JP7006840B2 - スイッチング制御回路、電源回路 - Google Patents

スイッチング制御回路、電源回路 Download PDF

Info

Publication number
JP7006840B2
JP7006840B2 JP2021511157A JP2021511157A JP7006840B2 JP 7006840 B2 JP7006840 B2 JP 7006840B2 JP 2021511157 A JP2021511157 A JP 2021511157A JP 2021511157 A JP2021511157 A JP 2021511157A JP 7006840 B2 JP7006840 B2 JP 7006840B2
Authority
JP
Japan
Prior art keywords
voltage
control circuit
circuit
level
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021511157A
Other languages
English (en)
Other versions
JPWO2020202760A1 (ja
Inventor
晋治 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPWO2020202760A1 publication Critical patent/JPWO2020202760A1/ja
Application granted granted Critical
Publication of JP7006840B2 publication Critical patent/JP7006840B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • H02M1/0035Control circuits allowing low power mode operation, e.g. in standby mode using burst mode control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

本発明は、スイッチング制御回路、および電源回路に関する。
スイッチング電源回路には、軽負荷時の効率を上昇させるために、間欠的にスイッチング動作を停止する回路、すなわち、バーストモードで動作する回路がある(例えば、特許文献1)。
特開2017-147854号公報
ところで、1次コイル、2次コイル、補助コイルを含むトランスを用いて出力電圧を生成するスイッチング電源回路の制御回路には、一般的に、補助コイルで生成される電圧が電源電圧として供給される。
このようなスイッチング電源回路の軽負荷時の効率を上昇させるために、スイッチング動作の停止期間を長くした場合、補助コイルに蓄積されるエネルギーが減少する。この結果、補助コイルで生成される電源電圧が低下し、制御回路が正常に動作しなくなることがある。
本発明は、上記のような従来の問題に鑑みてなされたものであって、スイッチング電源回路を安定に動作させつつ、軽負荷時の効率を上昇させることができるスイッチング制御回路を提供することを目的とする。
前述した課題を解決する本発明の第1の態様は、1次側に設けられた1次コイルと、2次側に設けられた2次コイルと、前記1次コイルまたは前記2次コイルに電磁結合された補助コイルとを含むトランスと、前記1次コイルに接続されるトランジスタと、を含み目的レベルの出力電圧を2次側に生成する電源回路の前記補助コイルからの電圧に基づいて動作し、前記トランジスタのスイッチングを制御するスイッチング制御回路であって、前記出力電圧が印加される負荷が軽負荷か否かに基づいて、バーストモードへの移行を判定する判定回路と、前記バーストモードの動作時に前記トランジスタのスイッチングが停止される停止期間を計時する計時回路と、前記停止期間が第1期間より長い場合、前記停止期間が短くなるように制御する制御回路と、を備えることを特徴とする。
本発明の第2の態様は、1次側に設けられた1次コイルと、2次側に設けられた2次コイルと、前記1次コイルまたは前記2次コイルに電磁結合された補助コイルとを含むトランスと、前記1次コイルに接続されるトランジスタと、前記補助コイルからの電圧に基づいて動作し、前記トランジスタのスイッチングを制御するスイッチング制御回路と、を含み目的レベルの出力電圧を2次側に生成する電源回路であって、前記スイッチング制御回路は、前記出力電圧が印加される負荷が軽負荷か否かに基づいて、バーストモードへの移行を判定する判定回路と、前記前記バーストモードの動作時にトランジスタのスイッチングが停止される停止期間を計時する計時回路と、前記停止期間が第1期間より長い場合、前記停止期間が短くなるように制御する制御回路と、を含む。
本発明によれば、スイッチング電源回路を安定に動作させつつ、軽負荷時の効率を上昇させることができるスイッチング制御回路を提供することができる。
スイッチング電源回路10の一例を示す図である。 制御IC40の構成を示す図である。 バースト制御回路75の構成を示す図である。 バーストモードの動作を説明するための図である。 バーストモードの動作を説明するための図である。 バーストモードの動作を説明するための図である。 バースト制御回路200の構成を示す図である。 バーストモードの動作を説明するための図である。
関連出願の相互参照
この出願は、2019年3月29日に出願された日本特許出願、特願2019-68517に基づく優先権を主張し、その内容を援用する。
本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
=====本実施形態=====
<<<スイッチング電源回路10の概要>>>
図1は、本発明の一実施形態であるスイッチング電源回路10の構成を示す図である。スイッチング電源回路10は、所定の入力電圧Vinから、目的レベルの出力電圧Voutを負荷11に生成するLLC電流共振型のコンバータである。
スイッチング電源回路10は、コンデンサ20,21,32、NMOSトランジスタ22,23、トランス24、制御ブロック25、ダイオード30,31、定電圧回路33、及び発光ダイオード34を含んで構成される。
コンデンサ20,21は、入力電圧Vinが印加される電源ラインと、接地側のグランドラインとの間の電圧を安定化させ、ノイズ等を除去する。なお、入力電圧Vinは、所定レベルの直流電圧である。
NMOSトランジスタ22は、ハイサイド側のパワートランジスタであり、NMOSトランジスタ23は、ローサイド側のパワートランジスタである。なお、本実施形態では、スイッチング素子としてNMOSトランジスタ22,23が用いられているが、例えば、PMOSトランジスタ、バイポーラトランジスタ、IGBTであっても良い。
トランス24は、1次コイルL1、2次コイルL2,L3、補助コイルL4を備えており、1次コイルL1と、2次コイルL2,L3と、補助コイルL3との間は絶縁されている。トランス24においては、1次側の1次コイルL1の両端の電圧の変化に応じて、2次側の2次コイルL2,L3に電圧が発生し、2次コイルL2,L3の電圧の変化に応じて、1次側の補助コイルL4の電圧が発生する。
また、1次コイルL1は、一端にNMOSトランジスタ22のソースと、NMOSトランジスタ23のドレインが接続され、他端にNMOSトランジスタ23のソースがコンデンサ21を介して接続されている。
したがって、NMOSトランジスタ22,23のスイッチングが開始されると、2次コイルL2,L3と、補助コイルL4の夫々の電圧が変化することとなる。なお、1次コイルL1と2次コイルL2,L3とは、同極性で電磁結合されており、2次コイルL2,L3と補助コイルL4も、同極性で電磁結合されている。
制御ブロック25は、NMOSトランジスタ22,23のスイッチングを制御するための回路ブロックであり、詳細は後述する。
ダイオード30,31は、2次コイルL2,L3の電圧を整流し、コンデンサ32は、整流された電圧を平滑化する。この結果、コンデンサ32には、平滑化された出力電圧Voutが生成される。なお、出力電圧Voutは、目的レベルの直流電圧となる。
定電圧回路33は、一定の直流電圧を生成する回路であり、例えば、シャントレギュレータを用いて構成される。
発光ダイオード34は、出力電圧Voutと、定電圧回路33の出力との差に応じた強度の光を発光する素子であり、後述するフォトトランジスタ57とともに、フォトカプラを構成する。本実施形態では、出力電圧Voutのレベルが高くなると、発光ダイオード34からの光の強度は強くなる。
<<<制御ブロック25>>>
制御ブロック25は、制御IC40、コンデンサ50~53、抵抗54,55、ダイオード56、及びフォトトランジスタ57を含む。
制御IC40(スイッチング制御回路)は、NMOSトランジスタ22,23のスイッチングを制御する集積回路であり、端子VCC,GND,SET,FB,IS,HO,LOを有する。
端子VCCは、制御IC40を動作させるための電源電圧Vccが印加される端子である。端子VCCには、一端が接地されたコンデンサ52と、ダイオード56のカソードとが接続されている。このため、コンデンサ52は、ダイオード56からの電流により充電され、コンデンサ52の充電電圧が、制御IC40を動作させる電源電圧Vccとなる。なお、制御IC40は、図示しない端子を介して入力電圧Vinの分圧電圧が印加されて起動され、起動された後は、電源電圧Vccに基づいて動作する。
端子GNDは、接地電圧が印加される端子であり、例えばスイッチング電源回路10が設けられる装置の筐体等に接続される。
端子SETは、例えば、マイコン(不図示)からのデータD1,D2が入力される端子である。なお、データD1,D2の詳細は後述するが、例えば、制御IC40の内部の抵抗の値や各種電圧の値等を設定するためのデータである。
端子FBは、出力電圧Voutに応じた帰還電圧Vfbが発生する端子であり、コンデンサ53、及びフォトトランジスタ57が接続される。コンデンサ53は、端子FBと、接地との間のノイズを除去するために設けられ、フォトトランジスタ57は、発光ダイオード34からの光の強度に応じた大きさのバイアス電流I1を、端子FBから接地へと流す。このため、フォトトランジスタ57は、シンク電流を生成するトランジスタとして動作する。
端子ISは、スイッチング電源回路10の入力電力に応じた電圧が印加される端子である。ここで、コンデンサ50及び抵抗54が接続されるノードには、1次コイルL1の共振電流の電流値に応じた電圧が発生する。そして、抵抗55及びコンデンサ51は、低域通過フィルタを構成する。このため、端子ISには、1次コイルL1の共振電流の電流値に応じ、ノイズ成分が除去された電圧が印加される。なお、共振電流の電流値は、スイッチング電源回路10の入力電力に応じて増加し、スイッチング電源回路10の入力電力は、負荷11で消費される電力に応じて増加する。このため、端子ISに印加される電圧は、負荷11の消費電力に応じた電圧を示すことになる。
端子HOは、NMOSトランジスタ22を駆動する駆動信号Vdr1が出力される端子であり、NMOSトランジスタ22のゲートが接続される。
端子LOは、NMOSトランジスタ23を駆動する駆動信号Vdr2が出力される端子であり、NMOSトランジスタ23のゲートが接続される。
<<<制御IC40の詳細>>>
図2は、制御IC40の構成を示す図である。制御IC40は、帰還電圧生成回路70、ADコンバータ71,73、増幅回路72、判定回路74、バースト制御回路75、発振回路76、及び駆動回路77を含む。なお、ここでは、端子VCC,GND,SETは省略されている。
帰還電圧生成回路70は、フォトトランジスタ57からのバイアス電流I1に基づいて、帰還電圧Vfbを生成する回路である。帰還電圧生成回路70は、抵抗90、可変抵抗91、メモリ92、及びスイッチSWを含む。
抵抗90(第1抵抗)は、例えば抵抗値Raを有し、可変抵抗91(第2抵抗)は、メモリ92に格納されたデータD1に応じた抵抗値Rbを有する。なお、抵抗90、可変抵抗91は、直列接続されている。
メモリ92は、マイコン(不図示)から入力される、可変抵抗91の抵抗値Rbを指定するデータD1を記憶する。本実施形態において、データD1は、例えば2ビットのデータであるため、抵抗値Rbは、データD1に対応し、4種類の抵抗値Rb1~Rb4の何れかとなる。
スイッチSWは、バースト制御回路75からの制御信号CONT(後述)に基づいて、オンまたはオフする。本実施形態では、制御信号CONTがハイレベル(以下、“Hレベル”とする。)の場合、スイッチSWはオンし、制御信号CONTがローレベル(以下、“Lレベル”とする。)の場合、スイッチSWはオフする。なお、スイッチSWは、可変抵抗91に並列接続されている。
そして、スイッチSWがオンしている場合の帰還電圧生成回路70の抵抗値Rは、R=Raとなる。一方、スイッチSWがオフしている場合の帰還電圧生成回路70の抵抗値Rは、R=Ra+Rbとなる。また、端子FBに印加される帰還電圧Vfbは、式(1)で表される。
Vfb=Vcc-R×I1・・・(1)
上述したように、本実施形態では、出力電圧Voutの上昇に応じて、バイアス電流I1の電流値は増加する。このため、出力電圧Voutが上昇すると、帰還電圧Vfbは低下することになる。そして、バイアス電流I1の電流値が一定の場合、スイッチSWがオフしている際の帰還電圧Vfbは、スイッチSWがオンしている際の帰還電圧Vfbより小さくなる。
ADコンバータ71は、端子FBの帰還電圧Vfbをデジタル値に変換して出力する。増幅回路72は、端子ISに印加される、負荷11に流れる電流に応じた電圧を増幅し、電圧Vcaとして出力する。また、ADコンバータ73は、電圧Vcaをデジタル値に変換して出力する。
判定回路74は、帰還電圧Vfbと、電圧Vcaとに基づいて、負荷11が軽負荷であるか否か、つまり、負荷11に流れる電流値が軽負荷を示す所定値(例えば、1mA)より小さいか否かを判定する。
ここで、負荷11が軽負荷となると、出力電圧Voutは目的レベルより上昇する。すると、例えば、シャントレギュレータで構成される定電圧回路33への内部入力が上昇し、出力を一定にさせるため、図示しないシャントレギュレータ内部のトランジスタに電流を多く流すようになる。
この結果、発光ダイオード34にも電流が多く流れる。そして、フォトトランジスタ57が、発光ダイオード34からの光の増幅度に応じた大きさのバイアス電流I1を、端子FBから接地へと流すことで、帰還電圧Vfbが低下する。
判定回路74は、負荷11が軽負荷か否かに基づいて、通常モードからバーストモードへの移行を判定する。例えば、判定回路74は、入力される帰還電圧Vfbが、出力電圧Voutが目的レベルの際の帰還電圧Vfbより低く、かつ、入力される電圧Vcaが、軽負荷の基準となる所定値より小さくなると、負荷11が軽負荷であると判定し、バーストモードへの移行を判定する。
また、判定回路74は、出力電圧Voutが目的レベルの際の帰還電圧Vfbより高くなるか、入力される電圧Vcaが、軽負荷の基準となる所定値より大きくなると、負荷11が軽負荷でないと判定し、通常モードへの移行を判定する。
なお、判定回路74は、通常モードからバーストモードへの移行を、帰還電圧Vfb、電圧Vcaの少なくとも一方に基づき判定するものとしてよい。具体的には、判定回路74は、例えば、電圧Vcaのみに基づいて、負荷11が軽負荷であるか否かを判定し、バーストモードへの移行を判定しても良い。
なお、「通常モード」とは、例えば、連続的にスイッチング動作が行われ、間欠的にスイッチング動作が停止されないモードであり、「バーストモード」とは、例えば、間欠的にスイッチング動作が停止されるモードである。また、スイッチング電源回路10が通常モードで動作している際は、スイッチング電源回路10がバーストモードで動作していない状態であるため、通常モード動作時は、バーストモード非動作時である。また、スイッチング電源回路10が通常モードで動作している際は、制御信号CONTがハイレベルであって、スイッチSWがオンし帰還電圧生成回路70の抵抗値RがR=Raとなっていてよい。
バースト制御回路75は、負荷11が軽負荷の際に、スイッチング動作を間欠的に停止させるための電圧Vbを発振回路76に出力する。なお、バースト制御回路75の詳細については後述する。
発振回路76は、入力される帰還電圧Vfb、または電圧Vbに基づいて、NMOSトランジスタ22,23のスイッチングするための発振信号Voscを出力する電圧制御発振回路である。発振回路76は、負荷11が軽負荷でないと判定された場合、つまり、通常モードの動作時においては、帰還電圧Vfbに基づいて動作する。
一方、発振回路76は、負荷11が軽負荷であると判定された場合、つまり、バーストモードの動作時においては、電圧Vbに基づいて動作する。なお、発振回路76は、入力される電圧のレベルが低くなると、高い周波数の発振信号Voscを出力する。また、発振回路76には、例えば所定のレベル以上の電圧が入力されると、発振信号Voscの出力を停止する。
駆動回路77は、発振信号Voscの周波数で、NMOSトランジスタ22,23をスイッチングする。具体的には、駆動回路77は、発振信号Voscの周波数を有し、デューティ比が原則として一定(例えば、50%)のパルス状の駆動信号Vdr1,Vdr2をNMOSトランジスタ22,23の夫々に出力する。なお、駆動回路77は、NMOSトランジスタ22,23が同時にオンしないよう、デッドタイムを設けつつ、駆動信号Vdr1と、駆動信号Vdr2とを、相補的に変化させる。
ここで、通常モードの動作時において、出力電圧Voutのレベルが目的レベルより上昇すると、帰還電圧Vfbは低下するため、発振信号Voscの周波数は高くなる。この結果、LLC電流共振型のコンバータであるスイッチング電源回路10の出力電圧Voutは低下する。一方、出力電圧Voutのレベルが目的レベルより低下すると、帰還電圧Vfbは上昇するため、発振信号Voscの周波数は低くなる。この結果、スイッチング電源回路10の出力電圧Voutは上昇する。したがって、通常モードの動作時においては、スイッチング電源回路10は、目的レベルの出力電圧Voutを生成することができる。
<<<バースト制御回路75の詳細>>>
ここで、図3を参照しつつ、バースト制御回路75の詳細について説明する。バースト制御回路75は、スイッチング動作を間欠的に停止させるための電圧Vbと、スイッチング動作を停止させる期間を定めるための制御信号CONTとを出力する。バースト制御回路75は、比較回路100、メモリ101、電圧出力回路102、タイマ103、及び制御回路104を含む。
比較回路100は、高い閾値電圧である電圧V1(第1電圧)と、帰還電圧Vfbとを比較するとともに、低い閾値電圧である電圧V2(第2電圧)と、帰還電圧Vfbとを比較するヒステリシスコンパレータである。比較回路100は、帰還電圧Vfbが上昇し、電圧V1より高くなると、比較結果を示す電圧Vcを“Hレベル”に変化させ、帰還電圧が低下し電圧V2(電圧V2<電圧V1)より低くなると、電圧Vcを“Lレベル”に変化させる。
メモリ101は、電圧V1,V2を設定するためのデータD2に基づいて、比較回路100で比較される電圧V1,V2を記憶する。なお、データD2の値により、電圧V1,V2のレベルは変化する。
電圧出力回路102は、電圧Vcが“Hレベル”となると、所定周波数の発振信号Voscを生成させる電圧Vbを出力し、電圧Vcが“Lレベル”となると、発振信号Voscの生成を停止させる電圧Vbを出力する。つまり、電圧出力回路102は、電圧Vcの論理レベルに応じて、電圧Vbのレベルを変化させる。このため、電圧Vcが“Hレベル”の際、NMOSトランジスタ22,23は所定の周波数でスイッチングされ、電圧Vcが“Lレベル”の際、NMOSトランジスタ22,23のスイッチングは停止される。なお、帰還電圧Vfbが上昇し電圧Vcが“Hレベル”になった場合、電圧出力回路102は帰還電圧Vfbの大きさに応じて電圧Vbのレベルを変化させるものとしてもよい。
タイマ103(計時回路)は、“Lレベル”の電圧Vcに基づいて、NMOSトランジスタ22,23のスイッチングが停止される期間(以下「停止期間」とする。)を計時する。
制御回路104は、電圧Vcと、タイマ103の計時する時間と、に基づいて、NMOSトランジスタ22,23がスイッチングされる期間(以下「スイッチング期間」)と、“停止期間”とを設定する回路である。
ここで、スイッチング電源回路10がバーストモードで動作している際、効率を上昇させるためには、電源電圧Vccが必要以上に低下しない程度に“停止期間”は長く、“スイッチング期間”は短い方が好ましい。
本実施形態では、“停止期間”は、帰還電圧Vfbが、電圧V2となってから上昇して電圧V1(>V2)となるまでの期間であり、“スイッチング期間”は、帰還電圧Vfbが、電圧V1となってから低下して電圧V2となるまでの期間である。そして、帰還電圧Vfbは、式(1)で示したように、Vfb=Vcc-R×I1である。
したがって、“停止期間”において、抵抗値Rを大きくすれば、“停止期間”は長くなり、抵抗値Rを小さくすれば、“停止期間”は短くなる。また、“スイッチング期間”において、抵抗値Rの値が小さくすれば、“スイッチング期間”は短くなる。
そこで、制御回路104は、“停止期間”が所定の“期間T1”より長くなると、“停止期間”を短くするための信号、つまり、抵抗値Rを小さくするための“H”レベルの制御信号CONTを出力する。なお、“期間T1(第1期間)”は、例えば、10msであり、スイッチング動作が停止された際、電源電圧Vccのレベルが通常時のレベル(例えば、5V)から、制御IC40が安定に動作する最低のレベル(例えば、4.5V)まで低下する期間に基づいて定められる。なお、ここで、「通常時のレベル」とは、例えば、スイッチング電源回路10が通常モードで動作している際の電源電圧Vccのレベルである。また、「制御IC40が安定に動作する最低のレベル」とは、例えば、制御IC40の各種機能が正常に動作するために必要な電源電圧Vccのレベルである。
また、制御回路104は、“停止期間”が十分短い“期間T2”より短くなることが、例えば5回続くと、“停止期間”を長くするための信号、つまり、抵抗値Rを大きくするための“L”レベルの制御信号CONTを出力する。なお、“期間T2(第2期間)”は、例えば2msであり、“期間T1”より短い期間である。
さらに、制御回路140は、NMOSトランジスタ22,23がスイッチングされる期間になると、“スイッチング期間”をより短くするための信号、つまり、抵抗値Rを小さくするための“H”レベルの制御信号CONTを出力する。なお、制御回路104は、カウンタ(不図示)やAND回路、NOR回路、OR回路等の各種論理回路を含み、カウンタの出力や電圧Vc等の論理レベルを論理合成して、所望の制御信号CONTを生成する。
<<<バーストモードの動作>>>
==T2<停止期間<T1==
ここで、図4を参照しつつ、スイッチング電源回路10がバーストモードで動作しており、さらに、“停止期間”が“期間T2”より長く、“期間T1”より短い場合の制御IC40の動作について説明する。なお、制御回路104は、起動された際、“停止期間”には“Lレベル”の制御信号CONTを出力するよう、設定されていることとする。
まず、時刻t0に、帰還電圧Vfbが電圧V2となると、電圧Vcは“Lレベル”になるため、スイッチング動作は停止される。この際、制御回路104は、“停止期間”を長くすべく、“Lレベル”の制御信号CONTを出力する。この結果、抵抗値Rは、R=Ra+Rbと大きくなるため、帰還電圧Vfb(=Vcc-R×I1)は急激に低下する。
時刻t0にスイッチング動作は停止されると、出力電圧Voutは低下するため、帰還電圧Vfbは上昇する。そして、時刻t1に、帰還電圧Vfbが電圧V1となると、電圧Vcは“Hレベル”になるため、スイッチング動作が開始される。この際、制御回路104は、“Hレベル”の制御信号CONTを出力する。この結果、抵抗値Rは、R=Raとなり、小さくなるため、帰還電圧Vfb(=Vcc-R×I1)は急激に大きくなる。
ここで、時刻t1に、帰還電圧Vfbが大きくなると、帰還電圧Vfbが電圧V2まで低下する期間、すなわち、“スイッチング期間”が長くなるように思われる。しかしながら、帰還電圧Vfbが大きくなると、フォトトランジスタ57のバイアス電流I1が大きくなるため、帰還電圧Vfbがより急峻に低下する。本実施形態では、抵抗値R=Raとした際に、“スイッチング期間”が短くなるよう、例えば、フォトトランジスタ57のサイズや、抵抗値Raが選択されている。このため、本実施形態では、“スイッチング期間”を短くすることができる。
そして、時刻t1にスイッチング動作は開始されると、出力電圧Voutは上昇するため、帰還電圧Vfbは低下する。なお、本実施形態では、帰還電圧Vfbの立下りの傾きが、帰還電圧Vfbの立ち上がりの傾きより大きくなるよう、バイアス電流I1、抵抗値Rが設定されているため、帰還電圧Vfbが電圧V2となるまでの期間は、時刻t0~時刻t1までの停止期間より十分短くなる。そして、時刻t2以降、時刻t0~時刻t1の動作が繰り返される。
==停止期間>T1==
図5を参照しつつ、スイッチング電源回路10がバーストモードで動作しており、さらに、“停止期間”が“期間T1”より長い場合の制御IC40の動作について説明する。
まず、時刻t10に、帰還電圧Vfbが電圧V2となると、電圧Vcは“Lレベル”になるため、スイッチング動作は停止される。この際、制御回路104は、“停止期間”を長くすべく、“Lレベル”の制御信号CONTを出力する。この結果、抵抗値Rは、R=Ra+Rbとなり、大きくなるため、帰還電圧Vfb(=Vcc-R×I1)は急激に低下する。
時刻t10にスイッチング動作は停止されると、出力電圧Voutは低下するため、帰還電圧Vfbは上昇する。そして、時刻t10から“期間T1”だけ経過した時刻t11となると、制御回路104は、“停止期間”が“期間T1”より長いことを検出する。この結果、制御回路104は、“停止期間”を短くするための“Hレベル”の制御信号CONTを出力する。
そして、制御信号CONTが“Hレベル”になると、抵抗値Rは、R=Raとなり、小さくなるため、帰還電圧Vfb(=Vcc-R×I1)は急激に大きくなる。この結果、時刻t11において、帰還電圧Vfbは、電圧V1より高くなるため、電圧Vcは“Hレベル”になり、スイッチング動作が開始される。
そして、時刻t11にスイッチング動作が開始されると、出力電圧Voutは上昇するため、帰還電圧Vfbは低下する。また、時刻t12に、帰還電圧Vfbが電圧V2となると、電圧Vcは“Lレベル”になるため、スイッチング動作は停止される。ここで、制御回路104は、時刻t11において、“停止期間”が“期間T1”より長いことを検出したため、時刻t11以降において、“停止期間”を短くするための“Hレベル”の制御信号CONTが出力され続ける。すなわち、帰還電圧のレベルを制御信号CONTによって変化させた後、その変化させた状態が時刻t12以降も維持される。
この結果、抵抗値Rは、R=Raのまま維持されるため、帰還電圧Vfbは電圧V2のレベルから上昇する。そして、時刻t12以降、抵抗値Rの値を維持した状態で、バーストモードの動作が繰り返される。このように、“停止期間”が“期間T1”より長いことが検出されると、制御回路104は、“停止期間”を短くするよう、“停止期間”における帰還電圧Vfbのレベルを変化させる。
==停止期間<T2==
図6を参照しつつ、スイッチング電源回路10がバーストモードで動作しており、さらに、“停止期間”が“期間T2”より短い回数が5回続いた場合の制御IC40の動作について説明する。なお、ここでは、図6の時刻t20以前に、制御回路104は、“停止期間”が“期間T1”より長いことが検出し、“停止期間”において、“Hレベル”の制御信号CONTを出力していることとする。
まず、時刻t20に、帰還電圧Vfbが電圧V2となると、電圧Vcは“Lレベル”になるため、スイッチング動作は停止される。ここで、制御回路104は、“Hレベル”の制御信号CONTを出力しているため、抵抗値Rは、R=Raの状態が維持される。この結果、時刻t20において、帰還電圧Vfbは電圧V2のレベルから上昇する。
そして、時刻t20から“期間T2”より短い期間が経過した時刻t21となると、制御回路104は、“停止期間”が“期間T2”より短いことを検出する。
また、時刻t21に、帰還電圧Vfbが電圧V1となると、電圧Vcは“Hレベル”になるため、スイッチング動作が開始される。ここで、制御回路104は、“Hレベル”の制御信号CONTを出力しているため、抵抗値Rは、R=Raの状態が維持される。この結果、時刻t21において、帰還電圧Vfbは電圧V1のレベルから低下する。
そして、時刻t22に、制御回路104が“停止期間”が“期間T2”より短いことを、5回検出すると、制御回路104は、時刻t23に、“停止期間”を長くすべく、“Lレベル”の制御信号CONTを出力する。この結果、抵抗値Rは、R=Ra+Rbと大きくなるため、帰還電圧Vfbは急激に低下する。したがって、時刻t23~t24までの“停止期間”は、例えば、時刻t20~t21までの“停止期間”より長くなる。なお、時刻t24以降は、図4で説明した動作が繰り返されることになる。
このように、“停止期間”が“期間T2”より短いとの検出結果に基づいて、制御回路104は、“停止期間”を長くするよう、“停止期間”における帰還電圧Vfbのレベルを変化させる。したがって、制御IC40は、“停止期間”が短い場合、“停止期間”を長くすることができるため、スイッチング電源回路10の効率は向上する。
なお、“停止期間”が“期間T2”より短いか否かにかかわらず、“Hレベル”の制御信号CONTの維持を解いてもよい。具体的には、“停止期間”が“期間T1”より長いことを検出して、“停止期間”を短くするように帰還電圧のレベルを変化させ、その後、所定回数の停止期間その変化の状態を維持した場合には、次の停止期間で維持を解いてもよい。すなわち、次の停止期間で“Lレベル”の制御信号CONTを出力するものとしてもよい。
<<<バースト制御回路の他の実施形態>>>
図7は、バースト制御回路200の一例を示す図である。バースト制御回路200は、比較回路100、メモリ101、電圧出力回路102,210、タイマ103、及び制御回路104を含む。バースト制御回路200において、バースト制御回路75と同じ符号の付されたブロックは、同じであるため、電圧出力回路210について説明する。
電圧出力回路210は、“停止期間”を短くするための“H”レベルの制御信号CONTが入力されると、電圧V1より低い電圧V1bを出力する。また、電圧出力回路210は、“停止期間”を長くするための“L”レベルの制御信号CONTが入力されると、電圧V1より高い電圧V1aを出力する。そして、比較回路100は、電圧V1a,V1bを高い閾値電圧として、帰還電圧Vfbと比較する。
図8は、バースト制御回路200が制御IC40に用いられた際のバーストモードの動作を説明するための図である。例えば、時刻taに帰還電圧Vfbが電圧V2となると、電圧Vcは“Lレベル”になるため、スイッチング動作は停止される。この際、制御回路104は、“Lレベル”の制御信号CONTを出力するため、抵抗値Rは大きくなり、帰還電圧Vfb(=Vcc-R×I1)は急激に低下する。
そして、時刻taにスイッチング動作は停止されると、出力電圧Voutは低下するため、帰還電圧Vfbは上昇する。ここで、電圧出力回路210は、“停止期間”を長くするための“L”レベルの制御信号CONTに基づいて、電圧V1aを出力している。このため、時刻tbに、帰還電圧Vfbが電圧V1aとなるまでスイッチング動作が開始されることはない。
一方、例えば、電圧出力回路210に、“停止期間”を短くするための“H”レベルの制御信号CONTが入力されている場合、電圧V1aでなく、電圧V1bが出力されることになる。この場合、時刻tbよりも前の時刻tcにおいて、帰還電圧Vfbは、電圧V1bとなるため、“停止期間”は短くなる。このように、制御信号CONTの論理レベルに応じて、比較回路100の高い閾値電圧である電圧V1のレベルを変化させた場合、抵抗値Rを変化させる場合と同様に、“停止期間”を調整することができる。
===まとめ===
以上、本実施形態のスイッチング電源回路10について説明した。制御回路104は、軽負荷時に“停止期間”が“期間T1”より長い場合、“停止期間”が短くなるよう、例えば帰還電圧Vfbのレベルを変化させる。したがって、制御IC40は、スイッチング電源回路10を安定に動作させつつ、軽負荷時の効率を上昇させることができる。
また、例えば、制御回路104は、“停止期間”が“期間T2”より短くなると、“停止期間”が長くなるよう、“Lレベル”の制御信号CONTを出力しても良い。このような場合、バーストモードで動作しているスイッチング電源回路10の“停止期間”を長くすることができるため、スイッチング電源回路10の効率を改善することができる。
また、例えば、負荷11の過渡的な変化により、“停止期間”が“期間T2”より短くなることがある。このような場合に、直ちに“停止期間”を長くすると、“停止期間”が“期間T1”を超えてしまうことがある。しかしながら、本実施形態の制御回路104は、“停止期間”が“期間T2”より短くなることが5回(所定回数)続いた場合に、“停止期間”が長くなるよう、“Lレベル”の制御信号CONTを出力している。したがって、制御IC40は、負荷11の過渡的に変化した場合であっても、“停止期間”が“期間T1”より長くなり、制御IC40の動作が不安定になることを防ぐことができる。
また、制御回路104は、“停止期間”が“期間T1”より短い場合、“スイッチング期間”が長くなるよう、抵抗値Rを小さくすることにより、帰還電圧Vfbのレベルを高くしている(例えば、図4の時刻t1)。これにより、“スイッチング期間”において帰還電圧Vfbの立下りの傾きは急峻になり、“スイッチング期間”を短くすることができることから、効率は改善される。
また、制御回路104は、帰還電圧生成回路70の抵抗値Rを変化させることにより、帰還電圧Vfbのレベルを変化させている。
また、制御回路104は、スイッチSWのオンオフを制御することにより、抵抗値Rを変化させている。
また、電圧生成回路210は、制御信号CONTの論理レベルに応じて、電圧V1a,V1bを比較回路100に出力する。このような回路を用いることにより、“停止期間”を“期間T1”より短くすることができる。
また、駆動回路77は、通常モードの動作時には、帰還電圧Vfbに基づいてNMOSトランジスタ22,23を駆動し、バーストモードの動作時には、電圧Vbに基づいてNMOSトランジスタ22,23を駆動する。このため、制御IC40は、負荷11が軽負荷から重負荷に変化しても、目的レベルの出力電圧Voutを生成し続けることができる。
また、“期間T1”は、例えば、スイッチング動作が停止された際、電源電圧Vccのレベルが通常時のレベルから、制御IC40が安定に動作する最低のレベルまで低下する期間としても良い。このような“期間T1”が設定されることにより、スイッチング電源回路10を安定に動作させることができる。
上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得るとともに、本発明にはその等価物が含まれるのはいうまでもない。
例えば、バースト制御回路200を用いる場合、制御IC40においてスイッチSWを設けない構成とし、制御回路104は、“停止期間”を調整するために、電圧V1のレベルのみを変化させても良い。このような構成であったとしても、制御IC40は、スイッチング電源回路10を安定に動作させつつ、軽負荷時の効率を上昇させることができる。
また、本実施形態の制御回路104は、“スイッチング期間”を短くすべく、スイッチング期間となると、抵抗値Rを小さくしているが、これに限られない。例えば、制御回路104は、“スイッチング期間”であっても、抵抗値Rを変化させず、大きい値としても良い。
また、制御IC40は、制御回路104が“停止期間”が“期間T1”より長いことを検出すると、所定期間スイッチング動作を強制的に行う電圧Vbを電圧出力回路102に出力させる、ターンオン回路を含んでいても良い。このようなターンオン回路が含まれることにより、仮に、“停止期間”が“期間T1”より長いことが検出され、帰還電圧Vfbが電圧V1とならない場合であっても、電源電圧Vccの低下を防ぐことができる。
10 スイッチング電源回路
11 負荷
20,21,32,50~53 コンデンサ
22,23 NMOSトランジスタ
24 トランス
25 制御ブロック
30,31,56 ダイオード
33 定電圧回路
34 発光ダイオード
40 制御IC
54,55,90 抵抗
57 フォトトランジスタ
70 帰還電圧生成回路
71,73 ADコンバータ
72 増幅回路
74 判定回路
75 バースト制御回路
76 発振回路
77 駆動回路
91 可変抵抗
92,101 メモリ
100 比較回路
102,210 電圧出力回路
103 タイマ
104 制御回路

Claims (10)

  1. 1次側に設けられた1次コイルと、2次側に設けられた2次コイルと、前記1次コイルまたは前記2次コイルに電磁結合された補助コイルとを含むトランスと、前記1次コイルに接続されるトランジスタと、を含み目的レベルの出力電圧を2次側に生成する電源回路の前記補助コイルからの電圧に基づいて動作し、前記トランジスタのスイッチングを制御するスイッチング制御回路であって、
    前記出力電圧が印加される負荷が軽負荷か否かに基づいて、バーストモードへの移行を判定する判定回路と、
    前記バーストモードの動作時に前記トランジスタのスイッチングが停止される停止期間を計時する計時回路と、
    前記停止期間が第1期間より長い場合、前記停止期間が短くなるように制御する制御回路と、
    を含むことを特徴とするスイッチング制御回路。
  2. 請求項1に記載のスイッチング制御回路であって、
    前記バーストモードの動作時に、前記出力電圧に応じた帰還電圧のレベルが第1電圧のレベルとなると、前記トランジスタのスイッチングをさせるための信号を出力し、前記帰還電圧のレベルが第2電圧のレベルとなると、前記トランジスタのスイッチングを停止させるための信号を出力する比較回路を含み、
    前記制御回路は、前記停止期間が第1期間より長い場合、前記停止期間が短くなるよう、前記帰還電圧のレベル及び前記第1電圧のレベルの少なくとも何れか一方を変化させること、
    を特徴とするスイッチング制御回路。
  3. 請求項2に記載のスイッチング制御回路であって、
    前記制御回路は、前記停止期間が第1期間より長い場合に前記帰還電圧のレベル及び前記第1電圧のレベルの少なくとも何れか一方を変化させた後、前記帰還電圧のレベル及び前記第1電圧のレベルの少なくとも何れか一方を変化させた状態を維持すること
    を特徴とするスイッチング制御回路。
  4. 請求項3に記載のスイッチング制御回路であって、
    前記制御回路は、前記停止期間が前記第1期間より短い第2期間となる回数が所定回数となると、前記停止期間が長くなるよう、前記帰還電圧のレベル及び前記第1電圧のレベルの少なくとも何れか一方を変化させること、
    を特徴とするスイッチング制御回路。
  5. 請求項2~4の何れか一項に記載のスイッチング制御回路であって、
    可変抵抗を含み、前記出力電圧に応じたバイアス電流と、前記可変抵抗の抵抗値とに応じた前記帰還電圧を生成する帰還電圧生成回路を含み、
    前記制御回路は、前記帰還電圧生成回路の前記可変抵抗の抵抗値を、前記停止期間に応じて変化させること、
    を特徴とするスイッチング制御回路。
  6. 請求項5に記載のスイッチング制御回路であって、
    前記可変抵抗は、
    第1抵抗と、前記第1抵抗に直列接続される第2抵抗と、前記第2抵抗に並列接続されるスイッチと、を含み、
    前記制御回路は、前記停止期間に応じて前記スイッチをオンオフさせること、
    を特徴とするスイッチング制御回路。
  7. 請求項2~6の何れか一項に記載のスイッチング制御回路であって、
    制御信号の論理レベルに応じたレベルの前記第1電圧を出力する電圧出力回路を含み、
    前記制御回路は、前記停止期間に応じた論理レベルの前記制御信号を、前記電圧出力回路に出力すること、
    を特徴とするスイッチング制御回路。
  8. 請求項2~7の何れか一項に記載のスイッチング制御回路であって、
    前記バーストモードの動作時に、前記比較回路からの信号に基づいて、前記トランジスタを駆動し、前記バーストモードの非動作時に、前記帰還電圧に基づいて、前記トランジスタを駆動する駆動回路を含むこと、
    を特徴とするスイッチング制御回路。
  9. 請求項2~8の何れか一項に記載のスイッチング制御回路であって、
    前記第1期間は、前記補助コイルからの電圧に応じて定まる期間であること、
    を特徴とするスイッチング制御回路。
  10. 1次側に設けられた1次コイルと、2次側に設けられた2次コイルと、前記1次コイルまたは前記2次コイルに電磁結合された補助コイルとを含むトランスと、
    前記1次コイルに接続されるトランジスタと、
    前記補助コイルからの電圧に基づいて動作し、前記トランジスタのスイッチングを制御するスイッチング制御回路と、
    を含み目的レベルの出力電圧を2次側に生成する電源回路であって、
    前記スイッチング制御回路は、
    前記出力電圧が印加される負荷が軽負荷か否かに基づいて、バーストモードへの移行を判定する判定回路と、
    前記前記バーストモードの動作時にトランジスタのスイッチングが停止される停止期間を計時する計時回路と、
    前記停止期間が第1期間より長い場合、前記停止期間が短くなるように制御する制御回路と、
    を含むことを特徴とする電源回路。
JP2021511157A 2019-03-29 2020-01-31 スイッチング制御回路、電源回路 Active JP7006840B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019068517 2019-03-29
JP2019068517 2019-03-29
PCT/JP2020/003658 WO2020202760A1 (ja) 2019-03-29 2020-01-31 スイッチング制御回路、電源回路

Publications (2)

Publication Number Publication Date
JPWO2020202760A1 JPWO2020202760A1 (ja) 2021-10-21
JP7006840B2 true JP7006840B2 (ja) 2022-01-24

Family

ID=72667957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021511157A Active JP7006840B2 (ja) 2019-03-29 2020-01-31 スイッチング制御回路、電源回路

Country Status (4)

Country Link
US (1) US11742763B2 (ja)
JP (1) JP7006840B2 (ja)
CN (1) CN112956122A (ja)
WO (1) WO2020202760A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144954A (zh) * 2020-02-04 2022-03-04 富士电机株式会社 检测电路、开关控制电路、电源电路
JP2022085225A (ja) * 2020-11-27 2022-06-08 富士電機株式会社 電流検出回路、電源回路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188082A (ja) 2012-03-09 2013-09-19 Canon Inc 電源装置及び画像形成装置
JP2017112798A (ja) 2015-12-18 2017-06-22 キヤノン株式会社 電源装置及び画像形成装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733605B2 (ja) 2010-11-09 2015-06-10 富士電機株式会社 スイッチング電源装置
JP6402610B2 (ja) 2014-12-03 2018-10-10 富士電機株式会社 スイッチング電源装置、スイッチング電源装置の制御方法およびスイッチング電源装置の制御回路
JP6497144B2 (ja) 2015-03-13 2019-04-10 富士電機株式会社 スイッチング電源装置の制御回路およびスイッチング電源装置
JP6086963B1 (ja) 2015-08-31 2017-03-01 三菱電機エンジニアリング株式会社 電圧出力回路
JP6665476B2 (ja) 2015-10-06 2020-03-13 富士電機株式会社 スイッチング電源装置の制御回路
JP6665573B2 (ja) 2016-02-17 2020-03-13 富士電機株式会社 スイッチング電源装置
US10491127B2 (en) * 2016-09-16 2019-11-26 Rohm Co., Ltd. Power supply control unit and isolation type switching power supply device
US11398767B2 (en) * 2017-12-06 2022-07-26 Nxp B.V. Power converter for delaying entering burst mode and method thereof
US11437913B2 (en) * 2019-10-15 2022-09-06 Fuji Electric Co., Ltd. Switching control circuit and power supply circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013188082A (ja) 2012-03-09 2013-09-19 Canon Inc 電源装置及び画像形成装置
JP2017112798A (ja) 2015-12-18 2017-06-22 キヤノン株式会社 電源装置及び画像形成装置

Also Published As

Publication number Publication date
WO2020202760A1 (ja) 2020-10-08
US20210184585A1 (en) 2021-06-17
US11742763B2 (en) 2023-08-29
CN112956122A (zh) 2021-06-11
JPWO2020202760A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US7272018B2 (en) Switching power supply device and method for controlling switching power supply device
US11437913B2 (en) Switching control circuit and power supply circuit
WO2021210288A1 (ja) 集積回路、電源装置
US11735994B2 (en) Integrated circuit and power supply circuit
US11233448B2 (en) Switching control circuit and switching control method
JP7006840B2 (ja) スイッチング制御回路、電源回路
US20230009994A1 (en) Integrated circuit and power supply circuit
JP2023116352A (ja) 集積回路、電源回路
US11936302B2 (en) Detection circuit, switching control circuit, and power supply circuit
US20230010211A1 (en) Integrated circuit and power supply circuit
JP4543021B2 (ja) 電源装置及びその制御回路並びに制御方法
US11705819B2 (en) Integrated circuit and power supply circuit
US20220166309A1 (en) Integrated circuit and power supply circuit
JP7472654B2 (ja) スイッチング制御回路、llcコンバータ
US7154762B2 (en) Power source apparatus
JP2022142919A (ja) スイッチング制御回路、共振型コンバータ
JP7413805B2 (ja) スイッチング制御回路、電源回路
JP2024052021A (ja) 集積回路、電源回路
JP2021090234A (ja) スイッチング制御回路、電源回路
US11418122B2 (en) Integrated circuit and power supply circuit
US20230188050A1 (en) Integrated circuit and power supply circuit
CN111162677B (zh) 电源控制装置、以及llc谐振变换器
JP2023039050A (ja) スイッチング制御回路、電源回路
JP2022084503A (ja) 集積回路、及び電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 7006840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150