JP7004887B2 - An engine that burns hydrogen and oxygen. - Google Patents

An engine that burns hydrogen and oxygen. Download PDF

Info

Publication number
JP7004887B2
JP7004887B2 JP2020197816A JP2020197816A JP7004887B2 JP 7004887 B2 JP7004887 B2 JP 7004887B2 JP 2020197816 A JP2020197816 A JP 2020197816A JP 2020197816 A JP2020197816 A JP 2020197816A JP 7004887 B2 JP7004887 B2 JP 7004887B2
Authority
JP
Japan
Prior art keywords
hydrogen
oxygen
engine
water
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020197816A
Other languages
Japanese (ja)
Other versions
JP2021092224A (en
Inventor
寛治 泉
Original Assignee
寛治 泉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 寛治 泉 filed Critical 寛治 泉
Publication of JP2021092224A publication Critical patent/JP2021092224A/en
Application granted granted Critical
Publication of JP7004887B2 publication Critical patent/JP7004887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Description

現在製造されておるエンジンの燃焼気体を水素と酸素(空気から分離された純酸素=富酸素、)あるいは酸素生成手段により生成された酸素(例えば水の電気分解))とした構成で窒素を含まないかつ、二酸化炭素を排出しないエンジンに係る。 The combustion gas of the engine currently manufactured is hydrogen and oxygen (pure oxygen separated from air = rich oxygen) or oxygen generated by oxygen generating means (for example, electrolysis of water) and contains nitrogen. It relates to an engine that does not emit carbon dioxide.

窒素NOx及び二酸化炭素COを排出しないエンジンで現在製造されておる物には水素と酸素で電気を製造する燃料電池DJや蓄電器に充電された電気のみを動力とする電気自動車EJがあるが、上記燃料電池DJは水素の製造コストに搬送コストが必要であり、さらに水素製造過程で二酸化炭素を排出するケースもある。
上記電気自動車EJでは蓄電器に充電する電気の製造で二酸化炭素を排出するケースもある。
Currently manufactured engines that do not emit nitrogen NOx and carbon dioxide CO 2 include fuel cells DJs that produce electricity with hydrogen and oxygen, and electric vehicle EJs that are powered only by electricity charged in a storage device. The fuel cell DJ requires a transport cost in addition to the hydrogen production cost, and in some cases, carbon dioxide is emitted in the hydrogen production process.
In the electric vehicle EJ, there are cases where carbon dioxide is emitted in the production of electricity for charging a capacitor.

富化酸素と水素を燃焼出来るエンジンの燃焼工程の燃焼室部の構成についてPCT/JP2018/018606にて提案いたしており該技術は酸素(分離装置1により分離された)と水素を燃焼させた熱で水を水蒸気にしており、該水蒸気を反応(例えば電気分解・水蒸気改質・部分酸化反応等)させて水素を生成する構成を設けたエンジン燃焼装置Zであって該燃焼装置Zの燃焼ノズル2Nに酸素及び水素を供給し点火栓2Pにより点火し燃焼室NE内で燃焼しており、該燃焼室に設けておる燃焼による直射熱を受ける耐熱構造部SCと該耐熱構造部に設けておる(水タンクより水を供給し供給された)水を耐熱構造部SCを通過する間に上記燃焼による直射熱を受けて水を水蒸気にする通水路MHaと、該通水路MHa内で水蒸気Aを生成する水蒸気A生成手段と,上記耐熱構造部の外殻体(外側)に設けておる水素生成手段ZUと、該水素生成手段ZUに上記水蒸気Aを供給する供給ノズルZjと該供給ノズルZjから該水素生成手段ZUに供給しており該水素生成手段ZUにて水蒸気Aを反応させる副材料SBを供給する副材料SB供給手段と、該水素生成手段ZUに供給された水蒸気Aと副材料SB供給手段で供給された副材料SBを使用して水素若しくは水素を含む混合ガスを生成する水素若しくは水素を含む混合ガス生成手段と、該混合ガスから水素を分離する分離装置と、該分離装置に水素若しくは水素を含む混合ガスを導入して水素を取り出しており、得られた水素を上記エンジン燃焼装置Zの燃料の水素としており、上記通水路MHaで生成した水蒸気Aを燃焼室NEに供給する供給ノズルZjと該供給ノズルZjから供給された水蒸気Aは燃焼室NE内の熱を吸熱してさらに高熱に成った水蒸気Aaと、該水蒸気Aaは上記燃焼で生成される水蒸気Bと水素生成手段ZUで分解されなかった未分解水蒸気(STn及び未分解水蒸気STm)とともに下流に排気として排出される排気流5と、を備えておる水素を燃焼し水素を生成するエンジン燃焼装置Zを特徴とする技術がある。 PCT / JP2018 / 018606 proposed the configuration of the combustion chamber part of the combustion process of an engine that can burn enriched oxygen and hydrogen, and the technology is the heat of burning oxygen (separated by the separator 1) and hydrogen. It is an engine combustion device Z provided with a configuration in which water is converted into steam and the steam is reacted (for example, electrolysis, steam reforming, partial oxidation reaction, etc.) to generate hydrogen, and the combustion nozzle of the combustion device Z. Oxygen and hydrogen are supplied to 2N, ignited by the ignition plug 2P, and burned in the combustion chamber NE. A water passage MHa (which is supplied by supplying water from a water tank) and a water passage MHa which receives the direct heat from combustion while passing through the heat-resistant structure portion SC to make the water water vapor, and a water passage A in the water passage MHa. From the steam A generating means to be generated, the hydrogen generating means ZU provided on the outer shell (outside) of the heat-resistant structure portion, the supply nozzle Zj for supplying the steam A to the hydrogen generating means ZU, and the supply nozzle Zj. The auxiliary material SB supply means that supplies the auxiliary material SB that is supplied to the hydrogen generation means ZU and reacts the water vapor A in the hydrogen generation means ZU, and the water vapor A and the auxiliary material SB supplied to the hydrogen generation means ZU. The auxiliary material SB supplied by the supply means is used to generate hydrogen or a mixed gas containing hydrogen, a mixed gas generating means containing hydrogen or hydrogen, a separating device for separating hydrogen from the mixed gas, and the separating device. Hydrogen is taken out by introducing hydrogen or a mixed gas containing hydrogen, and the obtained hydrogen is used as hydrogen for the fuel of the engine combustion device Z, and the steam A generated in the water passage MHa is supplied to the combustion chamber NE. The supply nozzle Zj and the water vapor A supplied from the supply nozzle Zj absorb the heat in the combustion chamber NE to become higher heat, and the water vapor Aa is the water vapor B generated by the combustion and the hydrogen generation means. It features an engine combustion device Z that burns hydrogen to generate hydrogen, and an exhaust flow 5 that is discharged downstream as exhaust along with undecomposed water vapor (STn and undecomposed water vapor STm) that have not been decomposed by ZU. There is technology.

特許第5967682 富化酸素空気と燃料の燃焼で燃料を生成するエンジン。 炭素か、水素を含む、炭化水素系燃料を富化酸素空気で燃焼させるエンジンの構成で該エンジンの燃焼室部を酸素と水素の燃焼熱に耐えられる手段を設け該手段の耐熱構造部に水を噴射する噴射ノズルを設けて耐熱構造部に水を噴射して水を水蒸気にしており、水蒸気生成時の吸熱により酸素と水素の燃焼を可能にしており、該燃焼室部からの排気ガス流路中に水蒸気改質か、水生ガスシフトか、ドライリフォーミングかの改質路を設けて該改質路にて生成した水素を水素燃料電池に供給して電気を生成しており、更に燃焼ガスと生成ガスとの両方でタービン翼を回転してその回転力を運搬機器の駆動力とするか発電機の発電動力とするかにしておる技術。Patent No. 59676682 An engine that produces fuel by burning enriched oxygen air and fuel. With the configuration of an engine that burns hydrocarbon fuel containing carbon or hydrogen with enriched oxygen air, the combustion chamber of the engine is provided with means that can withstand the heat of combustion of oxygen and hydrogen, and water is added to the heat-resistant structure of the means. An injection nozzle is provided to inject water into the heat-resistant structure to turn the water into steam, which enables the combustion of oxygen and hydrogen by absorbing heat during steam generation, and the exhaust gas flow from the combustion chamber. A reforming path for steam reforming, aquatic gas shift, or dry reforming is provided in the path, and hydrogen generated in the reforming path is supplied to the hydrogen fuel cell to generate electricity, and further, combustion gas. A technology in which the turbine blades are rotated by both hydrogen and the generated gas, and the rotational force is used as the driving force of the transport equipment or the power generated by the generator.

特開2012-52162水素および酸素の製造・使用方法。製鉄所(製鉄プロセス)で副次的に発生する低品位の水蒸気を用いて、クリーンな水素および酸素を安価に製造して使用することができる水素および酸素の製造・使用方法であって、上記低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aと、前記水蒸気加熱装置で得られた高温の水蒸気を電気分解により水素と酸素に分解する水蒸気電気分解装置Bと、前記水蒸気電気分解装置で得られた水素および酸素から顕熱を回収する顕熱回収装置C1と、前記水蒸気電気分解装置で得られた水素および酸素と前記顕熱回収装置で回収した顕熱を製鉄プロセスで利用する利用装置E1とを備えていることを特徴とする水素および酸素の製造・利用方法。*該文献技術の製鉄プロセスで副次的に発生する低品位の水蒸気を加熱して高温の水蒸気とする水蒸気加熱装置Aを設けておるのに対して本願はエンジン燃焼装置での水素と酸素の燃焼による直接燃焼熱及び間接熱により高温水蒸気を生成しておる点が大きな相違点であるが、該文献の水蒸気電気分解装置及び熱電エネルギー変換装置の技術部分は本願に採用しておる。Japanese Patent Application Laid-Open No. 2012-52162 A method for producing and using hydrogen and oxygen. A method for producing and using hydrogen and oxygen, which can inexpensively produce and use clean hydrogen and oxygen by using low-grade steam generated secondarily in an ironworks (ironmaking process). A steam heating device A that heats low-grade steam to make high-temperature steam, a steam electrolysis device B that decomposes high-temperature steam obtained by the steam heating device into hydrogen and oxygen by electrolysis, and the steam electricity. The hydrogen and oxygen obtained by the steam electrolysis device and the sensible heat recovered by the sensible heat recovery device are used in the iron making process. A method for producing and utilizing hydrogen and oxygen, which comprises a utilization device E1. * While a steam heating device A is provided that heats low-grade steam generated secondarily in the iron-making process of the above-mentioned literature technology to turn it into high-temperature steam, this application applies to hydrogen and oxygen in the engine combustion device. The major difference is that high-temperature steam is generated by direct combustion heat and indirect heat from combustion, but the technical parts of the steam electrolysis device and thermoelectric energy conversion device in the above document are adopted in the present application.

特開2006-298658 水素発生剤及びその製造法方。二酸化珪素皮膜で被覆された酸化鉄を還元して得られる鉄-二酸化珪素複合体に、水蒸気を供給して水素を発生させる技術で水素を取り出した後の気体は酸素であり、酸素生成手段とすることが出来る。*本願の水素生成手段・酸素生成手段として現在製造されておるエンジン(ディゼルエンジンDYかレシプロエンジンRSかロータリーエンジンREかターボエンジンTAかロケットエンジンかのエンジン)に適応出来る技術である。Japanese Patent Application Laid-Open No. 2006-298658 Hydrogen generating agent and its manufacturing method. The gas after hydrogen is taken out by the technique of supplying water vapor to the iron-silicon dioxide composite obtained by reducing the iron oxide coated with the silicon dioxide film to generate hydrogen is oxygen, which is used as an oxygen generation means. Can be done. * It is a technology that can be applied to the engine currently manufactured as the hydrogen generation means / oxygen generation means of the present application (engine of diesel engine DY, reciprocating engine RS, rotary engine RE, turbo engine TA or rocket engine).

特開平6-241055少なくとも一部が水素で構成された気体燃料を筒内への空気の吸入が終了した後で吸気ポートを介することなく直接的に供給する直噴燃料供給手段が設けられた気体燃料エンジンにおいて、筒内に供給される気体燃料の、筒内の点火プラグから遠い部位への配分を燃料配分調整手段-が設けられていることを特徴とする気体燃料エンジンの技術。*本願の水蒸気の吸気中に酸素と水素燃料を噴射する技術として使用できる1技術である。Japanese Patent Application Laid-Open No. 6-241055 A gas provided with a direct injection fuel supply means for directly supplying a gaseous fuel composed of at least a part of hydrogen without passing through an intake port after the suction of air into the cylinder is completed. A technology for a gas fuel engine, characterized in that, in a fuel engine, a fuel distribution adjusting means for distributing the gaseous fuel supplied in the cylinder to a portion far from the ignition plug in the cylinder is provided. * This is a technology that can be used as a technology for injecting oxygen and hydrogen fuel during the intake of steam of the present application.

上記PCT/JP2018/018606や特許文献1の特許第5967682は試作・試運転もされておらない技術であり、この技術に至るには多種の問題を解決する必要があり、仮に該問題を解決して量産体制の設備(量産ライン)を設けるにしても、10万台/月のエンジン工場の規模で少なくとも100億円(土地代除く)の費用と専用機を含む設計に早くて5~8年は必要である、
そこで上記条件の費用を安く、かつ、必要期間を短くし、地球温暖化の二酸化炭素の排出削減が出来る策を発明する事である。
1、その為の具体策として、現段階で商品化され流通しておる燃料を水素と酸素としたレシプロエンジンかロータリーエンジンかディゼルエンジンかのエンジンを主構造とした構成で上記、地球温暖化の二酸化炭素の排出削減が出来る策を発明する。
2、水素と酸素を燃料とする上記エンジン内への水素と酸素と水の供給手段と水蒸気生成手段を上記PCT/JP2018/018606からより簡単な構造を発明する。
3、上記2の構造を航空機、船舶、ロケットに展開した構成を発明。
The above PCT / JP2018 / 018606 and Patent No. 5967682 of Patent Document 1 are technologies that have not been prototyped or commissioned, and it is necessary to solve various problems in order to reach this technology. Even if a mass production system facility (mass production line) is installed, it will take at least 10 billion yen (excluding land costs) for a 100,000 engine factory scale and design including a dedicated machine for 5 to 8 years at the earliest. is necessary,
Therefore, it is an invention to invent a measure that can reduce the cost of the above conditions, shorten the required period, and reduce the emission of carbon dioxide due to global warming.
1. As a concrete measure for that purpose, the above-mentioned global warming is caused by the main structure of the engine, which is a reciprocating engine, a rotary engine, or a diesel engine, which uses hydrogen and oxygen as fuels that are commercialized and distributed at this stage. Invent measures that can reduce carbon dioxide emissions.
2. We will invent a simpler structure from the PCT / JP2018 / 018606 for supplying means for supplying hydrogen, oxygen and water into the engine and means for generating steam using hydrogen and oxygen as fuel.
3. Invented a configuration in which the above two structures are expanded into aircraft, ships, and rockets.

第一の発明は
水素を燃焼する内燃機関エンジンの吸気か、圧縮か、爆発か、排気かの何れか1以上のステップで水か酸素か水素かの何れか1以上を供給する供給順を、吸気ステップで水を、爆発ステップで水素と酸素と水を供給する、水素供給手段HSと酸素供給手段OSと水供給手段WSを設けて水素と酸素と水をエンジンに供給し、上記吸気ステップで供給された水は燃焼室内の熱を吸熱し体積を膨張させた水蒸気Aaを生成し、更に爆発ステップで供給された水は、水素と酸素の燃焼熱を吸熱して水蒸気Abを生成し、燃焼室内の熱を吸熱して生成された水蒸気Aaと水素と酸素の燃焼熱を吸熱して生成された水蒸気Abとを合わせて水蒸気Aとした水蒸気生成手段としており、
エンジンに導入された酸素と水素に点火する点火手段を設けて燃焼し,酸素と水素の燃焼で生成した水蒸気Bと前記水蒸気Aを排気として排出しておる事を特徴とする水素と酸素を燃焼するエンジンを提供する。
上記第一の発明では水か酸素か水素かの何れか1以上を供給する供給順を、吸気ステップで水を、爆発ステップで水素と酸素と水を供給する、水素供給手段HSと酸素供給手段OSと水供給手段WSを設けて水素と酸素と水をエンジンに供給し、としておるが水か酸素か水素かの何れか1以上を供給する供給順を、
1、吸気ステップで水と酸素を、爆発ステップで水素と水を供給する、供給順にすることも、
2、吸気ステップで水と水素を、爆発ステップで酸素と水を供給する、供給順にすることも
3、爆発工程で上記酸素と水素に点火し、点火直後のタイミングで水を供給する、「点火直後のタイミング」以外のタイミングでの水を供給する水供給順とすることも出来る。
*該水素供給手段HSで水素と酸素供給手段OSで酸素と水供給手段WSで水を供給し、供給された水は該水が上記水素と酸素の燃焼による熱で水を水蒸気Abにしており(水1CCが水蒸気になると1800倍~1900倍の1.8L~1.9Lの水蒸気となる、)該水蒸気化でエンジン内の熱を吸熱しており、かつ、水の気化により、上記酸素と水素の燃焼に耐えれる(耐熱手段を設けた)エンジンEとした技術を特徴とするものである。
*上記供給した水が気化する事によりピストン下降時の気化ではエンジンの仕事量を多くしており、圧縮ステップ前の水の供給では気化による体積の増大分ほど圧縮比をあげることが出来ており、爆発ステップでは点火直後のタイミングで水を供給してエンジンの仕事量を多くして、更に水素生成手段ZU(後記)及び酸素生成手段ZUO(後記)に導入する水蒸気を生成する水蒸気生成手段としておる。(又は電気生成装置3E(後記)を設けた構成では電気生成装置3Eに導入する水蒸気)
*上記水か酸素か水素かの何れか1以上を供給する供給手段により該エンジン内で生成し排気口から排出される排気の(水蒸気)排気流の増大エネルギーを受けて上記水か酸素か水素かの何れか1以上を供給する供給物を圧縮(例えば遠心式・軸流式)し該エンジンに供給出来る。
*(富化)酸素と水素の燃焼では燃焼炎の中心温度は2800℃程度で空気(中の酸素)と水素の燃焼では燃焼炎の中心温度は1900℃程度で(富化)酸素の使用により47%程度燃焼炎の中心温度が上がる、(富化)酸素を使用したエンジンと、空気(の酸素)を使用したエンジンとでは上記水素生成手段ZU及び酸素生成手段ZUOの何れか一方か両方かに導入する水蒸気の製造を計算上47%多く出来る(酸素密度の差であり、本願ではこれを酸素エネルギーと呼ぶ)。
*上記エンジンの点火手段であるが、通念上、水(水蒸気)の中で燃料を燃焼させる事は思考常識から除外された技術であるが水素を燃料とした自動車が開発され、該水素自動車の点火手段が数多く発明されており、(例えば燃料直噴射技術)本願に於いては上記水素と酸素の点火技術としては公開され常識となった技術で対応すれば良い。
*燃焼ガスの持つ全エネルギー量はガス流量とその温度の積に比例するので、水素と(富化)酸素の燃焼で燃焼温度をUPした排気ガスを生成し、さらに水を水蒸気にする水蒸気生成手段で生成した水蒸気との両方でガス流量を多くしておりその上酸素の発熱反応による熱エネルギーで該燃焼ガスの持つ全エネルギー量を多くしておる。
The first invention is a supply order in which one or more of water, oxygen, or hydrogen is supplied in one or more steps of intake, compression, explosion, or exhaust of an internal combustion engine that burns hydrogen. The hydrogen supply means HS, the oxygen supply means OS, and the water supply means WS, which supply water in the intake step and hydrogen, oxygen, and water in the explosion step, are provided to supply hydrogen, oxygen, and water to the engine, and in the above intake step. The supplied water absorbs the heat in the combustion chamber to generate steam Aa whose volume is expanded, and the water supplied in the explosion step absorbs the combustion heat of hydrogen and oxygen to generate steam Ab and burns. It is a steam generation means that combines the steam Aa generated by absorbing the heat in the room and the steam Ab generated by absorbing the combustion heat of hydrogen and oxygen to form steam A.
Combustion is provided by providing an ignition means for igniting oxygen and hydrogen introduced into the engine, and combustion of hydrogen and oxygen, which is characterized by discharging steam B and the steam A generated by combustion of oxygen and hydrogen as exhaust gas. Provide an engine to do.
* In the first invention described above, the supply order of supplying one or more of water, oxygen, or hydrogen is as follows: hydrogen supply means HS and oxygen supply, which supply water in the intake step and hydrogen, oxygen, and water in the explosion step. Means OS and water supply means WS are provided to supply hydrogen, oxygen and water to the engine, and the order of supply is to supply one or more of water, oxygen or hydrogen.
1. Water and oxygen are supplied in the intake step, and hydrogen and water are supplied in the explosion step.
2. Water and hydrogen are supplied in the intake step, and oxygen and water are supplied in the explosion step.
3. It is also possible to ignite the oxygen and hydrogen in the explosion process and supply water at the timing immediately after ignition, and to supply water at a timing other than "timing immediately after ignition".
* Hydrogen is supplied by the hydrogen supply means HS, oxygen is supplied by the oxygen supply means OS, and water is supplied by the water supply means WS . (When 1CC of water becomes steam, it becomes 1.8L to 1.9L of steam, which is 1800 to 1900 times higher.) The steaming absorbs the heat in the engine, and the vaporization of water absorbs the heat in the engine. It features an engine E that can withstand the combustion of oxygen and hydrogen (provided with heat-resistant means).
* Due to the vaporization of the water supplied above, the amount of work of the engine is increased in the vaporization when the piston descends, and in the supply of water before the compression step, the compression ratio can be increased by the amount of increase in volume due to vaporization. In the explosion step, water is supplied at the timing immediately after ignition to increase the workload of the engine, and as a steam generating means for generating steam to be introduced into the hydrogen generating means ZU (described later) and the oxygen generating means ZUO (described later). is. (Or steam introduced into the electricity generator 3E in a configuration provided with the electricity generator 3E (described later))
* The water, oxygen, or hydrogen receives the increased energy of the (steam) exhaust flow of the exhaust generated in the engine by the supply means that supplies any one or more of the water, oxygen, or hydrogen. A supply that supplies any one or more of them can be compressed (for example, centrifugal type or axial flow type) and supplied to the engine.
* In the combustion of (enriched) oxygen and hydrogen, the center temperature of the combustion flame is about 2800 ° C, and in the combustion of air (oxygen inside) and hydrogen, the center temperature of the combustion flame is about 1900 ° C. The engine using (enriched) oxygen and the engine using air (oxygen), in which the central temperature of the combustion flame rises by about 47%, are either one or both of the above hydrogen generating means ZU and oxygen generating means ZUO. It is possible to increase the production of water vapor to be introduced into the gas by 47% in calculation (difference in oxygen density, which is referred to as oxygen energy in the present application).
* Although it is the ignition means of the above engine, burning fuel in water (steam) is a technology excluded from common thinking, but a car using hydrogen as fuel was developed, and the hydrogen car Many ignition means have been invented (for example, fuel direct injection technology), and in the present application, the above-mentioned hydrogen and oxygen ignition technology may be handled by a technology that has become publicly known and common knowledge.
* Since the total amount of energy possessed by combustion gas is proportional to the product of the gas flow rate and its temperature, combustion of hydrogen and (enriched) oxygen produces exhaust gas with an increased combustion temperature, and steam generation that turns water into steam. The gas flow rate is increased by both the steam generated by the means, and the total energy amount of the combustion gas is increased by the thermal energy generated by the exothermic reaction of oxygen.

第二の発明は
水素と酸素を燃焼し水を供給するエンジンの構成であって、
水素を燃焼ノズルに供給する、水素供給手段HSと、
酸素を燃焼ノズルに供給する、酸素供給手段OSと、
供給された水素と酸素に点火する点火手段と、
点火により水素と酸素を燃焼して火炎3Fを生成し、
該火炎3Fとエンジンの燃焼室壁3uとの間に水を噴射する該水を供給する、水供給手段WSと、
供給された該水を排気口5S方向に噴射する水噴射手段WJとを設けた構造で、
噴射した水は、水素と酸素の燃焼熱を吸熱して水蒸気Abを生成する水蒸気生成手段としており、
水素と酸素の燃焼により生成される水蒸気Bとともに排気として排気口5Sから排出する構成にしておる事を特徴とする、水素と酸素を燃焼するエンジン
を提供する。
*上記水素供給手段であるが、例えば水素ボンベ(水素製造所で製造され充填した高圧水素(例えば圧縮された水素を充填した水素ボンベ))か、該エンジン内に設けておる水素生成手段ZUで生成され(又はタンク経由で)供給される水素か、或いは定置形態での太陽光発電で製造した電気で水を電気分解して製造された水素か可視光で分解し水素を得る技術で得られた水素かを供給する形態等々あるが本願では上記水素ボンベか該エンジン内に設けておる水素生成手段ZUで生成される水素かの何れかの供給手段を解説事例として記載しておる。
*上記酸素供給手段OSであるが、例えば酸素ボンベ(酸素製造所で製造され充填した高圧酸素(例えば圧縮された酸素を充填した酸素ボンベ))か該エンジン内に設けておる酸素生成手段ZUOで生成され(るか又はタンク経由で)供給される酸素か、或いは定置形態での太陽光発電で製造した電気で水を電気分解して製造された酸素を供給する形態等々あるが本願では上記酸素ボンベか分離手段により分離された酸素か該エンジン内に設けておる酸素生成手段ZUOで生成される酸素かの何れかの供給手段を解説事例として記載しておる。(上記水素生成手段ZUで生成される材料を水とした生成手段では水素生成分離後の気体は酸素+水蒸気(鉄の酸化反応利用の水素生成技術では、鉄は酸素と反応するので酸素は生成しない)である.
*現在製造されておる水素自動車は上記水素ボンベを水素供給手段としており、該自動車のエンジンに水を供給する手段を設けた構成が実現に一番近い構成であり該構成であってもエンジンの圧縮比を大きく出来ることで現在の燃費の向上に寄与する。
*更に酸素供給手段OSを上記酸素ボンベにする事で酸素と水素の燃焼温度を上げ上記水供給手段の水供給量(水蒸気生成量)を増量する事が出来、エンジンの仕事量を多くするので走行距離を伸ばせ500/Km走行(1充填当たりの)が可能となる。
*さらに上記水素供給手段を当該エンジン内で生成する水素生成手段ZUで水素を酸素生成手段ZUOで酸素を生成し供給するエンジンの構成にすればエンジン外からの水素の供給を不要に近づけられる(又は自給出来る)。
*該発明の水素と酸素を燃焼し水を噴射する構造は、特許第5967682 富化酸素空気と燃料の燃焼で燃料を生成するエンジンの燃焼装置2,2aでは、燃焼室内外壁間に通水路MHを設けて該通水路に水を導入し、水素と酸素を燃焼する燃焼ノズル2Nと燃焼室内壁間に耐熱構造部を設け、上記通水路に導入した水を該耐熱構造部に噴射する噴射ノズルTJを複数設け該耐熱構造部に噴射する構成であり、(エンジンの燃焼装置2)上記耐熱構造部を設けないで通水路から燃焼室内壁に水を噴射する水の噴射方向を変えた燃焼室内壁に直接水を噴射する噴射ノズルMJを設けて噴射する構成であり、(エンジンの燃焼装置2a)、
上記PCT/JP2018/018606では上記耐熱構造部内に通水路を設けて該通水路に水を導入し、導入した水が通水路を通過する過程で水蒸気を生成し、生成した水蒸気を燃焼室及び水素生成手段に噴射する構成であり、(エンジンの燃焼装置Z)
・・上記構成に対して本願は上記耐熱構造部及びエンジン内外壁間の通水路及び耐熱構造部内の通水路かの何れかは設けておらず、該耐熱構造部や燃焼室内壁から水を噴射する水噴射ノズル(内壁から噴射する)も設けない構成であり、上記火炎3Fと燃焼室内壁間に火炎3Fの直射熱を遮り排気口5S方向に噴射して水噴射層を形成する水噴射手段WJを設けておるだけの構成で水蒸気生成手段及び燃焼室内の熱を吸熱する吸熱手段とした上記エンジン燃焼装置2及び2a及びZのいずれの構造より簡単な構造(のエンジンに出来る)としており、簡単な構造にしたことがより早期に地球温暖化の二酸化炭素の排出削減が実施出来る策となった。
・・上記簡単な構造のエンジンを現在製造されておる電気自動車EJや、燃料電池DJ車の補助機能を提供する補助エンジンとする事が出来る、例えば燃料電池DJ車では走行距離を伸ばす為水素タンクを70MPaを採用しておるが35MPaで対応する事も出来更に水素・酸素の供給手段の補助とする事もでき、電気自動車EJに電気を供給する補器とした蓄電池の搭載容量を少なくする策となった。
The second invention
It is the configuration of an engine that burns hydrogen and oxygen to supply water.
Hydrogen supply means HS that supplies hydrogen to the combustion nozzle,
Oxygen supply means OS that supplies oxygen to the combustion nozzle,
Ignition means to ignite the supplied hydrogen and oxygen,
Ignition burns hydrogen and oxygen to generate flame 3F,
The water supply means WS for supplying the water that injects water between the flame 3F and the combustion chamber wall 3u of the engine, and the water supply means WS.
It has a structure provided with a water injection means WJ that injects the supplied water in the direction of the exhaust port 5S.
The jetted water is used as a steam generation means for generating steam Ab by absorbing the combustion heat of hydrogen and oxygen.
An engine that burns hydrogen and oxygen, characterized in that it is configured to be discharged from the exhaust port 5S as exhaust together with water vapor B generated by combustion of hydrogen and oxygen.
I will provide a.
* The above hydrogen supply means is, for example, a hydrogen bomb (high pressure hydrogen manufactured and filled at a hydrogen factory (for example, a hydrogen bomb filled with compressed hydrogen)) or a hydrogen generation means ZU provided in the engine. Obtained by hydrogen generated (or via a tank), hydrogen produced by electrolyzing water with electricity produced by solar power generation in a stationary form, or hydrogen produced by decomposing with visible light to obtain hydrogen. There are various forms of supplying hydrogen, but in this application, either the hydrogen bomb or the hydrogen generated by the hydrogen generating means ZU provided in the engine is described as an explanatory example.
* The above oxygen supply means OS is, for example, an oxygen cylinder (high pressure oxygen manufactured and filled at an oxygen factory (for example, an oxygen bomb filled with compressed oxygen)) or an oxygen generation means ZUO provided in the engine. There are oxygen generated (or via a tank) or oxygen produced by electrolyzing water with electricity produced by solar power generation in a stationary form, but in the present application, the above oxygen is supplied. As an explanatory example, the supply means of either the oxygen separated by the cylinder or the separation means or the oxygen generated by the oxygen generation means ZUO provided in the engine is described. (In the production means using water as the material produced by the hydrogen generation means ZU, the gas after hydrogen generation separation is oxygen + steam (in the hydrogen generation technology using the oxidation reaction of iron, iron reacts with oxygen, so oxygen is generated. Not).
* Hydrogen vehicles currently being manufactured use the above hydrogen bomb as a hydrogen supply means, and a configuration provided with a means for supplying water to the engine of the vehicle is the closest configuration to realization, and even with this configuration, the engine By increasing the compression ratio, it contributes to the improvement of current fuel efficiency.
* Furthermore, by using the oxygen tank as the oxygen supply means OS, the combustion temperature of oxygen and hydrogen can be raised and the water supply amount (steam generation amount) of the water supply means can be increased, which increases the work load of the engine. The mileage can be extended and 500 / km running (per filling) becomes possible.
* Furthermore, if the hydrogen supply means is configured as an engine in which hydrogen is generated by the hydrogen generation means ZU that is generated in the engine and oxygen is generated and supplied by the oxygen generation means ZUO, the supply of hydrogen from outside the engine can be made unnecessary (. Or self-sufficient).
* The structure of the present invention that burns hydrogen and oxygen and injects water is described in Patent No. 59676682. A heat-resistant structure is provided between the combustion nozzle 2N that burns hydrogen and oxygen and the wall of the combustion chamber, and the water introduced into the water passage is injected into the heat-resistant structure. A plurality of TJs are provided to inject water into the heat-resistant structure portion. (Combustion device 2 of the engine) A combustion chamber in which water is injected from a water passage to a combustion chamber wall without providing the heat-resistant structure portion. It is configured to inject water by providing an injection nozzle MJ that injects water directly onto the wall (combustion device 2a of the engine).
In the PCT / JP2018 / 018606, a water passage is provided in the heat-resistant structure portion, water is introduced into the water passage, water vapor is generated in the process of the introduced water passing through the water passage, and the generated water vapor is used in the combustion chamber and hydrogen. It is configured to inject into the generation means (combustion device Z of the engine).
-For the above configuration, the present application does not provide either the heat-resistant structure, the water passage between the inner and outer walls of the engine, or the water passage in the heat-resistant structure, and water is injected from the heat-resistant structure or the combustion chamber wall. A water injection means for forming a water injection layer by blocking the direct heat of the flame 3F between the flame 3F and the combustion chamber wall and injecting the heat in the exhaust port 5S direction without providing a water injection nozzle (injecting from the inner wall). It has a simpler structure (can be made into an engine) than any of the above engine combustion devices 2 and 2a and Z, which is a heat absorbing means for absorbing heat in a combustion chamber and a steam generating means by simply providing a WJ. The simple structure has become a measure that can reduce the emission of carbon dioxide due to global warming earlier.
The engine with the above simple structure can be used as an auxiliary engine that provides an auxiliary function for electric vehicles EJ and fuel cell DJ vehicles that are currently being manufactured. For example, in fuel cell DJ vehicles, a hydrogen tank is used to extend the mileage. Although 70MPa is adopted, it can be supported by 35MPa, and it can also be used as an auxiliary means for supplying hydrogen and oxygen, and it is a measure to reduce the installed capacity of the storage battery as an auxiliary device for supplying electricity to the electric vehicle EJ. It became.

第三の発明は
第一の発明に記載のエンジンで生成した水蒸気か、第二の発明に記載のエンジンの何れかのエンジンで生成した水蒸気かの何れかを導入し、電気を生成する電気生成手段か、該水蒸気を導入し水素・酸素を生成する水素生成手段ZU及び酸素生成手段ZUOの何れか一方か両方かを設けておることを特徴とする水素と酸素を燃焼するエンジンを提供する。
The third invention is
An electricity generating means for introducing either steam generated by the engine according to the first invention or steam generated by any of the engines described in the second invention to generate electricity, or the steam. Provided is an engine for burning hydrogen and oxygen, which comprises providing either one or both of a hydrogen generating means ZU and an oxygen generating means ZUO for producing hydrogen and oxygen .

第四の発明は
第三の発明に記載の電気生成手段及び水素・酸素生成手段を備えたエンジン搭載機器の駐機器場に上記エンジンで生成した電気を受電する受電手段と該エンジンに水を供給する水供給手段を設け、上記エンジン搭載機器の駐機器中に当該エンジンを稼働させ、電気を製造し該電気を上記受電設備に供給し、上記水を受給することを特徴とする水素と酸素を燃焼するエンジンンを提供する。
*上記エンジン搭載機器(例えば自動車・船舶(エンジンで海上を走行する例えばマリンジェットスキー等も含む)・航空機・建設機械(例えばショベルカー)・農耕機器(例えば耕運機・草刈り機)林業作業機器(例えばチェンソー)鉄道(例えばレール上を走行する電車)等)の駐機器場(例えば駐車場・船舶係留場・飛行場・建設機械保管場・農耕機器保管場・林業作業機器保管場・電車車庫)等)に上記エンジンで生成した電気を受電する受電手段と該エンジンに水を供給する水供給手段を設け上記エンジン搭載機器の駐機器中に当該エンジンを稼働させ電気を製造し該電気を上記受電設備に供給し上記水を受給する事を特徴とするもの。
*上記水供給手段であるが使用済みの水(水蒸気)を循環して再使用する構成(例えば役割を果たした水蒸気を水タンクに戻し入れる構成)では水をエンジンに供給して循環使用する過程での水の消費ロス分を供給する供給手段である。((排気をエンジン外に排出する構成では排出分(水蒸気)に相当する相当分がプラスされる。))。
*上記移動体非稼働時を活用する手段によりエンジン内の停止・稼働の繰り返しによる該エンジンの構成材の疲労による亀裂破壊等を防止出来該エンジンの寿命延長に繋げるとともに該エンジン生成物の電気の販売もしくは使用(例えば自工場で使用)により該エンジンの原価償却を早く出来る。
・すなわち上記移動体移動時は上記エンジンを稼働して燃料の水素(及び酸素)を生成し移動体のエネルギーとする仕事をし、移動と言う仕事を終えた後は上記移動体エンジンを稼働させ水を供給する水供給手段を設け、生成される電気を引き取り設備(外部社会電力エネルギー供給インフラへの電力供給)にて引き取らせるか更には電気駆動のエンジンに於いては蓄電装置の充電手段電気とするかのいずれかにすることで該移動体非稼働時を活用する手段とする。
The fourth invention is
A power receiving means for receiving electricity generated by the engine and a water supply means for supplying water to the engine are provided in a parking lot of an engine-mounted device provided with the electricity generating means and the hydrogen / oxygen generating means according to the third invention. An engine that burns hydrogen and oxygen, which is characterized in that the engine is operated while the engine-mounted equipment is parked, electricity is produced, the electricity is supplied to the power receiving equipment, and water is received. offer.
* The above engine-equipped equipment (for example, automobiles, ships (including marine jet skis that run on the sea with an engine), aircraft, construction machinery (for example, excavator cars), agricultural equipment (for example, cultivators, mowing machines), forestry work equipment (for example, chainsaws) Above in equipment parking areas (for example, parking lots, ship mooring areas, airfields, construction machinery storage areas, agricultural equipment storage areas, forestry work equipment storage areas, train garages), etc. on railways (for example, trains running on railroads) A power receiving means for receiving electricity generated by the engine and a water supply means for supplying water to the engine are provided, and the engine is operated while the engine-mounted equipment is parked to produce electricity and supply the electricity to the power receiving equipment. It is characterized by receiving the above water.
* Although it is the above water supply means, in the configuration where used water (steam) is circulated and reused (for example, the configuration in which the steam that has played a role is returned to the water tank), the process of supplying water to the engine and recycling it. It is a supply means that supplies the amount of water consumption loss in Japan. ((In the configuration where the exhaust is discharged to the outside of the engine, a considerable amount corresponding to the exhaust (water vapor) is added.)).
* By means of utilizing the above-mentioned mobile body when it is not in operation, it is possible to prevent crack breakage due to fatigue of the components of the engine due to repeated stoppage and operation in the engine, which leads to extension of the life of the engine and electricity of the engine product. The cost of the engine can be quickly amortized by selling or using it (for example, using it at your own factory).
-That is, when the moving body is moving, the engine is operated to generate hydrogen (and oxygen) as fuel and used as energy for the moving body, and after the work of moving is completed, the moving body engine is operated. A water supply means for supplying water is provided, and the generated electricity is taken in by a take-back facility (power supply to the external social power energy supply infrastructure), or in the case of an electrically driven engine, the charging means of the power storage device is electric. By either, it is a means to utilize the moving body when it is not in operation.

第五の発明は
第三の発明に記載の電気生成手段及び水素・酸素生成手段を備えたエンジンは海を航行する移動体及び海水の真水化装置の前記エンジンに導入される前記水として海水を導入する場合に、前記導入された海水から真水と塩を生成する手段SPを設けたことを特徴とする、水素と酸素を燃焼するエンジン。
The fifth invention is
The engine provided with the electricity generating means and the hydrogen / oxygen generating means according to the third invention is used when seawater is introduced as the water to be introduced into the engine of the moving body navigating the sea and the seawater desalination apparatus. An engine that burns hydrogen and oxygen , characterized in that a means SP for producing fresh water and salt from the introduced seawater is provided .

・その他の発明1(補正前第六の発明)のエンジンEWかエンジンEJWかエンジンEJA搭載機を成層圏近くを周回する周回軌道を周回させ、該エンジン搭載機を空中水供給スタンド機EWSSとして燃料の水を搭載し航行する航空機に空中給水する構成にしたことを特徴とするもの。
*上記エンジンを搭載機に宇宙に発射するロケットを載せて該成層圏近くの空中水供給スタンド機から燃料の水の供給を受けロケットを発射する形態であり、地上から発射するときは成層圏近くまで運ぶため補助ロケットを複数着けておるので成層圏近くから発射すれば補助ロケットが不要となる。
*現在の旅客機はエンジンに供給する酸素を大気から調達しておるため高度1万メートル程度で運行しており、軍事用は1万5千メートルが精一杯であるが本願のエンジンは酸素供給は不要であり水の供給手段があれば(空中水供給スタンド機)成層圏外でも飛行出来る。
-The engine EW, engine EJW, or engine EJA-equipped machine of the other invention 1 (sixth invention before amendment) is orbited in an orbit around the vicinity of the stratosphere, and the engine-mounted machine is used as an aerial water supply stand machine EWSS for fuel. It is characterized by being configured to supply water to an aircraft that carries water and sails in the air.
* A rocket to be launched into space is mounted on a machine equipped with the above engine, and the rocket is launched by receiving fuel water from the aerial water supply stand near the stratosphere. When launching from the ground, it is carried to near the stratosphere. Therefore, since multiple auxiliary rockets are attached, the auxiliary rocket becomes unnecessary if it is launched from near the stratosphere.
* Current passenger planes operate at an altitude of about 10,000 meters because oxygen supplied to the engine is procured from the atmosphere, and 15,000 meters is the maximum for military use, but the engine of this application does not supply oxygen. If it is unnecessary and there is a means of supplying water (aerial water supply stand machine), it can fly outside the stratosphere.

・その他の発明2(補正前第六の発明)
エンジンEWの排気を該エンジン搭載機外に噴出する噴出流(ジェット流)とし該エンジン搭載機の推進力とした構成のエンジンEjWであって、上記電気生成装置手段の電気生成手段EEからの排気5WJを分岐し分岐した一方を機外に噴出する噴出流(ジェット流)手段JWに導入し該エンジン搭載機の推進力としており、分岐した他方を酸素生成手段ZUO及び水素生成手段ZUに導入して該酸素生成手段ZUO及び水素生成手段ZUに副材料(例えば上記電力生成手段EEで生成した電気)を導入して上記エンジンEWの燃料の酸素と水素を生成してエンジンEJWとした事を特徴とする水素と酸素を燃焼し、且つ、水素と酸素を生成するエンジン。
*上記機器外に噴出する噴出流(ジェット流)手段JWに供給しておる排気5WJの全量の供給分を上記該酸素生成手段ZUO及び水素生成手段ZUに供給出来る切換え手段(切換え弁)を設けて上記エンジン駐機器中にエンジンを稼働させ電気を生成する手段とする。
*上記エンジンEJWを移動体に搭載し移動と言う仕事をしているときは上記機外に噴出する噴出流(ジェット流)手段JWと該酸素生成手段ZUO及び水素生成手段ZUの両方に上記電力生成手段EEからの排気5WJを供給し燃料の酸素及び水素を生成しており、分岐した機外に噴出する噴出流(ジェット流)手段JWに導入した排気5WJは該エンジン搭載機の推進力としており、移動と言う仕事をしない時に該エンジンを稼働させる時は上記機器機外に噴出する噴出流(ジェット流)手段JWに供給しておる排気5WJの全量の供給分を上記該酸素生成手段ZUO及び水素生成手段ZUに供給出来る切換え手段(切換え弁)を設けて供給し水素と酸素を生成する構成にしておる。
-Other invention 2 (sixth invention before amendment)
The engine EjW has a configuration in which the exhaust of the engine EW is a jet flow (jet flow) ejected to the outside of the engine-mounted machine and is used as the propulsive force of the engine-mounted machine. 5 WJ is branched and one of the branches is introduced into the jet flow (jet flow) means JW that ejects to the outside of the machine to serve as the propulsive force of the engine-mounted machine, and the other of the branches is introduced into the oxygen generation means ZUO and the hydrogen generation means ZU. It is characterized in that an auxiliary material (for example, electricity generated by the power generation means EE) is introduced into the oxygen generation means ZUO and the hydrogen generation means ZU to generate oxygen and hydrogen as fuel for the engine EW to form an engine EJW. An engine that burns hydrogen and oxygen and produces hydrogen and oxygen.
* A switching means (switching valve) is provided that can supply the entire amount of the exhaust gas 5WJ supplied to the ejection flow (jet flow) means JW ejected to the outside of the device to the oxygen generation means ZUO and the hydrogen generation means ZU. The engine is operated while the engine is parked to generate electricity.
* When the engine EJW is mounted on a moving body and the work of moving is performed, the power is supplied to both the jet flow means JW and the oxygen generation means ZUO and the hydrogen generation means ZU that are ejected to the outside of the machine. The exhaust 5WJ introduced into the jet flow means JW, which supplies oxygen and hydrogen as fuel by supplying the exhaust 5WJ from the generation means EE and ejects to the outside of the branched machine, serves as the propulsion force of the engine-mounted machine. When the engine is operated when the work of moving is not performed, the total amount of the exhaust 5WJ supplied to the ejection flow (jet flow) means JW ejected to the outside of the equipment is supplied to the oxygen generation means ZUO. A switching means (switching valve) that can be supplied to the hydrogen generating means ZU is provided and supplied to generate hydrogen and oxygen.

・その他の発明3(補正前第七の発明)エンジンEJWの上流に大気を集気する集気手段又は水(海水・真水)を集水する集水手段(の一方か両方か)を設けたエンジンEJAであって、該集気手段からバイパス流路を経て電力生成手段EEに導入し電気を生成する電気生成量を増加させる手段とするか、大気に該エンジン搭載機外に噴出する噴出流A(ジェット流)と合流させた噴出流Bとするかの何れかにしており、該集気し圧縮された大気でエネルギーを得る構成とした事を特徴とする水素と酸素を燃焼し、且つ、水素と酸素を生成するエンジン。 -Other invention 3 (seventh invention before amendment) An air collecting means for collecting air or a water collecting means (either one or both) for collecting water (seawater / fresh water) is provided upstream of the engine EJW. An engine EJA, which is introduced into the power generation means EE from the air collecting means via a bypass flow path to increase the amount of electricity generated to generate electricity, or is a jet flow ejected to the atmosphere to the outside of the engine-mounted machine. It is either a jet flow B that is combined with A (jet flow), and it burns hydrogen and oxygen, which is characterized by having a configuration in which energy is obtained in the collected and compressed atmosphere, and , An engine that produces hydrogen and oxygen.

・その他の発明4(補正前第八の発明) 上記第二の発明から第五の発明に記載のエンジンEWかエンジンEJWかエンジンEJA搭載機を成層圏近くを周回する周回軌道を周回させ、該エンジン搭載機を空中水供給スタンド機EWSSとして燃料の水を搭載し航行する航空機に空中給水する構成にしたことを特徴とする水素と酸素を燃焼し、且つ、水素と酸素を生成するエンジンを提供する。
*上記エンジンを搭載機に宇宙に発射するロケットを載せて該成層圏近くの空中水供給スタンド機から燃料の水の供給を受けロケットを発射する形態であり、地上から発射するときは成層圏近くまで運ぶため補助ロケットを複数着けておるので成層圏近くから発射すれば補助ロケットが不要となる。
*現在の旅客機はエンジンに供給する酸素を大気から調達しておるため高度1万メートル程度で運行しており、軍事用は1万5千メートルが精一杯であるが本願のエンジンは酸素供給は不要であり水の供給手段があれば(空中水供給スタンド機)成層圏外でも飛行出来る。
Other Invention 4 (Eighth Invention Before Amendment) The engine EW, engine EJW, or engine EJA-equipped aircraft described in the second to fifth inventions is made to orbit around the stratosphere, and the engine is used. It provides an engine that burns hydrogen and oxygen and produces hydrogen and oxygen, which is characterized by having the onboard machine as an aerial water supply stand machine EWSS, which is configured to carry fuel water and supply aerial water to a navigating aircraft. ..
* A rocket to be launched into space is mounted on a machine equipped with the above engine, and the rocket is launched by receiving fuel water from the aerial water supply stand near the stratosphere. When launching from the ground, it is carried to near the stratosphere. Therefore, since multiple auxiliary rockets are attached, the auxiliary rocket becomes unnecessary if it is launched from near the stratosphere.
* Current passenger planes operate at an altitude of about 10,000 meters because oxygen supplied to the engine is procured from the atmosphere, and 15,000 meters is the maximum for military use, but the engine of this application does not supply oxygen. If it is unnecessary and there is a means of supplying water (aerial water supply stand machine), it can fly outside the stratosphere.

段落[0012]に記載
Described in paragraph [0012]

その他の発明5の惰力運転制御に係る技術(削除)。


Other Techniques Related to Coasting Operation Control of Invention 5 (Deleted).


<上記問題を解決する手段の補足説明>
(吸気に関する理論)
*空燃比 1CCのガソリンに対して850CCの空気が必要で分離した酸素を使用すれば、165CCの酸素で良く660CCの窒素と25CCのアルゴンの混合ガスが分離され、窒素とアルゴンの混合ガスは畜ガスタンクに畜ガスされる理論量であり、このアルゴンも分離畜ガスすれば価値あるガスとして利用される構成にもできる。165/850は19%で窒素とアルゴンの取り扱い構造が約80%不要となり、仮に排気量2000CCのエンジンであれば理論上400CC(水素エンジンの水素濃度を4%とした場合)の排気量のエンジンで同じ出力が得られることになるがほとんどの科学反応は反応物の濃度が高い程早く進む(上記O濃度・水素濃度の差により上記理論値より反応速度が異なり)更に少ない排気量のエンジンで良い事になる。
例えばスチールウールはO濃度が約20%の空気中ではゆっくりとしか燃えないが、純酸素の中では炎を上げて燃える。・・・O2濃度の差。
<Supplementary explanation of means for solving the above problems>
(Theory about intake)
* If 850CC of air is required for 1CC of air-fuel ratio and separated oxygen is used, 165CC of oxygen is sufficient and 660CC of nitrogen and 25CC of argon mixed gas are separated, and the mixed gas of nitrogen and argon is stored. It is the theoretical amount of gas stored in the gas tank, and if this argon is also separated and stored, it can be used as a valuable gas. The 165/850 is 19%, which eliminates the need for a handling structure of nitrogen and argon by about 80%. If it is an engine with a displacement of 2000CC, it is theoretically an engine with a displacement of 400CC (assuming the hydrogen concentration of the hydrogen engine is 4%). However, most scientific reactions proceed faster as the concentration of the reactants increases (the reaction speed differs from the theoretical value due to the difference between the O 2 concentration and the hydrogen concentration), and the engine has a smaller displacement. It will be a good thing.
Steel wool, for example, burns only slowly in air with an O2 concentration of about 20%, but burns in pure oxygen with a high flame.・ ・ ・ Difference in O 2 concentration.

<高温水蒸気電解(HTES)>
*1a,電解法による水素製造法とそのコスト(阿部 勲夫)から引用。
高温水蒸気電解(HTES : High Temperature Electrolysis of Steam又はSOEC:Solid Oxide Electrolysis Cellと呼ばれる)とはアルカリ水電解やPEM水電解とは異なり、800℃から1000℃で水蒸気を、酸化ジルコニウムを主体とした無機の薄い固体電解質を用いて電解する方法である。逆反応の高温型燃料電池の技術を応用したもので、新しい方法であるため、開発の段階は未だ基礎的なものに留っている。
図6に示すように固体酸化物電解質薄膜の両側に電極を付けて電解セルとする。通常は電解質薄膜を円筒形にして内外に両極を付けて電解セルを構成する。
両極で以下の反応が起こる。
(陰極) H2O + 2e- → O2-- + H2 ↑
(陽極) O2-- →2e- + 1 / 2 O2 ↑
全体で、 H2O → H2 + 1/ 2 O2
陰極側に供給された水蒸気は一部が水素になり、水素と水蒸気の混合物となる。ここで生成した酸化物イオンが固体電解質の薄膜の内部を、陰極側から陽極側に移動して酸素となる。固体電解質にはイットリウム等で修飾した酸化ジルコニウムの薄膜が使われる。前述の図1のように温度が高くなると水電解のギブズエネルギー変化が常温より小さくなり、理論電解電圧が低くなる。また高温下では電極反応の速度が早くなるため、活性の強い触媒を用いなくても過電圧が低くなり、水の電解が熱中性電圧(理論稼働電圧)以下で可能であり、図1の吸熱領域で電解できる。電力はギブズエネルギー変化分(理論電解電圧)以上あれば、分解に必要な残りのエネルギーは熱の形で供給することができる。このため原理的には電解電圧はアルカリ水電解法やPEM水電解法のような液体電解よりもずっと低く出来る。
熱を直接反応に供給できるので電力が節約でき、熱を電力に変換する効率の悪さを回避できる。このため他の電解方式よりもずっと高い効率が期待できる。
*本願はエンジンE及びエンジンEW及びエンジンEWJの排気(水蒸気)の排出温度を上記800℃~1000℃以上に出来るのでこの電解法が好ましい。
<High temperature steam electrolysis (HTES)>
* 1a, quoted from the hydrogen production method by the electrolytic method and its cost (Isao Abe).
Unlike alkaline water electrolysis and PEM water electrolysis, high temperature electrolysis of steam (HTES: High Temperature Electrolysis of Steam or SOEC: Solid Oxide Electrolysis Cell) is an inorganic substance mainly composed of zirconium oxide, which uses water vapor at 800 ° C to 1000 ° C. It is a method of electrolyzing using a thin solid electrolyte. Since it is a new method that applies the technology of a high-temperature fuel cell with a reverse reaction, the development stage is still basic.
As shown in FIG. 6, electrodes are attached to both sides of the solid oxide electrolyte thin film to form an electrolytic cell. Normally, the electrolyte thin film is made into a cylinder and both inside and outside are attached to form an electrolytic cell.
The following reactions occur at both poles.
(Cathode) H2O + 2e- → O2-- + H2 ↑
(Anode) O2- → 2e- + 1/2 O2 ↑
Overall, H2O → H2 + 1/2 O2
Part of the water vapor supplied to the cathode side becomes hydrogen, which becomes a mixture of hydrogen and water vapor. The oxide ions generated here move inside the thin film of the solid electrolyte from the cathode side to the anode side and become oxygen. A thin film of zirconium oxide modified with yttrium or the like is used as the solid electrolyte. As shown in FIG. 1 above, when the temperature rises, the Gibbs energy change of water electrolysis becomes smaller than the normal temperature, and the theoretical electrolysis voltage becomes lower. In addition, since the electrode reaction speed is high at high temperatures, the overvoltage is low without using a highly active catalyst, and water can be electrolyzed below the heat neutral voltage (theoretical operating voltage). Can be electrolyzed with. If the electric power is equal to or greater than the Gibbs energy change (theoretical electrolysis voltage), the remaining energy required for decomposition can be supplied in the form of heat. Therefore, in principle, the electrolytic voltage can be much lower than that of liquid electrolysis such as the alkaline water electrolysis method and the PEM water electrolysis method.
Since heat can be directly supplied to the reaction, electric power can be saved and the inefficiency of converting heat into electric power can be avoided. Therefore, much higher efficiency can be expected than other electrolysis methods.
* This electrolysis method is preferable because the exhaust temperature of the exhaust gas (steam) of the engine E, the engine EW, and the engine EWJ can be set to 800 ° C. to 1000 ° C. or higher in the present application.

*1b、「電気分解装置F1及びF2」
特開2012-52162の水蒸気電気分解技術を上記エンジンの燃料の水素と酸素に分解する技術とすることも出来る技術であり、上記エンジン燃焼装置から排出される排気ガスを上記電気生成装置3Eを貫流させ貫流後の熱を持つ高温の水蒸気を水蒸気電気分解装置F1,F2にて電気分解(水蒸気電解)し、水素および酸素を発生させる。水蒸気電解温度は高温ほど、熱源の直接利用に有利となる。600℃で作動する中温水蒸気電解装置を用いても良く、1000℃で作動する電気分解装置を用いればさらによい。なお、中温水蒸気電解装置は、電解質としてプロトン伝導体:SrZr0.5Ce0.40.13-aを用い、電極として、水を分解するアノードには、高活性であるSm0.5Sr0.5CoOという組成の酸化物電極、また、水素発生極であるカソードにはニッケル電極と電解質の間にセレート系のプロトン伝導体の薄い層を挿入する構造を採用することにより、600℃、0.2A/cmの条件で0.3Vという低過電圧で作動する技術。
*本願のエンジンの水素・酸素生成手段の電気分解装置F1及びF2として採用出来る技術である。
* 1b, "Electrolytic equipment F1 and F2"
The steam electrolysis technology of Japanese Patent Application Laid-Open No. 2012-52162 can be used as a technology for decomposing the fuel of the engine into hydrogen and oxygen, and the exhaust gas discharged from the engine combustion device flows through the electricity generator 3E. High-temperature steam having heat after flowing through is electrolyzed (steam electrolysis) by the steam electrolysis devices F1 and F2 to generate hydrogen and oxygen. The higher the steam electrolysis temperature, the more advantageous it is for the direct use of the heat source. A medium-temperature steam electrolyzer operating at 600 ° C. may be used, and an electrolyzer operating at 1000 ° C. may be used. The medium-temperature steam electrolyzer uses a proton conductor: SrZr 0.5 Ce 0.4 Y 0.1 O 3-a as the electrolyte, and the anode that decomposes water as an electrode is Sm 0 , which is highly active. .5 By adopting a structure in which a thin layer of serate-based proton conductor is inserted between the nickel electrode and the electrolyte for the oxide electrode having the composition of Sr 0.5 CoO 3 and the cathode which is the hydrogen generating electrode. A technology that operates at a low overvoltage of 0.3V under the conditions of 600 ° C and 0.2A / cm 2 .
* This is a technology that can be adopted as the electrolyzers F1 and F2 of the hydrogen / oxygen generating means of the engine of the present application.

*1c、「電気分解装置F1及びF2」
水蒸気電気分解装置の技術に属する技術であり、
高温水蒸気ガスが固体電解質セル内を通過する間に電気分解する構成の技術が開示されておる特開2006-307290や特開平9-228085や特開2017-33816等に記載されており該開示技術記載では約900℃前後の高温条件下において、水蒸気を吹き込みながら外部電源によって燃料極及び空気極に通電することにより、水分子が分解される。具体的には、燃料極において水分子由来の水素ガスが取り出され、空気極において水分子由来の酸素ガスが取り出される。この高温水蒸気電解は、低温の水分解に比べて理論分解電圧が低い(例えば1000℃では0.9V)としておる技術。
* 1c, "Electrolytic equipment F1 and F2"
It is a technology that belongs to the technology of steam electrolysis equipment.
It is described in JP-A-2006-307290, JP-A-9-228805, JP-A-2017-33816, etc., which disclose a technique for electrolyzing a high-temperature steam gas while passing through a solid electrolyte cell. In the description, water molecules are decomposed by energizing the fuel electrode and the air electrode by an external power source while blowing steam under high temperature conditions of about 900 ° C. Specifically, hydrogen gas derived from water molecules is taken out at the fuel electrode, and oxygen gas derived from water molecules is taken out at the air electrode. This high-temperature steam electrolysis is a technique in which the theoretical decomposition voltage is lower (for example, 0.9 V at 1000 ° C) than the low-temperature water decomposition.

*1d, 固体酸化物形水蒸気電解装置(特開2008-243744記載技術)
400℃~600℃の作動温度においても、原子の透過性を向上させることができる金属薄膜を用いた水蒸気電解装置で該金属薄膜を金属組成物と、前記金属組成物の結晶粒界に分散させた酸化物とを含有する。前記金属組成物を構成する金属ターゲットと、前記酸化物を構成する酸化物ターゲットとを同時にスパッタリングして形成した技術であり、上記高温水蒸気電解にて未分解となった水蒸気を更に分解する技術(電気分解装置F2)に出来る。
* 1 d, Solid oxide steam electrolyzer (Technology described in JP-A-2008-243744)
The metal thin film is dispersed in the metal composition and the grain boundaries of the metal composition by a steam electrolyzer using a metal thin film capable of improving the permeability of atoms even at an operating temperature of 400 ° C to 600 ° C. Contains oxides. A technique formed by simultaneously sputtering a metal target constituting the metal composition and an oxide target constituting the oxide, and further decomposing steam undecomposed by the high-temperature steam electrolysis (a technique). It can be used as an electrolyzer F2).

*二酸化珪素皮膜で被覆された酸化鉄を還元して得られる鉄-二酸化珪素複合体に水蒸気を供給して水素を発生させる技術で同時に酸素生成手段を兼ねる技術。
...上記特許文献3に記載の技術。
* A technology that supplies hydrogen to the iron-silicon dioxide composite obtained by reducing iron oxide coated with a silicon dioxide film to generate hydrogen, and at the same time also serves as an oxygen generation means.
.. .. .. The technique described in Patent Document 3 above.

「熱交換器G,G3」
上記エンジンE・EW・EWJの構成外殻体((例えば、エンジン燃焼室・排気路、電気生成装置3E(回転力取り出し手段)・水素生成手段ZU,酸素生成手段ZUO及びその手段を連結する連結路))に水若しくは水蒸気を熱搬送体とした該水蒸気の流路を設け該構成手段(装置)外殻体からの熱を該流路中を流れる熱搬送体の水若しくは水蒸気に吸熱させる吸熱手段とした熱交換器とする。
"Heat exchanger G, G3"
The outer shell of the engine E, EW, EWJ (for example, the engine combustion chamber / exhaust passage, the electric generator 3E (rotating force extraction means), the hydrogen generating means ZU, the oxygen generating means ZUO, and the connection thereof are connected to each other. A flow path of the steam having water or steam as a heat carrier is provided in the path)), and heat from the outer shell of the constituent means (device) is absorbed by the water or steam of the heat carrier flowing in the flow path. It is a heat exchanger used as a means.

「熱電エネルギー変換装置、」
特開2012-52162水素および酸素の製造・使用方法。
熱を電気に直接変換する熱電変換装置となる技術に係る熱で熱電変換モジュールが試作され、発電試験が実施されており、発電試験の結果(300℃に加熱し無負荷=電流ゼロ)起電力0.39Vを取り出すのに成功した事例が公開されておる、上記施策された発電モジュールは、p型材料にFe2V0.9Ti0.1Al2,n型材料にFe2val0.9si0.1を用いて18個の熱電素子からなるのである、
電極には銅が使用され、p,n各材料と拡散接合で接合しており、該モジュールの片方は20℃で一定とし、他方面を300℃に加熱し上下面の温度差により発電する技術である。
"Thermoelectric energy converter,"
Japanese Patent Application Laid-Open No. 2012-52162 A method for producing and using hydrogen and oxygen.
A thermoelectric conversion module has been prototyped using heat related to technology that is a thermoelectric conversion device that directly converts heat into electricity, and a power generation test has been conducted. The result of the power generation test (heated to 300 ° C, no load = zero current) electromotive force An example of success in extracting 0.39V has been released. The power generation module with the above measures uses Fe2V0.9Ti0.1Al2 for the p-type material and Fe2val0.9si0.1 for the n-type material, and 18 thermoelectrics. It consists of elements,
Copper is used for the electrodes, and it is bonded to each of the p and n materials by diffusion bonding. One of the modules is kept constant at 20 ° C, the other surface is heated to 300 ° C, and power is generated by the temperature difference between the upper and lower surfaces. Is.

排気流力STを動力・電気を生成する電気生成装置(回転力取出し装置)3Eであるが、流体(水、水蒸気、燃焼ガス)の略直線方向の流力を回転力にして取り出す構造にはダムからの落水力や潮流の干満潮の流力、農業用水路の水流力等の水の流れる力を回転力に替える技術及び蒸気機関(水蒸気の圧力を利用してピストンの往復運動を回転力にする原動機)やタービン〔水蒸気を吹き付けて羽根車を回転運動させる原動機の翼体やガスタービンの圧縮空気に燃料をまぜて燃焼させた高温・高圧のガスを使ってタービンを回す原動機の翼体(動翼)等〕があり、本願では常識化(公知の技術)されておる翼体(羽根車)であれば良く、上記回転力取出し構造部3を貫流する排気ガス及び水蒸気は少なくとも600℃の高温なので必要に応じて耐熱構造手段(例えばニッケル合金にセラミックコーティング等の加工をする)を設けるかあるいは水供給手段の水を上記回転力取出し構造部3の回転翼体の軸部から水を導入する手段(例えば水を散水するスプリンクラーの回転する回転体に水を供給する構造)にて回転翼体に水を供給し該回転翼体の熱を吸熱した水もしくは水蒸気を回転翼体外に放出し該回転翼体を貫流しておる排気流STと合流し下流に流す構造として翼体(羽根車)の冷却手段とする構成でも良い。 It is an electric generator (rotary force extraction device) 3E that generates power and electricity from the exhaust flow force ST, but it has a structure that takes out the flow force in the substantially linear direction of the fluid (water, steam, combustion gas) as the rotational force. Technology and steam engine (using the pressure of steam to make the reciprocating motion of the piston into rotational force) (Motor) and turbine [The wing of the prime mover that rotates the impeller by blowing steam, and the wing of the prime mover that rotates the turbine using high-temperature, high-pressure gas that is burned by mixing fuel with the compressed air of the gas turbine. There is a moving blade), etc.], and any blade (impeller) that has become common knowledge (known technology) in the present application is sufficient, and the exhaust gas and water vapor flowing through the rotational force extraction structure 3 are at least 600 ° C. Since the temperature is high, heat-resistant structural means (for example, processing a nickel alloy with a ceramic coating, etc.) is provided as necessary, or water from the water supply means is introduced from the shaft portion of the rotary blade of the rotational force extraction structure portion 3. (For example, a structure that supplies water to a rotating rotating body of a sprinkler that sprinkles water) supplies water to the rotating wing body and releases water or steam that has absorbed the heat of the rotating wing body to the outside of the rotating wing body. A structure may be used as a cooling means for the blade body (impeller) as a structure that merges with the exhaust flow ST flowing through the rotary blade body and flows downstream.

発明が解決しようとする課題に記載されておる
1、現段階で商品化され流通しておる燃料を水素と酸素としたレシプロエンジンかロータリーエンジンかディゼルエンジンかのエンジンを主構造とした構成で上記、地球温暖化の二酸化炭素の排出削減が出来る策を発明出来た。
2、水素と酸素を燃料とする上記エンジン内への水素と酸素と水の供給手段と水蒸気生成手段を上記PCT/JP2018/018606からより簡単な構造を発明出来た。
3、上記2の構造を航空機、船舶、ロケットに展開した構成を発明出来た。
Described in the problem to be solved by the invention 1. The above is a configuration in which the main structure is an engine of a reciprocating engine, a rotary engine, or a diesel engine that uses hydrogen and oxygen as fuels that are commercialized and distributed at this stage. , I was able to invent a measure that can reduce the emission of carbon dioxide due to global warming.
2. A simpler structure could be invented from the above PCT / JP2018 / 018606 for the means for supplying hydrogen, oxygen and water into the engine using hydrogen and oxygen as fuel and the means for generating steam.
3. We were able to invent a configuration in which the structure of 2 above was expanded to aircraft, ships, and rockets.

現在商品化されておるエンジンの代表として4サイクルレシプロエンジンの吸気・圧縮・爆発・排気の工程で水及び水素及び酸素を導入するタイミングを表した図1で
・パターン1 (パターンの一例)
上記吸気工程で水を導入し、導入した水がシリンダー内の熱を吸熱し水蒸気Aを生成し該水蒸気を圧縮工程で圧縮し、爆発工程で水素及び酸素を直噴射で導入され、点火手段で点火し水素と酸素を燃焼し更に点火直後のタイミングで水を導入する。(この作業は排気の全量が多くなると排出圧が高くなる、(この排出力を使った遠心式圧縮機の概略図が図1下部図 ))該排気圧がエンジンの仕事量を多くする。
*排出圧を水及び酸素・水素の導入圧とする事ができる。
As a representative of the engines currently on the market, Fig. 1 shows the timing of introducing water, hydrogen, and oxygen in the intake, compression, explosion, and exhaust processes of a 4-cycle reciprocating engine. ・ Pattern 1 (an example of the pattern)
Water is introduced in the above intake step, the introduced water absorbs heat in the cylinder to generate steam A, the steam is compressed in the compression step, hydrogen and oxygen are introduced by direct injection in the explosion step, and the ignition means is used. It ignites, burns hydrogen and oxygen, and introduces water immediately after ignition. (In this work, the exhaust pressure increases as the total amount of exhaust increases (the schematic diagram of the centrifugal compressor using this exhaust force is the lower figure in Fig. 1)). The exhaust pressure increases the work load of the engine.
* The discharge pressure can be the introduction pressure of water and oxygen / hydrogen.

*上記パターンに於ける水素供給手段HSを水素ボンベ(例えば圧縮された水素を充填した水素ボンベ)として、酸素供給手段OSを例えば酸素ボンベ(酸素製造所で製造され充填した高圧酸素(例えば圧縮された酸素を充填した酸素ボンベ))か空気より分離された酸素の何れかの供給手段とすれば,燃焼温度を高くして、高くした分だけシリンダー内への水の供給量を増やす事が出来る、例えば排気量2000CC4気筒のエンジンで1気筒当たり500CCであり、ここに導入する水を1CC増やすと1800CCの水蒸気を製造出来ることになる。 * The hydrogen supply means HS in the above pattern is a hydrogen cylinder (for example, a hydrogen cylinder filled with compressed hydrogen), and the oxygen supply means OS is, for example, an oxygen cylinder (for example, high-pressure oxygen manufactured and filled in an oxygen factory (for example, compressed). If either an oxygen cylinder filled with oxygen)) or oxygen separated from the air is used, the combustion temperature can be raised and the amount of water supplied into the cylinder can be increased by the increased amount. For example, an engine with a displacement of 2000CC and a 4-cylinder has 500CC per cylinder, and if the amount of water introduced here is increased by 1CC, 1800CC of water vapor can be produced.

・例示パターン2は吸気工程で酸素と水を導入しており、圧縮後爆発工程で水素を直噴射で導入され、点火手段で点火され、水素と酸素が燃焼し、更に点火直後のタイミングで水を導入し排気工程に入る。
・例示パターン3は吸気工程で水素と水を導入しており、圧縮後爆発工程で酸素を直噴射で導入され、点火手段で点火され、水素と酸素が燃焼し、燃焼したタイミングで水を導入しておる。
該爆発工程で上記水素と酸素が燃焼した点火直後のタイミングで水を導入する作業を省略する事も出来ることを表したもの。
-In the example pattern 2, oxygen and water are introduced in the intake process, hydrogen is introduced by direct injection in the explosion process after compression, ignited by the ignition means, hydrogen and oxygen burn, and water is further immediately after ignition. Is introduced and the exhaust process is started.
-In the example pattern 3, hydrogen and water are introduced in the intake process, oxygen is introduced by direct injection in the explosion process after compression, ignited by the ignition means, hydrogen and oxygen burn, and water is introduced at the timing of combustion. I have.
It shows that the work of introducing water at the timing immediately after ignition when the hydrogen and oxygen are burned in the explosion step can be omitted.

上記の外のパターンでは
圧縮工程で水を供給することも出来るが、該水の供給を吸入工程でするのも同じ効果であり又排気工程で水を供給することも出来るが、排気工程での水の供給は
水蒸気の生成量を増大させる効果しかなく該エンジン内の熱で水蒸気を生成するのであれば吸入工程で及び爆発工程で水を導入するのが好ましい。
水をエンジン内に供給出来る量は上記爆発の熱エネルギーで水を水蒸気に生成出来る量であり、更に下流に電気生成装置3Eと水素及び酸素生成手段の水素及び酸素生成装置を設ける場合は該水素及び酸素生成装置の入口温度を(例えば水蒸気電気分解装置の場合入口温度を少なくとも該水蒸気分解装置の耐熱温度上限近くの温度)水素を生成出来る温度に確保する必要がある。
In the pattern other than the above, water can be supplied in the compression process, but supplying the water in the suction process has the same effect, and water can be supplied in the exhaust process, but in the exhaust process. The supply of water has only the effect of increasing the amount of water vapor produced, and if water vapor is generated by the heat in the engine, it is preferable to introduce water in the suction step and the explosion step.
The amount of water that can be supplied into the engine is the amount that water can be generated into steam by the heat energy of the explosion, and if an electrolysis device 3E and hydrogen and hydrogen and oxygen generation devices for hydrogen and oxygen generation means are provided further downstream, the hydrogen. In addition, it is necessary to secure the inlet temperature of the oxygen generator (for example, in the case of a steam electrolyzer, the inlet temperature is at least a temperature close to the upper limit of the heat resistant temperature of the steam hydrolyzer) to a temperature capable of producing hydrogen.

上記構成をフローチャートで記載した図2であり、エンジンEに水と水素・酸素を供給し該燃料の燃焼によるエンジンの回転力で動力・電気を生成するとともに該エンジンで生成した水蒸気(排気)を電気生成装置3Eに導入し該手段3Eにて動力・電気を生成し、該電気生成装置3Eの下流に水素生成手段ZUと・酸素生成手段ZUOを設けており、(水素生成手段の材料が水の場合水素を取り出した後の気体は概酸素であるので、材料を水とした水素・酸素生成装置(手段)として記載しておる、)
該水素生成手段ZUと・酸素生成手段ZUOに該電気生成装置3Eを貫流した水蒸気を導入し該生成手段で水素及び酸素を生成し生成した水素及び酸素を上記エンジンEの酸素供給手段及び水素供給手段の水素及び酸素としておる。
*すなわち水素・酸素を燃焼し燃焼熱で水を水蒸気Aとし、水素・酸素の燃焼で生成される水蒸気Bとともに排気として下流に排出し該排出された水蒸気の流力で電気・動力を得、(電気生成装置3E)電気・動力取り出し後の水蒸気を受けて酸素水素を生成する。
*上記エンジンEの回転力で電気を生成し、該電力で駆動(例えば走行)する形態では、エンジンからの水を水蒸気にした該1800倍に体積を増大した排気力を使用した電気製造手段EPは現在公開されておる技術で対応出来る。
*水素酸素生成装置で水素・酸素を生成し生成した水素・酸素を該エンジンEの燃料とする循環サイクルであり更に水素酸素を生成する生成装置で未改質及び未分解となった水蒸気STmをエンジンEの排気管路(又は水供給手段の水タンク)に戻し入れる手段を設けることで水の補給は該エンジンEのサイクルでの水のロス分を補充するだけで、エンジンEの駆動力を得る事が出来る技術である事を記載した図。
FIG. 2 shows the above configuration in a flowchart, in which water, hydrogen, and oxygen are supplied to engine E, power and electricity are generated by the rotational force of the engine due to combustion of the fuel, and water vapor (exhaust) generated by the engine is generated. It is introduced into the electricity generation device 3E to generate power and electricity by the means 3E, and hydrogen generation means ZU and oxygen generation means ZUO are provided downstream of the electricity generation device 3E (the material of the hydrogen generation means is water). In the case of, since the gas after taking out hydrogen is approximately oxygen, it is described as a hydrogen / oxygen generator (means) using water as the material.)
The hydrogen and oxygen generated by introducing the water vapor flowing through the electric generator 3E into the hydrogen generation means ZU and the oxygen generation means ZUO to generate hydrogen and oxygen by the generation means are used as the oxygen supply means and hydrogen supply of the engine E. It is used as hydrogen and oxygen of means.
* That is, hydrogen / oxygen is burned and water is converted into steam A by the heat of combustion, and it is discharged downstream as exhaust together with steam B generated by combustion of hydrogen / oxygen to obtain electricity and power by the flow force of the discharged steam. (Electric generator 3E) Generates oxygen hydrogen by receiving steam after taking out electricity and power.
* In the form in which electricity is generated by the rotational force of the engine E and driven by the electric power (for example, running), the electric manufacturing means EP using the exhaust force whose volume is increased 1800 times by turning the water from the engine into steam. Can be handled with the technology currently open to the public.
* A circulation cycle in which hydrogen / oxygen is generated by a hydrogen / oxygen generator and the generated hydrogen / oxygen is used as fuel for the engine E. Further, unmodified and undecomposed water vapor STm is generated by the hydrogen / oxygen generator. By providing a means to return the engine E to the exhaust pipeline (or the water tank of the water supply means), water can be replenished only by replenishing the water loss in the cycle of the engine E, and the driving force of the engine E can be increased. The figure which described that it is a technology that can be obtained.

図3に記載のエンジンは燃焼室部内に圧縮・回転に係る機械的構造を持たないエンジンで(筒型エンジン)該エンジンの特徴は水素と酸素(略100%の純度)を燃焼室NE内で燃焼し燃焼により形成される火炎3F(中心温度は略2800℃となる)と燃焼室壁の間に火炎の直射熱の伝熱をさえぎり、かつ、該熱を吸熱してくれる吸熱手段(水蒸気生成手段)の噴射水層WSを形成する形状に水を噴射する水噴射手段WJを設けており、該水噴射手段により噴射した水は火炎3Fの熱で水を水蒸気Aにする水蒸気生成手段(水の体積を概略1800倍に膨張させた水蒸気で水蒸気爆発の形態)とするとともに、燃焼室NE内の熱を吸熱しており、水素と酸素の燃焼で生成される水蒸気Bと水蒸気Aを排気(水蒸気)として排出しておる。
*上記水噴射手段WJの水噴射ノズルから噴射された噴射水層WSの噴射ノズルから噴射され形成された噴射水層の形態例を図示した図であり、WJ1及びWJ2は噴射水層が火炎3Fを囲む形態で燃焼室壁2Uへの直射熱を遮る構成で、WJ2は噴射ノズル部を凹部と凸部との間に形成しておる溝部を水噴射ノズルとした構成。WJ3は噴射水層中に水柱形状も混在しておる形態を表した水噴射手段WJ部の図。
The engine shown in FIG. 3 is an engine that does not have a mechanical structure related to compression / rotation in the combustion chamber (cylindrical engine), and the feature of the engine is that hydrogen and oxygen (approximately 100% purity) are introduced in the combustion chamber NE. A heat absorbing means (steam generation) that blocks the direct heat transfer of the flame between the flame 3F (center temperature is approximately 2800 ° C) formed by combustion and the combustion chamber wall, and absorbs the heat. A water injection means WJ for injecting water into a shape forming the injection water layer WS of the means) is provided, and the water injected by the water injection means turns the water into steam A by the heat of the flame 3F (water). The volume of steam is approximately 1800 times larger than that of steam (in the form of steam explosion), and the heat in the combustion chamber NE is absorbed, and steam B and steam A generated by combustion of hydrogen and oxygen are exhausted (). It is discharged as steam).
* The figure illustrates a morphological example of the injection water layer formed by being injected from the injection nozzle of the injection water layer WS injected from the water injection nozzle of the water injection means WJ. In WJ1 and WJ2, the injection water layer is the flame 3F. The WJ2 has a configuration in which the injection nozzle portion is formed between the concave portion and the convex portion, and the groove portion is a water injection nozzle. WJ3 is a diagram of a water injection means WJ section showing a form in which a water column shape is also mixed in the injection water layer.

図4はエンジンEの下流に水素生成手段ZU及び酸素生成手段ZUOを設け該水素生成手段ZU及び酸素生成手段ZUOにエンジンEで生成された水蒸気とエンジンE及びエネルギー変換手段TEで生成された電気を導入して水素を生成し、水素から熱を取り出す熱交換器TR1にて熱を取り出しており該水素は燃料の水素としており、水素を取り出された水蒸気は酸素と未分解の水蒸気で該酸素と未分解の水蒸気から熱交換TR2で熱を取り出し更に水蒸気の水分を除去し、水分を除去した酸素は燃料の酸素としており、上記TR1・TR2で取り出した熱をエネルギー変換手段TEに導入し該エネルギー変換手段にて電気を生成し該電気を水素生成手段ZU及び酸素生成手段ZUOの副材料とした構成。 FIG. 4 shows that the hydrogen generation means ZU and the oxygen generation means ZUO are provided downstream of the engine E, and the steam generated by the engine E and the electricity generated by the engine E and the energy conversion means TE are provided in the hydrogen generation means ZU and the oxygen generation means ZUO. Is introduced to generate hydrogen, and heat is taken out by the heat exchanger TR1 that takes out heat from the hydrogen. The hydrogen is used as fuel hydrogen, and the water vapor from which the hydrogen is taken out is oxygen and undecomposed water vapor. Heat is taken out from the undecomposed water vapor by heat exchange TR2, and the water content of the water vapor is further removed, and the oxygen from which the water content is removed is used as fuel oxygen. A configuration in which electricity is generated by an energy conversion means and the electricity is used as an auxiliary material for the hydrogen generation means ZU and the oxygen generation means ZUO.

図5は上記エンジンEWの下流に電気生成手段3Eを設け、該電気生成装置3EにエンジンEWからの排気を導入しており、該電気生成装置3Eに該排気を貫流させ電気か動力かの何れか一方か両方かを取り出しており該電気生成装置3Eを貫流した排気は上記水素生成手段ZU及び酸素生成手段ZUOに導入される水蒸気の排気と大気若しくは水中(水上を移動する移動体例えば船舶の推進力)に排出される排気(ジェット流)とに分岐さる分岐手段を設けており、該分岐手段により、推進力と燃料生成手段との両方を兼ね備えた構成としておる。
更に上記推進力と燃料生成手段との何れかを使用しない時には何れか1方のみを使用出来る切換え手段を設けた構造としておる。
In FIG. 5, an electric generating means 3E is provided downstream of the engine EW, and exhaust gas from the engine EW is introduced into the electric generating device 3E. One or both of them are taken out, and the exhaust gas that has passed through the electricity generator 3E is the exhaust gas of water vapor introduced into the hydrogen generation means ZU and the oxygen generation means ZUO, and the air or water (moving body moving on the water, for example, a ship). A branching means for branching to the exhaust gas (jet flow) discharged to the propulsive force) is provided, and the branching means has a configuration in which both the propulsive force and the fuel generating means are combined.
Further, when one of the above propulsive force and the fuel generating means is not used, the structure is provided with a switching means capable of using only one of them.

上記エンジンEWの構造の上流に大気を集気する集気手段を設けて、集気した大気をバイパス流路から上記電気生成装置3Eに導入するか(図5A)上記燃料生成手段の下流の排気と合流させジェット流として排出する(図5B)かの何れかに導入した構成である。
*上記の構成は空気抵抗をエネルギーに変える手段を設けたもので集気手段で集気口の面積分の空気を電気生成装置3Eに導入する取り込み口の面積との割合分程圧縮された空気で電気生成装置3Eの(例えば回転翼体)回転力を多く出来る。
上記集気し圧縮された空気を該エンジンで生成された水蒸気の排気で押し出す事により、より大きな推進力を得ることが出来る。
Whether an air collecting means for collecting air is provided upstream of the structure of the engine EW and the collected air is introduced into the electric generator 3E from the bypass flow path (FIG. 5A) or exhaust gas downstream of the fuel generating means. It is a configuration introduced in either of the two (FIG. 5B) where the fuel is merged with the fuel and discharged as a jet flow.
* The above configuration is provided with a means for converting air resistance into energy, and the air is compressed by the ratio of the area of the intake port that introduces the air for the area of the air collection port into the electric generator 3E by the air collection means. The rotational force of the electric generator 3E (for example, a rotary blade) can be increased.
A larger propulsive force can be obtained by pushing out the collected and compressed air by the exhaust gas of the water vapor generated by the engine.

図7は上記エンジンEW・EWJの水を海水としたエンジンESPであり、該エンジンに塩取り出し手段SPを設けた物で海水を水蒸気化すると塩が分離される。この分離された塩を取り出す手段(例えばスチームトラップ形態)を設けて塩をを分離除去した水蒸気Cは真水であり、一巡の仕事を終えた水蒸気を冷却(自然冷却でも良い)する。・・・・飲料水になる。(海水の真水化手段になる。)
FIG. 7 is an engine ESP using the water of the engines EW / EWJ as seawater, and the engine is provided with a salt extraction means SP, and when the seawater is steamed, the salt is separated. The steam C from which the salt has been separated and removed by providing a means for taking out the separated salt (for example, in the form of a steam trap) is fresh water, and the steam after one round of work is cooled (may be natural cooling).・ ・ ・ ・ Becomes drinking water. (It will be a means of desalination of seawater.)

産業上の利用性Industrial applicability

エネルギーの供給元として地球温室効果ガスを排出しないエンジンとしてあらゆる産業に適応出来るエンジンである。 It is an engine that can be adapted to all industries as an engine that does not emit global greenhouse gases as an energy supply source.

4サイクルエンジンに水と酸素と・水素を入れる構成概略図。Schematic diagram of the configuration of water, oxygen, and hydrogen in a 4-cycle engine. エンジンEのフロー図。Flow diagram of engine E. 水噴射手段JWを有するエンジンEW概略図。The schematic diagram of an engine EW having a water injection means JW. 水素を分離後の熱を電気に変換する手段を設けたフロー図。A flow diagram provided with a means for converting heat after separating hydrogen into electricity. エンジンEWを航空機のエンジンとしたフロー図。A flow chart using the engine EW as the engine of an aircraft. 5図のエンジンに集気構造を設けたエンジンEWJの概略図。。FIG. 5 is a schematic view of an engine EWJ in which an air collecting structure is provided in the engine shown in FIG. .. エンジンEW・EWJに供給する水を海水としたエンジンESPの概略図。Schematic diagram of the engine ESP in which the water supplied to the engine EW / EWJ is seawater.

Claims (5)

水素を燃焼する内燃機関エンジンの吸気か、圧縮か、爆発か、排気かの何れか1以上のステップで水か酸素か水素かの何れか1以上を供給する供給順を、吸気ステップで水を、爆発ステップで水素と酸素と水を供給する、水素供給手段HSと酸素供給手段OSと水供給手段WSを設けて水素と酸素と水をエンジンに供給し、上記吸気ステップで供給された水は燃焼室内の熱を吸熱し体積を膨張させた水蒸気Aaを生成し、更に爆発ステップで供給された水は、水素と酸素の燃焼熱を吸熱して水蒸気Abを生成し、燃焼室内の熱を吸熱して生成された水蒸気Aaと水素と酸素の燃焼熱を吸熱して生成された水蒸気Abとを合わせて水蒸気Aとした水蒸気生成手段としており、
エンジンに導入された酸素と水素に点火する点火手段を設けて燃焼し,該酸素と水素の燃焼で生成した水蒸気Bと前記水蒸気Aを排気として排出しておる事を特徴とする水素と酸素を燃焼するエンジン。
The supply order of supplying water, oxygen, or hydrogen in one or more steps of intake, compression, explosion, or exhaust of an internal combustion engine that burns hydrogen, and water in the intake step. , Hydrogen, oxygen and water are supplied in the explosion step, hydrogen, oxygen and water are supplied to the engine by providing the hydrogen supply means HS, the oxygen supply means OS and the water supply means WS, and the water supplied in the above intake step is It absorbs the heat in the combustion chamber to generate steam Aa whose volume is expanded, and the water supplied in the explosion step absorbs the combustion heat of hydrogen and oxygen to generate steam Ab, and absorbs the heat in the combustion chamber. As a steam generation means , the steam Aa generated in the process and the steam Ab generated by absorbing the combustion heat of hydrogen and oxygen are combined to form steam A.
Hydrogen and oxygen, which are characterized in that they are provided with an ignition means for igniting oxygen and hydrogen introduced into an engine and burned, and steam B and steam A generated by the combustion of the oxygen and hydrogen are discharged as exhaust. An engine that burns.
水素と酸素を燃焼し水を供給するエンジンの構成であって、It is the configuration of an engine that burns hydrogen and oxygen to supply water.
水素を燃焼ノズルに供給する、水素供給手段HSと、Hydrogen supply means HS that supplies hydrogen to the combustion nozzle,
酸素を燃焼ノズルに供給する、酸素供給手段OSと、Oxygen supply means OS that supplies oxygen to the combustion nozzle,
供給された水素と酸素に点火する点火手段と、Ignition means to ignite the supplied hydrogen and oxygen,
点火により水素と酸素を燃焼して火炎3Fを生成し、Ignition burns hydrogen and oxygen to generate flame 3F,
該火炎3Fとエンジンの燃焼室壁3uとの間に水を噴射する該水を供給する、水供給手段WSと、The water supply means WS for supplying the water that injects water between the flame 3F and the combustion chamber wall 3u of the engine, and the water supply means WS.
供給された該水を排気口5S方向に噴射する水噴射手段WJとを設けた構造で、It has a structure provided with a water injection means WJ that injects the supplied water in the direction of the exhaust port 5S.
噴射した水は、水素と酸素の燃焼熱を吸熱して水蒸気Abを生成する水蒸気生成手段としており、The jetted water is used as a steam generation means for generating steam Ab by absorbing the combustion heat of hydrogen and oxygen.
水素と酸素の燃焼により生成される水蒸気Bとともに排気として排気口5Sから排出する構成にしておる事を特徴とする、水素と酸素を燃焼するエンジン。An engine that burns hydrogen and oxygen, characterized in that it is configured to be discharged from the exhaust port 5S as exhaust gas together with water vapor B generated by combustion of hydrogen and oxygen.
請求項1に記載のエンジンで生成した水蒸気か、請求項2に記載のエンジンで生成した水蒸気かの何れかを導入し、電気を生成する電気生成手段か、該水蒸気を導入し水素・酸素を生成する水素生成手段ZU及び酸素生成手段ZUOの何れか一方か両方かを設けておることを特徴とする水素と酸素を燃焼するエンジン。Either the steam generated by the engine according to claim 1 or the steam generated by the engine according to claim 2 is introduced to generate electricity, or the steam is introduced to generate hydrogen and oxygen. An engine that burns hydrogen and oxygen, characterized in that either one or both of the hydrogen generating means ZU and the oxygen generating means ZUO are provided. 請求項3に記載の電気生成手段及び水素・酸素生成手段を備えたエンジン搭載機器の駐機器場に上記エンジンで生成した電気を受電する受電手段と該エンジンに水を供給する水供給手段を設け、上記エンジン搭載機器の駐機器中に当該エンジンを稼働させ、電気を製造し該電気を上記受電設備に供給し、上記水を受給することを特徴とする水素と酸素を燃焼するエンジン。 A power receiving means for receiving the electricity generated by the engine and a water supply means for supplying water to the engine are provided in the parking lot of the engine-mounted equipment provided with the electricity generating means and the hydrogen / oxygen generating means according to claim 3. An engine that burns hydrogen and oxygen, which comprises operating the engine while the engine-mounted equipment is parked, producing electricity , supplying the electricity to the power receiving equipment, and receiving the water. 請求項3に記載の電気生成手段及び水素・酸素生成手段を備えたエンジンは海を航行する移動体及び海水の真水化装置の前記エンジンに導入される前記水として海水を導入する場合に、前記導入された海水から真水と塩を生成する手段SPを設けたことを特徴とする、水素と酸素を燃焼するエンジン。


The engine provided with the electricity generating means and the hydrogen / oxygen generating means according to claim 3 is the case where seawater is introduced as the water to be introduced into the engine of the moving body navigating the sea and the seawater desalination apparatus. It is characterized by providing a means SP for producing fresh water and salt from the introduced seawater.An engine that burns hydrogen and oxygen.


JP2020197816A 2019-12-03 2020-11-30 An engine that burns hydrogen and oxygen. Active JP7004887B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019218424 2019-12-03
JP2019218424 2019-12-03

Publications (2)

Publication Number Publication Date
JP2021092224A JP2021092224A (en) 2021-06-17
JP7004887B2 true JP7004887B2 (en) 2022-02-07

Family

ID=76312201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020197816A Active JP7004887B2 (en) 2019-12-03 2020-11-30 An engine that burns hydrogen and oxygen.

Country Status (1)

Country Link
JP (1) JP7004887B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161015A (en) 1998-11-19 2000-06-13 Takeshi Hatanaka Closed-cycle power system
JP2005522629A (en) 2002-04-11 2005-07-28 エイ. ハーゼ,リチャード Water combustion technology-methods, processes, systems and apparatus for burning hydrogen and oxygen
JP2006017367A (en) 2004-06-30 2006-01-19 Toshiba Corp Hydrogen/oxygen burning method and device
JP2007278114A (en) 2006-04-04 2007-10-25 Motonobu Kumagai Heat insulation composite engine
JP2008063980A (en) 2006-09-06 2008-03-21 Tomoki Yamazaki Oxyhydrogen gas two-stroke engine
JP2008169719A (en) 2007-01-10 2008-07-24 Motonobu Kumagai Two-stroke insulated compound engine
WO2011125976A1 (en) 2010-04-02 2011-10-13 株式会社マサインタナショナル Heat engine and power generation system using the heat engine
JP2012052162A (en) 2010-08-31 2012-03-15 Jfe Steel Corp Method for producing and using hydrogen and oxygen
JP2012528270A (en) 2009-05-26 2012-11-12 ワチュー,パトリック Method of operating spark ignition engine and spark ignition engine using the method
JP2013160048A (en) 2012-02-01 2013-08-19 Tomoaki Ito Moving body and auxiliary fuel system used therefor
WO2014145955A2 (en) 2013-03-15 2014-09-18 Kilo, Inc. Low-compression oxyhydrogen combustion engine systems, methods, and components
JP5967682B1 (en) 2015-10-16 2016-08-10 寛治 泉 An engine that produces fuel by the combustion of enriched oxygen air and fuel.
JP2016151179A (en) 2015-02-16 2016-08-22 寛治 泉 Greenhouse effect gas emission reduction method
JP2018025375A (en) 2016-07-31 2018-02-15 寛治 泉 Constitution method for engine burning hydrogen and oxygen
WO2019044275A1 (en) 2017-08-27 2019-03-07 泉寛治 Inertia travel control system for automobiles
WO2019130619A1 (en) 2017-12-28 2019-07-04 泉寛治 Engine burning hydrogen and oxygen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58187728A (en) * 1982-04-23 1983-11-02 Hitachi Ltd Gas turbine combustor
JPH02279903A (en) * 1989-04-19 1990-11-15 Olympia Kogyo Kk Gas burning apparatus
JPH03100332A (en) * 1989-09-13 1991-04-25 General Electric Co <Ge> Apparatus and method for generating electric power
JPH0425967U (en) * 1990-06-14 1992-03-02
JPH05256160A (en) * 1992-03-11 1993-10-05 Mitsubishi Heavy Ind Ltd Hydrogen-fuel engine system
JPH08193504A (en) * 1995-01-13 1996-07-30 Ishikawajima Harima Heavy Ind Co Ltd Combined-cycle of power plant

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161015A (en) 1998-11-19 2000-06-13 Takeshi Hatanaka Closed-cycle power system
JP2005522629A (en) 2002-04-11 2005-07-28 エイ. ハーゼ,リチャード Water combustion technology-methods, processes, systems and apparatus for burning hydrogen and oxygen
JP2006017367A (en) 2004-06-30 2006-01-19 Toshiba Corp Hydrogen/oxygen burning method and device
JP2007278114A (en) 2006-04-04 2007-10-25 Motonobu Kumagai Heat insulation composite engine
JP2008063980A (en) 2006-09-06 2008-03-21 Tomoki Yamazaki Oxyhydrogen gas two-stroke engine
JP2008169719A (en) 2007-01-10 2008-07-24 Motonobu Kumagai Two-stroke insulated compound engine
JP2012528270A (en) 2009-05-26 2012-11-12 ワチュー,パトリック Method of operating spark ignition engine and spark ignition engine using the method
WO2011125976A1 (en) 2010-04-02 2011-10-13 株式会社マサインタナショナル Heat engine and power generation system using the heat engine
JP2012052162A (en) 2010-08-31 2012-03-15 Jfe Steel Corp Method for producing and using hydrogen and oxygen
JP2013160048A (en) 2012-02-01 2013-08-19 Tomoaki Ito Moving body and auxiliary fuel system used therefor
WO2014145955A2 (en) 2013-03-15 2014-09-18 Kilo, Inc. Low-compression oxyhydrogen combustion engine systems, methods, and components
JP2016151179A (en) 2015-02-16 2016-08-22 寛治 泉 Greenhouse effect gas emission reduction method
JP5967682B1 (en) 2015-10-16 2016-08-10 寛治 泉 An engine that produces fuel by the combustion of enriched oxygen air and fuel.
JP2018025375A (en) 2016-07-31 2018-02-15 寛治 泉 Constitution method for engine burning hydrogen and oxygen
WO2019044275A1 (en) 2017-08-27 2019-03-07 泉寛治 Inertia travel control system for automobiles
WO2019130619A1 (en) 2017-12-28 2019-07-04 泉寛治 Engine burning hydrogen and oxygen

Also Published As

Publication number Publication date
JP2021092224A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US20020100836A1 (en) Hydrogen and oxygen battery, or hudrogen and oxygen to fire a combustion engine and/or for commerce.
Morsy El-Gohary Overview of past, present and future marine power plants
JP5967682B1 (en) An engine that produces fuel by the combustion of enriched oxygen air and fuel.
CN103518035A (en) 3-stroke/6-stroke rocket jet engine
KR20220051100A (en) Vessel using ammonia as fuel
CN102530217A (en) Fast and efficient water spray propelling technology
JP6680431B2 (en) An engine that burns hydrogen and oxygen.
JP7004887B2 (en) An engine that burns hydrogen and oxygen.
KR20220051106A (en) Vessel using ammonia as fuel
KR20220051103A (en) Vessel using ammonia as fuel
DK2348254T3 (en) Refueling system for a mobile machine
CN101746251A (en) Energy-saving oxygen-hydrogen power vehicle
US9200816B2 (en) Hydrogen jet propulsion system
CN211008793U (en) Power circulation system for independent air propulsion device
JP5113230B2 (en) Rocket power generation engine and rocket power generation fan engine
CN107829825A (en) The gas turbine engine systems of coproduction water and the method for gas turbine coproduction water
GB2584531A (en) Apparatus, system and method for high efficiency internal combustion engines and hybrid vehicles
KR20220051098A (en) Vessel using ammonia as fuel
JP3209521U (en) Hydrogen fluid closed cycle drive / power generation equipment
KR20210095257A (en) Ship having hydrogen fuel cell and available of hydrogen producing using steam produced by exhaust gas
WO2022172914A1 (en) Engine for combusting hydrogen-oxygen
CN1353240A (en) IC engine cyclically using hydrogen, oxygen and water as fuel and its manufacture
JP7148593B2 (en) 2-stroke internal combustion engine
KR102600608B1 (en) Complementary System Of Renewable Energy And SOFC For Ship
Stan et al. The energetic water cycle: nature–electrolysis–machine–nature

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211203

R150 Certificate of patent or registration of utility model

Ref document number: 7004887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150