JP7005751B2 - ナノポア配列決定セルにおける二重層静電容量の測定 - Google Patents

ナノポア配列決定セルにおける二重層静電容量の測定 Download PDF

Info

Publication number
JP7005751B2
JP7005751B2 JP2020516452A JP2020516452A JP7005751B2 JP 7005751 B2 JP7005751 B2 JP 7005751B2 JP 2020516452 A JP2020516452 A JP 2020516452A JP 2020516452 A JP2020516452 A JP 2020516452A JP 7005751 B2 JP7005751 B2 JP 7005751B2
Authority
JP
Japan
Prior art keywords
double layer
capacitance
capacitor
voltage
voltage level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020516452A
Other languages
English (en)
Other versions
JP2020535398A (ja
Inventor
コマディナ,ジェイソン
パーバランデ,ピルーズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2020535398A publication Critical patent/JP2020535398A/ja
Application granted granted Critical
Publication of JP7005751B2 publication Critical patent/JP7005751B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

[0001]内径が1ナノメートル程度のポアサイズを有するナノポア膜装置は、迅速なヌクレオチド配列決定において見込みを示してきた。電圧信号が導電性流体に浸漬されたナノポアを横断して印加されるとき、電界は、イオンを、ナノポアを通り導電性流体内を移動させ得る。ナノポアを通る導電性流体内でのイオンの移動は、わずかなイオン電流をもたらし得る。印加電圧はまた、配列決定されることになる分子(または配列決定されることになる分子の分子プロキシ)を、ナノポア内へ、ナノポアを通り、またはナノポアの外に、移動させ得る。イオン電流(または対応する電圧)のレベルは、ナノポアおよびナノポア内に移動された個々の分子の、サイズおよび化学的構造に依存する。
[0002]ナノポアを通り移動するDNA分子(または配列決定されることになる他の核酸分子)の代替として、分子(例えば、DNA鎖に加えられたヌクレオチド)は、プロキシとして作用する特定のサイズおよび/または構造の特定のタグを含み得る。ナノポアを含む回路内のイオン電流または電圧(例えば、積分コンデンサでの)は、分子に対応するナノポアの抵抗の測定方法として測定され得て、それによりナノポア内の個々の分子、および核酸の特定の位置の特定のヌクレオチドの検出が可能になる。
[0003]ナノポアベースの配列決定チップは、並行DNA配列決定のためのアレイとして構成される大量のセンサセルを組み込み得る。ナノポアベースの配列決定チップの製作および/または使用中、様々なパラメータが、品質保証、均一性チェック、ベースライン較正、データ正規化、および/または塩基分類などの目的のため、製造および/または配列決定プロセスの異なる段階で測定される必要があり得る。
[0004]本明細書に説明される技術は、ナノポアベースの核酸配列決定に関する。静電容量値cdblを有する二重層コンデンサCdblが、電解質とナノポア配列決定セル内の作用電極との間の界面に存在し得る。静電容量値cdblは、経時的に変化し得、一定印加電圧について実施される測定において減衰を引き起こす。より高いcdblは、サイクル内減衰を低減し得る。セル毎にcdblを知ることにより、正確な塩基分類のための測定データに対する知的調整が可能になり得る。cdblは、ナノポアセル内の二重層およびナノポアの形成の前および/または後に測定され得る。
[0005]特定の実施形態では、cdblは、電解質をナノポアセルに加えた後だが、配列決定セル内のウェルを覆う膜(例えば、二重層)の形成、およびナノポアの形成の前に、測定され得る。二重層コンデンサは、初期電圧レベルに事前充電され得る。既知の静電容量値を有するコンデンサ、例えば、測定に使用される1つまたは複数の積分回路と関連付けられ、既知の静電容量値cintを有するコンデンサCint(以後、積分コンデンサと称される)が、二重層コンデンサを繰り返し充電または放電するために使用され得る。二重層コンデンサにおける電圧レベルは、特定の数の充電または放電後に測定され得る。二重層コンデンサが充電または放電される割合は、cdblとcintとの比率、ゆえに、cintが知られているときのcdblの絶対値を決定するために使用され得る。
[0006]例えば、積分コンデンサは、繰り返し、二重層コンデンサから切断され、二重層コンデンサの初期電圧レベルとは異なる既知の電圧レベルへ充電され、二重層コンデンサに再接続され得る。そのようなサイクルの各々において、積分コンデンサは、二重層コンデンサと積分静電容量との初期電圧差に依存する、およびcdblとcintとの比率に依存する量だけ、二重層コンデンサにおける電圧レベルを増大または減少させ得る。
[0007]いくつかの実施形態では、cdblは、二重層およびナノポアの形成後に測定され得、二重層およびナノポアの形成の時点で、ナノポアと関連付けられた、抵抗rporeを有する抵抗器Rpore(例えば、開放チャネル抵抗器)および/またはコンデンサ(CBilayer)が形成されていてもよい。二重層コンデンサは、初期電圧レベルに事前充電され得る。次いで、初期電圧レベルとは異なる電圧レベルが、脂質二重層の上部のバルク電解質およびナノポアに印加され得る。電圧差は、二重層コンデンサにおける電圧レベルを、ナノポアと関連付けられた抵抗器および/またはコンデンサを介して充電または放電(すなわち、減衰)させ得る。二重層コンデンサにおける電圧レベルは、ある特定のサンプリングレートで、または特定の時点に、測定され得る。二重層コンデンサにおける電圧レベルの減衰の時間定数(τ~rporedbl)は、rporeが知られているときにcdblを決定するために使用され得る。
[0008]本発明のこれらおよび他の実施形態は、以下に詳細に説明される。例えば、他の実施形態は、本明細書に説明される方法と関連付けられたシステム、デバイス、およびコンピュータ可読媒体を対象とする。
[0009]本発明の実施形態の性質および利点のより良い理解は、以下の詳細な説明および添付の図面を参照して得られ得る。
[0010]例となるナノポアベースの配列決定チップ内のナノポアセルの一実施形態を例証する簡略構造を示す図である。 [0011]ポリヌクレオチドまたはポリペプチドを特徴づけるために使用され得るナノポアセンサチップ内の例となるナノポアセルを例証する図である。 [0012]ナノポアベースの、合成による配列決定(ナノ-SBS)技術を使用してヌクレオチド配列決定を実施するナノポアセルの一実施形態である。 [0013]導電性電極と隣接する液体電解質との間の界面に形成された二重層コンデンサを例証する図である。 [0014]導電性電極と隣接する液体電解質との間の界面において、図4に示されるような二重層コンデンサの形成と同時に形成され得る疑似静電容量効果を例証する図である。 [0015]ナノポアセルの電気モデルを表す、例となる電気回路を例証する図である。 [0016]ヌクレオチド配列決定中のナノポアセルに対する例となる制御および測定信号を例証する図である。 [0017]ナノポアセル内の非ファラデー性伝導のための例となる小信号モデルを例証する図である。 [0018]ACサイクルの明期間および暗期間中のナノポアセルから取得された例となるデータポイントを示す図である。 [0019]図10A:特定の実施形態に従う、ステップ応答静電容量測定中にベースラインを確立するためのナノポアセル内の回路の例となる構成を例証する図である。[0020]図10B:特定の実施形態に従う、ステップ応答静電容量測定中に負のステップ応答を測定するためのナノポアセル内の回路の例となる構成を例証する図である。[0021]図10C:特定の実施形態に従う、ステップ応答静電容量測定中に正のステップ応答を測定するためのナノポアセル内の回路の例となる構成を例証する図である。 [0022]特定の実施形態に従う、ステップ応答静電容量測定技術を使用して二重層静電容量を測定するための例となるACステップ信号を例証する図である。 [0023]特定の実施形態に従う、ステップ応答静電容量測定技術を使用して、より低い静電容量を有する二重層静電容量を測定するための例となる結果を例証する図である。 [0024]特定の実施形態に従う、ステップ応答静電容量測定技術を使用して、より高い静電容量を有する二重層静電容量を測定するための例となる結果を例証する図である。 [0025]特定の実施形態に従う、ステップ応答静電容量測定中の二重層コンデンサにおける電圧信号の減衰を例証する図である。 [0026]電気化学インピーダンス分光法(EIS)を使用して測定された二重層静電容量とステップ応答静電容量測定技術を使用して測定された減衰時間との間の相関を例証する図である。 [0027]特定の実施形態に従う、より高い静電容量を有する二重層コンデンサの静電容量を測定するための例となるステップ応答静電容量測定技術を例証する図である。 [0028]特定の実施形態に従う、ステップ応答静電容量測定の例となる方法を例証するフローチャートである。 [0029]図17A:特定の実施形態に従う、電荷タイトレーション静電容量測定中のナノポアセル内の回路の例となる構成を例証する図である。[0030]図17B:特定の実施形態に従う、電荷タイトレーション静電容量測定中に積分コンデンサを充電するためのナノポアセル内の回路の例となる構成を例証する図である。[0031]図17C:特定の実施形態に従う、電荷タイトレーション静電容量測定中に積分コンデンサを放電するためのナノポアセル内の回路の例となる構成を例証する図である。 [0032]特定の実施形態に従う、二重層コンデンサの静電容量と積分コンデンサの静電容量との異なる静電容量比率についての電荷タイトレーション静電容量測定の例となるシミュレーション結果を例証する図である。 [0033]特定の実施形態に従う、電荷タイトレーション静電容量測定の例となる方法を例証するフローチャートである。 [0034]特定の実施形態に従う、本開示の方法およびシステムおよび方法と共に使用可能な例となるコンピュータシステムのブロック図である。
定義
[0035]「核酸」は、デオキシリボヌクレオチドまたはリボヌクレオチド、および一本または二本鎖の何れかの形態の、その重合体を指し得る。この用語は、合成の、自然発生的、非自然発生的であり、参照核酸と同様の結合特性を有し、参照ヌクレオチドと同様の挙動で代謝する、周知のヌクレオチドの類似物または修飾された主鎖の残基または連鎖を含む核酸を包含し得る。そのような類似物の例は、それだけには限らないが、ホスホロチオエート、ホスホルアミダイト、メチルホスホン酸塩、キラルメチルホスホン酸塩、2-O-メチルリボヌクレオチド、ペプチド核酸(PNAs)を含み得る。用語、核酸は、遺伝子、cDNA、mRNA、オリゴヌクレオチド、およびポリヌクレオチドと交換可能に用いられ得る。
[0036]別途示されない限り、特定の核酸配列はまた、保守的に修飾されたその変異体(例えば、変性したコドン置換)および相補的配列、ならびに明白に示された配列を暗黙的に包含する。具体的には、変性したコドン置換は、1つまたは複数の選択された(またはすべての)コドンの第3の位置が混合基および/またはデオキシイノシン残渣と置換される配列を生成することによって達成され得る(Batzer et al.,Nucleic Acid Res.19:5081(1991);Ohtsuka et al.,J.Biol.Chem.260:2605-2608(1985);Rossolini et al.,Mol.Cell.Probes8:91-98(1994))。核酸という用語は、遺伝子、cDNA、mRNA、オリゴヌクレオチド、およびポリヌクレオチドと交換可能に使用される。
[0037]用語「ヌクレオチド」は、文脈が明白に別のことを示さない限り、天然由来のリボヌクレオチドまたはデオキシリボヌクレオチドモノマーを指すことに加えて、ヌクレオチドが使用されている特定の文脈に対して機能的に同等である(例えば、相補的塩基へのハイブリダイゼーション)、派生物および類似体を含む、その関連した構造的変異体を指すことが理解され得る。
[0038]用語「鋳型」は、DNA合成のためのDNAヌクレオチドの相補的鎖へ複製される一本鎖核酸分子を示し得る。場合によっては、鋳型は、mRNAの合成中に複製されるDNAの配列を示し得る。
[0039]用語「プライマ」は、DNA合成の開始点を提供する短い核酸配列を示し得る。DNAポリメラーゼなどのDNA合成を触媒する酵素は、新らたなヌクレオチドをDNA複製用プライマに加え得る。
[0040]「ナノポア」は、膜内に形成される、または別のやり方で提供される、細孔、チャネル、または通路を指す。膜は、脂質二重層などの有機膜、またはポリマー材料で形成された膜などの合成膜であってもよい。ナノポアは、センシング回路またはセンシング回路に結合された電極、例えば、相補型金属酸化膜半導体(CMOS)または電界効果トランジスタ(FET)回路などに隣接して、または近接して配置され得る。いくつかの例において、ナノポアは、0.1ナノメートル(nm)程度~約1000nmの特徴的な幅または直径を有する。いくつかのナノポアはタンパク質である。
[0041]本明細書で用いられるとき、用語「明期間」は、通常、タグ付けされたヌクレオチドのタグが、AC信号を通して印加される電界によってナノポア内に押し込まれる期間を指す。用語「暗期間」は、通常、タグ付けされたヌクレオチドのタグが、AC信号を通して印加される電界によってナノポア外に押し出される期間を指す。ACサイクルは、明期間および暗期間を含み得る。異なる実施形態では、ナノポアセルを明期間(または暗期間)内に入れるためにナノポアセルに印加される電圧信号の極性は、異なり得る。
[0042]本明細書で用いられるとき、用語「信号値」は、配列決定セルから出力される配列決定信号の値を指し得る。特定の実施形態によると、配列決定信号は、1つまたは複数の配列決定セルの回路内のあるポイントから測定および/または出力される電気信号であり得、例えば、信号値は、電圧または電流であり得る(またはこれを表し得る)。信号値は、電圧および/もしくは電流の直接測定の結果を表し得、ならびに/または間接測定を表し得、例えば、信号値は、電圧もしくは電流が指定した値に達するまでにかかる、測定された継続時間であり得る。信号値は、ナノポアの抵抗性と相関する任意の測定可能な量を表し得、そこからナノポア(充填および/または非充填)の抵抗性および/または伝導性が導出され得る。
[0043]本明細書に開示される技術は、ナノポアベースの核酸配列決定に関する。様々な実施形態では、個々のナノポアセル(配列決定セルとも称される)またはナノポアセルのグループの構成要素(例えば、二重層コンデンサ)をより正確に特徴づけるための方法が提供される。構成要素は、品質保証、均一性チェック、ベースライン較正、データ正規化、および/または塩基分類などの目的のための配列決定プロセスの異なる段階において特徴づけられ得る。
[0044]ナノポアベースの、合成による配列決定(ナノ-SBS)において、ナノポアセル内の作用電極(例えば、PtまたはTiN)と液体電解質との間の界面は、二重層コンデンサ(Cdbl)と称され得るコンデンサのように挙動し得る。ナノポアセルの二重層コンデンサを特徴づけることにより、セルの均一性またはセル内の欠陥など、製造されたナノポアセルの品質を知らせることができる。二重層コンデンサCdblの静電容量cdblは、セルに印加される電圧のサイクル内電圧減衰、および測定信号の他の特徴、ならびに測定された信号値の正規化、ゆえに塩基分類の正確性に影響を与え得る。非常に大きいCdblでは、測定データのサイクル内減衰は、取るに足りないものであり得る。より小さい値のcdblでは、サイクル内減衰はより顕著であり得、測定データの正規化を複雑にし得る。したがって、測定データに対する知的調整が行われ得るようにセル毎にcdblの値を知ることが望ましい。例えば、個々のナノポアセルの二重層コンデンサの静電容量値cdblの知識を持つことにより、データ正規化は、個々のセルについて実施され得る。
[0045]いくつかの既存の技術は、二重層静電容量を測定するために使用され得る。しかしながら、電気化学インピーダンス分光法(EIS)技術など、これらの技術のうちの一部は、個々のセルの二重層静電容量を測定できない場合がある。一部の技術は、二重層静電容量を測定するための外部機器を必要とし得る。一部の技術は、配列決定セルのウェルを覆う膜および膜内に形成されるナノポアの形成の前など、配列決定プロセスの早期段階で二重層静電容量を測定することができない場合がある。一部の利用可能な技術は、測定に長い時間を必要とし得るか、または正確な配列決定のために所望されるほど正確ではない場合がある。
[0046]本明細書に開示される技術は、配列決定プロセスの異なる段階で二重層コンデンサを特徴づけるための方法を提供する。二重層コンデンサは、作用電極が液体電解質と接触するときに形成され得、作用電極と液体電解質との間の界面が容量性の挙動を呈する。それゆえ、二重層コンデンサは、ナノポアセル内の二重層およびナノポアの形成の前または後のいずれかに測定され得る。開示される方法は、配列決定プロセスの始まりに(例えば、二重層または細孔の導入前)に、個々のセルまたはセルのグループのための二重層静電容量をより効率的かつより正確に測定するために使用され得る。
I.ナノポア配列決定セル
[0047]ナノポアセンサチップ内のナノポアセルは、多くの異なる方法で実施され得る。例えば、いくつかの実施形態では、異なるサイズおよび/または化学的構造のタグが、配列決定されるために、核酸分子内の異なるヌクレオチドに取り付けられ得る。いくつかの実施形態では、配列決定されることになる核酸分子の鋳型への相補鎖が、別の仕方で重合体がタグ付けされたヌクレオチドを鋳型とハイブリッド形成することによって、合成され得る。いくつかの実施態様では、核酸分子および取り付けられたタグは、両方ともナノポアを通り移動し、ナノポアを通過するイオン電流が、ヌクレオチドに取り付けられたタグの個々のサイズおよび/または構造によって、ナノポア内に存在するヌクレオチドを示し得る。いくつかの実施態様では、タグだけが、ナノポア内へ移動し得る。ナノポア内で異なるタグを検出するために、多数の異なる方法も存在し得る。
A.ナノポア配列決定セル構造
[0048]図1は、ナノポアベースの配列決定チップ内のナノポアセル100の一実施形態を例証する簡略構造である。ナノポアセル100は、酸化物106などの誘電性材料によって形成されるウェルを含み得る。膜102は、ウェルを被覆するためにウェルの表面を覆って形成され得る。いくつかの実施形態では、膜102は、脂質二重層であり得る。例えば、可溶性タンパク質ナノポア膜貫通分子複合体(PNTMC)および対象の分析物を含有し得るバルク電解質114が、セルの表面上に置かれる。単一のPNTMC104が、電気穿孔によって膜102内へ挿入され得る。アレイ内の個々の膜は、化学的にも電気的にも互いに接続されない。それゆえ、アレイ内の各セルは、独立した配列決定機械であり、PNTMCと関連付けられた単一のポリマー分子に固有のデータを生成する。PNTMC104は、分析物に対して作用し、さもなければ不透過性の二重層を通るイオン電流を変調する。
[0049]アナログ測定回路112は、電解質108の薄膜によって被覆された金属作用電極110に接続される。電解質108の薄膜は、イオン不透過性膜102によってバルク電解質114から隔離される。PNTMC104は、膜102を横断し、イオン電流がバルク液体から作用電極110へ流れる唯一の経路を提供する。セルは、電気化学的電位センサである対電極(CE)116も含む。セルは、参照電極117も含む。
[0050]図2は、ポリヌクレオチドまたはポリペプチドを特徴づけるために使用され得る、ナノポアセンサチップ内の一例のナノポアセル200の一実施形態を示す。ナノポアセル200は、誘電体層201および204から形成されたウェル205と、ウェル205を覆って形成された脂質二重層214と、脂質二重層214上の、脂質二重層214によってウェル205から隔てられた試料室215とを、含み得る。ウェル205は、ある体積の電解質206を収容し得て、試料室215は、例えば、可溶性タンパク質ナノポア膜貫通分子複合体(PNTMC)などのナノポア、および対象の分析物(例えば、配列決定されることになる核酸分子)を収容するバルク電解質208を保持し得る。
[0051]ナノポアセル200は、ウェル205の底部に作用電極202と、試料室215内に配置された対電極210とを含み得る。信号源228は、電圧信号を作用電極202と対電極210との間に印加し得る。単一のナノポア(例えば、PNTMC)が、電圧信号による電気穿孔法プロセスによって脂質二重層214内へと挿入され、それにより脂質二重層214内のナノポア216を形成し得る。アレイ内の個々の膜(例えば、脂質二重層214または他の膜構造)は、化学的にも電気的にも互いに接続されていないこともある。それゆえ、アレイ内の各ナノポアセルは、独立した配列決定機械であり、対象の分析物に対して作用し、そうでなければ不透過性の脂質二重層を介してイオン電流を調節するナノポアに関連付けられる、単一のポリマー分子に固有のデータを生成する。
[0052]図2に示すように、ナノポアセル200は、シリコン基板などの基板230上に形成され得る。誘電体層201は、基板230上に形成され得る。誘電体層201を形成するために用いられる誘電体材料は、例えば、ガラス、酸化物、窒化物、その他を含み得る。電気的刺激を制御し、ナノポアセル200から検出されるデータを処理する電気回路222は、基板230上および/または誘電体層201内部に形成され得る。例えば、複数のパタニングされた金属層(例えば、金属1~金属6)が、誘電体層201内に形成され、複数の能動デバイス(例えば、トランジスタ)が、基板230上に製造され得る。いくつかの実施形態では、信号源228は、電気回路222の一部に含まれる。電気回路222は、例えば、増幅器、積算器、アナログデジタル変換器、ノイズフィルタ、フィードバック制御ロジック、および/または多様な他の構成要素を含み得る。電気回路222は、メモリ226に結合されたプロセッサ224にさらに結合され得て、ここでプロセッサ224は、アレイ内に配列されている重合体分子の配列を決定するために、配列決定データを分析することができる。
[0053]作用電極202は、誘電体層201上に形成され、ウェル205の底部の少なくとも一部を形成し得る。いくつかの実施形態では、作用電極202は、金属電極である。非ファラデー性伝導のために、作用電極202は、腐食および酸化に耐性を示す、例えば、白金、金、チタン窒化物、およびグラファイトなどの金属または他の材料で形成され得る。例えば、作用電極202は、電気めっきを用いた白金電極であってもよい。別の実施例では、作用電極202は、チタン窒化物(TiN)作用電極であってもよい。作用電極202は、多孔質であってもよく、それによりその表面積および結果として生じる作用電極202に付随する静電容量を増大させ得る。ナノポアセルの作用電極は、別のナノポアセルの作用電極から独立していることもあることから、作用電極は、本開示内でセル電極と呼ばれ得る。
[0054]誘電体層204は、誘電体層201上に形成され得る。誘電体層204は、ウェル205を囲む壁を形成する。誘電体層204を形成するために用いられる誘電体材料は、例えば、ガラス、酸化物、シリコン一窒化物(SiN)、ポリイミド、または他の適切な疎水性の絶縁材料を含み得る。誘電体層204の上面は、シラン処理され得る。シラン処理は、誘電体層204の上面の上に疎水性層220を形成し得る。いくつかの実施形態では、撥水性層220は、約1.5ナノメートル(nm)の厚さを有する。
[0055]誘電体層204によって形成されるウェル205は、作用電極202の上部の電解質206の体積を含む。電解質206の体積は、緩衝性を有し、以下の、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)、のうちの1つまたは複数を含み得る。いくつかの実施形態では、電解質206の体積は、約3マイクロメートル(μm)の厚さを有する。
[0056]図2にも示すように、膜は、誘電体層204の上面に形成され、ウェル205全体に及ぶ。いくつかの実施形態では、膜は、疎水性層220の上面に形成された脂質単一層218を含み得る。膜がウェル205の開口に達したとき、脂質単一層218は、ウェル205の開口全体に及ぶ脂質二重層214に遷移し得る。脂質二重層は、例えば、ジフィタノイル-ホスファチジルコリン(DPhPC)、1,2-ジフィタノイル-sn-グリセロ-3-ホスホコリン、1,2-ジ-O-フィタニル-sn-グリセロ-3-ホスホコリン(DoPhPC)、パルミトイル-オレオイル-ホスファチジルコリン(POPC)、ジオレオイル-ホスファチジル-メチルエステル(DOPME)、ジパルミトイルホスファチジルコリン(DPPC)、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジン酸、ホスファチジルイノシトール、ホスファチジルグリセロール、スフィンゴミエリン、1,2-ジ-O-フィタニル-sn-グリセロール、1,2-ジパルミトイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-350]、1,2-ジオレオイル-sn-グリセロ-3-ホスホエタノールアミン-N-ラクトシル、GM1ガングリオシド、リゾホスファチジルコリン(LPC)またはその任意の組合せから選択されるリン脂質を含み、またはそれらから構成され得る。
[0057]示したように脂質二重層214には、例えば、単一のPNTMCによって形成された単一のナノポア216が埋め込まれる。上述のように、ナノポア216は、単一のPNTMCを脂質二重層214内に電気穿孔法によって挿入することによって、形成され得る。ナノポア216は、対象の分析物および/または小さなイオン(例えば、Na、K、Ca2+、Cl)の少なくとも一部分を脂質二重層214の両側間を通過させるのに十分に大きくてもよい。
[0058]試料室215は、脂質二重層214を覆っており、特徴づける対象の分析物の溶液を保持し得る。溶液は、バルク電解質208を含み、最適なイオン濃度への緩衝性を有し、ナノポア216を開口状態に維持するために最適なpHに維持された水性溶液であり得る。ナノポア216は、脂質二重層214を横切り、バルク電解質208から作用電極202へのイオン流のための唯一の経路を提供する。ナノポア(例えば、PNTMC)および対象の分析物に加えて、バルク電解質208は、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)、のうちの1つまたは複数をさらに含み得る。
[0059]対電極(CE)210は、電気化学的電位センサであり得る。いくつかの実施形態では、対電極210は、複数ナノポアセル間で共有され、それゆえ、共通電極とも称され得る。いくつかの場合では、共通の電位および共通電極は、全てのナノポアセルに対して、または少なくとも個々のグループ内の全てのナノポアセルに対して共通であり得る。共通電極は、共通の電位を、ナノポア216と接触するバルク電解質208に印加するように構成可能である。対電極210および作用電極202は、脂質二重層214を横断する電気的刺激(例えば、電圧バイアス)を供給するための信号源228に結合され、脂質二重層214の電気的特性(例えば、抵抗、電気容量、およびイオン電流)を検知のために用いられ得る。いくつかの実施形態では、ナノポアセル200は、参照電極212も含み得る。
[0060]いくつかの実施形態では、様々なチェックが、ナノポアセルの作成中に検証または品質制御の一部として行われ得る。ナノポアセルが作成されると、さらなる検証ステップが、例えば、所望の通りに(例えば、各セル内に1つのナノポア)実施しているナノポアセルを識別するために実施され得る。そのような検証チェックは、物理的チェック、電圧較正、開放チャネル較正、および単一のナノポアを有するセルの識別を含み得る。
B.ナノポア配列決定セルの信号検出
[0061]ナノポアセンサチップ内のナノポアセルは、合成による単分子ナノポアベースの配列決定(ナノ-SBS)技術を用いる並行配列決定を可能にし得る。
[0062]図3は、ナノ-SBS技術を用いてヌクレオチド配列決定を実行するナノポアセル300の一実施形態を示す。ナノ-SBS技術では、配列決定されることになる鋳型332(例えば、ヌクレオチド酸分子または別の対象の分析物)およびプライマは、ナノポアセル300の試料室内のバルク電解質308内に導入され得る。例として、鋳型332は、円形状または直線状であり得る。核酸プライマは、4つの別の仕方で重合体がタグ付けされたヌクレオチド338が付加され得る、鋳型332の一部にハイブリッド形成され得る。
[0063]いくつかの実施形態では、酵素(例えば、DNAポリメラーゼなどのポリメラーゼ334)が、鋳型332への相補鎖を合成するのに用いるナノポア316に関連付けられ得る。例えば、ポリメラーゼ334は、ナノポア316に共有結合していてもよい。ポリメラーゼ334は、ヌクレオチド338のプライマ上への、一本鎖核酸分子を鋳型として用いる取り込みを触媒する。ヌクレオチド338は、4つの異なるタイプA、T、GまたはCのうちの1つであるヌクレオチドを伴うタグ種(「タグ」)を含み得る。タグ付けされたヌクレオチドが、ポリメラーゼ334と正しく複合体を形成するとき、タグは、電気的な力、例えば、脂質二重層314および/またはナノポア316を横断して印加される電圧により生成される電界の存在下で生成される力によってナノポア内に引き込まれ(装填され)得る。タグの尾部は、ナノポア316の筒内に位置決めされ得る。ナノポア316の筒内に保たれるタグは、タグの別個の化学的な構造および/またはサイズにより、固有のイオン遮断信号340を生成し、それにより、タグが取り付けられた付加された塩基を、電子的に同定する。
[0064]本明細書で用いられるとき、「装填された」または「充填された」タグは、認識可能な長さの時間、例えば、0.1ミリ秒(ms)から10000msの間、ナノポア内に位置決めされる、および/または、ナノポア内または近くに留まるタグでもよい。いくつかの場合では、タグは、ヌクレオチドから放出される前に、ナノポア内に装填される。いくつかの例では、装填されたタグが、ヌクレオチド組み込み事象の際に放出された後にナノポアを通過する(および/またはナノポアにより検出される)確率が適度に高く、例えば90%から99%である。
[0065]いくつかの実施形態では、ポリメラーゼ334がナノポア316に接続される前に、ナノポア316のコンダクタンスは、例えば約300ピコジーメンス(300pS)のように高いことがあり得る。タグがナノポア内に装填されるとき、固有のコンダクタンス信号(例えば、信号340)は、タグの別個の化学構造および/またはサイズにより生成される。例えば、ナノポアのコンダクタンスは、約60pS、80pS、100pSまたは120pSであり、それぞれは、タグ付けされたヌクレオチドの4つのタイプのうちの1つに対応する。ポリメラーゼは、次に異性化およびリン酸基転移反応を経て、ヌクレオチドを成長している核酸分子内に組み込み、タグ分子を放出する。
[0066]いくつかの場合では、タグ付けされたヌクレオチドのいくつかは、核酸分子(鋳型)の目下の位置(相補的塩基)と一致し得ない。核酸分子と塩基対合されていないタグ付けされたヌクレオチドも、ナノポアを通過し得る。これらの対合されていないヌクレオチドは、典型的には、正しく対合されたヌクレオチドがポリメラーゼと結合したままである時間スケールより短い時間スケール内で、ポリメラーゼによって拒絶される。対合されていないヌクレオチドに結合されたタグは、ナノポアを迅速に通過し、短期間(例えば、10ms未満)の間検出され得て、一方、対合したヌクレオチドに結合されたタグは、ナノポア内に装填され、長期間(例えば、少なくとも10ms)の間検出され得る。それゆえ、対合されていないヌクレオチドは、ヌクレオチドがナノポア内で検出される時間に少なくとも部分的に基づいて、下流のプロセッサによって識別され得る。
[0067]装填された(充填された)タグを含むナノポアのコンダクタンス(または等価的に抵抗)が、ナノポアを通過する電流を介して測定され得て、タグ種の識別、それによる目下の位置にあるヌクレオチドを提供する。いくつかの実施形態では、直流(DC)信号が、ナノポアセルに印加され得る(例えば、タグがナノポアを通って移動する方向が反転しないように)。しかし、直流を用いた長期間のナノポアセンサの運転は、電極の組成を変化させ得て、ナノポア全体のイオン濃度を不平衡にさせ、ナノポアセルの寿命に影響し得る他の望ましくない効果を有し得る。交流(AC)波形を印加することは、電界移動を低減し、これらの望ましくない効果を回避し、下記のある一定の利点を有し得る。タグ付けされたヌクレオチドを利用する本明細書で説明される核酸配列決定方法は、印加されるAC電圧に完全に共存可能であり、それゆえAC波形が、これらの利点を達成するために用いられ得る。
[0068]AC検出サイクルの間に電極を再充電する能力は、犠牲電極、電流通過反応で分子特性を変化させる電極(例えば、銀を含む電極)、または電流通過反応で分子特性を変化させる電極が使用されるとき、有益であり得る。電極は、直流信号が使用されるとき、検出サイクル中に消耗し得る。再充電は、電極が小さいとき(例えば、平方ミリメートル当たり少なくとも500の電極を有する電極アレイに供給するために十分に小さいとき)問題になり得る、電極が完全に枯渇するなどの消耗限界に到達することを防止し得る。電極寿命は、場合によっては、電極幅と共に進み、少なくとも部分的に、それに依存する。
[0069]ナノポアを通過するイオン電流を測定する好適な状態は、当技術分野で知られており、例が本明細書で提供される。測定は、膜および細孔を横断して印加される電圧により実行され得る。いくつかの実施形態では、電圧は、-400mV~+400mVの範囲にあり得る。用いられる電圧は、-400mV、-300mV、-200mV、-150mV、-100mV、-50mV、-20mV、および0mVから選択される下限と、+10mV、+20mV、+50mV、+100mV、+150mV、+200mV、+300mV、および+400mVから別々に選択される上限とを有する範囲にあることが好ましい。用いられる電圧は、100mV~240mVの範囲にあることがさらに好ましく、160mV~240mVの範囲にあることが最も好ましい。増大された印加電位を用いたナノポアによって異なるヌクレオチド間の識別能力を増大させることが可能である。AC波形およびタグ付けされたヌクレオチドを用いた核酸の配列決定は、その全体が引用することにより本明細書に組み込まれる、2013年11月6日に提出された「Nucleic Acid Sequencing Using Tags(タグを用いた核酸配列決定)」という名称の米国特許公開第US2014/0134616で説明されている。米国2014/0134616で説明されたタグ付けされたヌクレオチドに加えて、配列決定は、例えば、5つの一般的な核酸塩基、アデニン、シトシン、グアニン、ウラシル、およびチミンの(S)-グリセロール・ヌクレオシド・三リン酸塩(gNTPs)などの糖または非環式の部分を欠く、ヌクレオチド類似物を用いて実行され得る(Horhotaら、Organic Letters、8:5345-5347[2006])。
[0070]いくつかの実施態様では、加えて、または代替的に、電流値などの他の信号値が、測定され、ナノポア内に充填されたヌクレオチドを識別するために使用され得る。
II.ナノポアセル内の二重層静電容量
[0071]電気二重層は、例えば、スーパーコンデンサにおいて観察されるように、導電性電極とその周囲電解質との間の界面上に存在し得る。この界面において、電圧が印加される場合、反対極性を有するイオンの2つの層が形成し得る。2つの層は、電解質からのイオンが電極表面に向かって吸収されるときに形成され得る。イオンの2つの層(そのうちの一方は、電極表面上に吸収される場合とそうでない場合とがある)は、典型的なコンデンサ内の誘電体のような働きをする溶媒(例えば、水)分子の層(図4には示されない)によって区切られ得る。溶媒分子の層の厚さは、オングストローム程度であり得る。溶媒分子の層によって隔てられる電荷は、こうしてコンデンサを形成し得る。二重層静電容量は、電気二重層効果を用いて電気エネルギーを格納する容量である。二重層コンデンサの静電容量値は、電極電位、温度、イオン濃度、イオンの種類、酸化物層、電極ラフネス、不純物吸着などの多くの因子に依存し得る。
[0072]ナノポアセル100、200、および300などのナノポアセルにおいて、静電容量は、作用電極および液体電解質と関連付けられ得る。作用電極および液体電解質と関連付けられた静電容量は、電気化学静電容量(celectrochemical)とも称され得る。電気化学静電容量celectrochemicalは、二重層静電容量を含み得、また疑似静電容量をさらに含み得る。二重層コンデンサCBilayerの静電容量cBilayerと、作用電極と関連付けられた電気化学静電容量celectrochemicalとの比率は、最適な全体的なシステム性能を達成するために調整され得る。例えば、増大されたシステム性能は、cBilayerを低減する一方でcelectrochemicalを最大にすることによって達成され得る。二重層コンデンサCBilayerの値は、例えば、ウェルの面積を変えること、または膜材料を変えることによって調整され得る。電気化学静電容量celectrochemicalの値は、例えば、ウェルの面積を変えること、または作用電極材料の気孔率を変えることによって調整され得る。
[0073]図4は、導電性電極410(例えば、作用電極110、202、または302)と隣接する液体電解質420(例えば、バルク電解質114、208、または308)との間の界面に形成される二重層コンデンサ430を例証する。上に説明されるように、導電性電極は、例えば、白金、金、チタン窒化物、およびグラファイトなど、腐食および酸化に耐性を示す、金属または他の材料で作製され得る。例えば、導電性電極は、電気めっきされた白金を用いた白金電極であってもよい。別の例では、導電性電極は、チタン窒化物(TiN)作用電極であってもよい。いくつかの場合において、導電性電極は、多孔質であってもよい。いくつかの実施態様では、導電性電極は、多孔質のTiN電極層を導電層の上に配置することによって形成され得る。それゆえ、電解質は、円柱状のTiN構造間の空間を通って、導電性電極の非被覆部分を垂直に下へ、次いで図2に示されるように誘電体層の真下にある導電性電極の被覆部分に水平に、浸透することができ、それにより、その表面積、および導電性電極と関連付けられた結果として生じる静電容量を増大させる。
[0074]電圧が印加されるとき、電子電荷(正または負)は、導電性電極と隣接する液体電解質との間の界面における電極に蓄積し得る。示される例では、電極表面は、負電荷を持ち、電解質内に正電荷を持った種440の蓄積を結果としてもたらす。別の例では、すべての電荷の極性は、示される例と反対であってもよい。電極内の電荷は、双極子の再配向および界面近くの電解質内の反対の電荷のイオンの蓄積によって均衡が保たれ得る。電解質内の荷電種および溶媒分子の有限サイズに起因する小さい距離だけ隔てられる電極と電解質との間の界面の両側における電荷の蓄積は、容量効果を生み出す。それゆえ、用語「二重層」は、電極層とバルク液体電解質層との間の界面付近の電子およびイオン電荷分布の群を指し得る。
[0075]図5は、導電性電極510と隣接する液体電解質520との間の界面において、図4内のような二重層コンデンサの形成と同時に形成され得る疑似静電容量効果を例証する。疑似コンデンサは、電極と電解質との間の電子電荷転送によって電磁誘導的に電気エネルギーを格納し得る。これは、電気的収着、還元酸化反応、またはインターカレーションプロセスにより達成され得る。図5は、利用可能な表面積によって制限される吸着、インターカレーション、または還元酸化反応(中黒の円によって表される)を結果としてもたらす電荷転送からの疑似静電容量の追加と共に二重層コンデンサ530を示す。
[0076]作用電極が高い静電容量を有し、それにより回路に対するそのインピーダンス効果を低減することが望ましく、これが、複数の測定後に増大される電荷の結果として電圧レベルをわずかに動かし得る。
III.ナノポア配列決定セルの電気モデル
[0077]図6は、ナノポアセル200などのナノポアセル内の電気モデルを表す電気回路600(図2の電気回路222の部分を含み得る)を例証する。上に説明されるように、いくつかの実施形態では、電気回路600は、ナノポアセンサチップ内の複数ナノポアセルまたはすべてのナノポアセル間で共有され得、したがって共通電極とも称され得る対電極640(例えば、対電極210)を含む。共通電極は、電圧源Vliq620に接続することによって、共通の電位を、ナノポアセル内の脂質二重層(例えば、脂質二重層214)と接触するバルク電解質(例えば、バルク電解質208)に印加するように構成されることが可能である。いくつかの実施形態では、AC非ファラデー性モードが、電圧VliqをAC信号(例えば、方形波)で変調するために利用され、それをナノポアセル内で脂質二重層に接触するバルク電解質に印加し得る。いくつかの実施形態では、Vliqは、±200~250mVの大きさおよび例えば25~600Hzの周波数を有する方形波である。対電極640と脂質二重層との間のバルク電解質は、100μF以上などの大きなコンデンサ(図示せず)によってモデル化され得る。
[0078]図6は、作用電極602(例えば、作用電極202)および脂質二重層(例えば、脂質二重層214)の電気特性を表す電気モデル622も示す。電気モデル622は、脂質二重層に関連付けられた静電容量をモデル化するコンデンサ626(CBilayer)と、ナノポア内の個々のタグの存在に基づいて変化し得る、ナノポアに関連付けられた可変抵抗をモデル化する抵抗器Rpore628とを含む。電気モデル622は、二重層静電容量cdblを有し、作用電極602およびセルのウェル(例えば、ウェル205)の電気特性を表すコンデンサCdbl624も含む。作用電極602は、他のナノポアセル内の作用電極から独立した別個の電位を印加するように構成され得る。
[0079]パスデバイス606は、脂質二重層および作用電極を電気回路600から接続または切断するために使用され得るスイッチであってもよい。パスデバイス606は、電圧刺激がナノポアセル内の脂質二重層を横断して印加されることを有効化または無効化するために、メモリビットによって制御され得る。脂質が、脂質二重層を形成するために堆積される前では、2つの電極間のインピーダンスは、セルのウェルが封止されていないため、非常に低く、それゆえパスデバイス606は、短絡状態を回避するために開路に維持され得る。パスデバイス606は、脂質溶媒がナノポアセルに堆積されてナノポアセルのウェルを封止した後、閉じられ得る。
[0080]電気回路600は、オンチップ積分コンデンサCint608(ncap)をさらに含み得る。積分コンデンサCint608は、リセット信号603を使用しスイッチ601を閉じ、その結果、積分コンデンサCint608が電圧源Vpre605に接続されることによって、事前充電され得る。いくつかの実施形態では、電圧源Vpre605は、例えば、900mVの大きさの固定の正電圧を提供する。スイッチ601が閉じられているとき、積分コンデンサCint608は、電圧源Vpre605の正電圧レベルまで事前充電され得る。
[0081]積分コンデンサCint608が事前充電された後、リセット信号603が使用されスイッチ601が開路され、その結果、積分コンデンサCint608は、電圧源Vpre605から切断される。この時点では、電圧源Vliqのレベルにより、対電極640の電位は、作用電極602(および積分Cint608)の電位より高いレベルにあるか、その反対でもあり得る。例えば、電圧源Vliqからの方形波の正位相の間(例えば、AC電圧源信号サイクルの明または暗期間)、対電極640の電位は、作用電極602の電位より高いレベルにある。電圧源Vliqからの方形波の負位相の間(例えば、AC電圧源信号サイクルの暗または明期間)、対電極640の電位は、作用電極602の電位より低いレベルにある。したがって、いくつかの実施形態では、積分コンデンサCint608は、対電極640と作用電極602との間の電位差により、明期間の間に電圧源Vpre605の事前充電された電圧レベルからさらに高いレベルまで充電され、暗期間中により低いレベルに放電され得る。他の実施形態では、充電および放電は、それぞれ暗期間および明期間に発生し得る。
[0082]積分コンデンサCint608は、1kHz、5kHz、10kHz、100kHz、またはそれを超え得る、アナログデジタル変換器(ADC)610のサンプリング速度による固定された期間に、充電または放電され得る。例えば、1kHzのサンプリング速度で、積分コンデンサCint608は、約1msの期間中、充電/放電し、次に、電圧レベルがサンプリングされ、積分期間の終わりにADC610によって変換され得る。個々の電圧レベルは、ナノポア内の個々のタグ種に対応し、それゆえ、鋳型上の目下の位置でのヌクレオチドに対応し得る。
[0083]ADC610によるサンプリングされた後、積分コンデンサCint608は、リセット信号603を使用しスイッチ601を閉じ、その結果、積分コンデンサCint608が電圧源Vpre605に再接続されることによって、再び事前充電され得る。積分コンデンサCint608を事前充電するステップと、積分コンデンサCint608が充電または放電する一定の期間待機するステップと、積分コンデンサの電圧レベルをADC610によってサンプリングおよび変換するステップとが、配列決定プロセスの間中サイクルで繰り返され得る。
[0084]デジタルプロセッサ630は、例えば、正規化、データバッファリング、データフィルタリング、データ圧縮、データ削減、イベント抽出、またはナノポアセルアレイからのADC出力データを多様なデータフレームへのアセンブリングなどのために、ADC出力データを処理し得る。いくつかの実施形態では、デジタルプロセッサ630は、塩基判定などのさらに下流の処理を実行し得る。デジタルプロセッサ630は、ハードウェア(例えば、GPU、FPGA、ASICなどの内部の)またはハードウェアとソフトウェアとの組合せとして実装され得る。
[0085]したがって、ナノポアを横断して印加される電圧信号は、ナノポアの個々の状態を検出するために用いられ得る。ナノポアの可能な状態の1つは、タグが取り付けられたポリホスフェートがナノポアの筒に存在しない場合、開放チャネル状態である。ナノポアの別の4つの可能な状態は、タグが取り付けられたポリホスフェートヌクレオチドの4つの異なるタイプ(A、T、GまたはC)のうちの1つがナノポアの筒内に保持されるときの状態に各々対応する。ナノポアのさらに別の可能な状態は、脂質二重層が断裂するときである。
[0086]積分コンデンサCint608での電圧レベルが、固定された期間後に測定されるとき、ナノポアの異なる状態は、異なる電圧レベルの測定値をもたらし得る。これは、積分コンデンサCint608(すなわち、時間に対する積分コンデンサCint608の電圧のグラフの傾きの程度)での電圧減衰率(放電による減少または充電による増大)が、ナノポアの抵抗(例えば、抵抗器Rpore628の抵抗)に依存するからである。より詳しくは、異なる状態のナノポアに関連付けられた抵抗が、分子(タグ)の別個の化学構造に起因して異なるので、異なる対応する電圧減衰率は、観察され得るようになり、ナノポアの異なる状態を識別するために用いられ得る。電圧減衰曲線は、RC時定数τ=RCを有する指数関数曲線であり得て、ここで、Rは、ナノポアに関連付けられた抵抗(すなわち、Rpore628)であり、Cは、Rに並列の膜に関連付けられた静電容量(すなわち、コンデンサ626(CBilayer))である。ナノポアセルの時定数は、例えば、約200~500msであり得る。減衰曲線は、二重層の詳細な実施により、指数関数曲線に正確に一致し得ないが、減衰曲線は、指数関数曲線に類似し、単調であり得て、それゆえ、タグの検出を可能にする。
[0087]いくつかの実施形態では、開放チャネル状態にあるナノポアに関連付けられた抵抗は、100Mohm~20Gohmまでの範囲内にあり得る。いくつかの実施形態では、タグが、ナノポアの筒内部に存在する状態にあるナノポアに関連付けられた抵抗は、200MOhm~40GOhmまでの範囲内にあり得る。他の実施形態では、積分コンデンサCint608は、ADC610へ導く電圧が、電気モデル622内の電圧減衰によりやはり変化することになるため、省略され得る。
[0088]積分コンデンサCint608での電圧の減衰率は、異なる方法で決定され得る。上で説明したように、電圧減衰率は、一定の時間間隔の間の電圧減衰を測定することによって決定され得る。例えば、積分コンデンサ608での電圧は、最初に時間t1でADC610により測定され、次に、電圧は、時間t2でADC610により再び測定される。時間曲線に対する積分コンデンサCint608での電圧の傾きがより急であるとき、電圧差はより大きく、電圧曲線の傾きがより緩やかなとき、電圧差はより小さい。このように、電圧差は、積分コンデンサCint608での電圧の減衰率を、ゆえに、ナノポアセルの状態を決定するための測定基準として用いられ得る。
[0089]他の実施形態では、電圧減衰率は、選択された電圧減衰量のために必要な持続時間を測定することによって決定され得る。例えば、電圧が第1の電圧レベルV1から第2の電圧レベルV2に降下または増大するのに必要な時間が測定され得る。時間に対する電圧曲線の傾きがより急であるとき、必要な時間はより少なく、時間に対する電圧曲線の傾きがより緩やかなとき、必要な時間はより大きい。このように、必要な測定時間は、積分コンデンサCint608での電圧Vncapの減衰率を、ゆえに、ナノポアセルの状態を決定するための測定基準として用いられ得る。当業者には、例えば、電流測定技術を含む、ナノポアの抵抗を測定するために必要とされ得る多様な回路を理解されよう。
[0090]いくつかの実施形態では、電気回路600は、オンチップに、パスデバイス(例えば、パスデバイス606)および追加のコンデンサ(例えば、積分コンデンサ608(Cint))を含まないことがあり、それによりナノポアベースの配列決定チップのサイズの削減を支援する。膜(脂質二重層)の薄い性質のため、膜に関連付けられた静電容量(例えば、コンデンサ626(CBilayer))のみで、追加のオンチップの静電容量を必要とすることなく必要なRC時定数を生み出すのに十分とすることができる。それゆえ、コンデンサ626は、積分コンデンサとして使用され得て、電圧信号Vpreによって事前充電され、続いて、電圧信号Vliqによって放電または充電され得る。そうでなければ電気回路内にオンチップで作製される追加のコンデンサおよびパスデバイスをなくすことにより、ナノポア配列決定チップ内の単一のナノポアセルのフットプリントを著しく減少させることができ、それにより、(例えば、ナノポア配列決定チップ内の数百万ものセルを有する)ますます多くのセルを含むためにナノポア配列決定チップを拡大することが容易になる。
IV.ナノポアセル内でのデータサンプリング
[0091]核酸の配列決定を実行するために、積分コンデンサ(例えば、積分コンデンサCint608(ncap))またはコンデンサ626(CBilayer)の電圧レベルは、タグ付けされたヌクレオチドが核酸に加えられている間に、ADC(例えば、ADC610)によってサンプリングされ変換され得る。ヌクレオチドのタグは、例えば、VliqがVpreより低いような印加電圧のとき、対電極および作用電極を介して印加される、ナノポアを横断する電界によって、ナノポアの筒内へと押し入れられ得る。
A.充填
[0092]充填事象は、タグ付けされたヌクレオチドが、鋳型(例えば、核酸断片)に取り付けられ、タグがナノポアの筒の内外に進むときにあたる。これは、充填事象の間に複数回発生し得る。タグが、ナノポアの筒内にあるとき、ナノポアの抵抗は、より高く、より低い電流がナノポアを通り流れ得る。
[0093]配列決定の間、タグは、いくつかのACサイクル状態でナノポア内に存在しないことがあり(開放チャネル状態と呼ぶ)、この場合電流は、ナノポアのより低い抵抗のために、最も高い。タグがナノポアの筒内へ引き込まれるとき、ナノポアは、明モードである。タグがナノポアの筒外へと押し出されるとき、ナノポアは、暗モードである。
B.明および暗期間
[0094]ACサイクルの間、積分コンデンサでの電圧は、ADCによって複数回サンプリングされ得る。例えば、ある実施形態では、AC電圧信号が、システム全体に、例えば、約100Hzで印加され、ADCの取得速度は、セルあたり約2000Hzであり得る。このように、ACサイクル(AC波形のサイクル)毎に取得される約20のデータポイント(電圧測定値)が存在し得る。AC波形の1サイクルに対応するデータポイントは、1セットと呼ばれ得る。ACサイクル毎のデータポイントの1セット内には、例えば、明モード(期間)に対応し得る、VliqがVpreより低いときキャプチャされるサブセットが存在し得て、このときタグは、ナノポアの筒内へと押し込まれる。別のサブセットは、暗モード(期間)に対応し得て、このときタグは、例えば、VliqがVpreより高いとき、印加される電界によってナノポアの筒外へと押し出される。
C.測定電圧
[0095]データポイント毎に、スイッチ601が開路のとき、積分コンデンサ(例えば、積分コンデンサCint608(ncap)またはコンデンサ626(CBilayer))における電圧は、例えば、VliqがVpreより高いとき、VpreからVliqに増大し、VliqがVpreより低いとき、VpreからVliqに減少するように、Vliqによる充電/放電の結果として減衰する挙動で変化していく。最終的な電圧値は、Vliqから作用電極の電荷だけずれる。積分コンデンサでの電圧レベルの変化率は、ナノポアを含み、結果としてナノポア内の分子(例えば、タグ付けされたヌクレオチドのタグ)を含み得る、二重層の抵抗の値によって支配され得る。電圧レベルは、スイッチ601が開路した後の所定時間に測定され得る。
[0096]スイッチ601は、データ収集速度で動作し得る。スイッチ601は、通常、ADCによる測定の直後の2回のデータ取得間の比較的短時間、閉路され得る。スイッチは、複数データポイントがサイクル毎に収集されることを可能にする。スイッチ601が開路のままのとき、積分コンデンサでの電圧レベルおよび、それゆえ、ADCの出力値は、完全に減衰し、そこに留まり得る。そのような複数の測定は、固定されたADC(例えば、平均化され得る、より多数の測定による8ビットから14ビット)を用いたより高い分解能を可能にさせ得る。複数の測定は、ナノポア内に充填される分子に関する動態情報をさらに提供し得る。時間の情報により、どれだけの長さで充填が発生するかの決定を可能にさせ得る。これは、核酸鎖に加えられる複数のヌクレオチドが配列決定されつつあるか否かを判定することを支援することにも用いられ得る。
[0097]図7は、タグを導入する前の、ヌクレオチド配列決定中のナノポアセルに対する例となる制御および測定信号を例証する。したがって、ナノポアは、効果的に、一貫した開放チャネル状態にあり、測定された信号は、ナノポア内のいかなるタグの挿入も示さない場合がある。電圧源Vliq620などのAC電圧源は、ナノポアセルの対電極(例えば、対電極640)における参照電圧Vliq710として利用され得る。図7では、参照電圧Vliq710は、標識付きの明期間および暗期間を有する方形波電圧信号であり得る。リセット信号720(例えば、積分コンデンサCint608および二重層コンデンサ(Cdbl)624を電圧源Vpre605に接続するためのスイッチ601を制御するために使用されるリセット信号603)など、対応する制御信号も示される。
[0098]各フレーム内で、リセット信号720は、二重層コンデンサ(例えば、Cdbl624)が、例えば、電圧源Vpre605に接続され得、Vpreに事前充電され得る事前充電期間Tprechargeにおいては高くてもよい。リセット信号720は、二重層コンデンサが、例えば、Rpore628および/またはコンデンサ626(CBilayer)を介して参照電圧Vliq710に接続され得、参照電圧Vliq710によって充電または放電され得る積分期間Tintegratingにおいては低くてもよい。図7に示される例では、明期間中、参照電圧Vliq710はVpreよりも低く、それゆえ、二重層コンデンサは放電される。暗期間中、参照電圧Vliq710は、Vpreよりも高く、それゆえ、二重層コンデンサは充電される。
[0099]二重層コンデンサにおける電圧レベルは、ADC(例えば、ADC610)を使用して積分コンデンサ(例えば、積分コンデンサCint608)から測定され得る。経時的な積分コンデンサにわたる電圧Vncap730が図7に示される。電圧の「鋸歯」形状は、明期間および暗期間中の二重層コンデンサの放電(明期間中)および充電(暗期間中)から生じる。各「鋸歯」は、取得される各測定サンプルに対応し得る。例えば、各測定サンプルについての明期間中、二重層コンデンサは、0.90Vに事前充電され得、この電圧/電荷は、次の測定サンプルのための二重層コンデンサの次の事前充電まで、ナノポアの抵抗器Rporeによって消散される。この例では、各測定サンプルについての暗期間中、二重層コンデンサは、まず、0.90Vに事前充電/消散され(リセットされ)、この電圧は、次の測定サンプルのためのコンデンサの次の事前充電/リセットまで、ナノポアの抵抗と関連付けられた割合で増大される。
[0100]図7は、例証を容易にするために、明期間または暗期間内のいくつかの測定サンプルを示すことに留意されたい。より多いまたはより少ない測定サンプルが各期間内に取得され得る。例えば、数十のサンプルまたは数百ものサンプルが、明期間または暗期間中に取得され得る。いくつかの他の制御信号が配列決定のために使用され得るが、図7では示されない場合があることに留意されたい。いくつかの実施態様では、参照電圧Vliq710は、一定レベルにあり得る一方、電圧源Vpreは、AC信号であり得るということにさらに留意されたい。
[0101]図8は、上に説明されるようなナノポアセル内の非ファラデー性伝導のための例となる小信号モデル800を例証する。小信号モデルは、cdblの静電容量を有する二重層コンデンサCdbl804、任意選択の積分コンデンサCint806、ナノポアを表す抵抗rporeを有する細孔抵抗器Rpore802、および二重層(例えば、脂質二重層214)を表す二重層コンデンサCBilayer808を含み得る。図8は、二重層コンデンサCdbl804が、細孔抵抗器Rpore802および二重層コンデンサCBilayer808を介して充電または放電され得ることを示す。二重層コンデンサCBilayer808は、小さくてもよく、それゆえ、CBilayer808のインピーダンスは、Rpore802と比較してはるかに大きくてもよい。したがって、二重層コンデンサCBilayer808は、小信号モデル800においては任意選択であってもよい(点線によって示される)。小信号モデル800は、二重層コンデンサCdbl804における電圧信号の減衰を決定するために使用され得る。例えば、減衰は、τ~rporedblによって決定される時間定数τを有し得、時間定数τは、電圧レベルが初期値の1/e≒36.8%まで減衰するのに要する時間を表し得る。
[0102]いくつかの実施形態では、開放チャネル状態にあるナノポアと関連付けられた抵抗は、100MOhm~20GOhmの範囲内にあり得る。いくつかの実施形態では、タグがナノポアの筒の内側にある状態にあるナノポアと関連付けられた抵抗は、200MOhm~60GOhmの範囲内にあり得る。
[0103]積分コンデンサCint608における電圧の減衰率は、異なる方法で決定され得る。上に説明されるように、電圧減衰率は、一定の時間間隔の間の電圧減衰を測定することによって決定され得る。例えば、積分コンデンサCint608における電圧は、まず時間t1でADC610によって測定され得、次いで、電圧は、時間t2でADC610によって再び測定される。時間曲線に対する積分コンデンサCint608における電圧の傾きがより急であるとき、電圧差はより大きく、電圧曲線の傾斜がより緩やかなとき、電圧差はより小さい。このように、電圧差は、積分コンデンサCint608における電圧の減衰率を、ゆえに、ナノポアセルの状態を決定するための基準として使用され得る。
[0104]他の実施形態では、電圧減衰率は、選択された電圧減衰量のために必要とされる時間分を測定することによって決定され得る。例えば、電圧が第1の電圧レベルV1から第2の電圧レベルV2へ降下または増大するのに必要な時間が測定され得る。時間曲線に対する電圧の傾きが急であるときは、必要とされる時間はより少なく、時間曲線に対する電圧の傾きが緩やかであるときは、必要とされる時間はより大きい。このように、必要とされる測定時間は、積分コンデンサCint608における電圧の減衰率を、ゆえに、ナノポアセルの状態を決定するための基準として使用され得る。当業者には、例えば、電流測定技術を含む、ナノポアの抵抗を測定するために使用され得る様々な回路を理解されよう。
[0105]図9は、ACサイクルの明期間および暗期間中のナノポアセルから取得されたデータポイントの例を示す。図9では、データポイントでの変化は、図解目的用に強調されている。作用電極または積分コンデンサに印加される電圧(Vpre)は、900mVなどの一定のレベルにある。ナノポアセルの対電極に印加される電圧信号910(Vliq)は、方形波として示されるAC信号であり、このときデューティサイクルは、90%以下、例えば約40%のような任意の好適な値であり得る。
[0106]明期間920の間、対電極に印加される電圧信号910(Vliq)は、作用電極に印加される電圧Vpreより低く、その結果、タグは、作用電極および対電極に印加される、異なる電圧レベルに起因する電界によって、ナノポアの筒内に押し込まれ得る(例えば、タグ上の電荷および/またはイオンの流れにより)。スイッチ601が開路のとき、ADCの前のノードでの(例えば、積分コンデンサでの)電圧は、減少していく。電圧データポイントが取得された後(例えば、指定された期間の後)、スイッチ601は、閉路され得て、測定ノードでの電圧は、Vpreへと再び戻るように増大していく。プロセスは、複数の電圧データポイントを測定するために繰り返され得る。このようにして、複数のデータポイントは、明期間の間に取得され得る。
[0107]図9に示すように、Vliq信号の符号の変化の後の明期間内の第1のデータポイント922(第1のポイントデルタ(FPD)とも呼ばれる)は、後続のデータポイント924よりも低いことがあり得る。これは、ナノポア内にタグが存在しないからであり(開放チャネル)、それゆえ、それは低抵抗および高放電率を有するためであり得る。いくつかの例では、第1のデータポイント922は、図9に示すようなVliqレベルを超え得る。これは、信号をオンチップコンデンサに結合する二重層の静電容量に起因し得る。データポイント924は、充填事象が発生した、すなわち、タグがナノポアの筒内に押し込まれた後取得され得て、この場合ナノポアの抵抗、およびそれゆえの積分コンデンサの放電速度は、ナノポアの筒内に押し込まれるタグの個々のタイプに依存する。データポイント924は、以下で述べられるように、二重層コンデンサ(例えば、Cdbl804)で増大される電荷により、測定毎にわずかに減少し得る。
[0108]暗期間930の間、対電極に印加される電圧信号910(Vliq)は、作用電極に印加される電圧Vpreより高く、その結果、何れのタグも、ナノポアの筒外に押し出され得る。スイッチ601が開路のとき、測定ノードでの電圧は、電圧信号910(Vliq)の電圧レベルがVpreより高いので、増大する。電圧データポイントが取得された後(例えば、指定された期間の後)、スイッチ601は、閉路され得て、測定ノードでの電圧は、Vpreへと再び戻るように減少していく。プロセスは、複数の電圧データポイントを測定するために繰り返され得る。このように、複数のデータポイントは、第1のポイントデルタ932および後続のデータポイント934を含む暗期間の間に取得され得る。上述のように、暗期間の間に、何れのヌクレオチドタグもナノポアの外に押し出され、それゆえ、任意のヌクレオチドタグに関する最小限度の情報が取得され、さらに正規化に用いられる。したがって、暗期間の間のセルからの出力電圧信号は、ほとんどまたは全く必要がない場合がある。
[0109]図9は、明期間940の間、対電極に印加される電圧信号910(Vliq)は、作用電極に印加される電圧Vpreより低いにもかかわらず、充填事象が発生しない(開放チャネル)ことも示す。したがって、ナノポアの抵抗は低く、積分コンデンサの放電速度は高い。結果的に、第1のデータポイント942および後続のデータポイント944を含む、取得されたデータポイントは、低電圧レベルを示す。
[0110]明または暗期間の間に測定される電圧は、ナノポアの一定の抵抗(例えば、1つのタグがナノポア内にある間に所与のACサイクルの明モードの間に形成される)の測定毎にほぼ同一であると期待され得るが、このことは、電荷が二重層コンデンサCdblで生成する場合であり得ない。この電荷生成は、ナノポアセルの時定数をより長くさせる結果をもたらし得る。結果的に、電圧レベルは移動し、それにより測定値がサイクル内のデータポイント毎に減少するという結果をもたらし得る。このように、サイクル内で、データポイントは、図9に示すように、ある程度データポイントから別のデータポイントへ変化し得る。それゆえ、測定された電圧レベルと関連付けられた塩基をより正確に決定するために、データ正規化およびベースライン調整のために二重層静電容量を測定することが望ましい場合がある。
D.塩基決定
[0111]ナノポアセンサチップの有効なナノポアセル毎に、生成モードが、核酸を配列決定するために実行され得る。配列決定中に取得されるADC出力データは、より高い精度を提供するために、正規化され得る。正規化は、サイクル形状およびベースラインシフトなどの偏位効果を引き起こし得る。正規化の後、実施形態は、充填された経路の電圧のクラスタを決定し得て、ここで各クラスタは、異なるタグ種、およびそれゆえの異なるヌクレオチドに対応する。クラスタは、所与のヌクレオチドに対応する所与の電圧の確率を算出するために使用され得る。別の例として、クラスタは、異なるヌクレオチド(塩基)間での差別化のための分離電圧を決定するために用いられ得る。正規化に関するさらなる詳細は、米国特許出願第15/632,190および同第15/628,353の中で見つけることができ、これらは参照によりそれらの全体が組み込まれる。
[0112]配列決定動作に関するさらなる詳細は、例えば、「Nanopore-Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許公開第2016/0178577、「Nanopore-Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許公開第2016/0178554、「Non-Destructive Bilayer Monitoring Using Measurement Of Bilayer Response To Electrical Stimulus(電気的刺激に応答した二重層の測定を用いた非破壊二重層モニタリング)」という名称の米国特許出願第15/085,700、および「Electrical Enhancement Of Bilayer Formation(二重層形成の電気的増強)」という名称の米国特許出願第15/085,713の中で見つけることができ、これらは参照によりそれらの全体が組み込まれる。
V.二重層静電容量測定
[0113]二重層静電容量は、様々な方法を使用して測定され得る。例えば、電気化学インピーダンス分光法(EIS)は、電気化学システムを特徴づけるための、およびこれらのシステムにおける電極または電解プロセスの寄与を決定するための技術である。EISは、任意の液体および固体材料間の界面領域の体積内の結合電荷または可動性電荷の動態を決定するために使用され得る。EIS技術は、周波数領域内で作用し、界面が、受動電気回路要素、すなわち、抵抗、静電容量、およびインダクタンスの組合せとして見られ得るという概念に基づく。小振幅(例えば、5~20mV)の交流信号が、電解質内へ挿入された電極に印加されるとき、結果として生じる電流は、オームの法則に基づいてインピーダンスを決定するために獲得され使用され得る。初期外乱(印加される)および電極の応答は、電流および電圧成分の位相シフトを測定することによって、またはそれらの増幅の測定によって比較され得る。これは、スペクトル分析器または周波数応答分析器などの外部機器を使用して時間領域内または周波数領域内で行われ得る。しかしながら、電解質を介して測定される電流は、電解質に露出された複数の作用電極(例えば、1000を超える作用電極)を通過する電流を含み得ることから、EIS技術は、二重層およびナノポアの形成の前または後のいずれかにおいて個々のセルの二重層静電容量を測定することができない。さらには、EIS技術は、容量性成分を測定するだけというよりも、合計インピーダンスの一部として抵抗成分を取得し得る。加えて、EIS技術の正確性は、刺激に対する応答の振幅によって、および測定されていないセルからの寄生的な寄与の難読化効果によって制限され得る。これらの理由およびいくつかの他の理由により、EIS測定の正確性は制限され得る。
[0114]本明細書に開示される方法は、配列決定プロセスの異なる段階で個々の(ナノポア)セルまたは(ナノポア)セルのグループの二重層コンデンサをより正確に測定することができる。1つの例となる方法は、既知の静電容量値および既知の初期電圧レベルを有するより小さいコンデンサを使用して二重層コンデンサを繰り返し充電または放電することによって二重層およびナノポアの形成の前に二重層静電容量を測定することができ、これは電荷タイトレーション静電容量測定(CTCM)技術と称され得る。別の例となる方法は、二重層コンデンサを充電すること、およびナノポアを通る二重層コンデンサにおける電圧の参照電圧レベルへの減衰を測定することによって二重層およびナノポアの形成の後に二重層静電容量を測定することができ、これはステップ応答静電容量測定(SRCM)技術と称され得る。CTCM技術およびSRCM技術の両方は、ナノポアセンサチップ上の既存の回路を使用して実施され得る。それゆえ、外部機器が測定のために必要とされない場合がある。加えて、測定は、いくつかの他の技術を使用した場合の15~20分ではなく、1分未満など、かなり迅速に実施され得る。
A.ステップ応答静電容量測定(SRCM)
[0115]図8に関して上に説明されるように、ナノポアセルの小信号モデルは、cdblの静電容量を有する二重層コンデンサCdbl、積分コンデンサCint、ナノポアを表す抵抗rporeを有する細孔抵抗器Rpore、および二重層を表す二重層コンデンサCBilayerを含み得る。二重層コンデンサCdbl(および積分コンデンサCint)は、細孔抵抗器Rporeおよび二重層コンデンサCBilayerを介して充電または放電され得る(取るに足りないものであり得る)。それゆえ、二重層コンデンサCdblまたは積分コンデンサCintにおける電圧レベルの減衰は、τ~rporedblによって決定された時間定数τを有し得る。二重層コンデンサまたは積分コンデンサCintにおける電圧レベルの減衰を測定することによって、時間定数、ゆえにcdblは、既知のrporeにより決定され得る。いくつかの実施態様では、減衰もまた細孔抵抗器Rporeの抵抗によって影響を受けることから、二重層静電容量よりも、時間定数が、正規化のために使用され得る。いくつかの実施態様では、減衰時間は、二重層コンデンサCdblおよび細孔抵抗器Rporeを通って流れる電流の経時的な変化を測定することによって決定され得る。
[0116]SRCM技術のいくつかの実施態様では、二重層が形成され得、ナノポアが上に説明されるように挿入され得る。電圧レベル(Vpre)は、作用電極に印加され得、電圧レベル(Vliq)は、対電極に印加され得る。続いて、作用電極は、Vpreから切断され得、小振幅を有する遅い方形波AC信号が、対電極Vliqに印加され得、これが、ACサイクル中、二重層コンデンサおよび積分コンデンサCintにおける電圧レベルがシフトして次いで減衰する(充電および放電する)ことを引き起こし得る。サイクル内信号減衰がその初期値の設定された分画に達するのに必要とされる時間は、例えば、積分コンデンサCintにおける測定された電圧信号に基づいて決定され得る。獲得される時間定数は、データ正規化のために使用され得る。いくつかの実施態様では、SRCMベースの二重層静電容量測定は、配列決定プロセス毎の配列決定信号が最新の関連したSRCMベースの二重層静電容量測定結果を有し得るように、配列決定プロセス毎に実施され得る。
1.ステップ応答のための回路
[0117]図10Aは、特定の実施形態に従う、ステップ応答静電容量測定中にベースラインを確立するためのナノポアセル内の回路1000の例となる構成を例証する。回路1000は、二重層コンデンサCdbl1004、細孔抵抗器Rpore1002、二重層コンデンサCBilayer1008、積分コンデンサCint1006、作用電極および積分コンデンサCint1006を電圧源Vpreに接続するためのスイッチ1010、積分コンデンサCint1006をADC1014に接続するためのスイッチ1012を含み得る。図10Aでは、電圧信号Vpreは、スイッチ1010を介して作用電極に接続されていてもよく、Vseqのレベルにある電圧信号Vliqは、対電極に接続されていてもよい。作用電極は、Vpreから切断されていてもよく、ナノポアセルは、安定状態に達していてもよい。
[0118]図10Bは、特定の実施形態に従う、ステップ応答静電容量測定中に負のステップ応答を測定するためのナノポアセル内の回路1000の例となる構成を例証する。図10Bでは、負のステップ信号(例えば、Vseq-ΔVに等しいレベルにある)は、対電極(Vliq)に印加され得、これが、作用電極(および二重層コンデンサCdbl1004)における電圧レベルを、瞬時に降下させ(二重層コンデンサCdbl1004にわたる電圧は瞬時に変化することができないため)、次いで徐々に減衰(増大)させ得る。一連のサンプルは、積分コンデンサCint1006にわたる電圧Vncap(作用電極における電圧VWEに等しくてもよい)をサンプリングするためにスイッチ1012を繰り返しオンおよびオフに切り替えることによって、減衰中にADC1014によって取得され得る。
[0119]図10Cは、特定の実施形態に従う、ステップ応答静電容量測定中に正のステップ応答を測定するためのナノポアセル内の回路1000の例となる構成を例証する。図10Cでは、正のステップ信号(例えば、Vseq+ΔVに等しいレベルにある)は、対電極(Vliq)に印加され得、これが、作用電極(および二重層コンデンサCdbl1004)における電圧レベルを、瞬時に増大させ(二重層コンデンサCdbl1004にわたる電圧は瞬時に変化することができないため)、次いで徐々に減衰(減少)させ得る。一連のサンプルは、積分コンデンサCint1006にわたる電圧Vncapサンプリングするためにスイッチ1012を繰り返しオンおよびオフに切り替えることによって、減衰中にADC1014によって取得され得る。
2.ステップ応答のための信号
[0120]図11は、特定の実施形態に従う、ステップ応答静電容量測定技術を使用して二重層静電容量を測定するための例となるAC信号1100を例証する。AC信号1100は、対電極(Vliq)に印加され得る。図11に示される特定の例では、AC信号1100は、上で論じられるように作用電極で安定した状態を確立するために約30秒間225mVにあり得る。その後、225mVのオフセット、20mVの振幅(40mVピークツーピーク)、および0.2Hzの周波数(すなわち、5秒の期間)を有する方形波信号のいくつかのサイクル(例えば、6回)が対電極に印加され得る。AC信号1100が245mVにあるときの各サイクル内の2.5秒の期間の間、積分コンデンサにわたる電圧Vncapは、正のステップ減衰曲線を測定するために複数回(例えば、数十回または数百回)サンプリングされ得る。AC信号1100が205mVにあるときの各サイクル内の2.5秒の期間の間、積分コンデンサにわたる電圧Vncapは、負のステップ減衰曲線を測定するために複数回サンプリングされ得る。
[0121]図11に示されるAC信号1100は、本明細書に開示される技術の1つの潜在的な実施態様にすぎないことに留意されたい。様々な実施態様では、異なる周波数、振幅、および/またはオフセットが使用され得る。さらには、様々な実施態様では、異なる数の方形波信号サイクルが使用され得る。1つの実施態様では、単一の方形波サイクルが使用され得る。いくつかの実施態様では、2つ以上の方形波サイクルが使用され得、複数の方形波サイクルにおいて測定される結果の平均が、ノイズを低減し、測定結果の正確性を向上させるために取られ得る。
[0122]いくつかの実施態様では、AC信号1100が作用電極に印加され得る一方、対電極(Vliq)における電圧は、安定状態に維持され得る。AC信号1100が高いときの各サイクル内の時間期間の間、積分コンデンサにわたる電圧Vncapは、減衰曲線を測定するために複数回(例えば、数十回または数百回)サンプリングされ得る。AC信号1100が低いときの各サイクル内の時間期間の間、積分コンデンサにわたる電圧Vncapは、減衰曲線を測定するために複数回サンプリングされ得る。いくつかの実施態様では、電圧Vncapが測定されているとき、作用電極は、AC信号1100から一時的に切断され得る。
[0123]図12Aは、特定の実施形態に従う、ステップ応答静電容量測定技術を使用してより低い静電容量を有する二重層静電容量を測定するための例となる結果を例証する。図11のAC信号1100に関して上に説明されるような保持期間1240およびいくつかの方形波ACサイクル1250を含むAC信号1210は、対電極(Vliq)に印加され得る。積分コンデンサにわたる測定された電圧(例えば、8ビットADC出力値(0~255)によって表される)(すなわち、作用電極における電圧レベル)は、数十または数百またはそれ以上のデータポイントなど、データポイントを含み得る測定された信号1220によって表される。図12Aにおいて見ることができるように、より低い静電容量を有する二重層コンデンサでは、減衰は、より速く、方形波内の各電圧ステップについてより大きく現われ得、ベースラインシフトは、正のステップおよび負のステップの両方について比較的低い。
[0124]図12Bは、特定の実施形態に従う、ステップ応答静電容量測定技術を使用してより高い静電容量を有する二重層静電容量を測定するための例となる結果を例証する。図11のAC信号1100に関して上に説明されるような保持期間およびいくつかの方形波サイクルを含むAC信号1210は、対電極(Vliq)に印加され得る。積分コンデンサにわたる測定された電圧(例えば、8ビットADC出力値(0~255)によって表される)(すなわち、作用電極における電圧レベル)は、測定された信号1230によって表される。図12Bにおいて見ることができるように、より高い静電容量を有する二重層コンデンサでは、減衰は、方形波内の各電圧ステップについて比較的遅くかつ小さく、電圧が減衰するベースラインは、著しくシフトし得、正のステップおよび負のステップでは異なり得る。
[0125]SRCM技術を使用した二重層静電容量測定のための測定された信号1220または1230の波形のより詳細な説明および分析は以下に提供される。
[0126]図13は、特定の実施形態に従う、ステップ応答静電容量測定中の二重層コンデンサまたは積分コンデンサにおける電圧信号1300の減衰を例証する。図13に示される測定された電圧信号1300は、保持期間に測定された電圧レベル1310を含む。保持期間は、保持ベースラインを決定するための保持期間の終了前に電圧信号1300が安定状態(変化しないまたはほとんど変化しない)まで減衰し得るように十分に長くてもよい(例えば、約30秒)。例えば、保持期間に取得された最後の30個のサンプルポイントの中央値が、保持ベースライン1320のための値として使用され得る。
[0127]正のステップ毎に、作用電極における電圧レベルが一連のデータポイントとして測定され得る。最初の数個(例えば、5)のデータポイントは、これらのデータポイントが、作用電極における電圧信号がオーバーシュートを有するときに取得され得るため、データ分析から除去され得る。いくつかの実施態様では、移動平均フィルタリングが、波形を平均するためにデータポイントに対して実施され得る。正のステップ期間内の最後の数個(例えば、10)のデータポイントは、正のベースラインレベル1360を決定するために使用され得る。次いで、各データポイントは、各データポイントについての測定された電圧レベルから正のベースラインレベル1360を差し引くことによって調整され得る。正のステップ期間内の調整されたデータポイントのうちの最大電圧レベル1330は、ナノポアセルの正のゲインとして使用され得、これは、ナノポアセルの開放チャネルゲインに比例し得、二重層静電容量または積分静電容量、およびナノポアセルの細孔抵抗rpore(約1/(rporeint))に依存し得る。作用電極における電圧レベルが正のゲイン値(電圧レベル1330)から、例えば、正のゲインの75%(電圧レベル1340)まで減衰するのにかかる時間は、75%減衰時間pos_75として決定され得る。作用電極における電圧レベルが正のゲイン値(電圧レベル1330)から、例えば、正のゲインの50%(電圧レベル1350)まで減衰するのにかかる時間は、50%減衰時間pos_50として決定され得る。次いで、75%減衰時間pos_75および/または50%減衰時間pos_50は、以下に説明されるように減衰時間定数τ~rporedblまたは二重層静電容量を決定するために使用され得る。異なる実施態様では、減衰時間は、作用電極における電圧レベルが正のゲインの75%または50%以外のレベルまで減衰するのにかかる時間に基づいて決定され得ることに留意されたい。
[0128]いくつかの実施態様では、異なる正のステップ期間に取得される対応するデータポイントは、平均され、正のゲイン、正のベースライン、pos_75、pos_50、他の電圧レベルの減衰時間、減衰時間定数、および二重層静電容量などの上に説明されたパラメータを決定するための単一の正のステップ期間の波形として使用され得る。測定の正確性は、正のステップ期間からの結果を平均することによって向上され得る。
[0129]加えて、または代替的に、負のステップ毎に、データポイントは、負のゲイン、負のベースライン、75%負の減衰時間、50%負の減衰時間、他の電圧レベルの減衰時間、減衰時間定数、二重層静電容量などのパラメータを決定するために、同様のやり方で取得および分析され得る。例えば、いくつかの実施態様では、負のステップからの測定結果および正のステップからの測定結果は、必ずしも同じではないが、一般に類似しているため、負のステップからの測定結果は、正のステップからの測定結果を検証するために使用され得、またはその逆も然りである。
3.正確性
[0130]図14は、電気化学インピーダンス分光法(EIS)を使用して測定された二重層静電容量とステップ応答静電容量測定技術を使用して測定された減衰時間との相関を例証する。図14では、x軸は、EISを使用してナノポアチップについて測定された平均二重層静電容量(セルあたりのpF)を表す。Y軸は、SRCM技術を使用して対応するナノポアチップ上の個々のセルについて測定された減衰時間を表し、ナノポアチップ上の個々のセルについて測定された減衰時間の分布は、平均値および標準偏差値によって表される。
[0131]図14は、EISを使用して測定されたナノポアチップにおける平均二重層静電容量と、SRCM技術を使用して測定された対応するナノポアチップ上の個々のセルについて測定された50%正の減衰時間pos_50(青)の統計的平均値との相関のピアソン相関係数が、1に非常に近い(約0.987)ことを示す。図14はまた、EISを使用して測定されたナノポアチップにおける平均二重層静電容量と、SRCM技術を使用して測定された対応するナノポアチップ上の個々のセルについて測定された75%正の減衰時間pos_75(緑)の統計的平均値との相関のピアソン相関係数が、約0.931であることを示す。このように、EISを使用して測定された平均二重層静電容量と、SRCM技術を使用して測定された50%または75%正の減衰時間との間には非常に良い相関がある。それゆえ、相関は、測定された減衰時間に基づいて静電容量値を決定するために使用され得る。
4.高静電容量での例となる減衰
[0132]図15は、特定の実施形態に従う、より高い静電容量(例えば、>300pF)を有する二重層コンデンサの静電容量を測定するための例となるステップ応答静電容量測定技術を例証する。上に説明されるように、大きい静電容量値を有する二重層コンデンサでは、減衰は遅くなり得る。したがって、正のステップ期間の終わりに、二重層コンデンサにおける電圧レベルは、実際の正のベースラインまで減衰していない場合がある。それゆえ、期間の終わりにおける最後の測定は、特定の割合の減衰、例えば、75%または50%が、いつ発生したかを決定するためのベースラインとして使用することができない。そのような状況では、保持期間からのベースラインが代わりに使用され得る。例えば、保持期間に取得された最後の30個のサンプルポイントの中央値が、保持ベースライン1520のための値、ならびに減衰率を決定するためのベースラインのためのデフォルト値として使用され得る。
[0133]この例を例証するため、正(または負の)ステップ毎に、作用電極における電圧レベル1570は、遅い減衰(大きい減衰時間定数)が理由で、小さい静電容量値を有する二重層コンデンサの場合の電圧レベル1580と比較して、実際の正のベースラインまで減衰していない場合がある。それゆえ、正のステップ期間の終わりに測定された正のベースライン1560は、実際の正のベースラインよりもはるかに高い場合がある。正のベースライン1560が、データポイントを調整するためにベースラインとして使用される場合、調整されたデータポイントに基づいて決定される、結果としての正のゲインは、セルの実際の正のゲインよりもはるかに低い場合がある。その結果、作用電極における電圧レベルが正のゲイン値から正のゲインの75%(電圧レベル1545として示される)または50%(電圧レベル1555として示される)まで減衰するための測定時間は、実際の75%(または50%)正の減衰時間よりも短い場合がある。それゆえ、大きな誤差が測定結果において発生し得る。
[0134]いくつかの実施態様では、保持ベースライン1520は、大きい静電容量値を有する二重層コンデンサを測定の正確性を犠牲にすることなく測定するための正のベースラインとして使用され得る。これは、上に説明されるように、大きい静電容量値を有する二重層コンデンサでは、ベースラインシフトが比較的小さくなり得るためである。それゆえ、各データポイントは、各データポイントについての測定された電圧レベルから保持ベースライン1520の電圧レベルを差し引くことによって調整され得る。正のステップ期間内の調整されたデータポイントのうちの最大電圧レベル1530は、ナノポアセルの正のゲインとして使用され得る。作用電極における電圧レベルが正のゲイン値(電圧レベル1530)から正のゲインの75%(電圧レベル1540)まで減衰するのにかかる時間は、75%減衰時間pos_75として決定され得る。作用電極における電圧レベルが正のゲイン値(電圧レベル1530)から正のゲインの50%(電圧レベル1550)まで減衰するのにかかる時間は、50%減衰時間pos_50として決定され得る。次いで、75%減衰時間pos_75および/または50%減衰時間pos_50は、減衰時間定数τ~rporedblおよび/または二重層静電容量をより正確に決定するために使用され得る。
5.フローチャート
[0135]図16は、本開示の特定の態様に従う、ステップ応答静電容量測定の例となる方法を例証するフローチャート1600である。本方法は、ナノポアセル内の二重層および/またはナノポアの形成後に実施され得る。例となる方法では、電解質とナノポアセルの作用電極との間に形成される二重層コンデンサの静電容量は、ナノポアを介した作用電極における電圧レベルの減衰を測定することによって測定され得、減衰の時間定数は、二重層コンデンサの静電容量およびナノポアの等価の抵抗に比例し得る。
[0136]ブロック1610において、電解質は、電解質がナノポアセルのウェル内に配置されるナノポアセルの作用電極と接触し得るように、ナノポアセルに追加され得る。上に説明されるように、電解質は、例えば、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)のうちの1つまたは複数を含み得る。
[0137]ブロック1620において、ウェルを被覆する二重層は、例えば、図1~図3に関して上に説明されるように形成され得る。二重層は、二重層の上部のバルク電解質をウェル内の電解質から隔て得る。ナノポアもまた、上に説明されるように二重層内に形成され得る。ナノポアは、バルク電解質とウェル内の電解質との間に経路を形成し得る。二重層およびナノポアは、例えば、図6、図8、および図10に関して上に説明されるように二重層コンデンサおよび細孔抵抗器としてモデル化され得る。
[0138]任意選択的に、作用電極は、第1の電圧レベル(例えば、Vpre)にある電圧源に接続され得、第2の電圧レベルが、二重層の上部の電解質(例えば、Vliq)に印加され得る。それゆえ、二重層コンデンサは、第1の電圧レベルと第2の電圧レベルとの差分(Vpre-Vliq)に等しい、コンデンサにわたる電圧で充電され得る。続いて、作用電極は、第1の電圧レベル(例えば、Vpre)にある電圧源から切断され得る一方、第2の電圧レベルが、二重層の上部の電解質に依然として印加され得る。これにより、作用電極における電圧レベルを次第に減衰させる。第2の電圧レベルは、作用電極における電圧レベルが安定状態(ベースライン)に達するのに十分な時間期間(例えば、30秒)にわたって印加され得る。いくつかの実施態様では、複数の電圧レベルが、第2の電圧レベルが電解質に印加される間の複数の時点に、作用電極で測定され得る。複数の時点に測定された作用電極における複数の電圧レベルは、例えば、図13および図15に関して上に説明されるように、保持ベースラインを決定するために使用され得る。
[0139]ブロック1630において、電解質と作用電極との間の界面に形成された二重層コンデンサが事前充電され得る。例えば、作用電極は、第1の電圧レベル(例えば、Vpre)にある電圧源に接続され得、第2の電圧レベルが、二重層の上部の電解質(例えば、Vliq)に印加され得る。それゆえ、二重層コンデンサは、第1の電圧レベルと第2の電圧レベルとの差分(Vpre-Vliq)に等しい、コンデンサにわたる電圧で充電され得る。続いて、作用電極は、第1の電圧レベル(例えば、Vpre)にある電圧源から切断され得る。
[0140]ブロック1640において、ステップ電圧信号は、例えば、図11~図13および図15に関して上に説明されるように、バルク電解質に印加され得る。ステップ電圧信号は、方形波(square wave)または方形波(rectangular wave)AC信号の一部であり得る。ステップ電圧信号は、正のステップ信号または負のステップ信号であり得る。ステップ電圧信号は、作用電極での電圧レベルを瞬時に増大/減少させ、次いで徐々に減衰させ得る。
[0141]ブロック1650において、複数の電圧レベルは、ステップ電圧信号がバルク電解質に印加される間の複数の時点に作用電極において測定され得る。複数の電圧レベルの測定は、例えば、図13および図15に関して上に説明されるように実施され得る。
[0142]ブロック1660において、作用電極における電圧レベルの減衰の時間は、複数の時点に測定された作用電極における複数の電圧レベルに基づいて決定され得る。例えば、図13および図15に関して上に説明されるように、例えば、75%減衰時間、50%減衰時間、または37%(すなわち、1/e)減衰時間は、作用電極において測定された複数の電圧レベルに基づいて決定され得る。説明されるように、大きい二重層コンデンサでは、保持ベースラインが、ゲインおよび減衰時間を決定するための正または負のベースラインとして使用され得る。
[0143]ブロック1670において、二重層コンデンサの静電容量は、作用電極における電圧レベルの減衰の時間に基づいて決定され得る。例えば、二重層コンデンサの静電容量は、減衰時間定数が二重層コンデンサおよびナノポアの抵抗に比例するため、37%減衰時間(すなわち、減衰時間定数)に基づいて決定され得る。二重層コンデンサの静電容量はまた、図14に示されるように、二重層静電容量と電圧レベルの減衰の時間(例えば、75%減衰時間、50%減衰時間、または37%減衰時間)との相関に基づいて決定され得る。
[0144]図16は、データ処理を連続プロセスとして説明しているが、動作の多くは、並行して、または同時に実施され得ることに留意されたい。加えて、動作の順序は並べ替えられてもよい。動作は、図に含まれない追加のステップを有してもよい。いくつかの動作は、任意選択的であり得、それゆえに、様々な実施形態においては省略され得る。1つのブロックにおいて説明されるいくつかの動作は、別のブロックにおける動作と一緒に実施されてもよい。例えば、いくつかの動作は、並行して実施されてもよい。さらには、本方法の実施形態は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはそれらの任意の組合せで実装され得る。
B.電荷タイトレーション静電容量測定(CTCM)
[0145]上に説明されるように、SRCM技術は、ナノポアの形成の後に二重層静電容量を測定するために使用され得る。しかしながら、SRCM技術は、二重層およびナノポアの形成前など、配列決定プロセスの早期段階で二重層静電容量を測定することができない。本開示の特定の態様によると、電荷タイトレーション静電容量測定技術が、配列決定プロセスの早期段階において、例えば、電解質(緩衝液)が作用電極に接触するためにセルに印加された後の任意の時間に、個々のセルの二重層静電容量を測定するために使用され得る。
[0146]1つの例において、液体(例えば、緩衝液または電解質)がセルのウェルに追加され、ウェルの底にある作用電極の1つの表面と接触状態になった後、ある電圧レベルが、例えば、対電極を介して緩衝液に印加され得る。別の電圧レベルが、電気回路を介して作用電極の他の表面に印加され得る。ゆえに、初期電圧(電位差)が、二重層コンデンサに初期電荷を格納するために二重層コンデンサに印加され得る。初期電荷が二重層コンデンサに格納された後、スイッチングコンデンサ回路は、既知の静電容量値および初期電圧レベルを有するスイッチングコンデンサ(例えば、積分コンデンサ)を使用して、各充電または放電サイクルにおいて二重層コンデンサを繰り返し充電または放電し得る。充電または放電は、スイッチングコンデンサ(Cint)を既知の電圧レベルを有する信号源および作用電極に交互に接続することによって達成され得る。スイッチングコンデンサが、既知の電圧レベルを有する信号源に接続されるとき、スイッチングコンデンサは、既知の数の電荷を格納するために充電または放電され得る。スイッチングコンデンサが作用電極に接続されるとき、電荷は、作用電極に接続されるスイッチングコンデンサの端子における電位および作用電極における電位が同じであるように、スイッチングコンデンサと二重層コンデンサとの間で再分配され得る。それゆえ、後に作用電極に接続されるスイッチングコンデンサの端子における初期電圧レベルが作用電極における初期電圧レベルよりも高い場合、接続後、スイッチングコンデンサは、二重層コンデンサを充電し得る。そうでない場合、スイッチングコンデンサは、二重層コンデンサを放電し得る。
[0147]簡略化した例では、二重層コンデンサCdblは、cdblの静電容量および二重層コンデンサCdblにわたる初期電圧Vを有し得、スイッチングコンデンサCintは、cintの静電容量およびスイッチングコンデンサCintにわたる初期電圧Vを有し得る。2つのコンデンサが並列に接続されるとき、2つのコンデンサにわたる電圧は、
Figure 0007005751000001
になり得る。したがって、それぞれの電荷再分配後の電圧変化は
Figure 0007005751000002
である。cintがcdblよりもはるかに小さい場合、電圧変化ΔVは、
Figure 0007005751000003
と書かれ得る。それゆえ、電圧変化率は、
Figure 0007005751000004
に比例する。例えば、Vがゼロである(すなわち、スイッチングコンデンサCintが、それぞれの電荷再分配後に接地される)場合、二重層コンデンサは、スイッチングコンデンサCintによって放電されることになり、放電毎のスイッチングコンデンサCintにおける電圧変化は、
Figure 0007005751000005
である。VがVよりも大きい場合、二重層コンデンサは、スイッチングコンデンサCintによって充電されている。既知の静電容量および初期電圧レベルを有するスイッチングコンデンサを使用して二重層コンデンサを繰り返し充電または放電し、特定の回数の充電または放電サイクル後の二重層静電容量における電圧変化を測定することにより、cintとcdblとの比率が決定され得る。
[0148]充電/放電サイクルが、ある特定の割合(例えば、1秒あたり1000サイクル)で実施される場合、Cdblが充電または放電される割合は、cintおよび充電/放電サイクルの周波数fに比例し得る。例えば、Cintが、各電荷再分配後に接地される場合、Cintは、1/(fcint)から接地までのインピーダンスを有する抵抗素子として働き得る。それゆえ、二重層コンデンサにわたる電圧の減衰は、時間定数τ~cdbl//(fcint)を有し得る。
1.電荷タイトレーションのための回路
[0149]図17Aは、特定の実施形態に従う、例となる電荷タイトレーション静電容量測定中のセル内の回路1700の例となる構成を例証する。回路1700は、二重層およびナノポアが形成される前のセルの簡略化された電気モデルであり得る。回路1700は、二重層コンデンサCdbl1702、スイッチング(積分)コンデンサCint1704、ADC1806、ならびにスイッチ1708、1710、および1712を含み得る。図17Aは、電圧レベルVliqが作用電極と接触している液体(緩衝液または電解質)に印加された後の回路1700の構成を示し、スイッチ1708、1710、および1712は開いている。上に説明されるように、電圧レベルVliqは、対電極を介して液体に印加され得る。作用電極における電圧レベルVWEは、Vliqに等しくてもよい。スイッチングコンデンサCintにわたる電圧Vncapは、任意のレベルにあってもよく、例えば、事前充電レベルVpreに等しくてもよい。
[0150]図17Bは、特定の実施形態に従う、電荷タイトレーション静電容量測定中に積分コンデンサを充電するための回路1700の例となる構成を例証する。図17Bでは、スイッチ1710は閉じられ、それゆえ、スイッチングコンデンサCintにわたる電圧Vncapは、事前充電レベルVpreに等しいレベルに充電され得る。電圧レベルVliqは、依然として、液体に印加され得、ゆえに、作用電極における電圧レベルVWEは、依然として、Vliqに等しくてもよい。
[0151]図17Cは、特定の実施形態に従う、電荷タイトレーション静電容量測定中に積分コンデンサを放電するための回路1700の例となる構成を例証する。図17Cでは、スイッチ1710は開かれ、スイッチ1708は閉じられる。それゆえ、スイッチングコンデンサCintにわたる電圧レベルVncapは、作用電極における電圧レベルVWEに等しく、これは、スイッチ1708が閉じられる前の異なる電圧レベルVncapおよびVWEによって引き起こされる電荷再分配に起因して、Vliq+ΔVに等しくてもよい。ΔVの値は、スイッチングコンデンサCint1704および二重層コンデンサCdbl1702の静電容量値の比率に比例し得る。
[0152]図17Cに示される電荷再分配の後、別の充電サイクルが開始し得る。スイッチ1708は、開かれ得、スイッチ1710は、スイッチングコンデンサCint1704を再充電するために図17Bに示されるように閉じられ得る。スイッチングコンデンサCint1704がVpreに再充電された後、スイッチ1710は、開かれ得、スイッチ1708は、再充電スイッチングコンデンサCint1704が二重層コンデンサCdbl1702を再び充電し得るように、図17Cに示されるように閉じられ得る。
[0153]上で説明した充電サイクルは、二重層コンデンサCdbl1702を徐々に充電または放電するために、例えば、数十回、数百回、または数千回繰り返され得る。Vncap(ゆえにVWE)は、特定の数のサイクル後に、または、スイッチ1708および1710を開き、スイッチングコンデンサCint1704をADC1706に接続するためにスイッチ1712を閉じることによる、繰り返された充電サイクル中の所与の時間に、定期的に測定され得る。
2.シミュレーション結果
[0154]図18は、特定の実施形態に従う、二重層コンデンサCdblの静電容量とスイッチングコンデンサCintの静電容量との異なる静電容量比率についての電荷タイトレーション静電容量測定の例となるシミュレーション結果を例証する。二重層コンデンサCdblにおける電圧レベルは、各充電サイクル後に徐々に増大され得る。充電のための時間定数は、二重層コンデンサCdblの静電容量とスイッチングコンデンサCintの静電容量との比率に比例し得、充電サイクルの割合に反比例し得る。二重層コンデンサCdblの静電容量とスイッチングコンデンサCintの静電容量との比率が大きいとき、電荷再分配後のスイッチングコンデンサCintにおける測定された電圧は、実施された充電サイクルの数の線形関数に近くなり得る。Cintにおける電圧レベルの測定曲線は、図18に示されるシミュレーション曲線に一致され得、一致したシミュレーション曲線についての二重層コンデンサCdblの静電容量とスイッチングコンデンサCintの静電容量との対応する比率は、測定されるべき二重層静電容量と測定に使用されるスイッチングコンデンサCinの静電容量との比率であり得る。1つの例として、測定曲線が曲線1810に一致し、測定に使用されるスイッチングコンデンサCintの静電容量が約67fFである場合、二重層コンデンサCdblの静電容量は、約150pFであると決定され得る。同様に、測定曲線が曲線1820に一致し、測定に使用されるスイッチングコンデンサCintの静電容量が約26fFである場合、二重層コンデンサCdblの静電容量は、約150pFであると決定され得る。
3.フローチャート
[0155]図19は、本開示の特定の態様に従う、電荷タイトレーション静電容量測定の例となる方法を例証するフローチャート1900である。本方法は、配列決定プロセスの早期段階で、例えば、電解質がセルに追加された後であるが、セル内の二重層および/またはナノポアの形成の前に、実施され得る。例となる方法では、電解質とセルの作用電極との間に形成される二重層コンデンサの静電容量は、各充電サイクルの始まりに既知の電圧レベルに充電される小さいスイッチングコンデンサにより二重層コンデンサを充電または放電するために繰り返しの充電サイクルを実施することによって測定され得る。二重層コンデンサの静電容量とスイッチングコンデンサの静電容量との比率は、いくつかの充電サイクル後に二重層コンデンサにおける電圧変化に基づいて決定され得る。
[0156]ブロック1910において、電解質がセルに追加され得る。電解質は、電解質がウェル内に配置されるセルの作用電極と接触するように、セルのウェルに入り得る。上に説明されるように、電解質は、例えば、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)のうちの1つまたは複数を含み得る。
[0157]ブロック1920において、第1の電圧レベルが電解質に印加され得る。上に説明されるように、電圧が電解質と作用電極との間に印加されるとき、二重層コンデンサが、電気二重層効果に起因して電解質と作用電極との間の界面に形成され得る。第1の電圧レベルを電解質に印加することが、作用電極を第1の電圧レベルに事前充電させ得る。
[0158]ブロック1930において、いくつかの充電サイクルが実施され得る。各充電サイクルは、スイッチングコンデンサを既知の初期電圧レベル(例えば、第2の電圧レベル)に設定すること、および第2の電圧レベルに事前充電されたスイッチングコンデンサにより二重層コンデンサを充電または放電することを含み得る。
[0159]より詳細には、ブロック1932において、スイッチングコンデンサは、第1の電圧レベルとは異なる第2の電圧レベルにある電圧源に接続され、ウィッチングコンデンサを第2の電圧レベルに事前充電し得る。例えば、スイッチングコンデンサは、スイッチ1710を使用して電圧源Vpreに接続され得る。上に説明されるように、第2の電圧レベルは、第1の電圧レベルよりも低くてもよく、または高くてもよい。例えば、いくつかの実施態様では、第2の電圧レベルは、スイッチングコンデンサが完全に放電され得るように、ゼロであってもよい。いくつかの実施態様では、第2の電圧レベルは、第1の電圧レベルより高くてもよい。
[0160]ブロック1934において、スイッチングコンデンサが第2の電圧レベルに設定された後、スイッチングコンデンサは、例えば、スイッチ1710を切断することによって、電圧源から切断され得る。
[0161]ブロック1936において、スイッチングコンデンサは、作用電極(例えば、スイッチ1708を介して)に接続され得、それにより、例えば、図17Cに関して上に説明されるように、スイッチングコンデンサおよび二重層コンデンサに格納された電荷の再分配を引き起こす。例えば、第2の電圧が第1の電圧レベルよりも高い場合、電荷は、二重層コンデンサを充電するために、スイッチングコンデンサから二重層コンデンサへ転送され得、作用電極での電圧レベルは、第1の電圧レベルよりも高くてもよい。第2の電圧レベルが第1の電圧レベルよりも低い場合、電荷は、二重層コンデンサを放電するために、二重層コンデンサからスイッチングコンデンサへ転送され得、作用電極での電圧レベルは、第1の電圧レベルよりも低くてもよい。
[0162]ブロック1938において、電荷再分配後、スイッチングコンデンサは、例えば、スイッチ1708を開くことによって、作用電極から切断され得る。
[0163]スイッチングコンデンサが二重層コンデンサよりもはるかに小さい場合、作用電極での電圧レベルは、各充電サイクル後にほとんど変化しなくてもよい。数十、数百、または数千のサイクルなど、いくつかの充電サイクルが、作用電極(およびスイッチングコンデンサ)での電圧レベルがサンプリングされ測定される前に実施され得る。大きいスイッチングコンデンサが使用される場合、作用電極(およびスイッチングコンデンサ)での電圧レベルは、1つまたは複数の充電サイクルの後にサンプリングされ測定され得る。
[0164]ブロック1940において、スイッチングコンデンサは、スイッチングコンデンサにおける第3の電圧レベルを測定するために測定回路に接続され得る。例えば、スイッチングコンデンサは、図17A~図17Cに示されるスイッチ1712を介してADCに接続され得る。スイッチングコンデンサ(および作用電極)における第3の電圧レベルは、スイッチングコンデンサが作用電極に接続された後であるが、スイッチングコンデンサが次の充電サイクルにおいて第2の電圧レベルにある電圧源に接続される前に、測定され得る。例えば、スイッチングコンデンサにおける第3の電圧レベルは、ブロック1738の後に測定され得る。
[0165]ブロック1950において、二重層コンデンサの静電容量は、スイッチングコンデンサの静電容量、第3の電圧レベルの測定前に実施された充電サイクルの数、および第1の電圧レベルと第3の電圧レベルとの差分に基づいて決定され得る。上に説明されるように、第1の電圧レベルと第3の電圧レベルとの差分は、第3の電圧レベルの測定の前に実施された充電サイクルの数、および二重層コンデンサの静電容量とスイッチングコンデンサの静電容量との比率の関数であり得る。それゆえ、二重層コンデンサの静電容量とスイッチングコンデンサの静電容量との比率は、第3の電圧レベルの測定前に実施された充電サイクルの数、および第1の電圧レベルと第3の電圧レベルとの差分に基づいて決定され得る。例えば、図18の線1830によって示されるように、200回の充電サイクル後、二重層コンデンサの静電容量とスイッチングコンデンサの静電容量との比率は、スイッチングコンデンサ(および作用電極)における測定された電圧変化(または電圧変化の比率)に基づいて決定され得る。例えば、測定された電圧変化(または電圧変化の比率)がポイント1840によって示される値にある場合、二重層コンデンサの静電容量とスイッチングコンデンサの静電容量との比率は、1000であると決定され得る。次いで、二重層コンデンサの実際の静電容量が、より精密に設計および製造され得るスイッチングコンデンサの既知の静電容量値に基づいて決定され得る。
[0166]いくつかの実施態様では、ブロック1930および1940における動作は、二重層コンデンサの静電容量とスイッチングコンデンサの静電容量との比率、ゆえに二重層コンデンサの静電容量をより正確に決定するために、複数反復にわたって繰り返し実施され得る。各反復が静電容量の測定を提供する。例えば、図18に示されるシミュレーション曲線上の1つのデータポイントを使用するのではなく(ノイズの影響を受けやすい場合がある)、いくつかの測定および静電容量比率決定が実施され得、平均比率が、決定された静電容量比率として使用され得る。いくつかの実施形態では、上に説明されるように、測定された電圧変化曲線は、静電容量比率を決定するために、シミュレーション電圧変化曲線に最良に一致され得る。
[0167]図19はデータ処理を連続プロセスとして説明しているが、動作の多くは、並行または同時に実施され得ることに留意されたい。加えて、動作の順序は並べ替えられてもよい。動作は、図に含まれない追加のステップを有してもよい。いくつかの動作は、任意選択的であり得、それゆえに、様々な実施形態においては省略され得る。1つのブロックにおいて説明されるいくつかの動作は、別のブロックにおける動作と一緒に実施されてもよい。例えば、いくつかの動作は、並行して実施されてもよい。さらには、本方法の実施形態は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはそれらの任意の組合せで実装され得る。
VI.コンピュータシステム
[0168]本明細書で説明したコンピュータシステムの任意のものは、任意の適切な数のサブシステムを利用し得る。そのようなサブシステムの例は、図16のコンピュータシステム10内で示した。いくつかの実施形態では、コンピュータシステムは、単一のコンピュータ装置を含み、ここでサブシステムは、コンピュータ装置の構成要素であり得る。他の実施形態では、コンピュータシステムは、各々がサブシステムであり、内部に構成要素を有する、複数のコンピュータ装置を含み得る。コンピュータシステムは、デスクトップおよびラップトップコンピュータ、タブレット、携帯電話、ならびに他の携帯機器を含み得る。
[0169]図20で示したサブシステムは、システムバス75を介して相互接続されている。プリンタ74、キーボード78、記憶デバイス79、ディスプレイアダプタ82に結合されているモニタ76、およびその他などの付加的なサブシステムを示す。I/O制御装置71に結合された外付けおよび入出力(I/O)デバイスは、入出力(I/O)ポート77(例えば、USB、Fire Wire(登録商標))などの当技術分野で知られている任意の数の手段によって、コンピュータシステムに接続され得る。例えば、I/Oポート77または外部インタフェース81(例えば、イーサネット、Wi-Fi、など)は、コンピュータシステム10をインターネットなどの広域ネットワーク、マウス入力装置、またはスキャナに接続するために用いられ得る。システムバス75を介した相互接続により、サブシステム間での情報交換を可能にするだけでなく、セントラルプロセッサ73が、各サブシステムと通信すること、システムメモリ72または記憶デバイス79(例えば、ハードドライブまたは光ディスクなどの固定ディスク)からの複数の命令実行を制御することを可能にする。システムメモリ72および/または記憶デバイス79は、コンピュータ可読媒体を含み得る。別のサブシステムは、カメラ、マイクロフォン、加速度計、その他などのデータ収集デバイス85である。本明細書で説明したデータの任意のものは、ある構成要素から別の構成要素へ出力され得て、ユーザに出力され得る。
[0170]コンピュータシステムは、例えば、外部インタフェース81によって、内部インタフェースによって、または1つの構成要素から別の構成要素へ接続され得るおよび取り外され得るリムーバル記憶デバイスを介して、共に接続される、複数の同一の構成要素またはサブシステムを含み得る。いくつかの実施形態では、コンピュータシステム、サブシステム、または装置は、ネットワークを通して通信し得る。そのような事例では、あるコンピュータは、クライアント、別のコンピュータは、サーバと考えることができ、ここで各々は、同一のコンピュータシステムの一部であり得る。クライアントおよびサーバは、各々複数のシステム、サブシステム、または構成要素を含み得る。
[0171]実施形態の態様は、ハードウェア(例えば、特定用途向け集積回路またはフィールドプログラマブルゲートアレイ)を用いて、および/またはモジュラーまたは統合された様式の一般にプログラム可能なプロセッサを伴う、コンピュータソフトウェアを用いて、制御ロジックの形態で実施され得る。本明細書で使用されるとき、プロセッサは、同一の集積チップ上のシングルコアプロセッサ、マルチコアプロセッサ、または単一の回路基板上のマルチプロセシングユニット、あるいはネットワーク接続されたプロセッサを含む。本開示および本明細書で提供された教示に基づいて、ハードウェアならびにハードウェアおよびソフトウェアの組合せを用いて、本発明の実施形態を実施するための他の方法および/または方法が、当業者には、知られ、かつ理解されよう。
[0172]本出願で説明されるソフトウェアの構成要素または機能の任意のものは、例えばJava、C、C++、C#、Objective-C、Swiftなどの任意の好適なコンピュータ言語、または例えば、従来のまたはオブジェクト指向の技術を用いたPerlもしくはPythonなどのスクリプト言語を用いてプロセッサによって実行されるソフトウェアコードとして実装され得る。ソフトウェアコードは、一連の命令または指令として、保存および/または伝送用の、コンピュータ可読媒体上に格納され得る。好適な非一時的コンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ハードドライブ、フロッピーディスクなどの磁気媒体、コンパクトディスク(CD)もしくはDVD(デジタル多用途ディスク)などの光学的媒体、またはフラッシュメモリ、などを含み得る。コンピュータ可読媒体は、そのような記憶または伝送デバイスの任意の組合せであり得る。
[0173]そのようなプログラムは、さらにエンコードされ、インターネットを含む、多様なプロトコルに従う有線、光学、および/または無線ネットワークを介した伝送に適応された、搬送波信号を用いて伝送され得る。そのように、コンピュータ可読媒体は、そのようなプログラムを用いてエンコードされたデータ信号を使用して作成され得る。プログラムコードを用いてエンコードされたコンピュータ可読媒体は、互換性のあるデバイスを用いて包装され得て、または別個に他のデバイスから供給され得る(例えば、インターネットでのダウンロード)。任意のそのようなコンピュータ可読媒体は、個々のコンピュータ製品(例えば、ハードドライブ、CD、または完全なコンピュータシステム)上にまたは内部に備えられ得て、また、システムまたはネットワーク内部の異なるコンピュータ製品上にまたは内部に存在し得る。コンピュータシステムは、本明細書で説明した成果の任意のものをユーザに提供するための、モニタ、プリンタ、または他の好適なディスプレイを含み得る。
[0174]本明細書で説明した方法の任意のものは、ステップを実行するように構成され得る1つまたは複数のプロセッサを含むコンピュータシステムを用いて、全体的にまたは部分的に実行され得る。したがって、各ステップまたはステップの各グループを実行する異なる構成要素を潜在的に有する、本明細書で説明した方法の任意のもののステップを、実行するように構成されたコンピュータシステムに、実施形態は、向けられ得る。番号を付されたステップが提示されたが、本明細書の方法のステップは、同時にまたは異なる順序で実行され得る。さらに、これらのステップの部分は、他の方法からの他のステップの部分と共に用いられ得る。また、ステップの全てまたは部分は、任意選択的であり得る。さらに、任意の方法の任意のステップは、モジュール、ユニット、回路、またはこれらのステップを実行するための他の手段を用いて、実行され得る。
[0175]個々の実施形態の個別の詳細が、本発明の実施形態の技術概念および範囲から逸脱することのなく、任意の好適な方法で組み合わされ得る。しかし、本発明の他の実施形態は、各々の個別の態様に関する特定の実施形態に、またはこれらの個別の態様の特定の組合せに、向けられ得る。
[0176]列挙の「a」、「an」、または「the」は、具体的にそうでないことに示さない限り、「1つまたは複数」を意味することを意図する。「or」のを使用法は、具体的にそうでないことに示さない限り、「排他的論理和」でなく、「包含的論理和」を意味することを意図する。「第1の」構成要素への言及は、第2の構成要素がもたらされることを必ずしも必要としない。さらに「第1の」または「第2の」構成要素への言及は、明確に規定されない限り、言及された構成要素を特定の位置に限定しない。用語「に基づく」は、「に少なくとも部分的に基づく」を意味することが意図される。
[0177]本明細書に記されるすべての特許、特許出願、刊行物、および説明は、あらゆる目的のためにそれらの全体が参照により本明細書に組み込まれる。先行技術であると認められるものはない。

Claims (14)

  1. 配列決定セル内の二重層コンデンサの静電容量を測定するための方法であって、
    前記配列決定セルにより電解質を受け取るステップであって、ここで前記電解質が、前記配列決定セルのウェル内に配置された前記配列決定セルの作用電極と接触するように、前記電解質を受け取る、前記ステップ;
    前記ウェルを被覆する膜内にナノポアを形成するステップであって、前記膜が前記電解質を区切るものである、前記ステップ;
    前記電解質と前記作用電極との間の界面に形成された前記二重層コンデンサを事前充電するステップであって、ここで前記二重層コンデンサを事前充電するステップが、
    前記作用電極を第1の電圧レベルにある電圧源に接続するステップ;
    第2の電圧レベルを前記膜の上部の前記電解質に印加するステップ;および、
    前記作用電極を前記電圧源から切断するステップ;
    を含むものであり
    前記膜の上部の前記電解質、または前記作用電極にステップ電圧信号を印加するステップ;
    前記ステップ電圧信号が印加される時間の間の複数の時点に、前記作用電極または前記膜の上部の前記電解質における複数の電圧または電流レベルを測定するステップ;
    前記複数の時点に前記作用電極または前記膜の上部の前記電解質において測定された前記複数の電圧または電流レベルに基づいて、前記作用電極または前記膜の上部の前記電解質における電圧レベルの減衰時間を決定するステップ;ならびに、
    前記作用電極または前記膜の上部の前記電解質における前記電圧レベルの前記減衰時間に基づいて、前記二重層コンデンサの前記静電容量を決定するステップ;
    を含み、さらに、
    前記第2の電圧レベルが前記膜の上部の前記電解質に印加される間に、複数の第2の時点において、前記作用電極における複数のホールド電圧レベルを測定するステップ;および、
    前記複数のホールド電圧レベルに基づいてベースラインレベルを決定するステップ;
    を含み、
    ここで、前記電圧レベルの前記減衰時間が、さらに前記ベースラインレベルに基づくものである、前記方法。
  2. 前記ステップ電圧信号が、AC方形波信号の一部である、請求項1に記載の方法。
  3. 前記減衰時間が、75%減衰時間、50%減衰時間、または37%減衰時間のうちの少なくとも1つを含む、請求項1または2に記載の方法。
  4. 前記作用電極における前記電圧レベルの前記減衰時間に基づいて、前記二重層コンデンサの前記静電容量を決定するステップが、
    減衰時間定数、または二重層静電容量と前記減衰時間との相関に基づいて、前記二重層コンデンサの前記静電容量を決定するステップをさらに含む、請求項1~3のいずれか一項に記載の方法。
  5. 前記減衰時間定数が、前記二重層コンデンサの前記静電容量および前記ナノポアの抵抗に比例する、請求項に記載の方法。
  6. 配列決定セル内の二重層コンデンサの静電容量を測定するための方法であって、
    前記配列決定セルのウェル内に電解質を受け取るステップであって、ここで、前記電解質が前記ウェル内に配置された前記配列決定セルの作用電極と接触するように、電解質を受け取り、前記二重層コンデンサが、前記電解質と前記作用電極との間の界面に形成されるものである、前記ステップ;
    第1の電圧レベルを前記電解質に印加して、前記二重層コンデンサを前記第1の電圧レベルへ事前充電するステップ;
    複数の充電サイクルを実施するステップであって、各充電サイクルが、スイッチングコンデンサを前記第1の電圧レベルとは異なる第2の電圧レベルに設定すること、および、前記スイッチングコンデンサを使用して前記二重層コンデンサを充電または放電することを含む、前記ステップ;
    前記スイッチングコンデンサに接続された測定回路を使用して、前記スイッチングコンデンサにおける第3の電圧レベルを測定するステップ;ならびに、
    前記スイッチングコンデンサの静電容量、前記第3の電圧レベルを測定する前に実施された充電サイクルの数、および前記第1の電圧レベルと前記第3の電圧レベルとの差分に基づいて、前記二重層コンデンサの前記静電容量を決定するステップ;
    を含み、
    ここで、前記二重層コンデンサの前記静電容量を決定するステップが、
    前記第3の電圧レベルを測定する前に実施された前記充電サイクルの数、および前記第1の電圧レベルと前記第3の電圧レベルとの前記差分に基づいて、前記二重層コンデンサの前記静電容量と前記スイッチングコンデンサの静電容量との比率を決定するステップ;ならびに、
    前記スイッチングコンデンサの前記静電容量、および前記二重層コンデンサの前記静電容量と前記スイッチングコンデンサの前記静電容量との前記比率に基づいて、前記二重層コンデンサの前記静電容量を決定するステップ;
    を含む、前記方法。
  7. 前記スイッチングコンデンサを前記第2の電圧レベルに設定することが、
    前記スイッチングコンデンサを前記第2の電圧レベルにある電圧源に接続して、前記スイッチングコンデンサを前記第2の電圧レベルに設定すること;および、
    前記スイッチングコンデンサを使用して前記二重層コンデンサを充電または放電する前に、前記スイッチングコンデンサを前記電圧源から切断すること;
    を含む、請求項に記載の方法。
  8. 前記スイッチングコンデンサを使用して前記二重層コンデンサを充電または放電することが、
    前記スイッチングコンデンサを前記作用電極に接続し、それにより、前記スイッチングコンデンサおよび前記二重層コンデンサに格納された電荷の再配分を引き起こすことを含む、請求項6または7に記載の方法。
  9. 前記スイッチングコンデンサが、電圧測定用の積分回路と関連付けられたコンデンサを含む、請求項6~8のいずれか一項に記載の方法。
  10. 前記スイッチングコンデンサの静電容量が、前記二重層コンデンサの前記静電容量の1/100未満である、請求項6~9のいずれか一項に記載の方法。
  11. 前記第3の電圧レベルを測定する前に実施された前記充電サイクルの数が100よりも大きい、請求項6~10のいずれか一項に記載の方法。
  12. 複数の反復にわたって、
    前記複数の充電サイクルを実施するステップ;
    前記スイッチングコンデンサを前記測定回路に接続して、前記スイッチングコンデンサにおける前記第3の電圧レベルを測定することを含む動作を実施するステップ;および、
    前記複数の反復中に測定された前記第3の電圧レベルに基づいて、前記二重層コンデンサの前記静電容量を決定するステップ;
    をさらに含む、請求項6~11のいずれか一項に記載の方法。
  13. 請求項1~12のいずれかに記載の方法の動作を実施するように配列決定システムを制御するための複数の命令を格納するコンピュータ可読媒体を備えるコンピュータ製品。
  14. 請求項13に記載のコンピュータ可読媒体に格納された全ての命令を実行するための、配列決定システムまたは機器。
JP2020516452A 2017-09-22 2018-09-21 ナノポア配列決定セルにおける二重層静電容量の測定 Active JP7005751B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762562018P 2017-09-22 2017-09-22
US62/562,018 2017-09-22
PCT/EP2018/075599 WO2019057890A1 (en) 2017-09-22 2018-09-21 DUAL LAYER CAPACITY MEASUREMENT IN A NANOPORE SEQUENCING CELL

Publications (2)

Publication Number Publication Date
JP2020535398A JP2020535398A (ja) 2020-12-03
JP7005751B2 true JP7005751B2 (ja) 2022-02-10

Family

ID=63683875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516452A Active JP7005751B2 (ja) 2017-09-22 2018-09-21 ナノポア配列決定セルにおける二重層静電容量の測定

Country Status (4)

Country Link
EP (1) EP3684953A1 (ja)
JP (1) JP7005751B2 (ja)
CN (1) CN111212919B (ja)
WO (1) WO2019057890A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022531112A (ja) * 2019-04-25 2022-07-06 エフ.ホフマン-ラ ロシュ アーゲー 浸透圧不均衡を用いて膜にナノ細孔を挿入するためのシステムおよび方法
CN112795476B (zh) * 2021-04-15 2021-07-02 成都齐碳科技有限公司 纳米孔测序电路、测序方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536139A (ja) 2005-04-15 2008-09-04 アガマトリックス インコーポレーテッド 電気化学的試験片内の部分的充填の決定
WO2016099673A1 (en) 2014-12-19 2016-06-23 Genia Technologies, Inc. Nanopore-based sequencing with varying voltage stimulus
JP2016534713A (ja) 2013-10-17 2016-11-10 ジェニア・テクノロジーズ・インコーポレイテッド ナノポアセルアレイにおける非ファラデー性容量結合測定
JP2019515257A (ja) 2016-04-21 2019-06-06 インストゥルメンテーション ラボラトリー カンパニー 光学フローセルおよびテストヘッド装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB796745A (en) * 1956-01-30 1958-06-18 Gen Instr Company Ltd Variable path-length absorption cells for liquids
WO2009045472A1 (en) * 2007-10-02 2009-04-09 President And Fellows Of Harvard College Capture, recapture, and trapping of molecules with a nanopore
CN105273991B (zh) * 2010-02-08 2019-05-10 吉尼亚科技公司 用于在纳米孔中操作分子的***和方法
US9605309B2 (en) 2012-11-09 2017-03-28 Genia Technologies, Inc. Nucleic acid sequencing using tags
FR2999721B1 (fr) * 2012-12-18 2019-06-14 Blue Solutions Procede et dispositif de caracterisation d'un module de stockage d'energie par effet capacitif.
US9863904B2 (en) * 2014-12-19 2018-01-09 Genia Technologies, Inc. Nanopore-based sequencing with varying voltage stimulus
US10317392B2 (en) * 2016-06-23 2019-06-11 Roche Sequencing Solutions, Inc. Formation and calibration of nanopore sequencing cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536139A (ja) 2005-04-15 2008-09-04 アガマトリックス インコーポレーテッド 電気化学的試験片内の部分的充填の決定
JP2016534713A (ja) 2013-10-17 2016-11-10 ジェニア・テクノロジーズ・インコーポレイテッド ナノポアセルアレイにおける非ファラデー性容量結合測定
WO2016099673A1 (en) 2014-12-19 2016-06-23 Genia Technologies, Inc. Nanopore-based sequencing with varying voltage stimulus
JP2019515257A (ja) 2016-04-21 2019-06-06 インストゥルメンテーション ラボラトリー カンパニー 光学フローセルおよびテストヘッド装置

Also Published As

Publication number Publication date
CN111212919B (zh) 2023-12-26
JP2020535398A (ja) 2020-12-03
WO2019057890A1 (en) 2019-03-28
EP3684953A1 (en) 2020-07-29
CN111212919A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
US11892444B2 (en) Formation and calibration of nanopore sequencing cells
JP6770197B2 (ja) 適応ナノ細孔信号圧縮
CN109952382B (zh) 随机测序方法的碱基识别
US20210148886A1 (en) Multiplexing analog components in biochemical sensor arrays
JP7060590B2 (ja) ナノポア電圧方法
JP6726316B2 (ja) ナノポア配列決定からのac信号の定期分析
JP7005654B2 (ja) フェーズドナノポアアレイ
JP7038215B2 (ja) 交流信号によって駆動されるナノポアdna配列決定システム由来の不規則信号におけるノイズの測定および除去
US20230279488A1 (en) Normalization and baseline shift removal by rotation in added data dimensions
JP7005751B2 (ja) ナノポア配列決定セルにおける二重層静電容量の測定

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220105

R150 Certificate of patent or registration of utility model

Ref document number: 7005751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150