECGの圧力PeをEGR差圧センサ203に伝える排気圧取得経路500が、EGRバルブ7およびEGR冷却器8から構造上の制約をほとんど受けることなく、スペーサ400に確実に接続可能とされている。また、EGR冷却器8およびEGRバルブ7の構造を変更しなくとも、スペーサ400の構造を変更することにより、排気還流ガスECGの圧力PeをEGR差圧センサ203に伝える種々の配管等の排気圧取得経路500をスペーサ400に容易に接続することができる。さらに、スペーサ400のガス圧力取得孔410は、EGRガス経路23を流れる排気還流ガスECGの流れに対して交差する方向に貫通して形成されている。そのため、スペーサ400のガス圧力取得孔410が排気還流ガスECGに含まれる粒子状物質(PM:Particulate Matter)により閉塞することを抑えることができる。これにより、EGR差圧センサ203は、排気還流ガスECGの圧力(静圧)Peをより確実に取得し、排気還流ガスECGの圧力(静圧)Peに基づいて差圧PPをより高い精度で検出することができる。
また、排気圧取得経路500が、スペーサ400とEGR差圧センサ203とに接続され、スペーサ400のガス圧力取得孔410を通して取り出された排気還流ガスECGの圧力PeをEGR差圧センサ203に伝える。そして、排気圧取得経路500のうちの少なくともスペーサ400に接続された第1部分501は、金属製である。そのため、排気圧取得経路500のうちのスペーサ400に接続された第1部分501が、EGRガス経路23を流れる排気還流ガスECGの熱により劣化したり硬化したりすることを抑えることができる。これにより、排気圧取得経路500のうちのスペーサ400に接続された第1部分501と、スペーサ400と、の間に隙間が生ずることを抑え、排気圧取得経路500の外部の空気が排気圧取得経路500の内部に進入することを抑えることができる。これにより、EGR差圧センサ203は、差圧PPをより高い精度で検出することができる。また、排気圧取得経路500のうちのスペーサ400に接続された第1部分501が金属製であるため、排気圧取得経路500をねじ構造を用いてスペーサ400に締結することができる。これにより、排気圧取得経路500がスペーサ400から外れることを抑え、スペーサ400に対する排気圧取得経路500の位置決めを容易に行うことができる。
また、排気圧取得経路500のうちのEGR差圧センサ203に接続された第2部分502は、可撓性を有する熱に強いエンジニアリングプラスチックやゴムなどの樹脂等により作られている。そのため、排気圧取得経路500の第1部分501が金属製であっても、排気圧取得経路500の第2部分502は、EGR差圧センサ203の位置に柔軟に対応して、EGR差圧センサ203に対して容易に接続可能とされている。
以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。
例えば、本発明のエンジンの例として、本実施形態に係るエンジン1を例示している。エンジン1は、ターボチャージャ付きの過給式のディーゼルエンジンである。しかし、これに限らず、本発明のエンジンは、自然吸気式のディーゼルエンジン、ターボチャージャ付きの過給式のガソリンエンジン、自然吸気式のガソリンエンジン等であってもよい。また、エンジン1の種類は、例えばターボチャージャ付きの過給式の高出力な4気筒エンジン等の多気筒エンジンである。但し、エンジン1の種類は、これだけに限定されるわけではなく、3気筒あるいは5気筒以上のエンジンであっても良い。エンジン1は、例えば建設機械、農業機械、芝刈り機のような車両以外の種類の車両に搭載できる。
1:エンジン、 2:シリンダヘッド、 3:吸気マニホールド、 4:排気マニホールド、 4B:排気通路、 5:ターボチャージャ、 5B:ブロア、 5T:タービン、 6:インテークスロットルバルブ、 7:EGRバルブ、 8:EGR冷却器、 11:第1気筒、 12:第2気筒、 13:第3気筒、 14:第4気筒、 15:燃料噴射弁、 16:コモンレール、 19:ディーゼル微粒子捕集フィルタ、 20:吸気配管、 21:吸気通路、 22:インレットフランジ、 23:EGRガス経路、 23M:始端部、 23N:末端部、 24:混合部、 31:第1枝管、 32:第2枝管、 33:第3枝管、 34:第4枝管、 35:本管、 100:ECU、 200:吸気量測定装置、 201:圧力センサ、 202:温度センサ、 203:EGR差圧センサ、 213:第1測圧部、 223:第2測圧部、 230:吸気圧取得経路、 351:始端部、 400:スペーサ、 401:ガス通し孔、 402:孔、 403:メネジ部分、 404:メネジ部分、 405:取付面、 406:載置面、 410:ガス圧力取得孔、 500:排気圧取得経路、 501:第1部分、 502:第2部分、 503:オネジ部分、 520:取付金具、 521:ボルト、 550:EGRクーラーベース、 AR:吸気、 CYL:混合吸気、 ECG:排気還流ガス、 EG:排気ガス、 PP:差圧、 PS:設定位置、 Pe、Pi:圧力、 Ti:温度、 W:領域、 mfair、mfcyl:吸気量、 mfegr:排気還流空気量

Claims (7)

  1. 直列で3つ以上の気筒を有するエンジンの吸気の流量を測定する吸気量測定装置であって、
    前記エンジンの前記気筒に前記吸気を分配する吸気分配手段と、
    前記吸気の温度を検出する温度検出手段と、
    前記吸気の圧力を検出する圧力検出手段と、
    前記温度検出手段から伝達された前記温度と前記圧力検出手段から伝達された前記圧力とに基づいて前記流量を演算する演算部と、
    を備え、
    前記吸気分配手段の長手方向は、前記エンジンの前記気筒が並ぶ方向に沿っており、
    前記吸気は、前記長手方向の一端から前記吸気分配手段に流入し、
    前記温度検出手段は、前記吸気分配手段の内部のうち、前記長手方向において前記一端から最も遠い位置に設けられた前記エンジンの第1気筒に接続された前記吸気分配手段の第1枝部と、前記長手方向において前記第1気筒の次に前記一端から遠い位置に設けられた前記エンジンの第2気筒に接続された前記吸気分配手段の第2枝部と、の間の位置にある前記吸気の前記温度を検出し、
    前記圧力検出手段は、前記第1枝部と前記第2枝部との間の前記位置にある前記吸気のうち前記温度検出手段により前記温度を検出される前記吸気よりも前記長手方向において前記一端に近い位置にある前記吸気の前記圧力であって吸気圧取得経路を通して取り出され伝わった前記圧力を検出することを特徴とする吸気量測定装置。
  2. 前記エンジンの排気を還流する排気還流手段と、
    前記排気還流手段を流れる前記排気と前記吸気分配手段を流れる前記吸気との差圧を検出し、前記演算部に伝達する差圧検出手段と、
    をさらに備え、
    前記演算部は、前記差圧検出手段から伝達された前記差圧にさらに基づいて前記流量を演算し、
    前記差圧検出手段は、前記第1枝部と前記第2枝部との間の前記位置にある前記吸気のうち前記温度検出手段により前記温度を検出される前記吸気よりも前記長手方向において前記一端に近い前記位置にある前記吸気の前記圧力であって前記吸気圧取得経路を通して取り出され伝わった前記圧力に基づいて前記差圧を検出することを特徴とする請求項に記載の吸気量測定装置。
  3. 前記差圧検出手段は、前記圧力検出手段により前記圧力を検出される前記吸気と前記長手方向において同じ位置にある前記吸気の前記圧力に基づいて前記差圧を検出することを特徴とする請求項に記載の吸気量測定装置。
  4. 前記差圧検出手段は、前記排気還流手段を流れる前記排気を冷却する冷却手段と、前記冷却手段よりも下流側の前記排気還流手段を流れる前記排気の流量を調整する流量調整手段と、の間にある前記排気の圧力に基づいて前記差圧を検出することを特徴とする請求項2または3に記載の吸気量測定装置。
  5. 前記冷却手段と前記流量調整手段との間における前記排気還流手段に設けられたスペーサをさらに備え、
    前記スペーサは、前記排気還流手段を流れる前記排気の流れに対して交差する方向に貫通して形成された孔を有し、
    前記差圧検出手段は、前記スペーサの前記孔を通して取り出された前記排気の圧力に基づいて前記差圧を検出することを特徴とする請求項に記載の吸気量測定装置。
  6. 前記スペーサと前記差圧検出手段とに接続され前記孔を通して取り出された前記排気の圧力を前記差圧検出手段に伝える排気圧取得経路をさらに備え、
    前記排気圧取得経路のうちの少なくとも前記スペーサに接続された部分は、金属製であることを特徴とする請求項に記載の吸気量測定装置。
  7. 吸気の流量を測定する吸気量測定装置を備え、直列で3つ以上の気筒を有するエンジンであって、
    前記吸気量測定装置は、
    前記エンジンの前記気筒に前記吸気を分配する吸気分配手段と、
    前記吸気の温度を検出する温度検出手段と、
    前記吸気の圧力を検出する圧力検出手段と、
    前記温度検出手段から伝達された前記温度と前記圧力検出手段から伝達された前記圧力とに基づいて前記流量を演算する演算部と、
    を有し、
    前記吸気分配手段の長手方向は、前記エンジンの前記気筒が並ぶ方向に沿っており、
    前記吸気は、前記長手方向の一端から前記吸気分配手段に流入し、
    前記温度検出手段は、前記吸気分配手段の内部のうち、前記長手方向において前記一端から最も遠い位置に設けられた前記エンジンの第1気筒に接続された前記吸気分配手段の第1枝部と、前記長手方向において前記第1気筒の次に前記一端から遠い位置に設けられた前記エンジンの第2気筒に接続された前記吸気分配手段の第2枝部と、との間の位置にある前記吸気の前記温度を検出し、
    前記圧力検出手段は、前記第1枝部と前記第2枝部との間の前記位置にある前記吸気のうち前記温度検出手段により前記温度を検出される前記吸気よりも前記長手方向において前記一端に近い位置にある前記吸気の前記圧力であって吸気圧取得経路を通して取り出され伝わった前記圧力を検出することを特徴とするエンジン。
JP2020135352A 2020-03-27 2020-08-07 吸気量測定装置およびエンジン Active JP7011008B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21774301.2A EP4130455A4 (en) 2020-03-27 2021-03-09 DEVICE AND METHOD FOR MEASURING THE INTAKE AIR QUANTITY
US17/786,518 US11674478B2 (en) 2020-03-27 2021-03-09 Air intake amount measurement device and engine
PCT/JP2021/009372 WO2021193036A1 (ja) 2020-03-27 2021-03-09 吸気量測定装置およびエンジン
CN202180007248.9A CN114945743A (zh) 2020-03-27 2021-03-09 进气量测量装置以及发动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020057910 2020-03-27
JP2020057910 2020-03-27

Publications (2)

Publication Number Publication Date
JP2021156276A JP2021156276A (ja) 2021-10-07
JP7011008B2 true JP7011008B2 (ja) 2022-01-26

Family

ID=77917693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020135352A Active JP7011008B2 (ja) 2020-03-27 2020-08-07 吸気量測定装置およびエンジン

Country Status (1)

Country Link
JP (1) JP7011008B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194943A (ja) 2004-01-08 2005-07-21 Hitachi Ltd エンジン制御用圧力検出装置とその方法
JP2005299591A (ja) 2004-04-15 2005-10-27 Yamaha Marine Co Ltd 船外機
JP2011185263A (ja) 2010-02-09 2011-09-22 Mitsubishi Heavy Ind Ltd ターボチャージャ付きエンジンの制御装置
US20130133631A1 (en) 2011-11-30 2013-05-30 Caterpillar Inc. System to measure parameters of a particulate laden flow
US20160223371A1 (en) 2013-09-12 2016-08-04 Endress+Hauser Gmbh+Co. Kg Differential-pressure measuring assembly having effective- pressure lines and method for detecting plugged effective- pressure lines
CN206860323U (zh) 2017-03-28 2018-01-09 东风朝阳朝柴动力有限公司 具有多功能的发动机进气管
JP2018145927A (ja) 2017-03-08 2018-09-20 三菱電機株式会社 内燃機関の制御装置及び制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005194943A (ja) 2004-01-08 2005-07-21 Hitachi Ltd エンジン制御用圧力検出装置とその方法
JP2005299591A (ja) 2004-04-15 2005-10-27 Yamaha Marine Co Ltd 船外機
JP2011185263A (ja) 2010-02-09 2011-09-22 Mitsubishi Heavy Ind Ltd ターボチャージャ付きエンジンの制御装置
US20130133631A1 (en) 2011-11-30 2013-05-30 Caterpillar Inc. System to measure parameters of a particulate laden flow
US20160223371A1 (en) 2013-09-12 2016-08-04 Endress+Hauser Gmbh+Co. Kg Differential-pressure measuring assembly having effective- pressure lines and method for detecting plugged effective- pressure lines
JP2018145927A (ja) 2017-03-08 2018-09-20 三菱電機株式会社 内燃機関の制御装置及び制御方法
CN206860323U (zh) 2017-03-28 2018-01-09 东风朝阳朝柴动力有限公司 具有多功能的发动机进气管

Also Published As

Publication number Publication date
JP2021156276A (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
JP4380754B2 (ja) 内燃機関の排気還流装置
US9181852B2 (en) Misfire prevention water agitator system and method
EP3290682B1 (en) Intake device for internal combustion engines
US6830042B2 (en) System for calculating air-fuel ratio of each cylinder of multicylinder internal combustion engine
JP6657938B2 (ja) エンジンの吸気機構
GB2482323A (en) A method and system for controlling an engine based on determination of rotational speed of a compressor
US10519903B2 (en) Air inlet system
JP7011008B2 (ja) 吸気量測定装置およびエンジン
JP2016102453A (ja) 内燃機関の吸気装置
US7523731B2 (en) Intake system for internal combustion engine
WO2021193036A1 (ja) 吸気量測定装置およびエンジン
JP7381823B2 (ja) 排気ガス再循環装置およびエンジン
JP7385090B2 (ja) 排気ガス再循環装置およびエンジン
JP2019203435A (ja) エンジンの制御装置
JP5111534B2 (ja) 内燃機関のegr制御装置
JP7453493B2 (ja) 排気ガス再循環装置およびエンジン
CN109653890A (zh) 用于获取内燃机的空气质量流量的方法
JP2007040178A (ja) 可変容量型ターボチャージャの制御装置
JP3812242B2 (ja) ガスエンジンの燃料供給装置
JP5577836B2 (ja) 内燃機関のブローバイガス処理装置
JP2015137613A (ja) 内燃機関の制御装置
JP2007009867A (ja) 過給機付き内燃機関の吸入空気量算出装置
JP2021143626A (ja) エンジンの冷却装置
JP2012197719A (ja) 排気ガス再循環装置の構造
JP2020084856A (ja) 過給システム

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20200910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7011008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150