JP7002416B2 - 磁界計測装置 - Google Patents

磁界計測装置 Download PDF

Info

Publication number
JP7002416B2
JP7002416B2 JP2018126599A JP2018126599A JP7002416B2 JP 7002416 B2 JP7002416 B2 JP 7002416B2 JP 2018126599 A JP2018126599 A JP 2018126599A JP 2018126599 A JP2018126599 A JP 2018126599A JP 7002416 B2 JP7002416 B2 JP 7002416B2
Authority
JP
Japan
Prior art keywords
magnetic field
series data
field time
magnetic
environmental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018126599A
Other languages
English (en)
Other versions
JP2020008304A (ja
Inventor
邦臣 緒方
明彦 神鳥
豪 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Priority to JP2018126599A priority Critical patent/JP7002416B2/ja
Publication of JP2020008304A publication Critical patent/JP2020008304A/ja
Application granted granted Critical
Publication of JP7002416B2 publication Critical patent/JP7002416B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)

Description

本発明は、参照用磁気センサで計測した環境磁界信号から、磁界計測装置で計測された環境磁界信号の近似値を推定し、近似値を用いて環境磁界の発生の有無を検知する磁界計測装置に関する。
被験者の計測対象からの微弱な磁界を計測し、計測対象の電気生理学的活動を非侵襲に評価する磁界計測装置として心磁計が開発されている。心磁計は、心臓の電気生理学的活動に伴う心起電力(電流双極子)により生じた微弱な磁界(心磁)を非接触で計測する装置であり、複数の磁気センサの同時計測により、空間分解能に優れた評価が可能となる。この心磁の時間変化及び空間分布を画像化したものは心磁図と呼ばれる。生体内の透磁率はほぼ真空と等しいため、心磁図は、心電図と比べて心臓の周辺臓器(骨や肺など)の影響を受けにくく、心臓の電気生理学的活動に伴う電流を高感度に反映する。この心磁図の利点を生かし、心磁図の臨床的な有効性が多数示されてきた。
この心磁図検査による心臓の電気生理学的活動の評価を正確かつ安定して実現するためには、心磁図に混入する環境磁界を十分に低減する必要がある。心磁の強度は非常に弱く、成人のQRS波(心室の電気的活動を反映した波)の強度は数十pT、P波(心房の電気的活動を反映した波)の強度は数pT、胎児のP波の強度は0.1pT程度である。一方、環境磁界には地磁気の直流磁界、電車の送・帰電流に起因する磁界、自動車やエレベータ及び鉄扉などの磁性体で構成された物体が移動することによって生じる磁界、送電線の電流によって生じる磁界、ファン・ポンプの回転体による磁界などがある。環境磁界は心磁に比べてはるかに大きく、例えば、地磁気の直流磁界は約50μT(心磁の約100万倍以上)、電車の送・帰電流に起因する磁界の変動幅は軌道から50mの地点で1.4μTと報告されている。心磁計に混入するこれらの環境磁界を低減させるため、心磁計には、通常、磁気シールドルーム(MSR:Magnetically shielded room、以下「MSR」という)、磁気センサ部のグラジオメータ、アナログフィルタ(High pass filter:HPF、Low pass filter:LPF)及びデジタルフィルタなどの環境磁界低減技術が搭載されており、混入する環境磁界の低減を図っている。また、MSRを補完する環境磁界低減技術として、参照用磁気センサで計測した環境磁界信号から生体磁気計測装置での環境磁界信号の近似値を推定し、除去する環境磁界リダクション法(以下「リダクション法」という)が開発されている(特許文献1など)。
一方、心磁計に混入する環境磁界の影響を低減するため、心磁図検査に影響を与える環境磁場の発生の有無を検知し、検知状態をユーザーに通知する方法がある。具体的には、磁界計測装置を用い、MSRの外部で環境磁界を計測し、あるしきい値以上の環境磁界を検知し、検知した信号を出力し、検知信号に基づいて表示する。検知信号に基づく表示は表示装置(表示灯、警報機及びブザー)及び心磁計に接続され、ユーザーに環境磁界の発生の有無を通知する。ユーザーは表示装置及び心磁計による環境磁界の発生の有無を確認し、環境磁界が発生していない時間での心磁図検査の実施や、環境磁界が発生していない時間帯の心磁データを解析に用いるなどを実施し、心磁図検査への環境磁界の影響を低減することができる。
特開2016-217930号公報
生体からの磁界は微弱であるため、環境磁界低減技術、あるいは環境磁界を推定し除去するリダクション法を適用するにせよ、環境磁界ができるだけ小さい状態で計測を行う、あるいは環境磁界の大きさを把握した上で得られたデータを解析することが望ましい。
MSRの内部の心磁計で計測される環境磁界は様々な環境磁界低減技術(MSR、磁気センサ部のグラジオメータ、アナログフィルタ及びデジタルフィルタ)によって低減されている。これらの環境磁界低減技術は環境磁界の周波数に対して低減効果が異なる。そのため、環境磁界の周波数特性によっては、MSRの外部の環境磁界とMSRの内部の心磁計で計測される環境磁界のパターンが異なり、MSR内外の環境磁界の強度の強い時刻が対応しない場合がある。すなわち、MSR外部で観測される環境磁界の大きさと心磁図検査に影響を与える環境磁界の発生の有無とが必ずしも一致しない。
本発明の一実施の態様である磁界計測装置は、MSRと、MSRの内部に配置される磁気センサと、MSRの外部に配置される参照用磁気センサと、磁気センサからの磁界時系列データ及び参照用磁気センサからの環境磁界時系列データが入力される演算装置とを有し、演算装置は、環境磁界時系列データから推定されるMSRの内部における推定環境磁界時系列データにしきい値処理を行って検知信号を作成し、推定環境磁界時系列データは、磁界時系列データと推定環境磁界時系列データとの所定の評価関数を最小とするように求められ、かつ、推定環境磁界時系列データを求めるにあたり、環境磁界時系列データに対してMSRの周波数毎の磁界低減効果が適用される。
MSR外部の参照用磁気センサを用い、MSR内部の磁界計測装置の計測に影響を与える環境磁界の発生の有無を検知できる。
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
心磁計の全体構成を示す概略図である。 磁気センサの配列及び被検者に対する配置例を示す図である。 実施例1に係る心磁計の全体構成を示す概略図である。 参照用磁気センサを用いて環境磁界の発生の有無を検知する処理フローを示す図である。 (a)心磁計で実測した電車からの環境磁界波形(最大磁界強度のチャンネル)、(b)MSRの外部の3軸フラックスゲート磁束計で実測した電車からの環境磁界波形、(c)本実施例の処理フローを適用して推定した心磁計での電車からの環境磁界波形、である。 (a)本実施例の処理フローを適用して作成した検知信号の波形、(b)心磁計で実測した電車からの環境磁界波形(最大磁界強度のチャンネル)である。 心磁計の計測結果を表示する表示画面の一例を示す図である。 心磁計の環境磁界の低減効果を設定する表示画面の一例を示す図である。 実施例2に係る心磁計の全体構成を示す概略図である。
以下、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
図1は、磁界計測装置(心磁計)の全体構成を示す概略図である。心磁計1の構成要素は、MSR2の内部と外部とに分かれて配置される。MSR2は例えば各辺3m程度の長さを有しており、MSR2の内部には、複数のSQUID磁束計3(以降、「磁気センサ」と表記する)を内部に配置して極低温に維持するクライオスタット4と、クライオスタット4を保持するガントリ5と、被験者(図示せず)が横になるベッド6が配置されている。ベッド6は、ベッド6の短軸(A方向、x方向)での移動と、ベッド6の長軸(B方向、y方向)での移動と、ベッド6の上下方向(C方向、z方向)での移動が可能であって、被検者と複数の磁気センサとの位置合わせを容易に行うことができる。
MSR2の外部には、クライオスタット4内に配置される磁気センサ3を駆動する駆動回路7と、駆動回路7からの出力を増幅してフィルタをかけるアンプフィルタユニット8と、アンプフィルタユニット8からの出力信号をデータ収集し、収集されたデータ(以下、「磁界時系列データ」という)を解析処理するとともに心磁計1の各部の制御を行なう演算装置9と、演算装置9により解析処理された解析結果を表示する表示装置10が主に配置されている。
なお、心磁計1の磁気センサ3としては、SQUID磁束計に限られず、磁気抵抗効果素子を用いたセンサ、光ポンピング磁束計、フラックスゲート磁束計、磁気インピーダンス素子を用いた磁気センサも適用することができる。心臓から生じる磁場は非常に微弱(0.1~数十pT)であり、心磁計の磁気センサのノイズレベルは数pT/√Hz以下が望まれる。また、心磁計の磁気センサの周波数帯域は心臓の電気的活動の周波数帯域と同様にDC~数百Hzが望まれる。
図2を用いて、心磁計1で用いられる磁気センサアレイの配列および被験者に対する配置の一例を説明する。磁気センサアレイを構成する複数の磁気センサは、クライオスタット4(図1参照)の底部の内壁にz方向に沿って垂設し、被験者の胸壁11に対して垂直なz方向の磁界成分Bを経時的に計測する。そして、複数の磁気センサは、磁界の距離変化量を的確に捉えられるように、x方向およびy方向には等間隔に配列されている。なお、胸壁11に対して平行なx方向の磁界成分Bおよびy方向の磁界成分Bを経時的に計測する磁気センサを適用することもできる。
図2の例では、磁気センサ間の距離が0.025mであって、計測面が0.175m×0.175m、磁気センサを8×8のアレイ状に配列した64チャンネルの磁気センサアレイ12を示している。磁気センサアレイ12の座標系においては、例えば、符号13で示す7行3列目に位置する磁気センサが胸部の剣状突起14の真上に位置するように、磁気センサアレイ12の位置合わせを行う。なお、1行8列目の磁気センサを座標系の原点Oとする。
実施例1として、MSR2の外部に設置した参照用磁気センサを用い、環境磁界の発生の有無を検知する磁界計測装置について説明する。図1と共通する構成要素については、同じ符号を付して示し、重複する説明は省略する。図3はMSRの外部に参照用磁気センサを設置した磁界計測装置(心磁計)の全体構成を示す概略図である。
MSR2の外部には環境磁界を計測するための3軸フラックスゲート磁束計15(以降、「参照用磁気センサ」という)と、参照用磁気センサを駆動させる駆動回路16と、駆動回路16からの出力を増幅してフィルタをかけるアンプフィルタユニット17が配置されており、アンプフィルタユニット17からの出力信号は演算装置9で収集される。
参照用磁気センサ15としては、磁気抵抗効果素子を用いたセンサ、磁気インピーダンス素子を用いたセンサを用いた磁気センサも適用することができる。参照用磁気センサ15はMSRの外側の周囲に環境磁界の発生源(電気機器やアクティブ磁気キャンセルシステムのキャンセルコイルなど)のない場所に設置する。心磁計1の磁気センサアレイ12の位置と参照用磁気センサ15の位置のずれは、磁界強度としては環境磁界の発生源の位置からは無視できる程度であるが、計測位置が異なることから、心磁計1の磁気センサのz方向の磁界成分Bのみの観測であっても、3軸での環境磁気成分(磁界成分B、磁界成分B、磁界成分B)により補正することにより、心磁計1の磁気センサに対する環境磁界の影響をより精度よく求めることができる。もちろん、参照用磁気センサ15の軸数が1軸及び2軸であっても適用することは可能である。さらに、複数の参照用磁気センサ15を用いてもよい。
図4はMSR2の外部の参照用磁気センサ15を用いた環境磁界の検知処理手順のフローチャートを示す。まず、処理を開始し(101)、心磁計(図3参照)を用いて被験者の心臓から発生する磁界時系列データ(以下、「心臓磁界時系列データ」という)とMSR2の外部の参照用磁気センサ15を用いて環境磁界の時系列データ(以下、「環境磁界時系列データ」という)を同時計測する(102)。
環境磁界時系列データに対してMSRの磁界低減効果を適用する(103)。MSRの磁界低減効果には周波数特性があるため、環境磁界時系列データに周波数解析を適用して周波数領域でのデータに変換し、変換した周波数領域データにMSRによる周波数毎の磁界低減率を乗算し、周波数解析を適用して再び時間領域でのデータに変換する。具体的には以下の通りである。環境磁界時系列データが所定の時間間隔でサンプリングしたT個の標本点(デジタル信号列)x(t)(t=1~T)で与えられたとすると、x(t)の離散的フーリエスペクトルX(k)(k=0, 1, … K-1)は(数1)から得ることができる。
Figure 0007002416000001
ここで、MSRの磁界低減率の周波数特性DM(wk)に基づいて、K個の離散的周波数スペクトル(フィルタ関数)F(k)を(数2)のように設定する。
Figure 0007002416000002
(数2)に示すフィルタ関数F(k)と(数1)に示す離散的フーリエスペクトルX(k)とを掛け合わせることで(数3)、MSRの磁界低減効果を適用した離散的周波数スペクトルX’ (k)を得ることができる。
Figure 0007002416000003
離散的周波数スペクトルX’(k)を(数4)に基づいて逆フーリエ変換すると、MSRの磁界低減効果を適用した環境磁界の時系列データx’(t)を得ることができる。
Figure 0007002416000004
次に、MSRの磁界低減効果が適用された環境磁界時系列データに心磁計の磁気センサ(グラジオメータ構造)の磁界低減効果を適用する(104)。グラジオメータ構造とは超電導線で作成した差分型の検出コイルで検出した磁束をSQUID磁束計に伝達する構成である。差分型検出コイルを用いることで磁界の空間勾配を検出し、一様な環境磁界を低減することができる。このグラジオメータによる磁界低減率Dgは、先に説明したMSRの磁界低減効果と異なり、周波数に依存しない定数と考えることができる。そこで、処理103で求めたMSRの磁界低減効果を適用した環境磁界の時系列データx’(t)にグラジオメータの磁界低減率Dgを乗算する(数5)ことで、グラジオメータの磁界低減効果を適用した環境磁界の時系列データx’’(t)を得ることができる。
Figure 0007002416000005
次に、磁気センサの磁界低減効果が適用された環境磁界時系列データに心磁計のアナログフィルタ(HPF及びLPF)の磁界低減効果を適用する(105)。具体的には心磁計のアナログフィルタにフィルタタイプやフィルタ次数が類似しているデジタルフィルタを処理104で求めた環境磁界の時系列データx’’(t)に適用することで得ることができる。例えば、デジタルフィルタとしてFIR(有限インパルス応答:Finite Impulse Response)フィルタを用いた場合、FIRフィルタを適用した環境磁界の時系列データx’’’(t)は(数6)から得ることができる。ここで、mはフィルタ次数であり、amはフィルタタイプ及びフィルタ次数から決まるフィルタ係数である。
Figure 0007002416000006
これまでの処理103~105により得られた信号は心磁計1に適用されている環境磁界低減技術による低減効果が反映されており、心磁計で計測される環境磁界の推定値(以下「心磁計推定環境磁界」という)とみなすことができる。次に、この心磁計推定環境磁界の時系列データにチャンネル毎の重み係数を計算する(106)。
この重み係数は、事前に、心磁計推定環境磁界の時系列データと、心磁計の各チャンネルで被験者がいない状態で実測された環境磁界時系列データとの差を最小とすることで求めることができる。参照用磁気センサ15として3軸(x軸、y軸及びz軸)の磁気センサを用いた場合、各軸のチャンネル毎の重み係数ベクトルW(W=[Wx, Wy, Wz])は評価関数(数7)を最小とする値として求めることができる。
Figure 0007002416000007
評価関数(数7)において、BMCG n,tは心磁計のn番目(n=1~64)のチャンネルでt番目(t=1~T)のサンプリング点で計測された環境磁界を表している。Bref x,t、Bref y,t及びBref z,tは、x軸、y軸及びz軸の参照磁気センサの磁界信号から求めた心磁計1のサンプリング点tでの心磁計推定環境磁界をそれぞれ表している。また、Wx,n、Wy,n及びWz,nは、n番目(n=1~64)のチャンネルにおけるx軸、y軸及びz軸の参照用磁気センサの心磁計推定環境磁界に対する重み係数(以下「チャンネル毎の重み係数」という)をそれぞれ表している。
このチャンネル毎の重み係数をかけた心磁計推定環境磁界の時系列データ(Bref x,t×Wx,n+Bref y,t×Wy,n+Bref z,t×Wz,n)に対して、しきい値処理を適用し、検知信号を作成する(107)。検知信号としては、例えば、しきい値以上は1、しきい値未満は0とした信号を用いることができる。しきい値処理のしきい値としては、計測対象(例えば、成人及び胎児)や解析対象(心室及び心房)により、適切な値が設定される。これにより、計測対象である心臓磁界の大きさに応じたしきい値処理を行うことができる。
最後に、心臓磁界時系列データ、心磁計推定環境磁界時系列データ及び検知信号を表示し(108)、処理を終了する(109)。
なお、処理103の環境磁界時系列データに適用する周波数解析法としては、周知の高速フーリエ変換法やピリオドグラム法などがあり、フーリエスペクトル及びパワースペクトル密度を計算し、環境磁界時系列データの周波数領域でのデータを取得することができる。これらの周波数解析法に基づく処理は近年のパーソナルコンピューターの処理能力向上により実現可能となった。また、MSRの周波数毎の磁界低減効果を算出するために、例えば、MSRの磁気シールド率のカタログ値や事前に取得した実測データを用いることができる。さらに、この磁界低減効果の算出にあたってはMSRの周波数毎の位相変化情報も用いることができる。
処理104の環境磁界時系列データに対する磁気センサの磁界低減効果を算出するために、例えば、磁気センサの磁界低減率のカタログ値や事前に取得した実測データを用いることができる。
処理105の環境磁界時系列データに対するアナログフィルタの磁界低減効果を算出するために、例えば、心磁計のアナログフィルタと同じタイプ、遮断周波数、次数のデジタルフィルタから得られる磁界低減率などを用いることができる。
処理106の評価関数(数7)を最小とするチャンネル毎の重み係数は、例えば、線形計画法の一つである滑降シンプレックス法を用いて求めることができる。
以上説明したMSRの外部に配置した参照磁気センサを用いて環境磁界を検知する方法の有効性を電車からの環境磁界の実測データを用いて確認した。
図5(a)には64チャンネルの心磁計で計測した電車からの環境磁界波形18(最大磁界強度のチャンネル)を示す。横軸は時間(秒)、縦軸は磁界(pT)である。図5(b)にはMSRの外部の参照磁気センサで計測した電車からのx方向の環境磁界波形19、y方向の環境磁界波形20及びz方向の環境磁界波形21を示す。横軸は時間(秒)、縦軸は磁界(μT)である。心磁計で計測された環境磁界波形18と比較すると、MSRの外部の参照磁気センサで計測された環境磁界波形は波形パターンが異なっていることが分かる。
図5(c)には図4に示した処理フローを適用して算出した図5(a)と同じチャンネルの心磁計推定環境磁界波形22を示している。心磁計で実測した環境磁界波形18と比較すると、心磁計推定環境磁界波形22と実測波形18は類似しており、相関係数は0.85であった。
図6(a)には図4に示した処理フローを適用して作成した検知信号23を示している。横軸は時間(秒)、縦軸は検知信号強度(arb.unit.)である。図6(b)には心磁計で計測された環境磁界波形18を示している。図6から検知信号23が1を出力している時間と心磁計で計測された環境磁界波形18の強度が強い時間とが対応していることが分かる。この検知信号23を心磁計で計測された心磁波形と同時に表示することで、ユーザーに心磁図検査に影響を与える環境磁界の有無を知らせることができる。
以上の結果から、心磁計において心磁図検査に影響を与える環境磁界が発生している時刻をMSRの外部の環境磁界信号から正確に検知できることが示された。
実施例1の磁界計測装置に適用されるインターフェイスについて説明する。図7は、MSRの外部の参照用磁気センサを用いて心磁図検査に影響を与える環境磁界の発生の有無を検知した結果を表示する表示画面の一例である。表示画面24は心磁計の表示装置10に表示される。
表示装置10の表示画面24は、心磁計で計測された磁界信号を表示する心磁計計測データ表示欄25と、MSRの外部の参照磁気センサで計測した環境磁界に図4の処理フローを適用して算出した心磁計推定環境磁界データ表示欄26及び検知データ表示欄27とを含んでいる。
心磁計計測データ表示欄25には心磁計で計測された磁界信号28が表示される。この心磁計計測データ表示欄25に表示される心磁計の磁気センサのチャンネルは、チャンネル選択ボタン29を用いて、切り替え可能とする。チャンネル選択ボタン29により選択された「チャンネル1」の磁気センサの信号が磁界信号28として表示されている。
心磁計推定環境磁界データ表示欄26にはMSR外部の参照磁気センサで計測した環境磁界に図4の処理フローを適用して算出した心磁計推定環境磁界信号30が表示される。この心磁計推定環境磁界データ表示欄26に表示される心磁計の磁気センサのチャンネルもチャンネル選択ボタン29により切り替えられる。チャンネル選択ボタン29により選択された「チャンネル1」の磁気センサに対応する信号が心磁計推定環境磁界信号30として表示されている。さらに、心磁計推定環境磁界信号30に適用するしきい値を表示するしきい値表示欄32が表示される。このしきい値の値は操作者が設定可能である。あるいは装置のデフォルト値を定めておいてもよい。このしきい値に対応する第1のしきい値線33(正のしきい値に対応する線)、および第2のしきい値線34(負のしきい値に対応する線)が心磁計推定環境磁界データ表示欄26に表示される。
検知データ表示欄27には、MSRの外部の参照磁気センサで計測した環境磁界に図4の処理フローを適用して作成した検知信号35が表示される。さらに、この検知信号35が1を出力している時間範囲に対応して、心磁計計測データ表示欄25に環境磁界検知時間範囲36が表示される。操作者は、磁界時系列データとともに検知信号の変化が一目で識別可能とされることにより、環境磁場の大きい時間帯を把握した上で、心磁計計測データを解析することが可能になる。
図8は、MSR外部の参照用磁気センサを用いて図4のフローにしたがって心磁図検査に影響を与える環境磁界の発生の有無を検知する処理に用いる心磁計の環境磁界の低減効果を設定する表示画面の一例である。表示画面37は心磁計の表示装置10に表示される。
表示装置10の表示画面37には、MSRのシールド率の周波数特性を表示するMSRの磁気シールド率の周波数特性表示欄38と、心磁計の磁気センサの磁界低減率を表示する磁気センサの低減率表示欄39、心磁計のアンプフィルタユニットのハイパスフィルタの低減率の周波数特性を表示するハイパスフィルタの低減率の周波数特性表示欄40、心磁計のアンプフィルタユニットのローパスフィルタの低減率の周波数特性を表示するローパスフィルタの低減率の周波数特性表示欄41とを含んでいる。
MSRの磁気シールド率の周波数特性表示欄38には、MSRの周波数毎の磁気シールド率42が表示される。MSRの磁気シールド率の周波数特性表示欄38に表示される周波数毎の磁気シールド率は周波数毎の磁気シールド率設定欄43を用いて設定可能とする。
また、MSRの磁気シールド率の周波数特性表示欄38には、MSRの磁界低減効果の算出にあたって位相変化情報も合わせて用いる場合には、MSRの位相変化情報も表示することができる。この場合、周波数毎の位相変化情報設定欄が表示される。
磁気センサの低減率表示欄39には、心磁計の磁気センサのチャンネル毎の低減率が表示される。磁気シールド率の低減率表示欄39に表示される心磁計のチャンネルはチャンネル選択ボタン44を用いて、切り替え表示可能とする。
ハイパスフィルタの低減率の周波数特性表示欄40には、ハイパスフィルタの周波数毎の低減率45が表示される。ハイパスフィルタの低減率の周波数特性表示欄40に表示される周波数毎の低減率は、ハイパスフィルタのフィルタタイプを設定するフィルタタイプ設定欄46、ハイパスフィルタの次数を設定する次数設定欄47、ハイパスフィルタの遮断周波数を設定する遮断周波数設定欄48に基づいて計算された値が表示される。
ローパスフィルタの低減率の周波数特性表示欄41には、ローパスフィルタの周波数毎の低減率49が表示される。ローパスフィルタの低減率の周波数特性表示欄41に表示される周波数毎の低減率は、ローパスフィルタのフィルタタイプを設定するフィルタタイプ設定欄50、ローパスフィルタの次数を設定する次数設定欄51、ローパスフィルタの遮断周波数を設定する遮断周波数設定欄52に基づいて計算された値が表示される。
実施例2として、MSR2の外部に設置した参照用磁気センサを用い、環境磁界の発生の有無を検知し、検知結果表示装置を用いてMSR2内における環境磁界の発生の有無を通知する磁界計測装置について説明する。図1及び図3と共通する構成要素については、同じ符号を付して示し、重複する説明は省略する。図9はMSRの外部に参照用磁気センサと検知結果表示装置を設置した磁界計測装置(心磁計)の全体構成を示す概略図である。
MSR2の外部には検知結果表示装置53が配置されており、演算装置9で作成された検知信号が入力され、検知信号に基づいて検知結果表示装置53が検知結果を表示、または、非表示する。
検知結果表示装置53としては、表示灯、警報機及びブザーを用いることができる。検知結果表示装置53は操作者から確認し易い位置(部屋の壁面上部、または、MSRの外壁上部)に設置されることが望ましい。複数設置してもよい。
例えば、検知結果表示装置53は、検知信号23が1を出力している時間帯(図6参照)にアラームを発報し、操作者はその時間帯を避けて計測を開始する。これにより、環境磁界が発生している時間帯を避けて、心磁計計測を行うことが可能になる。
1:心磁計、2:磁気シールドルーム(MSR)、3:磁気センサ、4:クライオスタット、5:ガントリ、6:ベッド、7:駆動回路、8:アンプフィルタユニット、9:演算装置、10:表示装置、12:磁気センサアレイ、15:参照用磁気センサ、16:駆動回路、17:アンプフィルタユニット、53:検知結果表示装置。

Claims (7)

  1. 磁気シールドルームと、
    前記磁気シールドルームの内部に配置される磁気センサと、
    前記磁気シールドルームの外部に配置される参照用磁気センサと、
    前記磁気センサからの磁界時系列データ及び前記参照用磁気センサからの環境磁界時系列データが入力される演算装置とを有し、
    前記演算装置は、前記環境磁界時系列データから推定される前記磁気シールドルームの内部における推定環境磁界時系列データにしきい値処理を行って検知信号を作成し、
    前記推定環境磁界時系列データは、前記磁界時系列データと前記推定環境磁界時系列データとの所定の評価関数を最小とするように求められ、かつ、前記推定環境磁界時系列データを求めるにあたり、前記環境磁界時系列データに対して前記磁気シールドルームの周波数毎の磁界低減効果、前記磁気センサの構造に基づく磁界低減効果及び前記磁気センサの出力に加えられるアナログフィルタの磁界低減効果が適用される磁界計測装置。
  2. 磁気シールドルームと、
    前記磁気シールドルームの内部に配置される磁気センサと、
    前記磁気シールドルームの外部に配置される参照用磁気センサと、
    前記磁気センサからの磁界時系列データ及び前記参照用磁気センサからの環境磁界時系列データが入力される演算装置とを有し、
    前記演算装置は、前記環境磁界時系列データから推定される前記磁気シールドルームの内部における推定環境磁界時系列データにしきい値処理を行って検知信号を作成し、
    前記推定環境磁界時系列データは、前記磁界時系列データと前記推定環境磁界時系列データとの所定の評価関数を最小とするように求められ、かつ、前記推定環境磁界時系列データを求めるにあたり、前記環境磁界時系列データに対して前記磁気シールドルームの周波数毎の磁界低減効果が適用され、
    前記磁気センサは1軸の磁界成分を検出する超電導磁気センサであり、
    前記参照用磁気センサは、複数軸の磁界成分を検出する常温磁気センサであり、
    前記所定の評価関数は、前記磁界時系列データとそれぞれ重み付けをした前記複数軸ごとの前記推定環境磁界時系列データとの差の総和として表される磁界計測装置。
  3. 磁気シールドルームと、
    前記磁気シールドルームの内部に配置される磁気センサと、
    前記磁気シールドルームの外部に配置される参照用磁気センサと、
    前記磁気センサからの磁界時系列データ及び前記参照用磁気センサからの環境磁界時系列データが入力される演算装置と、
    検知結果表示装置を有し、
    前記演算装置は、前記環境磁界時系列データから推定される前記磁気シールドルームの内部における推定環境磁界時系列データにしきい値処理を行って検知信号を作成し、
    前記推定環境磁界時系列データは、前記磁界時系列データと前記推定環境磁界時系列データとの所定の評価関数を最小とするように求められ、かつ、前記推定環境磁界時系列データを求めるにあたり、前記環境磁界時系列データに対して前記磁気シールドルームの周波数毎の磁界低減効果が適用され、
    前記検知結果表示装置は、前記検知信号に基づき、前記磁気シールドルームの内部における環境磁界の発生を通知する磁界計測装置。
  4. 請求項において、
    前記検知結果表示装置は、表示灯、警報機及びブザーの少なくともいずれか一つである磁界計測装置。
  5. 磁気シールドルームと、
    前記磁気シールドルームの内部に配置される磁気センサと、
    前記磁気シールドルームの外部に配置される参照用磁気センサと、
    前記磁気センサからの磁界時系列データ及び前記参照用磁気センサからの環境磁界時系列データが入力される演算装置と、
    表示装置を有し、
    前記演算装置は、前記環境磁界時系列データから推定される前記磁気シールドルームの内部における推定環境磁界時系列データにしきい値処理を行って検知信号を作成し、
    前記推定環境磁界時系列データは、前記磁界時系列データと前記推定環境磁界時系列データとの所定の評価関数を最小とするように求められ、かつ、前記推定環境磁界時系列データを求めるにあたり、前記環境磁界時系列データに対して前記磁気シールドルームの周波数毎の磁界低減効果が適用され、
    前記表示装置は、前記磁界時系列データ、前記推定環境磁界時系列データ及び前記検知信号を表示する磁界計測装置。
  6. 請求項において、
    前記表示装置は、前記磁界時系列データ上に前記検知信号の変化を識別可能に表示する磁界計測装置。
  7. 請求項において、
    前記表示装置は、前記演算装置が前記推定環境磁界時系列データを求めるための設定画面を有し、
    前記設定画面において、前記磁気シールドルームの磁気シールド率の周波数特性を表示する磁界計測装置。
JP2018126599A 2018-07-03 2018-07-03 磁界計測装置 Active JP7002416B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126599A JP7002416B2 (ja) 2018-07-03 2018-07-03 磁界計測装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126599A JP7002416B2 (ja) 2018-07-03 2018-07-03 磁界計測装置

Publications (2)

Publication Number Publication Date
JP2020008304A JP2020008304A (ja) 2020-01-16
JP7002416B2 true JP7002416B2 (ja) 2022-01-20

Family

ID=69151190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126599A Active JP7002416B2 (ja) 2018-07-03 2018-07-03 磁界計測装置

Country Status (1)

Country Link
JP (1) JP7002416B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325323A (ja) 1999-05-20 2000-11-28 Shimadzu Corp 生体活動電流源推定装置
JP2001112731A (ja) 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2002257914A (ja) 2001-03-05 2002-09-11 Yokogawa Electric Corp アクティブ磁気シールド装置
US20050234329A1 (en) 2004-04-15 2005-10-20 Kraus Robert H Jr Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors
JP2013162065A (ja) 2012-02-08 2013-08-19 Seiko Epson Corp 磁気シールド装置、磁気シールド装置の消磁方法およびプログラム
JP2016044975A (ja) 2014-08-19 2016-04-04 佐保 ミドリ 磁気特性警告器および警告システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596822B2 (ja) * 1994-10-18 2004-12-02 株式会社東芝 生体磁場測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325323A (ja) 1999-05-20 2000-11-28 Shimadzu Corp 生体活動電流源推定装置
JP2001112731A (ja) 1999-09-14 2001-04-24 Hitachi Ltd 磁場計測方法
JP2002257914A (ja) 2001-03-05 2002-09-11 Yokogawa Electric Corp アクティブ磁気シールド装置
US20050234329A1 (en) 2004-04-15 2005-10-20 Kraus Robert H Jr Noise cancellation in magnetoencephalography and electroencephalography with isolated reference sensors
JP2013162065A (ja) 2012-02-08 2013-08-19 Seiko Epson Corp 磁気シールド装置、磁気シールド装置の消磁方法およびプログラム
JP2016044975A (ja) 2014-08-19 2016-04-04 佐保 ミドリ 磁気特性警告器および警告システム

Also Published As

Publication number Publication date
JP2020008304A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
US6735460B2 (en) Biomagnetic field measuring method and apparatus
JP6890484B2 (ja) 磁界計測装置および計測磁界表示方法
Mooney et al. A portable diagnostic device for cardiac magnetic field mapping
JP2007029401A (ja) 運動機能測定装置
JPH0966037A (ja) 生体磁気計測装置
US20200178827A1 (en) Noise removal in magnetometer for medical use
parimita Swain et al. A feasibility study to measure magnetocardiography (MCG) in unshielded environment using first order gradiometer
JP7002416B2 (ja) 磁界計測装置
JP3067728B2 (ja) 生体磁場計測装置
Li et al. SQUID-based MCG measurement using a full-tensor compensation technique in an urban hospital environment
JP3424664B2 (ja) 磁場計測装置
Ogata et al. Study of spatial filter for magnetocardiography measurements without a magnetically shielded room
UA21299U (en) Method for recording magnetocardiogram
JP3196770B2 (ja) 生体磁場計測装置
JP3424663B2 (ja) 磁場計測装置
JP3196771B2 (ja) 磁場源解析方法
JP3196769B2 (ja) 生体磁場計測装置
SWAIN Measurement And Analysis Of Magnetocardiograms For Shielded And Unshielded Setups
JP3379519B2 (ja) 磁場計測装置
JP3231710B2 (ja) 生体磁場の生体表面に平行な接線成分の推定方法
JP2001087237A (ja) 生体磁場計測方法
JP3196768B2 (ja) 生体磁場計測装置
JP3233127B2 (ja) 生体磁場計測装置
JP2795211B2 (ja) 生体磁気計測装置
JP3525873B2 (ja) 磁場源解析方法に於ける初期値推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150