JP7010690B2 - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
JP7010690B2
JP7010690B2 JP2017250424A JP2017250424A JP7010690B2 JP 7010690 B2 JP7010690 B2 JP 7010690B2 JP 2017250424 A JP2017250424 A JP 2017250424A JP 2017250424 A JP2017250424 A JP 2017250424A JP 7010690 B2 JP7010690 B2 JP 7010690B2
Authority
JP
Japan
Prior art keywords
power
voltage fluctuation
power plant
invalid
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250424A
Other languages
Japanese (ja)
Other versions
JP2019118182A (en
Inventor
圭孝 竹本
雅哉 一瀬
知治 中村
智道 伊藤
晃 須々木
薫 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Products Ltd
Original Assignee
Hitachi Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Products Ltd filed Critical Hitachi Industrial Products Ltd
Priority to JP2017250424A priority Critical patent/JP7010690B2/en
Priority to PCT/JP2018/032968 priority patent/WO2019130665A1/en
Publication of JP2019118182A publication Critical patent/JP2019118182A/en
Application granted granted Critical
Publication of JP7010690B2 publication Critical patent/JP7010690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/50Controlling the sharing of the out-of-phase component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Description

本発明は、発電システムの構成及び制御方式に関する。 The present invention relates to a configuration and a control method of a power generation system.

近年、地球温暖化対策等の理由により世界中で太陽光発電や風力発電などの新エネルギー発電システムの導入が急速に進んでいる。新エネルギー発電システムは、エネルギー源である太陽光の日射量(太陽光発電)や風速(風力発電)の変動に起因した出力電力変動によって、電力系統の電圧維持に悪影響を及ぼすことが懸念されている。特に、近年の急速な新エネルギー発電システムの普及で電力系統含めた発電システム全体の構造が複雑化、大規模化しており、このことが本課題解決をさらに難しくしている。 In recent years, the introduction of new energy power generation systems such as solar power generation and wind power generation is rapidly progressing all over the world for reasons such as global warming countermeasures. There is concern that the new energy power generation system will adversely affect the voltage maintenance of the power system due to output power fluctuations caused by fluctuations in the amount of solar radiation (photovoltaic power generation) and wind speed (wind power generation), which are energy sources. There is. In particular, with the rapid spread of new energy power generation systems in recent years, the structure of the entire power generation system including the power system has become complicated and large in scale, which makes it even more difficult to solve this problem.

一般に、新エネルギー発電システムの発電電力出力に起因した電力出力端の電圧変動は、出力有効電力Pと出力無効電力Qの比を表すパラメータα(=Q/P)を発電電力出力端から無限大母線までの系統インピーダンスZ=R+jXの抵抗分Rとリアクタンス分Xの比R/Xに一致させることで最小化可能であることが知られている。(非特許文献1) In general, the voltage fluctuation at the power output end caused by the generated power output of the new energy power generation system causes the parameter α (= Q / P) representing the ratio of the output active power P and the output disabled power Q to be infinite from the generated power output end. It is known that it can be minimized by matching the ratio R / X of the resistance component R and the reactance component X of the system impedance Z = R + jX up to the bus. (Non-Patent Document 1)

特開2011-234620(P2011-234620A)JP-A-2011-234620 (P2011-234620A)

2010 The Institute of Electrical Engineers of Japan,page297~3032010 The Institute of Electrical Engineers of Japan, page 297-303

従来技術として、複数の発電装置が連系トランスの2次側で接続され、連系トランスの1次側を電力系統と接続するシステムにおいて、連系トランス1次側の無効電力をQ=αPに制御して電力系統とを接続する点(連系点)の電圧変動を抑制する技術が知られている。この従来技術の一例として特許文献1がある。 As a conventional technique, in a system in which a plurality of power generation devices are connected on the secondary side of the interconnection transformer and the primary side of the interconnection transformer is connected to the power system, the invalid power on the primary side of the interconnection transformer is set to Q = αP. There is known a technique for suppressing voltage fluctuations at a point (interconnection point) that is controlled and connected to a power system. Patent Document 1 is an example of this prior art.

この制御方式を用いた場合、連系点から電力系統の任意の電圧変動を抑制したい地点(電圧変動抑制点)までに存在するリアクタンスを考慮すれば、電力系統の任意の電圧変動抑制点における電圧変動を抑制することが可能であるが、電圧変動抑制点と新エネルギー発電所の間に、他サイトの新エネルギー発電所が連系される場合、他サイトの出力電力変動に起因した電圧変動を抑制することが出来ない(課題1)。 When this control method is used, the voltage at any voltage fluctuation suppression point in the power system is considered, considering the reactorism existing from the interconnection point to the point where any voltage fluctuation suppression in the power system is desired (voltage fluctuation suppression point). It is possible to suppress fluctuations, but if a new energy power plant at another site is interconnected between the voltage fluctuation suppression point and the new energy power plant, voltage fluctuations caused by output power fluctuations at other sites will be suppressed. It cannot be suppressed (Problem 1).

また、電圧変動抑制点までに連系される新エネルギー発電所全てがこの制御方式で制御されていたとしても、電圧変動抑制点から各新エネルギー発電所の電力の合流点までに存在するリアクタンスによって、新エネルギー発電所単体で期待されている電圧変動抑制効果と同じ効果を得ることができない(課題2)。 Even if all the new energy power plants connected to the voltage fluctuation suppression point are controlled by this control method, the reactorism existing from the voltage fluctuation suppression point to the confluence of the electric power of each new energy power plant , The same effect as the voltage fluctuation suppression effect expected of the new energy power plant alone cannot be obtained (Problem 2).

さらに、従来技術の新エネルギー発電システムの出力端の電圧変動を抑制するための出力有効電力Pと出力無効電力Qの比を表すパラメータα(=Q/P)を系統インピーダンスZ=R+jXの抵抗分Rとリアクタンス分Xの比R/Xに一致させる制御方式は、抵抗分Rがリアクタンス分Xに対して十分に小さいこと(R<<X)を前提とした近似の元で成立するため、R<<Xの前提条件が成立しない場合、所望の電圧変動抑制効果を得ることが出来ない。また、R<<Xの条件成立時でもリアクタンスが過大の場合は、原理的に電圧変動抑制効果に限界が存在する(課題3)。 Further, the parameter α (= Q / P) representing the ratio of the output active power P and the output ineffective power Q for suppressing the voltage fluctuation at the output end of the new energy power generation system of the prior art is set as the resistance component of the system impedance Z = R + jX. Since the control method that matches the ratio R / X of R and reactance X is established based on the approximation that the resistance R is sufficiently smaller than the reactance X (R << X), R. If the precondition of << X is not satisfied, the desired voltage fluctuation suppressing effect cannot be obtained. Further, if the reactance is excessive even when the condition of R << X is satisfied, there is a limit to the voltage fluctuation suppressing effect in principle (Problem 3).

複数の発電所がそれぞれの連系トランスを介して系統に接続され、接続点がインダクタンスおよび抵抗分を介して無限大母線まで接続されている発電システムにおいて、各々の発電所の発電電力を検出可能な有効電力検出部と、各々の発電所の発電電力変動に起因した任意の電圧変動抑制点における電圧変動を抑制するための無効電力を演算し、演算した無効電力に基づき無効電力指令を演算する無効電力指令演算部と、を有し、無効電力指令を各々の発電所へ伝送する制御装置を有する発電システムを提供する。 In a power generation system in which multiple power plants are connected to the grid via their respective interconnection transformers and the connection points are connected to the infinity bus via inductance and resistance, the power generated by each power plant can be detected. The active power detector and the invalid power for suppressing the voltage fluctuation at an arbitrary voltage fluctuation suppression point caused by the power generation fluctuation of each power plant are calculated, and the invalid power command is calculated based on the calculated invalid power. Provided is a power generation system having an invalid power command calculation unit and a control device for transmitting an invalid power command to each power plant.

同系統に複数の新エネルギー発電所が連系される場合において、新エネルギー発電システムの制御装置で計測される有効電力のフィードバックと系統インピーダンスおよび各々の新エネルギー発電所から電圧変動抑制点までのリアクタンスを用いて、各々の新エネルギー発電所に対する電圧変動を抑制するための最適な無効電力指令を算出する制御方式により、任意の点における電圧変動を抑制することを可能とする新エネルギー発電システムを提供する。この制御方式では、電圧変動抑制効果を得るための系統インピーダンスに対する制約条件が存在しないため、インピーダンスの大きい系統に対しても電圧変動抑制効果を得ることが可能である。 When multiple new energy power plants are connected to the same system, the feedback and system impedance of active power measured by the control device of the new energy power generation system and the reactor from each new energy power plant to the voltage fluctuation suppression point. Provides a new energy power generation system that can suppress voltage fluctuations at any point by a control method that calculates the optimum invalid power command for suppressing voltage fluctuations for each new energy power generation plant. do. In this control method, since there is no constraint condition for the system impedance for obtaining the voltage fluctuation suppressing effect, it is possible to obtain the voltage fluctuation suppressing effect even for a system having a large impedance.

実施例1における新エネルギー発電システムの概略構成図の一例An example of a schematic configuration diagram of the new energy power generation system in Example 1. 制御装置の制御ブロック概略図の一例An example of a schematic diagram of a control block of a control device 制御装置の制御対象説明図の一例An example of a control target explanatory diagram of a control device 制御装置の最適α制御ブロック図の一例An example of the optimum α control block diagram of the control device 制御装置の最適α制御演算処理フロー図の一例An example of the optimum α control calculation processing flow diagram of the control device 系統概略図の一例An example of a system schematic diagram 新エネルギー発電所出力電圧と無限大母線電圧のベクトル図の一例An example of a vector diagram of the output voltage of a new energy power plant and the infinite bus voltage 制御装置の共通LQ補償制御ブロック図の一例An example of a common LQ 1 compensation control block diagram of a control device 制御装置の共通LQ補償制御演算処理フロー図の一例An example of a common LQ 1 compensation control calculation processing flow diagram of a control device 制御装置の構内Q補償制御ブロック図の一例Control device premises Q2 An example of a compensation control block diagram 制御装置の構内Q補償制御演算処理フロー図の一例Control device premises Q2 Compensation control calculation An example of a processing flow diagram 図1の系統条件における従来制御と本発明制御の電圧変動抑制効果比較図の一例An example of a voltage fluctuation suppression effect comparison diagram between the conventional control and the control of the present invention under the system conditions of FIG. 実施例2における新エネルギー発電システムの概略構成図の一例An example of a schematic configuration diagram of the new energy power generation system in Example 2. 実施例2における制御装置の制御ブロック概略図の一例An example of a schematic diagram of a control block of a control device according to a second embodiment.

以下本発明の実施例について図面を用いて詳細に説明する。なお、本文中、[]で囲まれた記号はベクトル量を、[]で囲まれていない記号はスカラー量を表し、図中では記号の上に矢印を付すことでベクトル量を表す。また、||は、これにより囲まれたベクトル量の絶対値(長さ)を表す。 Hereinafter, examples of the present invention will be described in detail with reference to the drawings. In the text, the symbol enclosed in [] indicates the vector quantity, the symbol not enclosed in [] indicates the scalar quantity, and in the figure, the vector quantity is indicated by adding an arrow above the symbol. Further, || represents the absolute value (length) of the vector quantity surrounded by this.

図1は、本発明の一実施形態における新エネルギー発電システムの概略構成図である。新エネルギー発電所1と新エネルギー発電所2がそれぞれの連系トランスインダクタンス3と連系トランスインダクタンス4を介して接続点5で接続され、接続点5が線路インダクタンス6(中低圧の線路でR<<X)を介して電圧変動抑制点7を経由し、電圧変動抑制点7から無限大母線電圧8の間に存在するインダクタンス10および抵抗9を介して無限大母線電圧8に接続されている。 FIG. 1 is a schematic configuration diagram of a new energy power generation system according to an embodiment of the present invention. The new energy power plant 1 and the new energy power plant 2 are connected at a connection point 5 via the interconnection transformer inductance 3 and the interconnection transformer inductance 4, respectively, and the connection point 5 is a line inductance 6 (R <on a medium-low voltage line). It is connected to the infinite bus voltage 8 via the voltage fluctuation suppression point 7 via <X) and the inductance 10 and the resistor 9 existing between the voltage fluctuation suppression point 7 and the infinity bus voltage 8.

制御装置13は、有効電力検出部11と無効電力指令演算部12を有する。有効電力検出部11は、各新エネルギー発電所の連系トランスインダクタンスから接続点5までの間に設ける電圧センサ101a、電流センサ102aおよび電圧センサ101b、電流センサ102bによって検出される電圧と電流を用いて、新エネルギー発電所1の出力有効電力Pa1が連系トランスインダクタンス3を通過した後の有効電力Pa2と新エネルギー発電所2の出力有効電力Pb1が連系トランスインダクタンス4を通過した後の有効電力Pb2を検出する。 The control device 13 has an active power detection unit 11 and an invalid power command calculation unit 12. The active power detection unit 11 uses the voltage and current detected by the voltage sensor 101a, the current sensor 102a and the voltage sensor 101b, and the current sensor 102b provided between the interconnection transformer inductance of each new energy power plant and the connection point 5. After the active power P a2 of the new energy power plant 1 has passed through the interconnection transformer inductance 3 and the output active power P b1 of the new energy power plant 2 has passed through the interconnection transformer inductance 4. The active power P b2 of is detected.

無効電力指令演算部12は、検出した有効電力の値を用いて電圧変動抑制点7における電圧変動を抑制するための各々の新エネルギー発電所1および新エネルギー発電所2が出力する無効電力指令Q,Qを演算する。無効電力指令演算部12はこれら無効電力指令をそれぞれ新エネルギー発電所1と新エネルギー発電所2へと伝送可能な手段を備えており、それぞれの新エネルギー発電所は、制御装置13からの無効電力指令を受取り、その指令に従った無効電力を出力する手段をもつ。 The reactive power command calculation unit 12 uses the detected active power value to output the reactive power command Q output by each of the new energy power plant 1 and the new energy power plant 2 for suppressing the voltage fluctuation at the voltage fluctuation suppression point 7. Calculate A and QB . The reactive power command calculation unit 12 is provided with means capable of transmitting these reactive power commands to the new energy power plant 1 and the new energy power plant 2, respectively, and each new energy power plant has the reactive power from the control device 13. It has a means to receive a command and output reactive power according to the command.

次に制御装置13の備える有効電力検出部11および無効電力指令演算部12について図2(a)と図2(b)を用いて説明する。図2(a)は、制御装置13の備える有効電力検出部11と無効電力指令演算部12の説明図である。有効電力検出部11は、各新エネルギー発電所の連系トランスインダクタンス3および4から接続点5までの間の電流および接続点5の電圧を入力とし、新エネルギー発電所1と新エネルギー発電所2の出力有効電力Pa2およびPb2を検出し、制御装置13内の無効電力指令演算部12へ検出した有効電力Pa2、Pb2を渡す役割をもつ。 Next, the active power detection unit 11 and the reactive power command calculation unit 12 included in the control device 13 will be described with reference to FIGS. 2 (a) and 2 (b). FIG. 2A is an explanatory diagram of an active power detection unit 11 and an inactive power command calculation unit 12 included in the control device 13. The active power detection unit 11 takes the current between the interconnection transformer inductances 3 and 4 of each new energy power plant and the voltage of the connection point 5 as inputs, and the new energy power plant 1 and the new energy power plant 2. It has a role of detecting the output active powers P a2 and P b2 of the above and passing the detected active powers P a2 and P b2 to the invalid power command calculation unit 12 in the control device 13.

無効電力指令演算部12は、最適α制御部14と共通LQ補償制御部15と構内Q補償制御部16を備え、それぞれの制御部(14~16)の出力を合計し無効電力指令Qおよび無効電力指令Qを計算して、新エネルギー発電所1および新エネルギー発電所2へそれぞれ伝送する。 The reactive power command calculation unit 12 includes an optimum α control unit 14, a common LQ 1 compensation control unit 15, and a premises Q 2 compensation control unit 16, and sums the outputs of the respective control units (14 to 16) to make the reactive power command Q. A and the reactive power command QB are calculated and transmitted to the new energy power plant 1 and the new energy power plant 2, respectively.

最適α制御部14は、出力有効電力Pa2およびPb2を入力とし、図2(b)の電圧変動抑制点7に流れ込む有効電力Ptotalの変動による系統のリアクタンスXと抵抗Rによって生じる電圧変動抑制点7の電圧変動を抑制するための新エネルギー発電所1および新エネルギー発電所2に適した無効電力指令QAαおよびQBαを演算する。さらに、無効電力指令QAαおよびQBαと新エネルギー発電所1への無効電力分配を決めるゲインGおよび新エネルギー発電所2への無効電力分配を決めるGを共通LQ補償制御部15へ渡し、電圧変動抑制点7に流れ込む有効電力Ptotalに対応する電圧変動を抑制するための最適な有効電力と無効電力の比率αを構内Q補償制御部16へ渡す役割を持つ。 The optimum α control unit 14 receives the output active powers P a2 and P b2 as inputs, and is generated by the reactorance X s and the resistance R s of the system due to the fluctuation of the active power Ptotal flowing into the voltage fluctuation suppression point 7 in FIG. 2 (b). The reactive power commands Q and Q suitable for the new energy power plant 1 and the new energy power plant 2 for suppressing the voltage fluctuation of the voltage fluctuation suppression point 7 are calculated. Further, the reactive power commands Q and Q B α , the gain GA that determines the reactive power distribution to the new energy power plant 1, and the GB that determines the reactive power distribution to the new energy power plant 2 are transferred to the common LQ 1 compensation control unit 15. It has a role of passing the optimum ratio α of active power and inactive power for suppressing the voltage fluctuation corresponding to the active power capital flowing into the voltage fluctuation suppression point 7 to the premises Q2 compensation control unit 16.

共通LQ補償制御部15は、出力有効電力Pa2およびPb2、無効電力指令QAαおよびQBα、ゲインGおよびGを入力とし、図2(b)の共通LQ補償制御対象18における線路インダクタンスによるリアクタンスXによる無効電力消費を補償するための無効電力指令QAX,QBXを演算する。 The common LQ 1 compensation control unit 15 inputs the output active powers P a2 and P b2 , the reactive power commands Q A α and Q B α, and the gains GA and GB, and the common LQ 1 compensation control target 18 in FIG. 2 (b). In order to compensate for the reactive power consumption due to the reactance X due to the line inductance in the above, the reactive power commands QAX and QBX are calculated.

構内Q補償制御部16は、出力有効電力Pa2およびPb2、電圧変動を抑制するための最適な有効電力と無効電力の比率αを入力とし、図2(b)の構内Q補償制御対象19におけるそれぞれの発電所構内に存在する構内リアクタンスXおよびXでの無効電力消費を補償するための無効電力指令を演算する。 The premises Q2 compensation control unit 16 inputs the output active powers P a2 and P b2 , and the optimum ratio α of the active power and the reactive power for suppressing voltage fluctuations, and the premises Q2 compensation control in FIG. 2 (b). The reactive power command for compensating for the reactive power consumption in the premises reactors X a and X b existing in each power plant premises in the object 19 is calculated.

次に無効電力指令演算部12中の最適α制御部14の構成について図3を用いて説明する。最適α制御部14は、有効電力合計演算部20と、有効分比例分配ゲイン演算部(発電所1用)21および有効分比例分配ゲイン演算部(発電所2用)22と、最適力率αテーブル23と、電圧変動抑制用無効電力指令演算部24と、最適α制御Q指令演算部25とを有する。 Next, the configuration of the optimum α control unit 14 in the reactive power command calculation unit 12 will be described with reference to FIG. The optimum α control unit 14 includes an active power total calculation unit 20, an effective component proportional distribution gain calculation unit (for power plant 1) 21, an effective component proportional distribution gain calculation unit (for power plant 2) 22, and an optimum power factor α. It has a table 23, an invalid power command calculation unit 24 for suppressing voltage fluctuations, and an optimum α control Q command calculation unit 25.

有効電力合計演算部20は、有効電力検出部11によって検出した新エネルギー発電所1の出力有効電力Pa2と新エネルギー発電所2の出力有効電力Pb2を入力とし、これら有効電力の合計Ptotal(数1)を計算する。 The total active power calculation unit 20 inputs the output active power P a2 of the new energy power plant 1 detected by the active power detection unit 11 and the output active power P b2 of the new energy power plant 2, and totals these active powers. Calculate (Equation 1).

有効分比例分配ゲイン演算部(発電所1用)21および有効分比例分配ゲイン演算部(発電所2用)22は、有効電力合計Ptotalと各々の新エネルギー発電所の有効電力Pa2(またはPb2)を用いて各々の新エネルギー発電所への無効電力指令を分配するための有効分比例分配ゲインG(数2)およびG(数3)を演算する。 The effective portion proportional distribution gain calculation unit (for power plant 1) 21 and the effective portion proportional distribution gain calculation unit (for power plant 2) 22 have a total active power total and the active power Pa2 (or each new energy power plant). Using P b2 ), the effective fraction proportional distribution gains GA (Equation 2) and GB (Equation 3) for distributing the ineffective power command to each new energy power plant are calculated.

最適力率αテーブル23は、有効電力合計Ptotalから電圧変動抑制点7における電圧変動を抑制するために適した有効電力と無効電力の比率αを算出するために用いられるテーブルである。 The optimum power factor α table 23 is a table used for calculating the ratio α of the active power and the active power suitable for suppressing the voltage fluctuation at the voltage fluctuation suppression point 7 from the total active power total.

電圧変動抑制用無効電力指令演算部24は、算出したαと有効電力合計Ptotalの積として電圧変動抑制用の無効電力指令Qαref(数4)を演算する。 The voltage fluctuation suppression invalid power command calculation unit 24 calculates the voltage fluctuation suppression invalid power command Q αref ( Equation 4) as the product of the calculated α and the total active power total.

最適α制御Q指令演算部25は、有効分比例分配ゲインGおよびGと無効電力指令Qαrefを入力とし、各新エネルギー発電所へ伝送する無効電力指令QAα(数5)および無効電力指令QBα(数6)を演算する。 The optimum α control Q command calculation unit 25 receives the effective component proportional distribution gains GA and GB and the reactive power command Q αref as inputs , and transmits the reactive power command Q (number 5) and the reactive power to each new energy power plant. The command Q (equation 6) is calculated.

Figure 0007010690000001
Figure 0007010690000001

Figure 0007010690000002
Figure 0007010690000002

Figure 0007010690000003
Figure 0007010690000003

Figure 0007010690000004
Figure 0007010690000004

Figure 0007010690000005
Figure 0007010690000005

Figure 0007010690000006
Figure 0007010690000006

次に、最適α制御部14の演算処理フローについて図4を用いて説明する。本演算処理フローは、新エネルギー発電所1および新エネルギー発電所2の有効電力Pa2と有効電力Pb2を入力とし、それらの合計Ptotalを計算し(処理1)、PtotalとPa2およびPb2を用いて有効分比例分配ゲインGおよびGを計算する(処理2)。次に、Ptotalを用いて最適比率αを算出し(処理3)、そのαとPtotalを用いて電圧変動抑制用無効電力指令Qαrefを計算し(処理4)、電圧変動抑制用無効電力指令Qαrefと有効分比例分配ゲインGおよびGを用いて各新エネルギー発電所1および2へ伝送する無効電力指令QAαとQBαを計算する(処理5)。以上が最適α制御部14の演算処理フローである。 Next, the arithmetic processing flow of the optimum α control unit 14 will be described with reference to FIG. In this calculation processing flow, the active power P a2 and the active power P b2 of the new energy power plant 1 and the new energy power plant 2 are input, and the total P total of them is calculated (process 1), and the P total and P a 2 and The effective fraction proportional distribution gains GA and GB are calculated using P b2 (process 2). Next, the optimum ratio α is calculated using Ptotal (process 3), and the voltage fluctuation suppression reactive power command Q αref is calculated using the α and Ptotal (process 4), and the voltage fluctuation suppression reactive power is calculated. Using the commands Q αref and the effective fraction proportional distribution gains GA and GB, the reactive power commands Q A α and Q B α to be transmitted to the new energy power plants 1 and 2 are calculated (process 5). The above is the arithmetic processing flow of the optimum α control unit 14.

次に、最適α制御部14に用いる電圧変動を抑制する有効電力と無効電力の比率であるαの導出方法について図5を用いて説明する。図5(a)は、新エネルギー発電所の系統連系概略図である。新エネルギー発電所の出力する電力の電圧変動抑制点での電力をPtotal+jQtotal、電流を[I]、出力電圧(電圧変動抑制点の電圧に同じ)を[Vpcc]、出力電力端から無限大母線電圧[V]までに存在するインピーダンスをR+jX、出力電圧[Vpcc]と無限大母線電圧[V]との位相差をδとする。インピーダンスR+jXは既知とし、系統からみて遅れ無効電力を正とする。 Next, a method of deriving α, which is a ratio of active power and inactive power for suppressing voltage fluctuations used in the optimum α control unit 14, will be described with reference to FIG. FIG. 5A is a schematic diagram of grid interconnection of a new energy power plant. The power output from the new energy power plant at the voltage fluctuation suppression point is P total + jQ total , the current is [I], the output voltage (same as the voltage at the voltage fluctuation suppression point) is [V pcc ], and from the output power end. Let R s + jX s be the impedance existing up to the infinity bus voltage [V 0 ], and δ be the phase difference between the output voltage [V pcc ] and the infinity bus voltage [V 0 ]. Impedance R s + jX s is known, and delayed reactive power is positive when viewed from the system.

最適α制御部14における制御の基本的な考え方は、出力電力Pの変化に応じて無効電力Qを出力し、図5(b)に示すベクトル図のように、出力電圧[Vpcc]の振幅を、常に無限大母線電圧[V]の振幅と同じ大きさに制御するものである。 The basic concept of control in the optimum α control unit 14 is to output the reactive power Q in response to a change in the output power P, and as shown in the vector diagram shown in FIG. 5 (b), the amplitude of the output voltage [V pcc ]. Is always controlled to have the same magnitude as the amplitude of the infinite bus voltage [V 0 ].

以下に無効電力Qの導出方法を述べる。導出の前提として、制御によって無限大母線電圧[V]と新エネルギー発電所の出力電圧[Vpcc]の大きさが等しく1puに制御されるとする(数7)。無限大母線電圧[V]と新エネルギー発電所の出力電圧[Vpcc]をそれぞれ(数8)、(数9)のように定義する。新エネルギー発電所の出力電力P+jQを出力電圧[Vpcc]と出力電流[I]で表す(数10)。(数9)と(数10)から電圧変動を抑制可能な電力は(数11)および(数12)のように、無限大母線電圧[V]と出力電圧[Vpcc]との位相差δとインピーダンスRとXを用いて表すことができ、それらの比α(=Q/P)は(数13)のように表すことができる。比率αは非線形であるが、有効電力Pが決まると位相差δは一意に決まり、その位相差δに応じて比率αおよび無効電力Qも一意に定まる。最適α制御部14に用いる最適αテーブルの中身は、(数13)に基づいた電圧変動抑制点に流れる有効電力に応じた比率αのデータベースである。 The method of deriving the reactive power Q will be described below. As a premise of derivation, it is assumed that the magnitudes of the infinite bus voltage [V 0 ] and the output voltage [V pcc ] of the new energy power plant are equally controlled to 1 pu by control (Equation 7). The infinite bus voltage [V 0 ] and the output voltage [V pcc ] of the new energy power plant are defined as (Equation 8) and (Equation 9), respectively. The output power P + jQ of the new energy power plant is represented by the output voltage [V pcc ] and the output current [I] (Equation 10). The power that can suppress the voltage fluctuation from (Equation 9) and (Equation 10) is the phase difference between the infinite bus voltage [V 0 ] and the output voltage [V pcc ] as in (Equation 11) and (Equation 12). It can be expressed using δ, impedance R s , and X s , and their ratio α (= Q / P) can be expressed as (Equation 13). The ratio α is non-linear, but when the active power P is determined, the phase difference δ is uniquely determined, and the ratio α and the reactive power Q are also uniquely determined according to the phase difference δ. The content of the optimum α table used in the optimum α control unit 14 is a database of the ratio α according to the active power flowing to the voltage fluctuation suppression point based on (Equation 13).

Figure 0007010690000007
Figure 0007010690000007

Figure 0007010690000008
Figure 0007010690000008

Figure 0007010690000009
Figure 0007010690000009

Figure 0007010690000010
Figure 0007010690000010

Figure 0007010690000011
Figure 0007010690000011

Figure 0007010690000012
Figure 0007010690000012

Figure 0007010690000013
Figure 0007010690000013

次に共通LQ補償制御部15の構成について、図6を用いて説明する。共通LQ補償制御部15は、共通LQ補償指令演算部26と共通LQ補償指令比例分配部27とを有す。 Next, the configuration of the common LQ 1 compensation control unit 15 will be described with reference to FIG. The common LQ 1 compensation control unit 15 has a common LQ 1 compensation command calculation unit 26 and a common LQ 1 compensation command proportional distribution unit 27.

共通LQ補償指令演算部26は、有効電力検出部11によって検出した新エネルギー発電所1の出力有効電力Pa2と新エネルギー発電所2の出力有効電力Pb2と最適α制御部14によって算出した最適α制御Q指令(発電所1用)QAαおよび最適α制御Q指令(発電所2用)QBαを入力とし、線路インダクタンスXの値を用いて、線路インダクタンスXによって消費される無効電力を補償するための無効電力指令を演算する。 The common LQ 1 compensation command calculation unit 26 was calculated by the output active power P a2 of the new energy power plant 1 detected by the active power detection unit 11, the output active power P b2 of the new energy power plant 2, and the optimum α control unit 14. Optimal α control Q command (for power plant 1) QAα and optimal α control Q command (for power plant 2) QBα are used as inputs, and the value of line inductance X is used to calculate the ineffective power consumed by line inductance X. Calculate the invalid power command for compensation.

共通LQ補償指令比例分配部27は、共通LQ補償指令演算部26によって演算された無効電力指令を有効分比例分配ゲインGおよび有効分比例分配ゲインGを用いて各発電所の無効電力指令として分配する。 The common LQ 1 compensation command proportional distribution unit 27 invalidates each power plant by using the effective component proportional distribution gain GA and the effective component proportional distribution gain GB B for the invalid power command calculated by the common LQ 1 compensation command calculation unit 26. Distribute as a power command.

共通LQ補償指令演算部26では、(数14)に示すように共通の線路インダクタンスで消費される無効電力を補償するための無効電力指令Qを演算する。ここで、線路インダクタンスで消費される無効電力Qは本来(数15)のようにインダクタンスを流れる電流[I]の二乗に比例するが、電圧変動が微小である(|[Vpcc]|=1pu)という前提条件のもと(数16,数17,数18)で示すように[I]をPとQで近似しているため、(数14)に示す無効電力指令Qは電力とリアクタンスの積の形となっていることに注意する。尚、(数16)は線路インダクタンスを通過する電力(Ptotal,Qαref)の関係式であり、(数17)と(数18)は、(数16)において|[Vpcc]|=|[Vpccd]|=1puを代入した場合のインダクタンスに流れる電流[IXd]、[IXq]と電力との関係式である。 As shown in (Equation 14), the common LQ 1 compensation command calculation unit 26 calculates the reactive power command Q X for compensating for the reactive power consumed by the common line inductance. Here, the reactive power Q X consumed by the line inductance is originally proportional to the square of the current [ IX ] flowing through the reactance as in (Equation 15), but the voltage fluctuation is minute (| [V pcc ] | Since [ IX ] is approximated by P and Q as shown in (Equation 16, Equation 17, Equation 18) under the precondition of (= 1pu), the reactive power command Q X shown in (Equation 14) is Note that it is in the form of a product of power and reactance. It should be noted that (Equation 16) is a relational expression of the electric power ( Pital, Q αref ) passing through the line inductance, and (Equation 17) and (Equation 18) are | [V pcc ] | = | in (Equation 16). [V pccd ] | = This is a relational expression between the currents [ IXd ] and [ IXq ] flowing in the inductance when 1pu is substituted and the electric power.

Figure 0007010690000014
Figure 0007010690000014

Figure 0007010690000015
Figure 0007010690000015

Figure 0007010690000016
Figure 0007010690000016

Figure 0007010690000017
Figure 0007010690000017

Figure 0007010690000018
Figure 0007010690000018

次に、共通LQ補償制御部15の演算処理フローについて図7を用いて説明する。本演算処理フローは、新エネルギー発電所1および新エネルギー発電所2の有効電力Pa2と有効電力Pb2と最適α制御部14によって算出した各発電所への最適α制御Q指令QAαおよびQBαを入力とし、既知であるパラメータXを用いて共通LQ補償指令Qを算出する(処理1)。次に有効分比例分配ゲインGおよびGを入力とし、新エネルギー発電所1および2へ伝送する無効電力指令QAXとQBXを計算する(処理2)。以上が共通LQ補償制御部15の演算処理フローである。 Next, the arithmetic processing flow of the common LQ 1 compensation control unit 15 will be described with reference to FIG. 7. This calculation processing flow is the optimum α control Q command Q and Q for each power plant calculated by the active power P a2 , the active power P b2 , and the optimum α control unit 14 of the new energy power plant 1 and the new energy power plant 2. Using as an input, the common LQ 1 compensation command Q X is calculated using the known parameter X (process 1). Next, the effective component proportional distribution gains GA and GB are input, and the reactive power commands QAX and QBX to be transmitted to the new energy power plants 1 and 2 are calculated (process 2). The above is the calculation processing flow of the common LQ 1 compensation control unit 15.

次に構内Q補償制御部16の構成について、図8を用いて説明する。構内Q補償制御部16は、有効電力検出部11によって検出した新エネルギー発電所1の出力有効電力Pa2と新エネルギー発電所2の出力有効電力Pb2と最適α制御部14によって算出した最適比率αを入力とし、それぞれの新エネルギー発電所の連系トランスインダクタンスによるリアクタンスXおよびXを用いて、それぞれの新エネルギー発電所の連系トランスインダクタンスにより消費される無効電力を補償するための無効電力指令(QAXα、QBXα)をそれぞれの新エネルギー発電所に対する指令として演算する。 Next, the configuration of the premises Q2 compensation control unit 16 will be described with reference to FIG. The premises Q2 compensation control unit 16 is the optimum output active power P a2 of the new energy power plant 1 detected by the active power detection unit 11, the output active power P b2 of the new energy power plant 2, and the optimum α control unit 14. With the ratio α as the input, the reactors X a and X b due to the interconnection transformer inductance of each new energy power plant are used to compensate for the ineffective power consumed by the interconnection transformer inductance of each new energy power plant. The invalid power command ( QAXα , QBXα ) is calculated as a command for each new energy power plant.

次に、構内Q補償制御部16の演算処理フローについて図9を用いて説明する。本演算処理フローは、有効電力検出部11によって検出した新エネルギー発電所1の出力有効電力Pa2と新エネルギー発電所2の出力有効電力Pb2と最適α制御部14によって算出した最適比率αを入力とし、既知であるパラメータXおよびXを用いて構内Q補償制御Q指令QAXaおよびQBXbを計算する。以上が構内Q2補償制御部16の演算処理フローである。 Next, the arithmetic processing flow of the premises Q2 compensation control unit 16 will be described with reference to FIG. In this calculation processing flow, the output active power P a2 of the new energy power plant 1 detected by the active power detection unit 11, the output active power P b2 of the new energy power plant 2, and the optimum ratio α calculated by the optimum α control unit 14 are used. As input, the premises Q2 compensation control Q command QAXa and QBXb are calculated using the known parameters Xa and Xb . The above is the calculation processing flow of the premises Q2 compensation control unit 16.

以上の制御方式による無効電力指令Q,Qによる無効電力制御を各新エネルギー発電所が実施した場合、各新エネルギー発電所の出力電力変動に起因した任意の電圧変動抑制点における電圧変動を抑制することが可能となる。加えて、本制御方式は新エネルギー発電所が2つの場合に限定されるものではなく、接続点5に発電所が3つ以上連系された場合においても、本実施例の制御方式を各発電所に適用することで電圧変動抑制を実行することが可能となる。 When each new energy power plant implements the reactive power control according to the above control method, the voltage fluctuation at any voltage fluctuation suppression point caused by the output power fluctuation of each new energy power plant is detected. It becomes possible to suppress it. In addition, this control method is not limited to the case where there are two new energy power plants, and even when three or more power plants are connected to the connection point 5, the control method of this embodiment is used for each power generation. By applying it to a place, it becomes possible to suppress voltage fluctuations.

図10は、従来制御方式と本実施例の制御方式による電圧変動抑制効果を比較したグラフである。系統条件は図1を仮定し、新エネルギー発電所の発電電力の最大値はそれぞれ0.24pu(Pa2)、0.17pu(Pb2)に設定し、それぞれの連系トランスインダクタンスによるリアクタンスX、Xおよび共通線路インダクタンスによるリアクタンスXはそれぞれXを50%、Xを70%、Xを30%程度に設定した(全て100MVAベースの値)。また電圧変動抑制点から無限大母線電圧までの間に存在する抵抗Rを20%とリアクタンスXを50%程度に設定し(全て100MVAベースの値)、Rが無視できない条件としている。発電電力の変動は、各発電所が同じ周期(1周期:2秒)かつ同期して出力変動する最も電圧変動が大きいケースを仮定した。また、本シミュレーションでは遅れ時間は考慮していない。また、無限大母線の電圧を1puとしている。 FIG. 10 is a graph comparing the voltage fluctuation suppression effect of the conventional control method and the control method of the present embodiment. Assuming Fig. 1 for the system conditions, the maximum values of the generated power of the new energy power plant are set to 0.24 pu (P a2 ) and 0.17 pu (P b2 ), respectively, and the reactance X a due to the interconnection transformer inductance of each is set. , X b and the reactance X due to the common line inductance were set to 50% for X a , 70% for X b , and 30% for X (all values based on 100 MVA). Further, the resistance R s existing from the voltage fluctuation suppression point to the infinite bus voltage is set to about 20% and the reactance X s is set to about 50% (all are values based on 100 MVA), and R s cannot be ignored. As for the fluctuation of the generated power, it is assumed that each power plant has the same cycle (1 cycle: 2 seconds) and the output fluctuates in synchronization with the largest voltage fluctuation. In addition, the delay time is not taken into consideration in this simulation. Further, the voltage of the infinity bus is set to 1pu.

図中点線で示す従来方式では、発電所2の発電電力による電圧変動を抑制出来ないため、新エネルギー発電所の出力が最大のタイミングで電圧変動が5.8%と大きい。これに対して本実施例の制御方式では、最も電圧変動が大きい場合でも0.2%程度となり、従来方式と比較して電圧変動抑制効果を得られることを確認した。また、本シミュレーションでは出力電力変動周期を2秒に設定したが、実際の太陽光による日射量や風力発電における風量の変化はこれよりも十分遅いと考えられる。 In the conventional method shown by the dotted line in the figure, the voltage fluctuation due to the generated power of the power plant 2 cannot be suppressed, so that the voltage fluctuation is as large as 5.8% at the maximum timing of the output of the new energy power plant. On the other hand, in the control method of this embodiment, even when the voltage fluctuation is the largest, it is about 0.2%, and it is confirmed that the voltage fluctuation suppressing effect can be obtained as compared with the conventional method. In addition, although the output power fluctuation cycle was set to 2 seconds in this simulation, it is considered that the change in the amount of solar radiation due to actual sunlight and the amount of air in wind power generation is sufficiently slower than this.

他サイトの新エネルギー発電所の出力変動に起因する電圧変動抑制(課題1)に対しては、他サイトの発電電力を検出し、他サイトの発電電力の影響を考慮した電圧変動抑制のための無効電力指令を演算し、自サイトと他サイトへ無効電力指令を最適に分配することで解決することができる。 For voltage fluctuation suppression (problem 1) caused by output fluctuations of new energy power plants at other sites, it is necessary to detect the generated power of other sites and suppress voltage fluctuations in consideration of the influence of the generated power of other sites. It can be solved by calculating the reactive power command and optimally distributing the reactive power command to the own site and other sites.

また、新エネルギー発電所から任意の電圧変動抑制点までのリアクタンスによる電圧変動抑制効果の低下(課題2)に対しては、各新エネルギー発電所のリアクタンスによる無効電力消費を補償することで解決することができる。 In addition, the decrease in voltage fluctuation suppression effect due to reactorism from the new energy power plant to any voltage fluctuation suppression point (Problem 2) can be solved by compensating for the reactive power consumption due to the reactorism of each new energy power plant. be able to.

また、系統の抵抗分と過大なリアクタンス分による電圧変動抑制効果の低下(課題3)に対しては、従来技術で用いられている原理式そのものが見直されることで解決されている。 Further, the decrease in the voltage fluctuation suppressing effect (problem 3) due to the resistance component of the system and the excessive reactance component is solved by reviewing the principle formula itself used in the prior art.

次に本発明の実施例2を説明する。図11は、実施例2における新エネルギー発電システムの概略構成図である。図1との相違点は、接続点5において、無効電力指令を受取る機能もしくは無効電力を調整する機能のない新エネルギー発電所28が連系トランスインダクタンス29を介して連系された点、制御装置30が連系トランスインダクタンス29と接続点5の間に設ける電圧センサ101c、電流センサ102cによって検出される電圧と電流を用いて、新エネルギー発電所28の出力有効電力Pc1が連系トランスインダクタンス29を通過した後の有効電力Pc2を検出する機能が追加された有効電力検出部31を有している点、新エネルギー発電所28の出力変動に起因する電圧変動を抑制するための無効電力指令Qを演算し、その無効電力指令Qを無効電力指令QおよびQへ上乗せすることで、新エネルギー発電所28の出力変動による電圧変動抑制点7における電圧変動を同一系統に連系される新エネルギー発電所1および新エネルギー発電所2の無効電力制御によって補償する制御構成とした点である。 Next, Example 2 of the present invention will be described. FIG. 11 is a schematic configuration diagram of the new energy power generation system according to the second embodiment. The difference from FIG. 1 is that at the connection point 5, a new energy power plant 28 having no function of receiving an reactive power command or a function of adjusting the reactive power is interconnected via an interconnection transformer inductance 29, and a control device. Using the voltage and current detected by the voltage sensor 101c and the current sensor 102c provided between the interconnection transformer inductance 29 and the connection point 5, the output active power P c1 of the new energy power plant 28 is the interconnection transformer inductance 29. It has an active power detection unit 31 with an added function to detect the active power P c2 after passing through, and an invalid power command for suppressing voltage fluctuations caused by output fluctuations of the new energy power plant 28. By calculating QC and adding the reactive power command QC to the reactive power commands Q A and Q B , the voltage fluctuation at the voltage fluctuation suppression point 7 due to the output fluctuation of the new energy power plant 28 is interconnected to the same system. The point is that the control configuration is compensated by the reactive power control of the new energy power plant 1 and the new energy power plant 2.

このような構成とすることで、上記機能がない新エネルギー発電所28が連系されている場合においても、電圧変動抑制点7における電圧変動を抑制することが可能となる。 With such a configuration, it is possible to suppress the voltage fluctuation at the voltage fluctuation suppression point 7 even when the new energy power plant 28 having no above-mentioned function is connected.

次に、実施例2で変更した制御装置30の有効電力検出部31と無効電力指令演算部32の詳細について図12を用いて説明する。 Next, the details of the active power detection unit 31 and the reactive power command calculation unit 32 of the control device 30 modified in the second embodiment will be described with reference to FIG.

図12は制御装置30の詳細構成であり、図2との相違点は、新エネルギー発電所28の有効電力PC2も有効電力検出部31によって検出し、有効電力Pc2を無効電力指令演算部32へ渡す機能を有した点、新エネルギー発電所28の出力変動に起因する電圧変動を抑制するための無効電力指令Qを計算するようにした点、任意に設定可能な分配ゲインGおよびGによって新エネルギー発電所28の出力変動に起因する電圧変動を抑制するための無効電力指令Qを分配し、新エネルギー発電所1と新エネルギー発電所2に対する無効電力指令にそれぞれ上乗せする形で無効電力指令Qおよび無効電力指令Qを演算する点である。 FIG. 12 shows the detailed configuration of the control device 30, and the difference from FIG. 2 is that the active power PC2 of the new energy power plant 28 is also detected by the active power detection unit 31, and the active power P c2 is detected by the invalid power command calculation unit. The point that it has a function to pass to 32, the point that the invalid power command Qc for suppressing the voltage fluctuation caused by the output fluctuation of the new energy power plant 28 is calculated, the distribution gain G1 that can be arbitrarily set, and the point that it is calculated. Distribute the invalid power command QC for suppressing the voltage fluctuation caused by the output fluctuation of the new energy power plant 28 by G2, and add it to the invalid power command for the new energy power plant 1 and the new energy power plant 2 , respectively. It is a point to calculate the invalid power command Q A and the invalid power command Q B in.

実施例2における分配ゲインG、Gの決め方は運用によるが、新エネルギー発電所28の出力変動に起因する電圧変動を抑制するための無効電力指令Qの過補償または不足が生じないように、分配後の無効電力指令大きさの合計が分配前の無効電力指令の大きさと同じとなるように決める必要がある(数19)。 The method of determining the distribution gains G1 and G2 in the second embodiment depends on the operation, but the overcompensation or the shortage of the reactive power command QC for suppressing the voltage fluctuation caused by the output fluctuation of the new energy power plant 28 does not occur. In addition, it is necessary to determine that the total size of the reactive power command after distribution is the same as the size of the reactive power command before distribution (Equation 19).

Figure 0007010690000019
Figure 0007010690000019

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。上記実施例においては新エネルギー発電所を例として説明したが、新エネルギー発電所には風力、太陽光、地熱、水力等の自然エネルギーを電力に変換する発電所を一例とした電動機を用いない発電所に加え、自らが発電せずに蓄えた電力を放出する蓄電池などを上記実施例における「新エネルギー発電所」として利用することが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace a part of the configuration of each embodiment with another configuration. In the above embodiment, a new energy power plant has been described as an example, but the new energy power plant is an example of a power plant that converts natural energy such as wind power, solar power, geothermal power, and hydraulic power into electric power, and power generation without using an electric motor. In addition to the above, it is possible to use a storage battery or the like that discharges the stored power without generating power by itself as the "new energy power plant" in the above embodiment.

また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、各種記録装置や記録媒体に保存することができる。 Further, each of the above configurations, functions, processing units, processing means and the like may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in various recording devices and recording media.

また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 In addition, the control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.

1容量A[MW]の新エネルギー発電所
2容量B[MW]の新エネルギー発電所
3容量A[MW]の新エネルギー発電所用の連系トランスインダクタンス
4容量B[MW]の新エネルギー発電所用の連系トランスインダクタンス
5各新エネルギー発電所の接続点
6特高系統の線路インダクタンス
7電圧変動抑制点
8無限大母線電圧
9電圧変動抑制点から無限大母線電圧までの抵抗分
10電圧変動抑制点から無限大母線電圧までのインダクタンス
11有効電力検出部
12実施例1における無効電力指令演算部
13実施例1における制御装置
14最適α制御部
15共通LQ補償制御部
16構内Q補償制御部
17最適α制御対象
18共通LQ補償制御対象
19構内Q補償制御対象
20有効電力合計演算部
21有効分比例分配ゲイン演算部(発電所1)
22有効分比例分配ゲイン演算部(発電所2)
23最適αテーブル
24電圧変動抑制用無効電力指令演算部
25最適α制御Q指令演算部
26共通LQ補償指令演算部
27共通LQ補償指令比例分配部
28容量C[MW]の新エネルギー発電所
29容量C[MW]の新エネルギー発電所用の連系トランスインダクタンス
30実施例2における制御装置
31実施例2における有効電力検出部
32実施例2における無効電力指令演算部
1 new energy power plant with capacity A [MW] 2 new energy power plant with capacity B [MW] 3 interconnection transformer for new energy power plant with capacity A [MW] 4 capacity B [MW] for new energy power plant Interconnection transformer inductance 5 Connection point of each new energy power plant 6 Line inductance of extra high system 7 Voltage fluctuation suppression point 8 Infinity bus voltage 9 Resistance from voltage fluctuation suppression point to infinity bus voltage 10 From voltage fluctuation suppression point Intensity to infinity bus voltage 11 Active power detection unit 12 Invalid power command calculation unit in Example 1 Control device 14 Optimal α control unit 15 Common LQ 1 Compensation control unit 16 Campus Q 2 Compensation control unit 17 Optimal in Example 1. α Control target 18 Common LQ 1 Compensation control target 19 On-site Q 2 Compensation control target 20 Active power total calculation unit 21 Effective portion proportional distribution gain calculation unit (power plant 1)
22 Effective portion proportional distribution gain calculation unit (power plant 2)
23 Optimal α table 24 Reactive power command calculation unit for voltage fluctuation suppression 25 Optimal α control Q command calculation unit 26 Common LQ 1 Compensation command calculation unit 27 Common LQ 1 Compensation command proportional distribution unit 28 Capacity C [MW] new energy power plant Interconnection transformer inductance 30 for a new energy power plant with a capacity of 29 capacity C [MW] Control device 31 in Example 2 Active power detection unit 32 in Example 2 Reactive power command calculation unit in Example 2

Claims (8)

複数の発電所がそれぞれの連系トランスを介して系統に接続され、接続点がインダクタンスおよび抵抗分を介して無限大母線まで接続されている発電システムにおいて、
各々の前記発電所の発電電力を検出可能な有効電力検出部と、各々の前記発電所の発電電力変動に起因した任意の電圧変動抑制点における電圧変動を抑制するための無効電力を各々の前記発電所について演算し、演算した無効電力に基づき各々の前記発電所の無効電力指令を演算する無効電力指令演算部を備え、前記無効電力指令を各々の前記発電所へ伝送する制御装置を有し、
前記制御装置は、
前記有効電力検出部が検出した有効電力と、前記電圧変動抑制点から無限大母線電圧までのインダクタンスおよび前記電圧変動抑制点から無限大母線電圧までの抵抗分と、を用いて前記電圧変動抑制点における電圧変動を抑制するための無効電力量を各々の前記発電所について演算する制御部1と、
前記接続点から前記電圧変動抑制点までのインダクタンスにより消費される無効電力を補償する無効電力補償量1を各々の前記発電所について演算する制御部2と、
各々の前記発電所から接続点までの間の前記連系トランスのインダクタンスにより消費される無効電力を補償する無効電力補償量2を各々の前記発電所について演算する制御部3を有し、
前記無効電力指令は、前記無効電力量と、前記無効電力補償量1と、前記無効電力補償量2とに基づき生成される発電システム。
In a power generation system where multiple power plants are connected to the grid via their respective interconnection transformers and the connection points are connected to the infinity bus via inductance and resistance.
The active power detector capable of detecting the generated power of each power plant and the invalid power for suppressing the voltage fluctuation at an arbitrary voltage fluctuation suppression point caused by the power generation fluctuation of each power plant are described above. It has an invalid power command calculation unit that calculates the power plant and calculates the invalid power command of each power plant based on the calculated invalid power, and has a control device that transmits the invalid power command to each power plant. ,
The control device is
The voltage fluctuation suppression point using the active power detected by the active power detection unit, the inductance from the voltage fluctuation suppression point to the infinite bus voltage, and the resistance component from the voltage fluctuation suppression point to the infinity bus voltage. The control unit 1 that calculates the amount of invalid power for suppressing the voltage fluctuation in each of the power plants, and
A control unit 2 that calculates the static power compensation amount 1 for compensating the static power consumed by the inductance from the connection point to the voltage fluctuation suppression point for each power plant.
It has a control unit 3 that calculates the static power compensation amount 2 for compensating the static power consumed by the inductance of the interconnection transformer between each power plant and the connection point for each power plant.
The ineffective power command is a power generation system generated based on the ineffective power amount, the ineffective power compensation amount 1, and the ineffective power compensation amount 2 .
前記制御部1は、
検出した各々の前記発電所の発電電力の合計である合計発電電力を演算する有効電力合演算部と、
前記合計発電電力から電圧変動抑制点における電圧変動を抑制するための有効電力と無効電力の比率αを算出可能な最適比率αテーブルと、
前記比率αと前記合計発電電力とを用いて前記無効電力量を演算する電圧変動抑制用無効電力指令演算部と、を有する請求項1に記載の発電システム。
The control unit 1
An active power combination calculation unit that calculates the total generated power, which is the total of the detected power generated by each of the power plants.
An optimum ratio α table that can calculate the ratio α of active power and active power for suppressing voltage fluctuation at the voltage fluctuation suppression point from the total generated power, and
The power generation system according to claim 1 , further comprising an invalid power command calculation unit for suppressing voltage fluctuations for calculating the amount of invalid power using the ratio α and the total generated power.
前記制御部2は、検出した各々の前記発電所の発電電力と前記制御部1により算出した前記無効電力量と前記接続点から前記電圧変動抑制点までのインダクタンスのリアクタンスとを用いて前記接続点から前記電圧変動抑制点までのインダクタンスにおける無効電力消費を補償するための無効電力補償量1を演算する演算部1を有する請求項1に記載の発電システム。 The control unit 2 uses the detected power generated by the power plant, the amount of reactive power calculated by the control unit 1, and the inductance reactor from the connection point to the voltage fluctuation suppression point to the connection point . The power generation system according to claim 1, further comprising a calculation unit 1 for calculating an invalid power compensation amount 1 for compensating for the ineffective power consumption in the inductance from the voltage fluctuation suppression point to the voltage fluctuation suppression point . 前記制御部3が、検出した各々の前記発電所の発電電力と前記制御部1により算出した前記比率αと各々の前記発電所の前記連系トランスのインダクタンスのリアクタンスを用いて、各々の前記連系トランスのインダクタンスにおける無効電力消費を補償するための無効電力補償量2を各々の前記発電所に対して演算する演算部2を有する請求項2に記載の発電システム。 The control unit 3 uses the detected power generated by each of the power plants, the ratio α calculated by the control unit 1, and the reactor of the inductance of the interconnection transformer of each of the power plants. The power generation system according to claim 2, further comprising a calculation unit 2 for calculating an invalid power compensation amount 2 for compensating for the invalid power consumption in the inductance of the system transformer for each said power plant. 制御装置を有し、
制御装置から無効電力指令を受取ることが可能な1または複数の発電所1と無効電力指令を受取る機能の無い1または複数の発電所2がそれぞれの連系トランスを介して系統に接続され、接続点がインダクタンスおよび抵抗分を介して無限大母線まで接続されている発電システムにおいて、
前記制御装置は、
前記発電所1および前記発電所2の発電電力を検出可能な有効電力検出部と、
前記発電所1および前記発電所2の発電電力変動に起因した前記発電所2と系統との接続点と無限大母線までの間の任意の電圧変動抑制点における電圧変動を抑制するための無効電力指令を演算する無効電力指令演算部と、を有し、
前記無効電力指令演算部は、前記発電所2の出力電力変動による電圧変動を抑制するための無効電力を前記発電所1へ分配するように前記無効電力指令を生成するとともに、
前記有効電力検出部が検出した有効電力と前記電圧変動抑制点から無限大母線電圧までのインダクタンスおよび前記電圧変動抑制点から無限大母線電圧までの抵抗分を用いて、電圧変動抑制点における電圧変動を抑制するための無効電力量を演算する制御部1と、
前記接続点から前記電圧変動抑制点までのインダクタンスにより消費される無効電力を補償する無効電力補償量1を演算する制御部2と、
前記発電所1および前記発電所2から接続点までの間に存在する前記連系トランスのインダクタンスにより消費される無効電力を補償する無効電力補償量2を演算する制御部3と、を有し、
前記無効電力指令は、前記無効電力量と、前記無効電力補償量1と、前記無効電力補償量2とに基づき生成される発電システム。
Has a control device
One or more power plants 1 capable of receiving an invalid power command from a control device and one or a plurality of power plants 2 having no function of receiving an invalid power command are connected to and connected to the grid via their respective interconnection transformers. In a power generation system where points are connected to an infinite bus via inductance and resistance
The control device is
An active power detection unit capable of detecting the generated power of the power plant 1 and the power plant 2 and
Reactive power for suppressing voltage fluctuations at any voltage fluctuation suppression point between the connection point between the power plant 2 and the grid and the infinity bus due to fluctuations in the generated power of the power plant 1 and the power plant 2. It has an invalid power command calculation unit that calculates commands, and
The reactive power command calculation unit generates the reactive power command so as to distribute the reactive power for suppressing the voltage fluctuation due to the output power fluctuation of the power plant 2 to the power plant 1 .
Voltage fluctuation at the voltage fluctuation suppression point using the active power detected by the active power detection unit, the inductance from the voltage fluctuation suppression point to the infinity bus voltage, and the resistance component from the voltage fluctuation suppression point to the infinity bus voltage. The control unit 1 that calculates the amount of invalid power to suppress
A control unit 2 that calculates an indemnity compensation amount 1 that compensates for the indemnity power consumed by the inductance from the connection point to the voltage fluctuation suppression point.
It has a control unit 3 for calculating a static power compensation amount 2 for compensating for the static power consumed by the inductance of the interconnection transformer existing between the power plant 1 and the power plant 2 and the connection point.
The ineffective power command is a power generation system generated based on the ineffective power amount, the ineffective power compensation amount 1, and the ineffective power compensation amount 2 .
前記制御部1は、発電所1および発電所2の発電電力の合計である合計発電電力を演算する有効電力合計演算部と、
前記合計発電電力から電圧変動抑制点における電圧変動を抑制するための有効電力と無効電力の比率αを算出可能な最適比率αテーブルと、
前記比率αと前記合計発電電力を用いて電圧変動抑制点における電圧変動を抑制するための無効電力を演算する電圧変動抑制用無効電力指令演算部と、を有する請求項5に記載の発電システム。
The control unit 1 includes an active power total calculation unit that calculates the total power generation power, which is the total power generation power of the power plant 1 and the power plant 2.
An optimum ratio α table that can calculate the ratio α of active power and active power for suppressing voltage fluctuation at the voltage fluctuation suppression point from the total generated power, and
The power generation system according to claim 5 , further comprising a voltage fluctuation suppression invalid power command calculation unit for calculating an invalid power amount for suppressing voltage fluctuation at a voltage fluctuation suppression point using the ratio α and the total generated power. ..
前記制御部2は、各々の発電所1および発電所2の発電電力と前記無効電力指令と前記インダクタンスのリアクタンスとを用いて前記インダクタンスにおける無効電力消費を補償するための無効電力補償量1を演算する演算部1を有する請求項5に記載の発電システム。 The control unit 2 calculates an ineffective power compensation amount 1 for compensating for the ineffective power consumption in the inductance by using the generated power of each power plant 1 and the power plant 2, the ineffective power command, and the reactor of the inductance. The power generation system according to claim 5 , further comprising a calculation unit 1. 前記制御部3は、各々の発電所1および発電所2の発電電力と前記比率αと各々の発電所1および発電所2の前記連系トランスのインダクタンスのリアクタンスを用いて、各々の前記連系トランスのインダクタンスにおける無効電力消費を補償するための無効電力補償量2を各々の発電所1および発電所2に対して演算する演算部2を有する請求項6に記載の発電システム。 The control unit 3 uses the generated power of each power plant 1 and 2 and the ratio α and the reactor of the inductance of the interconnection transformer of each power plant 1 and 2 to each of the interconnections. The power generation system according to claim 6 , further comprising a calculation unit 2 for calculating an invalid power compensation amount 2 for compensating the invalid power consumption in the inductance of the transformer for each power plant 1 and the power plant 2.
JP2017250424A 2017-12-27 2017-12-27 Power generation system Active JP7010690B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017250424A JP7010690B2 (en) 2017-12-27 2017-12-27 Power generation system
PCT/JP2018/032968 WO2019130665A1 (en) 2017-12-27 2018-09-06 Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250424A JP7010690B2 (en) 2017-12-27 2017-12-27 Power generation system

Publications (2)

Publication Number Publication Date
JP2019118182A JP2019118182A (en) 2019-07-18
JP7010690B2 true JP7010690B2 (en) 2022-01-26

Family

ID=67066941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250424A Active JP7010690B2 (en) 2017-12-27 2017-12-27 Power generation system

Country Status (2)

Country Link
JP (1) JP7010690B2 (en)
WO (1) WO2019130665A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024091847A1 (en) * 2022-10-26 2024-05-02 General Electric Technology Gmbh Systems and methods for an adaptive power system stabilizer (pss)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110247405B (en) * 2019-07-18 2021-10-29 阳光电源股份有限公司 Reactive scheduling control method and system and data processing module
CN110854868B (en) * 2019-11-03 2021-01-08 国网湖北省电力有限公司电力科学研究院 Direct current static power limit value calculation method considering influence of new generation phase modulator
JP7396131B2 (en) * 2020-03-05 2023-12-12 中国電力株式会社 Distributed power source operation control device, distributed power source operation control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239990A (en) 2008-03-25 2009-10-15 Hitachi Ltd Control method and system of distributed power supply group
JP2010279133A (en) 2009-05-27 2010-12-09 Ntt Facilities Inc Method and device for controlling power conditioner in solar light generating system
JP2011061951A (en) 2009-09-09 2011-03-24 Hitachi Ltd Wind turbine generator system, control method, controller, and program
JP2015039262A (en) 2013-08-19 2015-02-26 オリジン電気株式会社 Distributed power supply facility system
US20150295529A1 (en) 2014-04-15 2015-10-15 General Electric Company Reactive power control for wind turbine generators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009239990A (en) 2008-03-25 2009-10-15 Hitachi Ltd Control method and system of distributed power supply group
JP2010279133A (en) 2009-05-27 2010-12-09 Ntt Facilities Inc Method and device for controlling power conditioner in solar light generating system
JP2011061951A (en) 2009-09-09 2011-03-24 Hitachi Ltd Wind turbine generator system, control method, controller, and program
JP2015039262A (en) 2013-08-19 2015-02-26 オリジン電気株式会社 Distributed power supply facility system
US20150295529A1 (en) 2014-04-15 2015-10-15 General Electric Company Reactive power control for wind turbine generators

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024091847A1 (en) * 2022-10-26 2024-05-02 General Electric Technology Gmbh Systems and methods for an adaptive power system stabilizer (pss)

Also Published As

Publication number Publication date
JP2019118182A (en) 2019-07-18
WO2019130665A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP7010690B2 (en) Power generation system
Li et al. Adaptive droop control using adaptive virtual impedance for microgrids with variable PV outputs and load demands
Shukl et al. Delta-bar-delta neural-network-based control approach for power quality improvement of solar-PV-interfaced distribution system
Wang et al. Flexible compensation strategy for voltage source converter under unbalanced and harmonic condition based on a hybrid virtual impedance method
Saxena et al. An MPC based algorithm for a multipurpose grid integrated solar PV system with enhanced power quality and PCC voltage assist
JP5108031B2 (en) Magnetic flux control system for active voltage regulation
Saxena et al. A voltage support control strategy for grid integrated solar PV system during abnormal grid conditions utilizing interweaved GI
Kumar et al. Multi-objective single-stage SPV system integrated to 3P4W distribution network using DMSI-based control technique
Singh et al. Simple peak detection control algorithm of distribution static compensator for power quality improvement
CN107005049B (en) Power controller and power control method
Perera et al. Advanced point of common coupling voltage controllers for grid-connected solar photovoltaic (PV) systems
TWI665841B (en) Control method for natural energy power generation system, ineffective power controller, or natural energy power generation system
Sun et al. Fundamental impedance identification method for grid‐connected voltage source inverters
Singh et al. A multifunctional three-phase grid coupled solar PV energy conversion system using delayed µ-law proportionate control for PQ improvement
Rey-Boué et al. Frequency-adaptive control of a three-phase single-stage grid-connected photovoltaic system under grid voltage sags
Kumar et al. Experimental prototype of a novel feed forward compensation for DC‐link voltage stabilization in grid‐tied PV system
Chankaya et al. Grid-interfaced photovoltaic–battery energy storage system with slime mold optimized adaptive seamless control
Kryonidis et al. Use of ultracapacitor for provision of inertial response in virtual synchronous generator: Design and experimental validation
CN112039119B (en) Photovoltaic access-containing power distribution network voltage control method and system
CN107069748B (en) Using the dynamic electric voltage recovery device compensation control system and method for minimum current injection method
Das et al. Normalized maximum correntropy criterion based ripple mitigation strategy for wind–solar hybrid generation system under nonideal grid conditions
JP2015132988A (en) power conditioner system
Naqvi et al. Implementation of a modified distributed normalized least mean square control for a multi-objective single stage SECS
Ribeiro et al. Enhanced power quality compensation of shunt active power filters without harmonic detection schemes
Ma Investigation on integrated control strategies for grid-tied inverters under unbalanced grid voltage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210816

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113

R150 Certificate of patent or registration of utility model

Ref document number: 7010690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150