JP7001413B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP7001413B2
JP7001413B2 JP2017188277A JP2017188277A JP7001413B2 JP 7001413 B2 JP7001413 B2 JP 7001413B2 JP 2017188277 A JP2017188277 A JP 2017188277A JP 2017188277 A JP2017188277 A JP 2017188277A JP 7001413 B2 JP7001413 B2 JP 7001413B2
Authority
JP
Japan
Prior art keywords
heat transfer
plate
axis direction
portions
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017188277A
Other languages
Japanese (ja)
Other versions
JP2019066051A (en
Inventor
教生 山内
崇之 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP2017188277A priority Critical patent/JP7001413B2/en
Publication of JP2019066051A publication Critical patent/JP2019066051A/en
Application granted granted Critical
Publication of JP7001413B2 publication Critical patent/JP7001413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

特許法第30条第2項適用 1.販売日 平成29年3月31日 販売した場所 新日鐵住金株式会社 君津製鉄所Application of Article 30, Paragraph 2 of the Patent Law 1. Date of sale March 31, 2017 Place of sale Nippon Steel & Sumitomo Metal Corporation Kimitsu Steel Works

本発明は、重ね合わされた複数の伝熱プレートを備え、隣り合う伝熱プレートによって流路を画定したプレート式熱交換器に関する。 The present invention relates to a plate heat exchanger comprising a plurality of stacked heat transfer plates and defining a flow path by adjacent heat transfer plates.

従来から、流体同士を熱交換させる熱交換器の一つとして、プレート式熱交換器が提供されている。 Conventionally, a plate type heat exchanger has been provided as one of the heat exchangers that exchange heat between fluids.

プレート式熱交換器は、それぞれが第一流体と第二流体とを熱交換させる伝熱部を有する複数の伝熱プレートであって、それぞれの伝熱部が第一方向に重ね合わされた複数の伝熱プレートを備える。 The plate heat exchanger is a plurality of heat transfer plates each having a heat transfer portion for heat exchange between the first fluid and the second fluid, and a plurality of heat transfer portions are superposed in the first direction. Equipped with a heat transfer plate.

伝熱プレートは、第一方向と直交する方向に延びる端縁を有し、伝熱プレートの伝熱部は、第一方向において、第一面と、該第一面に対して反対側を向く第二面とを有する。伝熱プレートの伝熱部は、第一面上に形成された複数の凹条及び凸条と、第二面上に形成された複数の凹条及び凸条であって、第一面上の凸条と表裏の関係にある凹条及び第一面上の凹条と表裏の関係にある凸条とを有する。 The heat transfer plate has an edge extending in a direction orthogonal to the first direction, and the heat transfer portion of the heat transfer plate faces the first surface and the opposite side to the first surface in the first direction. It has a second surface. The heat transfer portion of the heat transfer plate is a plurality of recesses and ridges formed on the first surface and a plurality of dents and ridges formed on the second surface, and is on the first surface. It has a dent on the front and back of the ridge and a ridge on the front surface and a ridge on the front and back.

伝熱部の第一面上に形成された凹条及び凸条のそれぞれは、第一方向と直交する第二方向に延びる中心線に対して傾斜する方向に延び、且つ自身の延びる方向に対して直交する方向に交互に配置される。これに伴い、伝熱部の第一面の凸条及び凹条と表裏の関係にある第二面上の凹条及び凸条のそれぞれについても、第一方向と直交する第二方向に延びる中心線に対して傾斜する方向に延び、且つ自身の延びる方向に対して直交する方向に交互に配置される。 Each of the concave and convex stripes formed on the first surface of the heat transfer portion extends in a direction inclined with respect to the center line extending in the second direction orthogonal to the first direction, and with respect to its own extending direction. They are arranged alternately in the directions orthogonal to each other. Along with this, each of the ridges and ridges on the second surface, which is in a front-to-back relationship with the ridges and ridges on the first surface of the heat transfer portion, also has a center extending in the second direction orthogonal to the first direction. They extend in a direction that is inclined with respect to the line, and are arranged alternately in a direction orthogonal to the direction in which they extend.

すなわち、伝熱部の第一面及び第二面のそれぞれの凹条及び凸条は、当該伝熱プレートの第一方向と直交する方向に延びる端縁に対して傾斜する方向に延びている。これにより、複数の伝熱プレートは、それぞれの伝熱部を第一方向に重ね合わせた状態で、隣り合う伝熱部の凸条同士を交差衝合させ、隣り合う伝熱部の凹条によって流体を流通させる流路を形成する。すなわち、プレート式熱交換器には、伝熱プレート(伝熱部)を境にして、異なる流体を流通させる流路が交互に形成される。 That is, the recesses and ridges on the first and second surfaces of the heat transfer portion extend in a direction inclined with respect to the edge extending in the direction orthogonal to the first direction of the heat transfer plate. As a result, the plurality of heat transfer plates cross each other with the protrusions of the adjacent heat transfer portions in a state where the heat transfer portions are overlapped in the first direction, and the concave rows of the adjacent heat transfer portions are used. Form a flow path through which fluid flows. That is, in the plate heat exchanger, flow paths through which different fluids flow are alternately formed with the heat transfer plate (heat transfer portion) as a boundary.

ところで、この種のプレート式熱交換器には、隣り合う伝熱プレートの第一方向と直交する方向に延びる端縁同士であって、画定する流路における流体の流通方向と同方向又は略同方向に延びる端縁同士が液密に溶接されたものがある(例えば、特許文献1参照)。 By the way, in this type of plate heat exchanger, the edges extending in a direction orthogonal to the first direction of adjacent heat transfer plates are in the same direction as or substantially the same as the flow direction of the fluid in the defining flow path. Some of the edges extending in the direction are liquid-tightly welded (see, for example, Patent Document 1).

かかるプレート式熱交換器は、流路における流体の流通方向と交差する方向に延びる伝熱プレートの端縁によって、流路の入口及び出口が画定される。すなわち、複数の伝熱プレートのそれぞれは、第一方向の一方側で隣り合う伝熱プレートの端縁と接続(溶接)される端縁と、第一方向の他方側で隣り合う伝熱プレートの端縁と接続(溶接)される端縁とを異にし、隣り合う伝熱プレートの端縁と接続されていない端縁によって、流路の入口及び出口を画定する。これにより、この種のプレート式熱交換器は、伝熱プレート(伝熱部)を挟んで隣り合う流路を流通する流体を第一方向から見て交差した態様で流通させつつ伝熱部を介して熱交換させる。 In such a plate heat exchanger, the inlet and outlet of the flow path are defined by the edge of the heat transfer plate extending in a direction intersecting the flow direction of the fluid in the flow path. That is, each of the plurality of heat transfer plates is connected (welded) to the edge of the adjacent heat transfer plates on one side in the first direction, and the heat transfer plates adjacent to each other on the other side in the first direction. The edge and the edge to be connected (welded) are different, and the inlet and outlet of the flow path are defined by the edge not connected to the edge of the adjacent heat transfer plate. As a result, in this type of plate heat exchanger, the heat transfer section is circulated while the fluid flowing through the adjacent flow paths sandwiching the heat transfer plate (heat transfer section) is circulated in a crossed manner when viewed from the first direction. Heat is exchanged through.

しかしながら、この種のプレート式熱交換器では、流体同士の熱交換に伴う熱影響により、伝熱プレートの端縁同士を溶接した溶接部の端部(長手方向の端部)に応力が集中的に作用し、溶接部が破損する虞がある。 However, in this type of plate heat exchanger, stress is concentrated on the end (longitudinal end) of the weld where the edges of the heat transfer plates are welded due to the heat effect of heat exchange between fluids. There is a risk that the welded part will be damaged.

具体的に説明すると、伝熱プレート(伝熱部)の凹条及び凸条は、自身に延びる方向に対して直交する方向に起伏した形状である。そのため、凹条及び凸条の自身の延びる方向の剛性は、当該凹条及び凸条の延びる方向と直交する方向の剛性よりも高い。 Specifically, the concave and convex stripes of the heat transfer plate (heat transfer portion) have an undulating shape in a direction orthogonal to the direction extending to the heat transfer plate (heat transfer portion). Therefore, the rigidity of the concave and convex in the extending direction is higher than the rigidity in the direction orthogonal to the extending direction of the concave and convex.

これに伴い、流体同士の熱交換に伴う熱影響により、伝熱プレートが第一方向と直交する方向に膨張或いは収縮すると、その膨張或いは収縮に伴って作用する力は、凹条及び凸条の延びる方向に対して直交する方向よりも凹条及び凸条の延びる方向に大きく作用する。 Along with this, when the heat transfer plate expands or contracts in the direction orthogonal to the first direction due to the heat effect due to heat exchange between the fluids, the force acting on the expansion or contraction is the concave and convex. It acts more in the extending direction of the concave and convex stripes than in the direction orthogonal to the extending direction.

すなわち、凹条及び凸条の自身の延びる方向と直交する方向の剛性は低い(変形し易い)ため、伝熱プレートの膨張或いは収縮に伴って作用する力のうち凹条及び凸条の延びる方向と直交する方向に作用する力は、凹条及び凸条の変形等によって分散される。 That is, since the rigidity in the direction orthogonal to the extending direction of the concave and convex is low (prone to deformation), the extending direction of the concave and convex among the forces acting with the expansion or contraction of the heat transfer plate. The force acting in the direction orthogonal to is dispersed by the deformation of the concave and convex stripes and the like.

しかし、凹条及び凸条の自身の延びる方向の剛性が高い(変形し難い)ため、伝熱プレートの膨張或いは収縮に伴って作用する力のうち凹条及び凸条の延びる方向に作用する力は、凹条及び凸条に沿って作用する。 However, since the dents and ridges themselves have high rigidity in the extending direction (difficult to deform), the force acting on the expansion or contraction of the heat transfer plate in the extending direction of the dents and ridges. Acts along the concave and convex stripes.

これに伴い、伝熱プレートの膨張或いは収縮に伴って作用する力は、凹条及び凸条の延長線上にある溶接部に大きく作用することになるが、その溶接部のうちの長手方向の端部は、伝熱プレートの端縁同士の接続の起点又は終点であるため、伝熱プレートの膨張或いは収縮に伴って作用する力が溶接部の端部に作用すると、溶接部の端部に応力が集中し、溶接部が損傷してしまう虞がある。 Along with this, the force acting on the expansion or contraction of the heat transfer plate greatly acts on the welded portion on the extension line of the concave and convex strips, and the longitudinal end of the welded portion. Since the portion is the starting point or the ending point of the connection between the end edges of the heat transfer plate, when the force acting due to the expansion or contraction of the heat transfer plate acts on the end portion of the welded portion, the end portion of the welded portion is stressed. May be concentrated and the weld may be damaged.

特許第4065435号公報Japanese Patent No. 4065435

そこで、本発明は、隣り合う伝熱プレートの端縁同士を溶接した溶接部の端部に応力が集中することを抑制でき、溶接部の損傷を抑えることのできるプレート式熱交換器を提供することを課題とする。 Therefore, the present invention provides a plate-type heat exchanger capable of suppressing stress concentration on the end portion of a welded portion where the edges of adjacent heat transfer plates are welded to each other and suppressing damage to the welded portion. That is the issue.

本発明に係るプレート式熱交換器は、それぞれが第一方向において第一面と該第一面に対して反対側を向く第二面とを有する伝熱部を含むとともに、第一方向から見て互いに平行又は略平行な一対の端縁を少なくとも二対を含んだ輪郭を有し、且つ輪郭を一致又は略一定させるように第一方向に重ね合わされた複数の伝熱プレートであって、それぞれの伝熱部の第一面を第一方向の一方側で隣り合う伝熱プレートの伝熱部の第一面と対向させるとともに、それぞれの伝熱部の第二面を第一方向の他方側で隣り合う伝熱プレートの伝熱部の第二面と対向させた複数の伝熱プレートと、伝熱部の第一面同士を対向させて隣り合う伝熱プレートの二対のうちの一方の対を構成する端縁を含む部分同士が溶け込むことで形成された第一溶接部であって、隣り合う伝熱プレートの二対のうちの一方の対を構成する端縁同士を液密に接続する第一溶接部と、伝熱部の第二面同士を対向させて隣り合う伝熱プレートの二対のうちの他方の対を構成する端縁を含む部分が溶け込むことで形成された第二溶接部であって、隣り合う伝熱プレートの二対のうちの他方の対を構成する端縁同士を液密に接続する第二溶接部とを備え、隣り合う伝熱プレートの伝熱部の第一面間に第一流体を第一溶接部の延びる方向と同方向に流通させる第一流路が形成されるとともに、隣り合う伝熱プレートの伝熱部の第二面間に第二流体を第二溶接部の延びる方向と同方向に流通させる第二流路が形成され、複数の伝熱プレートのそれぞれの伝熱部は、第一面及び第二面のそれぞれに第一溶接部又は第二溶接部の延びる方向に対して傾斜する方向に延びる複数の凹条及び凸条を有する主伝熱領域と、主伝熱領域に隣接する応力緩和領域であって、主伝熱領域の複数の凹条及び凸条のうち、凹条及び凸条の延長線が第一溶接部又は第二溶接部の端部に到達する凹条及び凸条の延長線を含む領域に設定された応力緩和領域とを含み、応力緩和領域は、第一方向における第一面の凸条の頂部と第二面の凸条の頂部との間で、第一方向と直交する第二方向及び第一方向と第二方向とに直交する第三方向に広がる中段平板部を含むことを特徴とする。 The plate-type heat exchanger according to the present invention includes a heat transfer unit each having a first surface in the first direction and a second surface facing the opposite side to the first surface, and is viewed from the first direction. A plurality of heat transfer plates having a contour including at least two pairs of a pair of edges parallel to or substantially parallel to each other and superposed in the first direction so as to make the contours coincident or substantially constant, respectively. The first surface of the heat transfer part is opposed to the first surface of the heat transfer part of the adjacent heat transfer plate on one side of the first direction, and the second surface of each heat transfer part is on the other side of the first direction. One of two pairs of heat transfer plates facing each other with the second surface of the heat transfer part of adjacent heat transfer plates and adjacent heat transfer plates with the first surfaces of the heat transfer parts facing each other. It is the first welded part formed by melting the parts including the edges that make up the pair, and the end edges that make up one of the two pairs of adjacent heat transfer plates are liquid-tightly connected. The second formed by melting the first welded portion and the portion including the edge constituting the other pair of the two pairs of adjacent heat transfer plates with the second surfaces of the heat transfer portions facing each other. A welded portion, the second welded portion for liquid-tightly connecting the edges constituting the other pair of the two pairs of adjacent heat transfer plates, and the heat transfer portion of the adjacent heat transfer plates. A first flow path is formed between the first surfaces to allow the first fluid to flow in the same direction as the extension of the first weld, and the second fluid is transferred between the second surfaces of the heat transfer portions of adjacent heat transfer plates. A second flow path is formed to circulate in the same direction as the extension of the second welded portion, and each of the heat transfer portions of the plurality of heat transfer plates has a first welded portion or a first surface on each of the first surface and the second surface. (Ii) A main heat transfer region having a plurality of recesses and ridges extending in a direction inclined with respect to the extending direction of the welded portion, and a plurality of stress relaxation regions adjacent to the main heat transfer region, which are a plurality of main heat transfer regions. Of the dents and ridges, the stress relaxation area set in the region including the dents and the extension lines of the ridges where the extension lines of the dents and ridges reach the end of the first welded portion or the second welded portion. The stress relaxation region includes, between the top of the ridges of the first surface and the top of the ridges of the second surface in the first direction, the second direction and the first direction and the first direction orthogonal to the first direction. It is characterized by including a middle flat plate portion extending in a third direction orthogonal to two directions.

本発明の一態様として、応力緩和領域は、第一面及び第二面のそれぞれに形成された複数の凸部であって、第一方向と直交する方向に間隔をあけて配置された複数の凸部を含み、第一面の凸部と第二面の凸部とは第一方向と直交する方向に位置ずれして配置され、中段平板部は、第一面の凸部と第二面の凸部との間に配置され、伝熱部の第一面同士を対向させて隣り合う伝熱プレートは、互いの応力緩和領域の第一面の凸部の頂部同士を当接させ、伝熱部の第二面同士を対向させて隣り合う伝熱プレートは、互いの応力緩和領域の第二面の凸部の頂部同士を当接させる。 As one aspect of the present invention, the stress relaxation region is a plurality of convex portions formed on each of the first surface and the second surface, and a plurality of protrusions arranged at intervals in a direction orthogonal to the first direction. Including the convex portion, the convex portion of the first surface and the convex portion of the second surface are arranged so as to be displaced in the direction orthogonal to the first direction, and the middle flat plate portion is the convex portion of the first surface and the second surface. The heat transfer plates, which are arranged between the convex portions of the heat transfer portions and are adjacent to each other with the first surfaces of the heat transfer portions facing each other, bring the tops of the convex portions of the first surfaces of the stress relaxation regions into contact with each other to transfer heat. The heat transfer plates adjacent to each other with the second surfaces of the heat portions facing each other bring the tops of the convex portions of the second surfaces of the stress relaxation regions into contact with each other.

本発明の他態様として、第一面の凸部の頂部及び第二面の凸部の頂部のそれぞれは、第一方向と直交する方向に広がる平面であることが好ましい。 As another aspect of the present invention, it is preferable that each of the top of the convex portion of the first surface and the top of the convex portion of the second surface is a plane extending in a direction orthogonal to the first direction.

本発明の別の態様として、伝熱プレートは、第一方向から見て四角形状に形成され、伝熱部は、第一方向から見て伝熱プレートよりも小さな四角形状であって、対角線が伝熱プレートの対角線と重なる四角形状に設定され、応力緩和領域は、伝熱部の角部に配置される。 As another aspect of the present invention, the heat transfer plate is formed in a square shape when viewed from the first direction, and the heat transfer portion is a square shape smaller than the heat transfer plate when viewed from the first direction, and the diagonal lines are diagonal. It is set in a square shape that overlaps the diagonal line of the heat transfer plate, and the stress relaxation region is arranged at the corner of the heat transfer portion.

本発明によれば、隣り合う伝熱プレートの端縁同士を溶接した溶接部の端部に応力が集中することを抑制でき、溶接部の損傷を抑えることができるという優れた効果を奏し得る。 According to the present invention, it is possible to suppress the concentration of stress on the end portion of the welded portion where the end edges of the adjacent heat transfer plates are welded to each other, and it is possible to obtain an excellent effect that damage to the welded portion can be suppressed.

図1は、本発明の一実施形態に係るプレート式熱交換器の全体斜視図である。FIG. 1 is an overall perspective view of a plate heat exchanger according to an embodiment of the present invention. 図2は、図1のII―II断面を含む斜視図である。FIG. 2 is a perspective view including a cross section of FIG. 1 II-II. 図3は、図1のIII―III断面を含む斜視図である。FIG. 3 is a perspective view including a cross section III-III of FIG. 図4は、同実施形態に係るプレート式熱交換器の分解斜視図である。FIG. 4 is an exploded perspective view of the plate heat exchanger according to the embodiment. 図5は、同実施形態に係る伝熱プレートを第一面側から見た図である。FIG. 5 is a view of the heat transfer plate according to the embodiment as viewed from the front surface side. 図6は、同実施形態に係る伝熱プレートを第二面側から見た図である。FIG. 6 is a view of the heat transfer plate according to the embodiment as viewed from the second surface side. 図7は、図5のVII部の拡大図である。FIG. 7 is an enlarged view of the VII portion of FIG. 図8は、図7のVIII-VIII断面図である。FIG. 8 is a cross-sectional view taken along the line VIII-VIII of FIG. 図9は、図6のXI-XI断面図である。9 is a cross-sectional view taken along the line XI-XI of FIG. 図10は、図6のX-X断面図である。FIG. 10 is a cross-sectional view taken along the line XX of FIG. 図11は、同実施形態に係る伝熱プレート積層体の部分拡大断面図であって、伝熱部の応力緩和領域周辺を含むY軸方向から見た部分断面図である。FIG. 11 is a partially enlarged cross-sectional view of the heat transfer plate laminated body according to the same embodiment, and is a partial cross-sectional view seen from the Y-axis direction including the periphery of the stress relaxation region of the heat transfer portion. 図12は、同実施形態に係る伝熱プレート積層体の部分拡大断面図であって、伝熱部の応力緩和領域周辺を含むX軸方向から見た部分断面図である。FIG. 12 is a partially enlarged cross-sectional view of the heat transfer plate laminated body according to the same embodiment, and is a partial cross-sectional view seen from the X-axis direction including the periphery of the stress relaxation region of the heat transfer portion. 図13は、図6のXIII-XIII断面図であって、中間部分を省略した断面図である。FIG. 13 is a cross-sectional view taken along the line XIII-XIII of FIG. 6 in which an intermediate portion is omitted. 図14は、図6のXIV-XIV断面図であって、中間部分を省略した断面図である。FIG. 14 is a cross-sectional view taken along the line XIV-XIV of FIG. 6 in which an intermediate portion is omitted. 図15は、同実施形態に係る伝熱プレート積層体の部分拡大断面図であって、伝熱部の主伝熱領域周辺を含むY軸方向から見た部分拡大断面図である。FIG. 15 is a partially enlarged cross-sectional view of the heat transfer plate laminated body according to the same embodiment, and is a partially enlarged cross-sectional view seen from the Y-axis direction including the periphery of the main heat transfer region of the heat transfer portion. 図16は、同実施形態に係る伝熱プレート積層体の部分拡大断面図であって、伝熱部の主伝熱領域周辺を含むX軸方向から見た部分拡大断面図である。FIG. 16 is a partially enlarged cross-sectional view of the heat transfer plate laminated body according to the same embodiment, and is a partially enlarged cross-sectional view seen from the X-axis direction including the periphery of the main heat transfer region of the heat transfer portion. 図17は、同実施形態に係る伝熱プレート積層体の伝熱プレートの凸条同士の交点の配置及び他方のブロックにおける第一流路での流体の流れを説明するための図である。FIG. 17 is a diagram for explaining the arrangement of the intersections of the protrusions of the heat transfer plates of the heat transfer plate laminated body according to the same embodiment and the flow of the fluid in the first flow path in the other block. 図18は、同実施形態に係る伝熱プレート積層体の伝熱プレートの凸条同士の交点の配置及び一方のブロックにおける第一流路での流体の流れを説明するための図である。FIG. 18 is a diagram for explaining the arrangement of the intersections of the protrusions of the heat transfer plates of the heat transfer plate laminated body according to the same embodiment and the flow of the fluid in the first flow path in one block. 図19は、同実施形態に係る伝熱プレート積層体の伝熱プレートの凸条同士の交点の配置及び一方のブロックにおける第二流路での流体の流れを説明するための図である。FIG. 19 is a diagram for explaining the arrangement of the intersections of the protrusions of the heat transfer plates of the heat transfer plate laminated body according to the same embodiment and the flow of the fluid in the second flow path in one block. 図20は、同実施形態に係る伝熱プレート積層体の伝熱プレートの凸条同士の交点の配置及び他方のブロックにおける第二流路での流体の流れを説明するための図である。FIG. 20 is a diagram for explaining the arrangement of intersections between the protrusions of the heat transfer plates of the heat transfer plate laminated body according to the same embodiment and the flow of the fluid in the second flow path in the other block. 図21は、図15のXXI部の拡大図である。FIG. 21 is an enlarged view of the XXI portion of FIG. 図22は、図16のXXII部の拡大図である。FIG. 22 is an enlarged view of the XXII part of FIG.

以下、本発明の一実施形態に係るプレート式熱交換器について、添付図面を参照しつつ説明する。 Hereinafter, the plate heat exchanger according to the embodiment of the present invention will be described with reference to the accompanying drawings.

図1乃至図4に示す如く、プレート式熱交換器1は、第一流体Aと第二流体Bとを熱交換させる熱交換部2と、熱交換部2に第一流体Aを供給する第一給液口Pa1と、熱交換部2からの第一流体Aを排出する第一排液口Pa2と、熱交換部2に第二流体Bを供給する第二給液口Pb1と、熱交換部2からの第二流体Bを排出する第二排液口Pb2とを備える。 As shown in FIGS. 1 to 4, in the plate heat exchanger 1, the heat exchange unit 2 for heat exchange between the first fluid A and the second fluid B and the first fluid A for supplying the heat exchange unit 2 are supplied. One liquid supply port Pa1, a first liquid discharge port Pa2 for discharging the first fluid A from the heat exchange unit 2, a second liquid supply port Pb1 for supplying the second fluid B to the heat exchange unit 2, and heat exchange. A second drain port Pb2 for discharging the second fluid B from the unit 2 is provided.

本実施形態において、熱交換部2は、図2乃至図4に示す如く、第一方向に重ね合わされた複数の伝熱プレート3を備える。さらに、熱交換部2は、重ね合わされた複数の伝熱プレート3を取り囲む外装体4であって、第一給液口Pa1、第一排液口Pa2、第二給液口Pb1、第二排液口Pb2が取り付けられる外装体4を備える。本実施形態において、熱交換部2は、外装体4内に配置された第一仕切プレート5であって、重ね合わされた複数の伝熱プレート3のうちの第一方向における中間位置にある伝熱プレート3に対応して配置された第一仕切プレート5と、外装体4内に配置された第二仕切プレート6であって、重ね合わされた複数の伝熱プレート3のうちの第一方向における中間位置にある伝熱プレート3に対応して配置された第二仕切プレート6とを備える。 In the present embodiment, the heat exchange unit 2 includes a plurality of heat transfer plates 3 stacked in the first direction, as shown in FIGS. 2 to 4. Further, the heat exchange unit 2 is an exterior body 4 that surrounds a plurality of superposed heat transfer plates 3, and is a first liquid supply port Pa1, a first liquid discharge port Pa2, a second liquid supply port Pb1, and a second drainage port. The exterior body 4 to which the liquid port Pb2 is attached is provided. In the present embodiment, the heat exchange unit 2 is a first partition plate 5 arranged in the exterior body 4, and is a heat transfer at an intermediate position in the first direction among the plurality of superposed heat transfer plates 3. The first partition plate 5 arranged corresponding to the plate 3 and the second partition plate 6 arranged in the exterior body 4 are intermediate in the first direction among the plurality of superposed heat transfer plates 3. It is provided with a second partition plate 6 arranged corresponding to the heat transfer plate 3 at the position.

なお、以下の説明において、第一方向をZ軸方向とし、第一方向と直交する第二方向をX軸方向とし、第一方向及び第二方向のそれぞれと直交する第三方向をY軸方向とする。これに伴い、各図面に対し、Z軸方向、X軸方向、Y軸方向に対応した直交三軸(Z軸、X軸、Y軸)、直交二軸(Z軸、X軸、Y軸のうちの何れか二軸)又は一軸(Z軸、X軸、Y軸のうちの何れか一軸)を補助的に図示している。 In the following description, the first direction is the Z-axis direction, the second direction orthogonal to the first direction is the X-axis direction, and the third direction orthogonal to each of the first direction and the second direction is the Y-axis direction. And. Along with this, for each drawing, there are three orthogonal axes (Z-axis, X-axis, Y-axis) and two orthogonal axes (Z-axis, X-axis, Y-axis) corresponding to the Z-axis direction, X-axis direction, and Y-axis direction. One of the two axes) or one axis (one of the Z axis, the X axis, and the Y axis) is shown as an auxiliary figure.

複数の伝熱プレート3…のそれぞれは、図5及び図6に示す如く、Z軸方向において第一面S1と、該第一面S1に対して反対側を向く第二面S2とを有する。複数の伝熱プレート3…のそれぞれは、Z軸方向から見て互いに平行又は略平行な一対の端縁Ea1,Ea1,Ea2,Ea2を少なくとも二対含んだ輪郭Eaを有する。 As shown in FIGS. 5 and 6, each of the plurality of heat transfer plates 3 ... Has a first surface S1 in the Z-axis direction and a second surface S2 facing the opposite side to the first surface S1. Each of the plurality of heat transfer plates 3 ... Has a contour Ea including at least two pairs of edge edges Ea1, Ea1, Ea2, and Ea2 parallel to or substantially parallel to each other when viewed from the Z-axis direction.

本実施形態において、対となる端縁Ea1,Ea1,Ea2,Ea2は、同一方向に延びる。また、対となる端縁Ea1,Ea1,Ea2,Ea2は、異なる対の端縁Ea1,Ea1,Ea2,Ea2に対して異なる方向に延び、且つ異なる対の端縁Ea1,Ea1,Ea2,Ea2に接続されている。これに伴い、伝熱プレート3は、異なる対の端縁Ea1,Ea2同士の接続によって形成される角部を四つ以上有する。 In the present embodiment, the paired edge edges Ea1, Ea1, Ea2, and Ea2 extend in the same direction. Further, the paired edge edges Ea1, Ea1, Ea2, and Ea2 extend in different directions with respect to the different paired edge edges Ea1, Ea1, Ea2, and Ea2, and become different paired edge edges Ea1, Ea1, Ea2, and Ea2. It is connected. Along with this, the heat transfer plate 3 has four or more corners formed by connecting different pairs of end edges Ea1 and Ea2.

より具体的に説明すると、本実施形態において、伝熱プレート3は、Z軸方向から見て四角形状である。より正確には、伝熱プレート3は、Z軸方向から見て正方形状である。これに伴い、Z軸方向から見た伝熱プレート3の輪郭Eaには、互いに平行又は略平行な一対の端縁Ea1,Ea1,Ea2,Ea2を二組(二対)含んでいる。 More specifically, in the present embodiment, the heat transfer plate 3 has a rectangular shape when viewed from the Z-axis direction. More precisely, the heat transfer plate 3 has a square shape when viewed from the Z-axis direction. Along with this, the contour Ea of the heat transfer plate 3 seen from the Z-axis direction includes two pairs (two pairs) of a pair of edge edges Ea1, Ea1, Ea2, and Ea2 that are parallel or substantially parallel to each other.

すなわち、伝熱プレート3の輪郭Eaは、X軸方向に間隔をあけ且つY軸方向に延びる一対の端縁(以下、第一端縁という)Ea1,Ea1と、Y軸方向に間隔をあけ且つそれぞれがX軸方向に延びる一対の端縁(以下、第二端縁という)Ea2,Ea2とを含む。本実施形態において、第一端縁Ea1,Ea1及び第二端縁Ea2,Ea2のそれぞれは、直線状である。これに伴い、伝熱プレート3は、四つの角部を有する。 That is, the contour Ea of the heat transfer plate 3 is spaced in the Y-axis direction from a pair of edge edges (hereinafter referred to as first end edges) Ea1 and Ea1 extending in the X-axis direction and extending in the Y-axis direction. Each includes a pair of edge edges (hereinafter referred to as second edge edges) Ea2 and Ea2 extending in the X-axis direction. In the present embodiment, each of the first end edge Ea1, Ea1 and the second end edge Ea2, Ea2 is linear. Along with this, the heat transfer plate 3 has four corners.

伝熱プレート3は、Z軸方向において第一面S1及び該第一面S1に対して反対側を向く第二面S2を有する伝熱部30と、それぞれが二対のうちの一方の対を構成する第一端縁Ea1を含む一対の第一延出部31,31であって、それぞれが伝熱部30の外縁Eb1からX軸方向に延出した一対の第一延出部31,31と、それぞれが二対のうちの他方の対を構成する第二端縁Ea2を含む一対の第二延出部32,32であって、それぞれが伝熱部30の外縁Eb2からY軸方向に延出した一対の第二延出部32,32とを備える。 The heat transfer plate 3 has a heat transfer portion 30 having a first surface S1 and a second surface S2 facing opposite to the first surface S1 in the Z-axis direction, and each pair of two pairs. A pair of first extending portions 31, 31 including a first end edge Ea1 constituting, each of which is a pair of first extending portions 31, 31 extending in the X-axis direction from the outer edge Eb1 of the heat transfer portion 30. And a pair of second extending portions 32, 32 each including a second end edge Ea2 constituting the other pair of the two pairs, each of which is in the Y-axis direction from the outer edge Eb2 of the heat transfer portion 30. A pair of extended second extension portions 32, 32 are provided.

Z軸方向から見た伝熱部30の輪郭Ebは、Z軸方向から見た伝熱プレート3の輪郭Eaの相似形である。本実施形態において、伝熱プレート3は、Z軸方向から見て正方形状であるため、伝熱部30についてもZ軸方向から見て正方形状である。伝熱部30は、自身の輪郭Ebの二つの角を繋ぐ対角線が伝熱プレートの輪郭Eaの二つの角を繋ぐ対角線と重なるように配置される。また、伝熱部30は、自身の中心を伝熱プレート3全体の中心と一致させて配置されている。 The contour Eb of the heat transfer portion 30 seen from the Z-axis direction is similar to the contour Ea of the heat transfer plate 3 seen from the Z-axis direction. In the present embodiment, since the heat transfer plate 3 has a square shape when viewed from the Z-axis direction, the heat transfer portion 30 also has a square shape when viewed from the Z-axis direction. The heat transfer unit 30 is arranged so that the diagonal line connecting the two corners of its contour Eb overlaps with the diagonal line connecting the two corners of the contour Ea of the heat transfer plate. Further, the heat transfer unit 30 is arranged so that its center coincides with the center of the entire heat transfer plate 3.

従って、伝熱部30の輪郭Ebには、互いに平行又は略平行な一対の外縁Eb1,Eb2が二対含まれる。本実施形態において、伝熱部30の輪郭Ebに含まれる外縁Eb1,Eb2は、伝熱プレート3の輪郭Eaに含まれる端縁Ea1,Ea2(第一端縁Ea1又は第二端縁Ea2)と平行又は略平行である。 Therefore, the contour Eb of the heat transfer unit 30 includes two pairs of outer edges Eb1 and Eb2 that are parallel or substantially parallel to each other. In the present embodiment, the outer edges Eb1 and Eb2 included in the contour Eb of the heat transfer unit 30 are the edge Ea1 and Ea2 (first end edge Ea1 or second edge Ea2) included in the contour Ea of the heat transfer plate 3. Parallel or substantially parallel.

すなわち、伝熱部30の輪郭Ebは、X軸方向に間隔をあけ且つそれぞれがY軸方向に延びる一対の外縁(以下、第一外縁という)Eb1と、Y軸方向に間隔をあけ且つそれぞれがX軸方向に延びる一対の外縁(以下、第二外縁という)Eb2とを含む。上述の如く、本実施形態において、第一端縁Ea1及び第二端縁Ea2のそれぞれは、直線状であるため、第一外縁Eb1及び第二外縁Eb2のそれぞれも直線状である。 That is, the contour Eb of the heat transfer portion 30 is spaced in the X-axis direction and each extends in the Y-axis direction with a pair of outer edges (hereinafter referred to as the first outer edge) Eb1 and each is spaced in the Y-axis direction. Includes a pair of outer edges (hereinafter referred to as second outer edges) Eb2 extending in the X-axis direction. As described above, in the present embodiment, since each of the first end edge Ea1 and the second end edge Ea2 is linear, each of the first outer edge Eb1 and the second outer edge Eb2 is also linear.

伝熱部30は、流体(第一流体A又は第二流体B)の流路(後述する第一流路Ra、第二流路Rb)を形成する主たる領域であって、第一流体Aと第二流体Bとの熱交換に貢献する主伝熱領域300aと、当該伝熱部30の一部の領域であって、主伝熱領域300aと隣接した応力緩和領域300bとを含む。 The heat transfer unit 30 is a main region forming a flow path (first flow path Ra, second flow path Rb, which will be described later) of the fluid (first fluid A or second fluid B), and is the first fluid A and the first. (Ii) It includes a main heat transfer region 300a that contributes to heat exchange with the fluid B, and a stress relaxation region 300b that is a part of the heat transfer portion 30 and is adjacent to the main heat transfer region 300a.

伝熱部30の主伝熱領域300aの第一面S1には、複数の凹条301及び凸条302が形成され(図5参照)、伝熱部30の主伝熱領域300aの第二面S2には、第一面S1の凹条301と表裏の関係にある凸条302及び第一面S1の凸条302と表裏の関係にある凹条301が形成される(図6参照)。なお、図5及び図6等において、凹条301等の窪んだ部分にドットを付し、同一面上での凹凸関係を明確にしている。 A plurality of recesses 301 and ridges 302 are formed on the first surface S1 of the main heat transfer region 300a of the heat transfer unit 30 (see FIG. 5), and the second surface of the main heat transfer region 300a of the heat transfer unit 30. In S2, a ridge 302 having a front-back relationship with the concave groove 301 on the first surface S1 and a concave ridge 301 having a front-back relationship with the ridge 302 on the first surface S1 are formed (see FIG. 6). In addition, in FIGS. 5 and 6 and the like, dots are added to the recessed portions such as the concave section 301 to clarify the unevenness relationship on the same surface.

図5に示す如く、主伝熱領域300aの第一面S1にある凹条301及び凸条302は、X軸方向に延びる中心線(以下、縦中心線という)CL1及びY軸方向に延びる中心線(以下、横中心線という)CL2のそれぞれに対して傾斜する方向に延びる。すなわち、主伝熱領域300aの第一面S1にある凹条301及び凸条302は、X軸方向の成分とY軸方向の成分とを含む合成方向に延びる。主伝熱領域300aの第一面S1にある凹条301及び凸条302は、X軸方向の成分とY軸方向の成分とを含む合成方向に対して直交する方向で交互に並んでいる。 As shown in FIG. 5, the concave and convex lines 302 on the first surface S1 of the main heat transfer region 300a are center lines extending in the X-axis direction (hereinafter referred to as vertical center lines) CL1 and centers extending in the Y-axis direction. It extends in a direction inclined with respect to each of the lines (hereinafter referred to as horizontal center lines) CL2. That is, the recesses 301 and the ridges 302 on the first surface S1 of the main heat transfer region 300a extend in the synthesis direction including the components in the X-axis direction and the components in the Y-axis direction. The concave grooves 301 and the convex grooves 302 on the first surface S1 of the main heat transfer region 300a are alternately arranged in a direction orthogonal to the synthesis direction including the component in the X-axis direction and the component in the Y-axis direction.

上述の如く、伝熱部30の第二面S2にある凹条301は、第一面S1の凸条302と表裏の関係にあり、伝熱部30の第二面S2にある凸条302は、第一面S1の凹条301と表裏の関係にある。 As described above, the concave groove 301 on the second surface S2 of the heat transfer unit 30 has a front-back relationship with the convex line 302 on the first surface S1, and the convex line 302 on the second surface S2 of the heat transfer unit 30 has a front-back relationship. , There is a front-back relationship with the concave section 301 of the first surface S1.

これに伴い、図6に示す如く、主伝熱領域300aの第二面S2にある凹条301及び凸条302は、X軸方向に延びる縦中心線CL1及び横中心線CL2のそれぞれに対して傾斜する方向に延びる。すなわち、主伝熱領域300aの第二面S2にある凹条301及び凸条302は、X軸方向の成分とY軸方向の成分とを含む合成方向に延びる。そして、主伝熱領域300aの第二面S2にある複数の凹条301及び凸条302は、X軸方向の成分とY軸方向の成分とを含む合成方向に対して直交する方向で交互に並んでいる。 Along with this, as shown in FIG. 6, the recesses 301 and the ridges 302 on the second surface S2 of the main heat transfer region 300a are relative to the vertical center line CL1 and the horizontal center line CL2 extending in the X-axis direction, respectively. It extends in the direction of inclination. That is, the recesses 301 and the ridges 302 on the second surface S2 of the main heat transfer region 300a extend in the synthesis direction including the components in the X-axis direction and the components in the Y-axis direction. Then, the plurality of recesses 301 and ridges 302 on the second surface S2 of the main heat transfer region 300a are alternately arranged in a direction orthogonal to the synthesis direction including the component in the X-axis direction and the component in the Y-axis direction. They are lined up.

本実施形態において、伝熱部30(主伝熱領域300a)は、図5及び図6に示す如く、第一面S1上にある凹条301及び凸条302に跨り且つ第二面S2上にある凹条301及び凸条302に跨る補強部303を有する。 In the present embodiment, as shown in FIGS. 5 and 6, the heat transfer unit 30 (main heat transfer region 300a) straddles the recesses 301 and the ridges 302 on the first surface S1 and is on the second surface S2. It has a reinforcing portion 303 that straddles a certain concave strip 301 and a convex strip 302.

本実施形態において、補強部303は、図7に示す如く、伝熱部30における第一面S1又は第二面S2の何れか一方(本実施形態においては第一面S1)で凹条301を挟んで横並びする三つの凸条302のそれぞれの中心線と対応する位置に配置された起点部304aと、前記三つの凸条302のうちの中央の凸条302の中心線上にある起点部304aと残りの二つの起点部304a,304aとを繋ぐ一対の接続部304b,304bとを含む少なくとも一つの屈曲平板部304を備える。 In the present embodiment, as shown in FIG. 7, the reinforcing portion 303 has a concave portion 301 formed on either the first surface S1 or the second surface S2 (first surface S1 in the present embodiment) of the heat transfer portion 30. A starting point 304a arranged at a position corresponding to the center line of each of the three ridges 302 arranged side by side, and a starting point 304a on the center line of the central ridge 302 of the three ridges 302. It includes at least one bent flat plate portion 304 including a pair of connecting portions 304b, 304b connecting the remaining two starting points 304a, 304a.

屈曲平板部304において、前記三つの凸条302のうちの中央の凸条302の中心線と対応する位置に配置された起点部304aは、相手方の伝熱部30(Z軸方向で重なり合って隣り合う伝熱部30)の第一面S1又は第二面S2の何れか一方(本実施形態においては第一面S1)で凸条302を挟んで横並びする二つの凹条301,301のうちの一方の凹条301の中心線と対応する位置に配置される。これに対し、三つの凸条302…のうちの中央の凸条302の両側にある凸条302,302のそれぞれの中心線と対応する位置に配置された二つの起点部304a,304aは、相手方の伝熱部30(Z軸方向で重なり合って隣り合う伝熱部30)の第一面S1又は第二面S2の何れか一方(本実施形態においては第一面S1)で凸条302を挟んで横並びする二つの凹条301,301のうちの他方の凹条301の中心線と対応する位置に配置される。 In the bent flat plate portion 304, the starting point portion 304a arranged at a position corresponding to the center line of the central ridge 302 among the three ridges 302 is adjacent to the heat transfer portion 30 of the other party (overlapping in the Z-axis direction). Of the two concave grooves 301 and 301 side by side with the convex strip 302 sandwiched between either the first surface S1 or the second surface S2 (first surface S1 in this embodiment) of the matching heat transfer unit 30). It is arranged at a position corresponding to the center line of one of the recesses 301. On the other hand, the two starting points 304a and 304a arranged at the positions corresponding to the center lines of the ridges 302 and 302 on both sides of the central ridge 302 among the three ridges 302 ... The ridge 302 is sandwiched between either the first surface S1 or the second surface S2 (first surface S1 in this embodiment) of the heat transfer portions 30 (heat transfer portions 30 overlapping and adjacent to each other in the Z-axis direction). It is arranged at a position corresponding to the center line of the other recess 301 of the two recesses 301 and 301 arranged side by side in.

本実施形態において、凸条302は、縦中心線CL1に対して45°の角度に傾斜しているため、屈曲平板部304において、一方の接続部304bはX軸方向に延び、他方の接続部304bはY軸方向に延びている。すなわち、単一の起点部304aを介して接続された一対の接続部304b、304bは、隣り合う伝熱部30の凸条302,302同士の交差位置を内角側に位置させて(取り囲むように)直角をなす。 In the present embodiment, since the ridge 302 is inclined at an angle of 45 ° with respect to the vertical center line CL1, in the bent flat plate portion 304, one connecting portion 304b extends in the X-axis direction and the other connecting portion. 304b extends in the Y-axis direction. That is, the pair of connecting portions 304b and 304b connected via a single starting point portion 304a are positioned (surrounding) the intersecting positions of the protrusions 302 and 302 of the adjacent heat transfer portions 30 on the inner angle side. ) Make a right angle.

補強部303(屈曲平板部304)は、図8に示す如く、Z軸方向における第一面S1上の凸条302の頂部と第二面S2上の凸条302の頂部との間に位置する。本実施形態において、補強部303は、第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間のZ軸方向における途中位置を通る第一仮想平面BLに沿った平板部分である。 As shown in FIG. 8, the reinforcing portion 303 (bent flat plate portion 304) is located between the top of the ridge 302 on the first surface S1 and the top of the ridge 302 on the second surface S2 in the Z-axis direction. .. In the present embodiment, the reinforcing portion 303 is along the first virtual plane BL passing through an intermediate position in the Z-axis direction between the top of the protrusion 302 of the first surface S1 and the top of the protrusion 302 of the second surface S2. It is a flat plate part.

より具体的に説明すると、伝熱部30の第一面S1の凹条301は、X軸方向及びY軸方向に広がる基準面BLからZ軸方向に窪み、伝熱部30の第一面S1の凸条302は、基準面BLからZ軸方向に突出する。これに伴い、第一面S1の凹条301と表裏の関係にある第二面S2の凸条302は、基準面BLからZ軸方向に突出し、第一面S1の凸条302と表裏の関係にある第二面S2の凹条301は、基準面BLからZ軸方向に窪む。これを前提に、本実施形態において、第一面S1の凹条301と凸条302との境界となる基準面を第一仮想平面BLとしている。従って、本実施形態において、補強部303は、第一面S1の凹条301(凸条302)と第二面S2の凹条301(凸条302)との境界となる基準面BLに沿う(通る)ように形成される。 More specifically, the recess 301 of the first surface S1 of the heat transfer unit 30 is recessed in the Z-axis direction from the reference surface BL extending in the X-axis direction and the Y-axis direction, and the first surface S1 of the heat transfer unit 30 is recessed. The ridge 302 of the above projects from the reference surface BL in the Z-axis direction. Along with this, the convex ridge 302 of the second surface S2, which has a front-back relationship with the concave ridge 301 of the first surface S1, protrudes from the reference surface BL in the Z-axis direction, and has a front-back relationship with the ridge 302 of the first surface S1. The recess 301 of the second surface S2 in the above is recessed in the Z-axis direction from the reference surface BL. On the premise of this, in the present embodiment, the reference plane that is the boundary between the concave portion 301 and the convex portion 302 of the first surface S1 is defined as the first virtual plane BL. Therefore, in the present embodiment, the reinforcing portion 303 is along the reference surface BL which is the boundary between the concave section 301 (convex line 302) of the first surface S1 and the concave line 301 (convex line 302) of the second surface S2 (the convex line 302). It is formed to pass through).

本実施形態において、補強部303は、図5及び図6に示す如く、複数の屈曲平板部304を備える。複数の屈曲平板部304は、連続している。すなわち、隣り合う屈曲平板部304が、共通の起点部304aを介して接続される(図7参照)。 In the present embodiment, the reinforcing portion 303 includes a plurality of bent flat plate portions 304 as shown in FIGS. 5 and 6. The plurality of bent flat plate portions 304 are continuous. That is, the adjacent bent flat plate portions 304 are connected via a common starting point portion 304a (see FIG. 7).

これに伴い、複数の屈曲平板部304が連なった補強部303は、凹条301及び凸条302の延びる方向に対して直交する方向に長手をなし、Z軸方向から見てジグザク状に形成される。 Along with this, the reinforcing portion 303 in which a plurality of bent flat plate portions 304 are connected is formed in a zigzag shape when viewed from the Z-axis direction, having a longitudinal direction perpendicular to the extending direction of the concave strip 301 and the convex strip 302. Orthogonal.

本実施形態において、伝熱部30(主伝熱領域300a)は、複数の補強部303を備える。複数の補強部303のうちの一つの補強部303は、伝熱部30の対角を結ぶように配置され、残りの補強部303は、伝熱部30の対角を結ぶ仮想線(本実施形態においては、対角を結ぶ補強部303の長手方向に延びる仮想線)を基準に対称となるように配置される。 In the present embodiment, the heat transfer portion 30 (main heat transfer region 300a) includes a plurality of reinforcing portions 303. The reinforcing portion 303 of one of the plurality of reinforcing portions 303 is arranged so as to connect the diagonals of the heat transfer portions 30, and the remaining reinforcing portions 303 are virtual lines connecting the diagonals of the heat transfer portions 30 (this implementation). In the form, they are arranged so as to be symmetrical with respect to a virtual line extending in the longitudinal direction of the reinforcing portion 303 connecting diagonally.

本実施形態において、伝熱部30の輪郭Ebが正方形状に形成されるため、縦中心線CL1又は横中心線CL2の何れか一方(本実施形態においては、縦中心線CL1)を回転軸にして伝熱プレート3を反転させることで、反転後の補強部303が反転前の補強部303に対してX軸方向に延びる中心線を基準に対称な位置に配置されるようになっている。 In the present embodiment, since the contour Eb of the heat transfer portion 30 is formed in a square shape, either one of the vertical center line CL1 and the horizontal center line CL2 (in this embodiment, the vertical center line CL1) is used as the rotation axis. By inverting the heat transfer plate 3, the reinforcing portion 303 after inversion is arranged at a position symmetrical with respect to the center line extending in the X-axis direction with respect to the reinforcing portion 303 before inversion.

応力緩和領域300bは、主伝熱領域300aの複数の凹条301及び凸条302のうち、凹条301及び凸条302の延長線(図示しない)が伝熱プレート3の輪郭Eaに含まれる第一端縁Ea1又は第二端縁Ea2の長手方向の端部に到達する凹条301及び凸条302の延長線を含む領域に設定される。 In the stress relaxation region 300b, of the plurality of recesses 301 and protrusions 302 of the main heat transfer region 300a, an extension line (not shown) of the recesses 301 and the protrusions 302 is included in the contour Ea of the heat transfer plate 3. It is set in the region including the extension lines of the recesses 301 and the ridges 302 that reach the longitudinal ends of the one-end edge Ea1 or the second edge Ea2.

応力緩和領域300bは、図9及び図10に示す如く、Z軸方向における第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間に位置する中段平板部305であって、X軸方向及びY軸方向に広がる中段平板部305を含む。本実施形態において、応力緩和領域300bは、第一面S1及び第二面S2のそれぞれに複数の凸部306であって、Z軸方向と直交する方向に間隔をあけて配置された複数の凸部306を含む。 As shown in FIGS. 9 and 10, the stress relaxation region 300b is a middle flat plate portion 305 located between the top of the ridge 302 of the first surface S1 and the top of the ridge 302 of the second surface S2 in the Z-axis direction. The middle flat plate portion 305 extending in the X-axis direction and the Y-axis direction is included. In the present embodiment, the stress relaxation region 300b is a plurality of convex portions 306 on each of the first surface S1 and the second surface S2, and a plurality of convex portions arranged at intervals in a direction orthogonal to the Z-axis direction. Includes portion 306.

中段平板部305は、第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間のZ軸方向における途中位置を通る第一仮想平面BLに沿った平板部分である。 The middle flat plate portion 305 is a flat plate portion along the first virtual plane BL that passes through an intermediate position in the Z-axis direction between the top of the protrusion 302 on the first surface S1 and the top of the protrusion 302 on the second surface S2. be.

応力緩和領域300bにおいて、第一面S1の凸部306と第二面S2の凸部306とは、Z軸方向と直交する方向に位置ずれして配置される。 In the stress relaxation region 300b, the convex portion 306 of the first surface S1 and the convex portion 306 of the second surface S2 are arranged so as to be displaced in the direction orthogonal to the Z-axis direction.

これに伴い、中段平板部305は、第一面S1の凸部306と第二面S2の凸部306との間に配置される。各応力緩和領域300bにおいて、第一面S1の凸部306の頂部及び第二面S2の凸部306の頂部のそれぞれは、Z軸方向と直交する方向(X軸方向及びY軸方向)に広がる平面である。 Along with this, the middle flat plate portion 305 is arranged between the convex portion 306 of the first surface S1 and the convex portion 306 of the second surface S2. In each stress relaxation region 300b, each of the top of the convex portion 306 of the first surface S1 and the top of the convex portion 306 of the second surface S2 spreads in the directions orthogonal to the Z-axis direction (X-axis direction and Y-axis direction). It is a plane.

本実施形態において、図5及び図6に示す如く、伝熱部30がZ方向から見て多角形状であることを前提に、主伝熱領域300aは、当該伝熱部30の平面形状に含まれる複数の角部のうちの少なくとも一つの角部を除く領域に設定され、応力緩和領域300bは、伝熱部30のうちの主伝熱領域300a以外の領域に設定される。 In the present embodiment, as shown in FIGS. 5 and 6, the main heat transfer region 300a is included in the planar shape of the heat transfer portion 30 on the premise that the heat transfer portion 30 has a polygonal shape when viewed from the Z direction. It is set in a region excluding at least one corner of the plurality of corners, and the stress relaxation region 300b is set in a region other than the main heat transfer region 300a in the heat transfer portion 30.

本実施形態において、伝熱部30は、Z軸方向から見て四つの角部を含む四角(正方形)状である。これに伴い、本実施形態において、主伝熱領域300aは、当該伝熱部30の四つの角部を除く領域に設定され、応力緩和領域300bは、当該伝熱部30の四つの角部のそれぞれに設定される。本実施形態において、各応力緩和領域300bは、伝熱部30の直角な角を含んだ略直角三角形状の領域とされる。これに伴い、主伝熱領域300aは、平面視八角形状の領域とされる。 In the present embodiment, the heat transfer portion 30 has a square shape including four corner portions when viewed from the Z-axis direction. Along with this, in the present embodiment, the main heat transfer region 300a is set to the region excluding the four corners of the heat transfer portion 30, and the stress relaxation region 300b is the region of the four corners of the heat transfer portion 30. Set for each. In the present embodiment, each stress relaxation region 300b is a region having a substantially right-angled triangle shape including the right-angled corners of the heat transfer portion 30. Along with this, the main heat transfer region 300a is a region having an octagonal shape in a plan view.

具体的には、本実施形態において、伝熱プレート3は、伝熱部30の第一面S1をZ軸方向の一方側で隣り合う伝熱プレート3の伝熱部30の第一面S1と対向させ、伝熱プレート3は、伝熱部30の第二面S2をZ軸方向の他方側で隣り合う伝熱プレート3の伝熱部30の第二面S2と対向させる。これに伴い、図11及び図12に示す如く、伝熱部30の第一面S1同士を対向させて隣り合う伝熱プレート3,3は、互いの応力緩和領域300bの第一面S1の凸部306の頂部同士を当接させ、伝熱部30の第二面S2同士を対向させて隣り合う伝熱プレート3は、互いの応力緩和領域300bの第二面S2の凸部306の頂部同士を当接させる。 Specifically, in the present embodiment, the heat transfer plate 3 has the first surface S1 of the heat transfer portion 30 adjacent to the first surface S1 of the heat transfer portion 30 of the heat transfer plate 3 adjacent to each other on one side in the Z-axis direction. The heat transfer plate 3 faces the second surface S2 of the heat transfer portion 30 so that the second surface S2 of the heat transfer portion 30 faces the second surface S2 of the heat transfer portion 30 of the adjacent heat transfer plates 3 on the other side in the Z-axis direction. Along with this, as shown in FIGS. 11 and 12, the heat transfer plates 3 and 3 adjacent to each other with the first surfaces S1 of the heat transfer portions 30 facing each other are convex on the first surface S1 of the stress relaxation region 300b. The tops of the heat transfer portions 306 are brought into contact with each other, and the second surfaces S2 of the heat transfer portions 30 are opposed to each other, and the heat transfer plates 3 are adjacent to each other. To abut.

本実施形態において、複数の伝熱プレート3をZ方向に重ね合わせるに際し、Z軸方向において一つおきに、縦中心線CL1又は横中心線CL2の何れか一方(本実施形態においては、縦中心線CL1を回転軸にして伝熱プレート3を反転させて配置する。これに伴い、図5及び図6に示す如く、本実施形態に係る伝熱プレート3は、主伝熱領域300aの凹条301及び凸条302の延長線上にある応力緩和領域300bに対し、縦中心線CL1又は横中心線CL2の何れか一方(本実施形態においては、縦中心線CL1)を基準にした対称となる領域にも応力緩和領域300bが設定される。従って、本実施形態に係る伝熱部30は、Z軸方向から見た角部を含む応力緩和領域300bを四つ含む。 In the present embodiment, when a plurality of heat transfer plates 3 are superposed in the Z direction, every other one in the Z axis direction is either the vertical center line CL1 or the horizontal center line CL2 (in the present embodiment, the vertical center). The heat transfer plate 3 is inverted and arranged with the wire CL1 as the axis of rotation. Accordingly, as shown in FIGS. 5 and 6, the heat transfer plate 3 according to the present embodiment has a concave portion of the main heat transfer region 300a. A region that is symmetric with respect to the stress relaxation region 300b on the extension lines of 301 and the ridge 302 with respect to either the vertical center line CL1 or the horizontal center line CL2 (in this embodiment, the vertical center line CL1). Therefore, the heat transfer portion 30 according to the present embodiment includes four stress relaxation regions 300b including a corner portion seen from the Z-axis direction.

対称関係にある応力緩和領域300bの第一面S1の凸部306の配置は、縦中心線CL1又は横中心線CL2の何れか一方(本実施形態においては、縦中心線CL1)を基準に互いに対称関係にあり、対称関係にある応力緩和領域300bの第二面S2の凸部306の配置は、縦中心線CL1又は横中心線CL2の何れか一方(本実施形態においては、縦中心線CL1)を基準に互いに対称関係にある。 The convex portions 306 of the first surface S1 of the stress relaxation region 300b having a symmetrical relationship are arranged with respect to either the vertical center line CL1 or the horizontal center line CL2 (in this embodiment, the vertical center line CL1). The arrangement of the convex portion 306 of the second surface S2 of the stress relaxation region 300b having a symmetrical relationship is either the vertical center line CL1 or the horizontal center line CL2 (in the present embodiment, the vertical center line CL1). ) Are symmetrical to each other.

図5、図6、及び図13に示す如く、一対の第一延出部31,31のそれぞれは、X軸方向に基端と先端とを有する第一中段部310であって、Z軸方向における第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間の位置で伝熱部30に基端が接続された第一中段部310と、X軸方向と交差する方向に基端と先端とを有する第一折曲部311であって、基端が第一中段部310の先端に接続され、伝熱部30の第一面S1側に延出し且つ先端が二対の端縁Ea1,Ea2うちの一方の対を構成する端縁Ea1となる第一折曲部311とを備える。 As shown in FIGS. 5, 6 and 13, each of the pair of first extending portions 31, 31 is a first middle stage portion 310 having a base end and a tip in the X-axis direction, and is in the Z-axis direction. The first middle stage portion 310 whose base end is connected to the heat transfer portion 30 at the position between the top of the protrusion 302 of the first surface S1 and the top of the protrusion 302 of the second surface S2, and the X-axis direction. A first bent portion 311 having a base end and a tip in an intersecting direction, the base end being connected to the tip of the first middle stage portion 310, extending to the first surface S1 side of the heat transfer portion 30 and the tip. Is provided with a first bent portion 311 which is an edge Ea1 constituting one pair of two pairs of edge Ea1 and Ea2.

一対の第一延出部31,31のうちの一方の第一延出部31の第一中段部310の基端は、一対の第一外縁Eb1,Eb1のうちの一方の第一外縁Eb1に接続され、一対の第一延出部31,31のうちの他方の第一延出部31の第一中段部310の基端は、一対の第一外縁Eb1,Eb1のうちの他方の第一外縁Eb1に接続される。 The base end of the first middle stage portion 310 of the first extension portion 31 of the pair of first extension portions 31, 31 is attached to the first outer edge Eb1 of one of the pair of first outer edges Eb1 and Eb1. The base end of the first middle stage portion 310 of the first extending portion 31 of the other of the pair of first extending portions 31, 31 is connected to the first of the other of the pair of first outer edges Eb1 and Eb1. It is connected to the outer edge Eb1.

一対の第一延出部31,31のそれぞれの第一中段部310は、第一端縁Ea1,Ea1の延びる方向(Y軸方向)を長手とする帯板状の部分であり、長手方向と直交する方向(短手方向)において、基端と先端とを有する。 Each of the first middle stage portions 310 of the pair of first extending portions 31, 31 is a strip-shaped portion having the extending direction (Y-axis direction) of the first end edge Ea1 and Ea1 as the longitudinal direction. It has a proximal end and a distal end in an orthogonal direction (shortward direction).

第一中段部310は、図13に示す如く、第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間のZ軸方向における途中位置を通る第一仮想平面BLに沿うように、当該第一中段部310の基端が第一外縁Eb1に接続されている。本実施形態において、第一仮想平面BLは、上述の如く、第一面S1の凹条301と凸条302との境界となる基準面に設定されている。 As shown in FIG. 13, the first middle stage portion 310 is a first virtual plane passing through an intermediate position in the Z-axis direction between the top of the ridge 302 of the first surface S1 and the top of the ridge 302 of the second surface S2. The base end of the first middle stage portion 310 is connected to the first outer edge Eb1 so as to be along the BL. In the present embodiment, the first virtual plane BL is set as a reference plane which is a boundary between the concave groove 301 and the convex strip 302 of the first surface S1 as described above.

従って、第一延出部31の第一中段部310は、第一面S1の凹条301(凸条302)と第二面S2の凹条301(凸条302)との境界となる基準面BLに沿う(通る)ように、伝熱部30の第一外縁Eb1から延出している。 Therefore, the first middle stage portion 310 of the first extending portion 31 is a reference surface that is a boundary between the concave groove 301 (convex line 302) of the first surface S1 and the concave line 301 (convex line 302) of the second surface S2. It extends from the first outer edge Eb1 of the heat transfer portion 30 so as to follow (pass) the BL.

一対の第一延出部31,31のそれぞれにおいて、第一折曲部311は、第一端縁Ea1の延びる方向(Y軸方向)を長手とする帯板状の部分であり、長手方向と直交する方向(短手方向)において、基端と先端とを有する。第一折曲部311の基端は、対応する第一中段部310の先端の全長に亘って接続される。 In each of the pair of first extending portions 31 and 31, the first bent portion 311 is a strip-shaped portion having a longitudinal direction (Y-axis direction) of the first end edge Ea1 and is a longitudinal portion. It has a proximal end and a distal end in an orthogonal direction (shortward direction). The base end of the first bent portion 311 is connected over the entire length of the tip of the corresponding first middle stage portion 310.

第一折曲部311は、自身の基端(第一中段部310の先端)を支点にして伝熱部30の第一面S1側に曲げられている。本実施形態において、第一折曲部311は、接続された第一中段部310に対して傾斜している。 The first bent portion 311 is bent toward the first surface S1 side of the heat transfer portion 30 with its base end (tip of the first middle stage portion 310) as a fulcrum. In the present embodiment, the first bent portion 311 is inclined with respect to the connected first middle stage portion 310.

具体的には、第一折曲部311は、X軸方向において先端を基端よりも外側に位置させるように傾斜している。この第一折曲部311の先端Ea1は、Z軸方向において伝熱部30の第一面S1の凸条302の頂部と同一レベルに位置する。本実施形態において、第一折曲部311の先端Ea1を含む所定範囲は、重ね合わされる伝熱プレート3との接続代(溶接代)として、Y軸方向に延びる仮想線を曲率中心にしてX軸方向において外側に湾曲している。 Specifically, the first bent portion 311 is inclined so that the tip end is located outside the base end in the X-axis direction. The tip Ea1 of the first bent portion 311 is located at the same level as the top of the ridge 302 of the first surface S1 of the heat transfer portion 30 in the Z-axis direction. In the present embodiment, the predetermined range including the tip Ea1 of the first bent portion 311 is X with the imaginary line extending in the Y-axis direction as the center of curvature as the connection allowance (welding allowance) with the heat transfer plates 3 to be overlapped. It is curved outward in the axial direction.

図5及び図13に示す如く、本実施形態において、一対の第一延出部31,31のうちの少なくともの第一流路Raの上流側を始点にした凹条301が到達する第一延出部31は、第一中段部310からZ軸方向に突出した少なくとも一つの第一凸部312を備える。 As shown in FIGS. 5 and 13, in the present embodiment, the first extension reached by the recess 301 starting from the upstream side of at least the first flow path Ra of the pair of first extension portions 31, 31. The portion 31 includes at least one first convex portion 312 protruding from the first middle stage portion 310 in the Z-axis direction.

具体的には、上述の如く、伝熱部30の第一面S1にある複数の凹条301及び凸条302は、X軸方向の成分とY軸方向の成分とを含む合成方向に延び、且つ、X軸方向の成分とY軸方向の成分とを含む合成方向に対して直交する方向に並ぶ。このため、その複数の凹条301及び凸条302の中には、一対の第二外縁Eb2,Eb2のうちの一方の第二外縁Eb2を始点とし、一対の第一外縁Eb1,Eb1のうちの一方の第一外縁Eb1を終点とする凹条301及び凸条302が存在する。従って、一方の第一外縁Eb1を終点とする凹条301は、伝熱部30と第一中段部310との境界でX軸方向に向けて開放する。 Specifically, as described above, the plurality of recesses 301 and ridges 302 on the first surface S1 of the heat transfer unit 30 extend in the synthesis direction including the component in the X-axis direction and the component in the Y-axis direction. Moreover, they are arranged in a direction orthogonal to the synthesis direction including the component in the X-axis direction and the component in the Y-axis direction. Therefore, in the plurality of concave grooves 301 and convex grooves 302, the second outer edge Eb2 of one of the pair of second outer edges Eb2 and Eb2 is set as a starting point, and the pair of first outer edges Eb1 and Eb1. There are concave and convex lines 301 and convex lines 302 whose end point is one of the first outer edges Eb1. Therefore, the recess 301 whose end point is the first outer edge Eb1 is opened in the X-axis direction at the boundary between the heat transfer portion 30 and the first middle stage portion 310.

これに伴い、一方の第二外縁Eb2を始点とする凹条301が到達する第一延出部31は、第一中段部310を部分的に膨出させて第一面S1側に突出した第一凸部312を備える。 Along with this, the first extending portion 31 reached by the recess 301 starting from one of the second outer edges Eb2 is the first extending portion 31 in which the first middle stage portion 310 is partially bulged and protrudes toward the first surface S1. A one-convex portion 312 is provided.

本実施形態では、図13に示す如く、一対の第一延出部31,31のそれぞれが、第一中段部310を第一面S1側に膨出させた第一凸部312を備える。 In the present embodiment, as shown in FIG. 13, each of the pair of first extending portions 31, 31 includes a first convex portion 312 in which the first middle stage portion 310 is bulged toward the first surface S1.

本実施形態において、第一凸部312は、第一中段部310の長手方向の略中央位置の一か所に配置される。第一凸部312は、X軸方向において第一中段部310の全幅に亘って形成される。すなわち、第一凸部312は、伝熱部30の第一外縁Eb1と第一折曲部311との間の略全範囲に存在する。 In the present embodiment, the first convex portion 312 is arranged at one place at a substantially central position in the longitudinal direction of the first middle stage portion 310. The first convex portion 312 is formed over the entire width of the first middle stage portion 310 in the X-axis direction. That is, the first convex portion 312 exists in substantially the entire range between the first outer edge Eb1 of the heat transfer portion 30 and the first bent portion 311.

本実施形態では、Z軸方向において、第一凸部312の頂部は、伝熱部30の第一面S1にある凸条302の頂部よりも低い位置に設定される。すなわち、第一凸部312の基準面BLからの突出量は、第一面S1の凸条302の基準面BLからの突出量より小さい。 In the present embodiment, the top of the first convex portion 312 is set at a position lower than the top of the convex strip 302 on the first surface S1 of the heat transfer portion 30 in the Z-axis direction. That is, the amount of protrusion of the first convex portion 312 from the reference surface BL is smaller than the amount of protrusion of the convex strip 302 of the first surface S1 from the reference surface BL.

図5、図6、及び図14に示す如く、一対の第二延出部32,32のそれぞれは、Y軸方向に基端と先端とを有する第二中段部320であって、Z軸方向における第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間の位置で伝熱部30に基端が接続された第二中段部320と、Y軸方向と交差する方向に基端と先端とを有する第二折曲部321であって、基端が第二中段部320の先端に接続され、伝熱部30の第二面S2側に延出し且つ先端が二対の端縁Ea1,Ea2うちの一方の対を構成する端縁Ea2となる第二折曲部321とを備える。 As shown in FIGS. 5, 6 and 14, each of the pair of second extending portions 32, 32 is a second middle stage portion 320 having a base end and a tip in the Y-axis direction, and is in the Z-axis direction. The second middle stage portion 320 whose base end is connected to the heat transfer portion 30 at the position between the top of the protrusion 302 of the first surface S1 and the top of the protrusion 302 of the second surface S2, and the Y-axis direction. A second bent portion 321 having a base end and a tip in an intersecting direction, the base end being connected to the tip of the second middle stage portion 320, extending to the second surface S2 side of the heat transfer portion 30 and the tip. Includes a second bent portion 321 which is the edge Ea2 constituting one pair of the two pairs of edge Ea1 and Ea2.

一対の第二延出部32,32のうちの一方の第二延出部32の第二中段部320の基端は、一対の第二外縁Eb2,Eb2のうちの一方の第二外縁Eb2に接続され、一対の第二延出部32,32のうちの他方の第二延出部32の第二中段部320の基端は、一対の第二外縁Eb2,Eb2のうちの他方の第二外縁Eb2に接続される。 The base end of the second middle stage portion 320 of the second extension portion 32 of the pair of second extension portions 32, 32 is attached to the second outer edge Eb2 of one of the pair of second outer edges Eb2 and Eb2. The base end of the second middle portion 320 of the second extension portion 32 of the pair of second extension portions 32, 32 connected is the second of the other second of the pair of second outer edges Eb2, Eb2. It is connected to the outer edge Eb2.

一対の第二延出部32,32のそれぞれの第二中段部320は、第二端縁Ea2の延びる方向(X軸方向)を長手とする帯板状の部分であり、長手方向と直交する方向(短手方向)において、基端と先端とを有する。 The second middle stage 320 of each of the pair of second extending portions 32, 32 is a strip-shaped portion having a longitudinal direction (X-axis direction) of the second end edge Ea2, and is orthogonal to the longitudinal direction. It has a proximal end and a distal end in the direction (shortward direction).

第二中段部320は、図14に示す如く、第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間のZ軸方向における途中位置を通る第二仮想平面BLに沿うように、当該第二中段部320の基端が第二外縁Eb2に接続されている。本実施形態において、第二仮想平面BLは、第一仮想平面BLと共通の仮想平面である。すなわち、第二仮想平面BLは、第一面S1の凹条301と凸条302との境界となる基準面に設定されている。 As shown in FIG. 14, the second middle stage portion 320 is a second virtual plane passing through an intermediate position in the Z-axis direction between the top of the ridge 302 of the first surface S1 and the top of the ridge 302 of the second surface S2. The base end of the second middle stage portion 320 is connected to the second outer edge Eb2 along the BL. In the present embodiment, the second virtual plane BL is a virtual plane common to the first virtual plane BL. That is, the second virtual plane BL is set as a reference plane that is a boundary between the concave strip 301 and the convex strip 302 of the first surface S1.

従って、本実施形態における第二延出部32の第二中段部320は、第一面S1の凹条301(凸条302)と第二面S2の凹条301(凸条302)との境界となる基準面BLに沿う(通る)ように、伝熱部30の第二外縁Eb2から延出している。 Therefore, the second middle stage portion 320 of the second extending portion 32 in the present embodiment is a boundary between the concave groove 301 (convex line 302) on the first surface S1 and the concave line 301 (convex line 302) on the second surface S2. It extends from the second outer edge Eb2 of the heat transfer portion 30 so as to be along (pass) the reference plane BL.

一対の第二延出部32,32のそれぞれにおいて、第二折曲部321は、第二端縁Ea2の延びる方向(X軸方向)を長手とする帯板状の部分であり、長手方向と直交する方向(短手方向)において、基端と先端とを有する。第二折曲部321の基端は、対応する第二中段部320の先端の全長に亘って接続される。 In each of the pair of second extending portions 32 and 32, the second bent portion 321 is a strip-shaped portion having a length extending in the extending direction (X-axis direction) of the second end edge Ea2, and is in the longitudinal direction. It has a proximal end and a distal end in an orthogonal direction (shortward direction). The base end of the second bent portion 321 is connected over the entire length of the tip of the corresponding second middle stage portion 320.

第二折曲部321は、自身の基端(第二中段部320の先端)を支点にして伝熱部30の第二面S2側に曲げられている。本実施形態において、第二折曲部321は、接続された第二中段部320に対して傾斜している。 The second bent portion 321 is bent toward the second surface S2 side of the heat transfer portion 30 with its base end (tip of the second middle stage portion 320) as a fulcrum. In the present embodiment, the second bent portion 321 is inclined with respect to the connected second middle stage portion 320.

具体的には、第二折曲部321は、Y軸方向において先端を基端よりも外側に位置させるように傾斜している。この第二折曲部321の先端Ea2は、Z軸方向において伝熱部30の第二面S2の凸条302の頂部と同一レベルに位置する。本実施形態において、第二折曲部321の先端Ea2を含む所定範囲は、重ね合わされる伝熱プレート3との接続代(溶接代)として、X軸方向に延びる仮想線を曲率中心にしてY軸方向において外側に湾曲している。 Specifically, the second bent portion 321 is inclined so that the tip end is located outside the base end in the Y-axis direction. The tip Ea2 of the second bent portion 321 is located at the same level as the top of the ridge 302 of the second surface S2 of the heat transfer portion 30 in the Z-axis direction. In the present embodiment, the predetermined range including the tip Ea2 of the second bent portion 321 is Y with the imaginary line extending in the X-axis direction as the center of curvature as the connection allowance (welding allowance) with the heat transfer plate 3 to be overlapped. It is curved outward in the axial direction.

図6及び図14に示す如く、一対の第二延出部32,32のうちの少なくともの第二流路Rbの上流側を始点にした凹条301が到達する第二延出部32は、第二中段部320からZ軸方向に突出した少なくとも一つの第二凸部322を備える。 As shown in FIGS. 6 and 14, the second extending portion 32 reached by the recess 301 starting from the upstream side of at least the second flow path Rb of the pair of second extending portions 32, 32 It is provided with at least one second convex portion 322 protruding from the second middle stage portion 320 in the Z-axis direction.

具体的には、上述の如く、伝熱部30の第二面S2にある複数の凹条301及び凸条302は、X軸方向の成分とY軸方向の成分とを含む合成方向に延び、且つ、X軸方向の成分とY軸方向の成分とを含む合成方向に対して直交する方向に並ぶ。このため、その複数の凹条301及び凸条302の中には、一対の第一外縁Eb1,Eb1のうちの一方の第一外縁Eb1を始点とし、一対の第二外縁Eb2,Eb2のうちの一方の第二外縁Eb2を終点とする凹条301及び凸条302が存在する。従って、一方の第二外縁Eb2を終点とする凹条301は、伝熱部30と第二中段部320との境界でY軸方向に向けて開放する。 Specifically, as described above, the plurality of recesses 301 and ridges 302 on the second surface S2 of the heat transfer portion 30 extend in the synthesis direction including the component in the X-axis direction and the component in the Y-axis direction. Moreover, they are arranged in a direction orthogonal to the synthesis direction including the component in the X-axis direction and the component in the Y-axis direction. Therefore, in the plurality of concave grooves 301 and convex grooves 302, the first outer edge Eb1 of one of the pair of first outer edges Eb1 and Eb1 is set as a starting point, and the pair of second outer edges Eb2 and Eb2 are included. There are recesses 301 and ridges 302 ending in one of the second outer edges Eb2. Therefore, the concave groove 301 having one second outer edge Eb2 as an end point is opened in the Y-axis direction at the boundary between the heat transfer portion 30 and the second middle stage portion 320.

これに伴い、一方の第一外縁Eb1を始点とする凹条301が到達する第二延出部32は、第二中段部320を部分的に膨出させて第二面S2側に突出した第二凸部322を備える。 Along with this, the second extending portion 32 reached by the recess 301 starting from one of the first outer edges Eb1 partially bulges the second middle stage portion 320 and protrudes toward the second surface S2. The biconvex portion 322 is provided.

本実施形態では、図14に示す如く、一対の第二延出部32,32のそれぞれが、第二中段部320を第二面S2側に膨出させた第二凸部322を備える。 In the present embodiment, as shown in FIG. 14, each of the pair of second extending portions 32, 32 includes a second convex portion 322 in which the second middle stage portion 320 is bulged toward the second surface S2.

本実施形態において、第二凸部322は、第二延出部32の長手方向の略中央位置の一か所に配置される。第二凸部322は、Y軸方向において第二中段部320の全幅に亘って形成される。すなわち、第二凸部322は、伝熱部30の第二外縁Eb2と第二折曲部321との間の略全範囲に存在する。 In the present embodiment, the second convex portion 322 is arranged at one place at a substantially central position in the longitudinal direction of the second extending portion 32. The second convex portion 322 is formed over the entire width of the second middle stage portion 320 in the Y-axis direction. That is, the second convex portion 322 exists in substantially the entire range between the second outer edge Eb2 of the heat transfer portion 30 and the second bent portion 321.

本実施形態では、Z軸方向において、第二凸部322の頂部は、伝熱部30の第二面S2にある凸条302の頂部よりも低い位置に設定される。すなわち、第二凸部322の基準面BLからの突出量は、第二面S2の凸条302の基準面BLからの突出量より小さい。 In the present embodiment, the top of the second convex portion 322 is set at a position lower than the top of the convex strip 302 on the second surface S2 of the heat transfer portion 30 in the Z-axis direction. That is, the amount of protrusion of the second convex portion 322 from the reference surface BL is smaller than the amount of protrusion of the convex strip 302 of the second surface S2 from the reference surface BL.

複数の伝熱プレート3は、輪郭Eaを一致又は略一定させるようにZ軸方向に重ね合わされる。具体的には、図15及び図16に示す如く、複数の伝熱プレート3のそれぞれは、自身の伝熱部30の第一面S1をZ軸方向の一方側で隣り合う伝熱プレート3の伝熱部30の第一面S1を対向させるとともに、自身の伝熱部30の第二面S2をZ軸方向の他方側で隣り合う伝熱プレート3の伝熱部30の第二面S2を対向させる。すなわち、複数の伝熱プレート3は、それぞれの伝熱部30をZ方向に重ね合わせるに際し、一つおきに縦中心線CL1又は横中心線CL2の何れか一方(本実施形態においては、縦中心線CL1)を回転軸にして反転される。 The plurality of heat transfer plates 3 are superposed in the Z-axis direction so that the contours Ea are aligned or substantially constant. Specifically, as shown in FIGS. 15 and 16, each of the plurality of heat transfer plates 3 has the first surface S1 of its own heat transfer portion 30 adjacent to each other on one side in the Z-axis direction. The first surface S1 of the heat transfer unit 30 is opposed to each other, and the second surface S2 of the heat transfer unit 30 is adjacent to the second surface S2 of the heat transfer unit 30 on the other side in the Z-axis direction. Make them face each other. That is, when the plurality of heat transfer plates 3 are superposed on the heat transfer portions 30 in the Z direction, every other heat transfer plate 3 is either the vertical center line CL1 or the horizontal center line CL2 (in the present embodiment, the vertical center). It is inverted with the line CL1) as the axis of rotation.

これにより、伝熱部30の第一面S1同士を対向させる二つの伝熱プレート3は、図17及び図18に示す如く、互いの伝熱部30の第一面S1の凸条302同士を交差衝合させ、伝熱部30の第二面S2同士を対向させる二つの伝熱プレート3は、図19及び図20に示す如く、互いの伝熱部30の第一面S1の凸条302同士を交差衝合させる。 As a result, the two heat transfer plates 3 that face each other on the first surfaces S1 of the heat transfer portions 30 have the protrusions 302 of the first surfaces S1 of the heat transfer portions 30 facing each other, as shown in FIGS. 17 and 18. As shown in FIGS. 19 and 20, the two heat transfer plates 3 that are cross-matched and have the second surfaces S2 of the heat transfer portions 30 facing each other have the ridges 302 of the first surface S1 of the heat transfer portions 30. Make each other cross each other.

そして、本実施形態において、補強部303の屈曲平板部304が上記の態様にされることで、補強部303は、伝熱部30の第一面S1同士を対向させる伝熱プレート3の凸条302同士の交差点CP1を躱して配置されるとともに、伝熱部30の第二面S2同士を対向させる伝熱プレート3の凸条302同士の交差点CP2を躱して配置される。 Then, in the present embodiment, the bent flat plate portion 304 of the reinforcing portion 303 is made into the above-described embodiment, so that the reinforcing portion 303 is a protrusion of the heat transfer plate 3 in which the first surfaces S1 of the heat transfer portion 30 face each other. The intersection CP1 between the 302s is hesitantly arranged, and the intersection CP2 between the protrusions 302 of the heat transfer plates 3 facing each other on the second surface S2 of the heat transfer portion 30 is hesitated and arranged.

この状態において、図15及び図16に示す如く、伝熱部30の第一面S1同士を対向させた伝熱プレート3の第一折曲部311の先端(第一端縁Ea1)同士は、線状に突き合わせた状態となり、伝熱部30の第二面S2同士を対向させた伝熱プレート3の第二折曲部321の先端(第二端縁Ea2)同士は、線状に突き合わせた状態となる。これに伴い、突き合わせ状態になった第一折曲部311の先端(第一端縁Ea1)同士が溶接によって接続され、突き合わせ状態になった第二折曲部321の先端(第二端縁Ea2)同士が溶接によって接続される。 In this state, as shown in FIGS. 15 and 16, the tips (first end edge Ea1) of the first bent portion 311 of the heat transfer plate 3 in which the first surfaces S1 of the heat transfer portion 30 face each other are connected to each other. The tips (second end edge Ea2) of the second bent portion 321 of the heat transfer plate 3 facing each other with the second surfaces S2 of the heat transfer portion 30 facing each other were linearly butted against each other. It becomes a state. Along with this, the tips (first end edge Ea1) of the first bent portion 311 in the butt state are connected by welding, and the tips (second end edge Ea2) of the second bent portion 321 in the butt state are connected. ) Are connected by welding.

すなわち、第一折曲部311の先端(第一端縁Ea1)を含んだ部分同士が溶け込んだ第一溶接部330がY軸方向に延びて形成され、第二折曲部321の先端(第二端縁Ea2)を含んだ部分同士が溶け込んだ第二溶接部331がX軸方向に延びて形成される。 That is, the first welded portion 330 in which the portions including the tip (first end edge Ea1) of the first bent portion 311 are melted together is formed so as to extend in the Y-axis direction, and the tip of the second bent portion 321 (the first). The second welded portion 331 in which the portions including the two-end edges Ea2) are fused is formed so as to extend in the X-axis direction.

これにより、伝熱部30の第一面S1同士を対向させた伝熱プレート3間には、何れか一方の第二端縁Ea2間を第一流入口Ra1とするとともに、何れか他方の第二端縁Ea2間を第一流出口Ra2とする第一流路RaがY軸方向に延びて形成され(図16参照)、伝熱部30の第二面S2同士を対向させた伝熱プレート3間には、何れか一方の第一端縁Ea1間を第二流入口Rb1とするとともに、何れか他方の第一端縁Ea1間を第二流出口Rb2とする第二流路RbがX軸方向に延びて形成される(図15参照)。 As a result, between the heat transfer plates 3 in which the first surfaces S1 of the heat transfer portion 30 face each other, the space between the second end edges Ea2 of either one is used as the first inflow port Ra1 and the second of the other. A first flow path Ra having an edge Ea2 as a first outlet Ra2 is formed extending in the Y-axis direction (see FIG. 16), and is formed between the heat transfer plates 3 having the second surfaces S2 of the heat transfer portion 30 facing each other. Is a second flow path Rb having a second inflow port Rb1 between one of the first end edges Ea1 and a second outflow port Rb2 between any other first end edge Ea1 in the X-axis direction. It is elongated and formed (see FIG. 15).

本実施形態において、図21に示す如く、第一溶接部330は、第一流路Ra内で露出し、図22に示す如く、第二溶接部331は、第二流路Rb内で露出している。 In the present embodiment, as shown in FIG. 21, the first welded portion 330 is exposed in the first flow path Ra, and as shown in FIG. 22, the second welded portion 331 is exposed in the second flow path Rb. There is.

具体的に説明すると、図21に示す如く、第一折曲部311は、接続された第一中段部310に対して先端Ea1側ほどX軸方向において外側に位置するように傾斜している。そのため、伝熱部30の第一面S1同士を対向させた伝熱プレート3の第一折曲部311の内面は、第一流路Raの内側に向かうほど拡大した空間を形成する。 Specifically, as shown in FIG. 21, the first bent portion 311 is inclined so as to be located outward in the X-axis direction toward the tip Ea1 side with respect to the connected first middle stage portion 310. Therefore, the inner surface of the first bent portion 311 of the heat transfer plate 3 in which the first surfaces S1 of the heat transfer portion 30 face each other forms a space that expands toward the inside of the first flow path Ra.

第一流路Ra内に露出する第一溶接部330は、接続された二つの第一折曲部311のそれぞれの内面に対する二本の仮想線(以下、第一仮想線という)VL1の交点P1を含むように形成される。本実施形態において、第一折曲部311の先端Ea1を含む所定範囲が外側に向けて湾曲しているため、二本の第一仮想線VL1のそれぞれは、第一折曲部311の湾曲した内面に対する接線(湾曲した内面(第一面S1)と一点を共有する線)である。二本の第一仮想線VL1は、溶接前における先端Ea1の突き合わせ位置を通ってX軸方向に延びる仮想線(図示しない)を基準に互いに対称な関係にある。 The first welded portion 330 exposed in the first flow path Ra has an intersection point P1 of two virtual lines (hereinafter referred to as the first virtual line) VL1 with respect to the inner surface of each of the two connected first bent portions 311. Formed to include. In the present embodiment, since the predetermined range including the tip Ea1 of the first bent portion 311 is curved outward, each of the two first virtual lines VL1 is curved toward the first bent portion 311. A tangent to the inner surface (a line that shares a point with the curved inner surface (first surface S1)). The two first virtual lines VL1 have a symmetrical relationship with each other with respect to a virtual line (not shown) extending in the X-axis direction through the abutting position of the tip Ea1 before welding.

本実施形態において、第一溶接部330は、第一流路Raに露出するとともに、第一流路Raの内側に向けて膨出している。すなわち、第一溶接部330のZ軸方向における両エッジは、第一仮想線VL1の交点P1よりもX軸方向において第一流路Ra側にある。 In the present embodiment, the first welded portion 330 is exposed to the first flow path Ra and bulges toward the inside of the first flow path Ra. That is, both edges of the first welded portion 330 in the Z-axis direction are on the first flow path Ra side in the X-axis direction with respect to the intersection P1 of the first virtual line VL1.

図22に示す如く、第二折曲部321は、接続された第二中段部320に対して先端側ほどY軸方向において外側に位置するように傾斜している。そのため、伝熱部30の第二面S2同士を対向させた伝熱プレート3の第二折曲部321の内面は、第二流路Rbの内側に向かうほど拡大した空間を形成する。 As shown in FIG. 22, the second bent portion 321 is inclined so as to be located outward in the Y-axis direction toward the tip end side with respect to the connected second middle stage portion 320. Therefore, the inner surface of the second bent portion 321 of the heat transfer plate 3 in which the second surfaces S2 of the heat transfer portion 30 face each other forms a space that expands toward the inside of the second flow path Rb.

これに伴い、第二流路Rb内に露出する第二溶接部331は、接続された二つの第二折曲部321のそれぞれの内面に対する二本の仮想線(以下、第二仮想線という)VL2の交点P2を含むように形成される。本実施形態において、第二折曲部321の先端Ea2を含む所定範囲が外側に向けて湾曲しているため、二本の第二仮想線VL2のそれぞれは、第二折曲部321の湾曲した内面に対する接線(湾曲した内面(第二面S2)と一点を共有する線)である。二本の第二仮想線VL2は、溶接前における先端Ea2の突き合わせ位置を通ってY軸方向に延びる仮想線(図示しない)を基準に互いに対称な関係にある。 Along with this, the second welded portion 331 exposed in the second flow path Rb has two virtual lines (hereinafter referred to as second virtual lines) for the inner surfaces of the two connected second bent portions 321. It is formed to include the intersection P2 of VL2. In the present embodiment, since the predetermined range including the tip Ea2 of the second bent portion 321 is curved outward, each of the two second virtual lines VL2 is curved toward the second bent portion 321. A tangent to the inner surface (a line that shares a point with the curved inner surface (second surface S2)). The two second virtual lines VL2 have a symmetrical relationship with each other with respect to a virtual line (not shown) extending in the Y-axis direction through the abutting position of the tip Ea2 before welding.

本実施形態において、第二溶接部331は、第二流路Rbに露出するとともに、第二流路Rbの内側に向けて膨出している。すなわち、第二溶接部331のX軸方向における両エッジは、第二仮想線VL2の交点P2よりもX軸方向において第二流路Rb側にある。 In the present embodiment, the second welded portion 331 is exposed to the second flow path Rb and bulges toward the inside of the second flow path Rb. That is, both edges of the second welded portion 331 in the X-axis direction are on the second flow path Rb side in the X-axis direction with respect to the intersection P2 of the second virtual line VL2.

このように、複数の伝熱プレート3がZ軸方向に重ね合わされ、隣り合う伝熱プレート3の第一端縁Ea1,Ea1同士が接続されるとともに、隣り合う伝熱プレート3の第二端縁Ea2,Ea2同士が接続されることにより、複数の伝熱プレート3は、図2乃至図4、図9及び図10に示す如く、一体となり、伝熱プレート積層体LBを構成する。 In this way, a plurality of heat transfer plates 3 are superposed in the Z-axis direction, the first end edges Ea1 and Ea1 of the adjacent heat transfer plates 3 are connected to each other, and the second end edges of the adjacent heat transfer plates 3 are connected to each other. By connecting Ea2 and Ea2 to each other, the plurality of heat transfer plates 3 are integrated as shown in FIGS. 2 to 4, 9 and 10, and form a heat transfer plate laminated body LB.

複数の伝熱プレート3は、上述の如く、輪郭Eaを一致させた状態で重ね合わされる。これに伴い、伝熱プレート積層体LBは、図15及び図16に示す如く、各伝熱プレート3の一方の第一端縁Ea1同士を接続した第一溶接部330がZ軸方向に並ぶ第一表面Saと、各伝熱プレート3の他方の第一端縁Ea1同士を接続した第一溶接部330がZ軸方向に並ぶ第二表面Sbと、各伝熱プレート3の一方の第二端縁Ea2を接続した第二溶接部331がZ軸方向に並ぶ第三表面Scと、各伝熱プレート3の他方の第二端縁Ea2同士を接続した第二溶接部331がZ軸方向に並ぶ第四表面Sdとを周囲に含む。 As described above, the plurality of heat transfer plates 3 are superposed in a state where the contours Ea are matched. Along with this, in the heat transfer plate laminated body LB, as shown in FIGS. 15 and 16, the first welded portions 330 connecting one first end edge Ea1 of each heat transfer plate 3 are arranged in the Z-axis direction. A second surface Sb in which one surface Sa and a first welded portion 330 connecting the other first end edge Ea1 of each heat transfer plate 3 are lined up in the Z-axis direction, and one second end of each heat transfer plate 3. The third surface Sc in which the second welded portions 331 connecting the edges Ea2 are arranged in the Z-axis direction and the second welded portions 331 connecting the other second end edges Ea2 of each heat transfer plate 3 are arranged in the Z-axis direction. The fourth surface Sd is included in the surroundings.

伝熱プレート積層体LBの第一表面Saは、図15に示す如く、それぞれがZ軸方向と直交する方向に延び且つZ軸方向に間隔をあけた複数の第一溶接部330と、Z軸方向で隣り合う第一溶接部330間によって画定され、それぞれが対応する第二流路Rbと繋がる複数の第二流入口Rb1及び第二流出口Rb2の少なくとも何れか一方とを含む。 As shown in FIG. 15, the first surface Sa of the heat transfer plate laminated body LB has a plurality of first welded portions 330 each extending in a direction orthogonal to the Z-axis direction and spaced apart in the Z-axis direction, and a Z-axis. Includes at least one of a plurality of second inlets Rb1 and second outlets Rb2 defined by adjacent first welds 330 in the direction, each of which is connected to a corresponding second flow path Rb.

伝熱プレート積層体LBの第二表面Sbは、それぞれがZ軸方向と直交する方向に延び且つZ軸方向に間隔をあけた複数の第一溶接部330と、Z軸方向で隣り合う第一溶接部330間によって画定され、それぞれが対応する第二流路Rbと繋がる複数の第二流入口Rb1及び第二流出口Rb2の少なくとも何れか他方とを含む。 The second surface Sb of the heat transfer plate laminated body LB extends in the direction orthogonal to the Z-axis direction and is spaced apart in the Z-axis direction, and the first welded portions 330 adjacent to each other in the Z-axis direction. Includes at least one of a plurality of second inlets Rb1 and second outlets Rb2 defined by the welds 330 and each connected to the corresponding second flow path Rb.

伝熱プレート積層体LBの第三表面Scは、図16に示す如く、それぞれがZ軸方向と直交する方向に延び且つZ軸方向に間隔をあけた複数の第二溶接部331と、Z軸方向で隣り合う第二溶接部331間によって画定され、それぞれが対応する第一流路Raと繋がる複数の第一流入口Ra1及び複数の第一流出口Ra2の少なくとも何れか一方とを含む。 As shown in FIG. 16, the third surface Sc of the heat transfer plate laminated body LB has a plurality of second welded portions 331 extending in a direction orthogonal to the Z-axis direction and spaced apart in the Z-axis direction, and a Z-axis. It includes at least one of a plurality of first inlets Ra1 and a plurality of first inlets Ra2 defined by adjacent second welds 331 in the direction, each of which is connected to the corresponding first flow path Ra.

伝熱プレート積層体LBの第四表面Sdは、それぞれがZ軸方向と直交する方向に延び且つZ軸方向に間隔をあけた複数の第二溶接部331と、Z軸方向で隣り合う第二溶接部331間によって画定され、それぞれが対応する第一流路Raと繋がる複数の第一流入口Ra1及び複数の第一流出口Ra2の少なくとも何れか他方とを含む。 The fourth surface Sd of the heat transfer plate laminated body LB extends in the direction orthogonal to the Z-axis direction and is spaced apart in the Z-axis direction, and the second welded portions 331 adjacent to each other in the Z-axis direction. It includes at least one of a plurality of first inlets Ra1 and a plurality of first outlets Ra2 defined by the welded portions 331 and each connected to the corresponding first flow path Ra.

図4に戻り、外装体4は、複数の伝熱プレート3(伝熱プレート積層体LB)の周囲に配置される複数の外装プレート40,41,42,43,44,45と、複数の外装プレート40,41,42,43,44,45を複数の伝熱プレート3(伝熱プレート積層体LB)に対して定位置で支持する支持フレーム46とを備える。 Returning to FIG. 4, the exterior body 4 includes a plurality of exterior plates 40, 41, 42, 43, 44, 45 arranged around the plurality of heat transfer plates 3 (heat transfer plate laminated body LB), and a plurality of exteriors. A support frame 46 that supports the plates 40, 41, 42, 43, 44, 45 in a fixed position with respect to a plurality of heat transfer plates 3 (heat transfer plate laminated body LB) is provided.

外装プレート40,41,42,43,44,45には、Z軸方向の延びる中心線を基準とした複数の伝熱プレート3の周囲に配置されるもの40,41,42,43と、Z軸方向において複数の伝熱プレート3の両側に配置されるもの44,45とが含まれる。 The exterior plates 40, 41, 42, 43, 44, 45 include those 40, 41, 42, 43, which are arranged around the plurality of heat transfer plates 3 with respect to the center line extending in the Z-axis direction, and Z. 44, 45 which are arranged on both sides of a plurality of heat transfer plates 3 in the axial direction are included.

重ね合わされた複数の伝熱プレート3の周囲に配置される外装プレート40,41,42,43,44,45は、伝熱プレート3の輪郭Eaに含まれる端縁Ea1,Ea2の数に応じて設けられる。すなわち、複数の伝熱プレート3の周囲に配置される外装プレート40,41,42,43,44,45は、伝熱プレート積層体LBの周囲にできる表面Sa,Sb,Sc,Sdの数に応じて設けられる。 The exterior plates 40, 41, 42, 43, 44, 45 arranged around the plurality of superposed heat transfer plates 3 depend on the number of edge edges Ea1 and Ea2 included in the contour Ea of the heat transfer plates 3. It will be provided. That is, the exterior plates 40, 41, 42, 43, 44, 45 arranged around the plurality of heat transfer plates 3 have the number of surfaces Sa, Sb, Sc, Sd formed around the heat transfer plate laminated body LB. Provided accordingly.

本実施形態において、伝熱プレート3は、Z軸方向から見て四角形状(正方形状)であり、輪郭Eaに四つの端縁(一対の第一端縁Ea1,Ea1、及び一対の第二端縁Ea2,Ea2)が含まれる。これに伴い、伝熱プレート積層体LBの周囲には、四つの外装プレート40,41,42,43,44,45が配置される。 In the present embodiment, the heat transfer plate 3 has a square shape (square shape) when viewed from the Z-axis direction, and has four end edges (a pair of first end edges Ea1 and Ea1 and a pair of second ends) on the contour Ea. Edges Ea2, Ea2) are included. Along with this, four exterior plates 40, 41, 42, 43, 44, 45 are arranged around the heat transfer plate laminated body LB.

具体的には、本実施形態に係るプレート式熱交換器1(熱交換部2)は、外装プレート40,41,42,43,44,45として、伝熱プレート積層体LBの第一表面Saの全面に対向する第一外装プレート40と、伝熱プレート積層体LBの第二表面Sbの全面に対向する第二外装プレート41と、伝熱プレート積層体LBの第三表面Scの全面と対向する第三外装プレート42と、伝熱プレート積層体LBの第四表面Sdの全面に対向する第四外装プレート43とを備える。 Specifically, the plate-type heat exchanger 1 (heat exchange unit 2) according to the present embodiment has the exterior plates 40, 41, 42, 43, 44, 45 as the first surface Sa of the heat transfer plate laminated body LB. The first exterior plate 40 facing the entire surface of the heat transfer plate laminated body LB, the second exterior plate 41 facing the entire surface of the second surface Sb of the heat transfer plate laminated body LB, and the entire surface of the third surface Sc of the heat transfer plate laminated body LB. The third exterior plate 42 is provided, and the fourth exterior plate 43 facing the entire surface of the fourth surface Sd of the heat transfer plate laminated body LB is provided.

本実施形態において、第一外装プレート40には、第二給液口Pb1及び第二排液口Pb2が取り付けられる。具体的には、第一外装プレート40は、Z軸方向と直交する方向に貫通した二つの貫通孔(図示しない)であって、Z軸方向に間隔をあけて配置された二つの貫通孔を有する。本実施形態において、第一外装プレート40の二つの貫通孔は、Z軸方向における当該第一外装プレート40の中間位置を基準にした対称位置に配置される。そして、第一外装プレート40には、第二給液口Pb1が二つの貫通孔のうちの一方の貫通孔と連通するように取り付けられ、第二排液口Pb2が二つの貫通孔のうちの他方の貫通孔と連通するように取り付けられる。 In the present embodiment, the second liquid supply port Pb1 and the second liquid drainage port Pb2 are attached to the first exterior plate 40. Specifically, the first exterior plate 40 is two through holes (not shown) penetrating in a direction orthogonal to the Z-axis direction, and two through holes arranged at intervals in the Z-axis direction. Have. In the present embodiment, the two through holes of the first exterior plate 40 are arranged at symmetrical positions with respect to the intermediate position of the first exterior plate 40 in the Z-axis direction. Then, the second liquid supply port Pb1 is attached to the first exterior plate 40 so as to communicate with one of the two through holes, and the second drainage port Pb2 is out of the two through holes. It is attached so as to communicate with the other through hole.

また、本実施形態において、第三外装プレート42には、第一給液口Pa1及び第一排液口Pa2が取り付けられる。具体的には、第三外装プレート42は、Z軸方向と直交する方向に貫通した二つの貫通孔であって、Z軸方向に間隔をあけて配置された二つの貫通孔を有する。本実施形態において、第三外装プレート42の二つの貫通孔は、Z軸方向における当該第三外装プレート42の中間位置を基準にした対称位置に配置される。そして、第三外装プレート42には、第一給液口Pa1が二つの貫通孔のうちの一方の貫通孔と連通するように取り付けられ、第一排液口Pa2が二つの貫通孔のうちの他方の貫通孔と連通するように取り付けられる。 Further, in the present embodiment, the first liquid supply port Pa1 and the first liquid drainage port Pa2 are attached to the third exterior plate 42. Specifically, the third exterior plate 42 has two through holes penetrating in a direction orthogonal to the Z-axis direction, and has two through holes arranged at intervals in the Z-axis direction. In the present embodiment, the two through holes of the third exterior plate 42 are arranged at symmetrical positions with respect to the intermediate position of the third exterior plate 42 in the Z-axis direction. Then, the first liquid supply port Pa1 is attached to the third exterior plate 42 so as to communicate with one of the two through holes, and the first drainage port Pa2 is out of the two through holes. It is attached so as to communicate with the other through hole.

第二外装プレート41及び第四外装プレート43のそれぞれは、伝熱プレート積層体LBと対向する領域に貫通孔がなく、伝熱プレート積層体LBの対応する面(第二表面Sb、第四表面Sd)を完全に覆う。 Each of the second exterior plate 41 and the fourth exterior plate 43 has no through hole in the region facing the heat transfer plate laminated body LB, and the corresponding surfaces (second surface Sb, fourth surface) of the heat transfer plate laminated body LB. Completely covers Sd).

Z軸方向において複数の伝熱プレート3の両側に配置される外装プレート44,45は、伝熱プレート3のZ軸方向から見た形状及びサイズに対応している。本実施形態に係るプレート式熱交換器1は、複数の伝熱プレート3を重ね合わせる方向を上下方向にして配置される。これに伴い、熱交換部2は、Z軸方向において複数の伝熱プレート3の両側に配置される外装プレート44,45として、伝熱プレート積層体LBの下端を支持するアンダープレート44と、伝熱プレート積層体LBの上端に重ねられるアッパープレート45とを備える。 The exterior plates 44, 45 arranged on both sides of the plurality of heat transfer plates 3 in the Z-axis direction correspond to the shape and size of the heat transfer plates 3 as viewed from the Z-axis direction. The plate heat exchanger 1 according to the present embodiment is arranged with the direction in which the plurality of heat transfer plates 3 are overlapped in the vertical direction. Along with this, the heat exchange section 2 serves as exterior plates 44, 45 arranged on both sides of the plurality of heat transfer plates 3 in the Z-axis direction, and includes an under plate 44 that supports the lower end of the heat transfer plate laminated body LB. An upper plate 45 to be stacked on the upper end of the heat plate laminated body LB is provided.

支持フレーム46は、伝熱プレート3の角部のそれぞれに対応して配置される複数の柱体46a…により構成される。本実施形態において、伝熱プレート3が四角形状であるため、柱体46a…は、伝熱プレート3の角部に対応して四つ設けられる。 The support frame 46 is composed of a plurality of pillars 46a ... Arranged corresponding to each of the corners of the heat transfer plate 3. In the present embodiment, since the heat transfer plate 3 has a rectangular shape, four pillars 46a ... Are provided corresponding to the corners of the heat transfer plate 3.

本実施形態において、柱体46a…は、角柱状であり、自身の中心線をZ軸方向に一致させた状態で、自身の一つの角部を伝熱プレート3の一つの角部に一致させて配置される。すなわち、柱体46a…は、自身の角部を伝熱プレート積層体LBの一つの角部に沿わせて配置される。 In the present embodiment, the pillar 46a ... Is a prism, and one corner of itself is aligned with one corner of the heat transfer plate 3 in a state where its center line is aligned with the Z-axis direction. Is placed. That is, the pillars 46a ... Are arranged with their corners along one corner of the heat transfer plate laminated body LB.

本実施形態に係るプレート式熱交換器1は、伝熱プレート積層体LBとアンダープレート44との間及び伝熱プレート積層体LBとアッパープレート45との間のそれぞれに配置されるライニング部材47を備える。すなわち、プレート式熱交換器1は、伝熱プレート積層体LBをZ軸方向で挟む一対のライニング部材47であって、それぞれが対向する伝熱プレート3に溶接によって固定されたライニング部材47を備える。ライニング部材47は、Z軸方向から見て四角形状をなし、四隅(四つの角部)に切欠きが設けられている。これに伴い、本実施形態において、四つの柱体46a…は、二つのライニング部材47,47のそれぞれの角部に対して嵌め合わされた状態で配置される。 The plate heat exchanger 1 according to the present embodiment has lining members 47 arranged between the heat transfer plate laminated body LB and the under plate 44 and between the heat transfer plate laminated body LB and the upper plate 45, respectively. Be prepared. That is, the plate heat exchanger 1 includes a pair of lining members 47 that sandwich the heat transfer plate laminated body LB in the Z-axis direction, and includes lining members 47 that are fixed to the heat transfer plates 3 facing each other by welding. .. The lining member 47 has a quadrangular shape when viewed from the Z-axis direction, and is provided with notches at four corners (four corners). Along with this, in the present embodiment, the four pillars 46a ... Are arranged in a state of being fitted to the respective corners of the two lining members 47, 47.

第一外装プレート40は、伝熱プレート積層体LBの第一表面Saの両側にある二本の柱体46a…に対して液密な状態で該二本の柱体46a…に連結され、第二外装プレート41は、伝熱プレート積層体LBの第二表面Sbの両側にある二本の柱体46a…に対して液密な状態で該二本の柱体46a…に連結される。また、第三外装プレート42は、伝熱プレート積層体LBの第三表面Scの両側にある二本の柱体46a…に対して液密な状態で該二本の柱体46a…に連結され、第四外装プレート43は、伝熱プレート積層体LBの第四表面Sdの両側にある二本の柱体46a…に対して液密な状態で該二本の柱体46a…に連結される。 The first exterior plate 40 is connected to the two pillars 46a ... In a liquid-tight state with respect to the two pillars 46a ... On both sides of the first surface Sa of the heat transfer plate laminated body LB, and is connected to the two pillars 46a ... (Ii) The exterior plate 41 is connected to the two pillars 46a ... In a liquidtight state with respect to the two pillars 46a ... On both sides of the second surface Sb of the heat transfer plate laminated body LB. Further, the third exterior plate 42 is connected to the two pillars 46a ... In a liquid-tight state with respect to the two pillars 46a ... On both sides of the third surface Sc of the heat transfer plate laminated body LB. , The fourth exterior plate 43 is connected to the two pillars 46a ... In a liquid-tight state with respect to the two pillars 46a ... On both sides of the fourth surface Sd of the heat transfer plate laminated body LB. ..

これにより、第一外装プレート40は、伝熱プレート積層体LBの第一表面Saと間隔をあけて対向し、第二外装プレート41は、伝熱プレート積層体LBの第二表面Sbと間隔をあけて対向する。第三外装プレート42は、伝熱プレート積層体LBの第三表面Scと間隔をあけて対向し、第四外装プレート43は、伝熱プレート積層体LBの第四表面Sdと間隔をあけて対向する。 As a result, the first exterior plate 40 faces the first surface Sa of the heat transfer plate laminate LB at a distance, and the second exterior plate 41 faces the second surface Sb of the heat transfer plate laminate LB at a distance. Open and face each other. The third exterior plate 42 faces the third surface Sc of the heat transfer plate laminate LB at a distance, and the fourth exterior plate 43 faces the fourth surface Sd of the heat transfer plate laminate LB at a distance. do.

なお、アンダープレート44及びアッパープレート45のそれぞれは、伝熱プレート積層体LBに重ね合わされた状態で、四つの柱体46a…、第一外装プレート40、第二外装プレート41、第三外装プレート42、及び第四外装プレート43に連結される。 In addition, each of the under plate 44 and the upper plate 45 is superposed on the heat transfer plate laminated body LB, and the four pillars 46a ..., the first exterior plate 40, the second exterior plate 41, and the third exterior plate 42 are respectively. , And is connected to the fourth exterior plate 43.

第一仕切プレート5及び第二仕切プレート6は、Z軸方向に重ね合わされた複数の伝熱プレート3のZ軸方向の中間位置にある伝熱プレート3に接続される。具体的には、第一仕切プレート5は、伝熱プレート積層体LBを構成する複数の伝熱プレート3のうちのZ軸方向の中間位置にある伝熱プレート3の一方の第二端縁Ea2と第三外装プレート42とに密接し、該伝熱プレート3の第二端縁Ea2と第三外装プレート42との間を液密に閉じる。これに対し、第二仕切プレート6は、伝熱プレート積層体LBを構成する複数の伝熱プレート3のうちのZ軸方向の中間位置にある伝熱プレート3の一方の第一端縁Ea1と第一外装プレート40とに密接し、該伝熱プレート3の第一端縁Ea1と第一外装プレート40との間を液密に閉じる。 The first partition plate 5 and the second partition plate 6 are connected to a heat transfer plate 3 located at an intermediate position in the Z-axis direction of a plurality of heat transfer plates 3 stacked in the Z-axis direction. Specifically, the first partition plate 5 is the second end edge Ea2 of one of the heat transfer plates 3 located at the intermediate position in the Z-axis direction among the plurality of heat transfer plates 3 constituting the heat transfer plate laminated body LB. And the third exterior plate 42, and close the space between the second edge Ea2 of the heat transfer plate 3 and the third exterior plate 42 in a liquid-tight manner. On the other hand, the second partition plate 6 has a first end edge Ea1 of one of the heat transfer plates 3 at an intermediate position in the Z-axis direction among the plurality of heat transfer plates 3 constituting the heat transfer plate laminated body LB. It is in close contact with the first exterior plate 40 and tightly closes between the first end edge Ea1 of the heat transfer plate 3 and the first exterior plate 40.

これにより、第一仕切プレート5及び第二仕切プレート6は、伝熱プレート積層体LBを疑似的にZ軸方向で二つのブロックB1,B2に区切る。 As a result, the first partition plate 5 and the second partition plate 6 pseudo-divide the heat transfer plate laminated body LB into two blocks B1 and B2 in the Z-axis direction.

具体的には、図15に示す如く、伝熱プレート積層体LBのうちの何れか一方のブロックB1,B2(本実施形態においては、上側にある一方のブロックB1)の第一表面Saにある第一溶接部330間が第二流入口Rb1となるとともに、伝熱プレート積層体LBのうちの何れか他方のブロックB1,B2(本実施形態においては、下側にある他方のブロックB2)の第一表面Saにある第一溶接部330間が第二流出口Rb2となる。これに伴い、伝熱プレート積層体LBのうちの何れか一方のブロックB1,B2(本実施形態においては、上側にある一方のブロックB1)の第二表面Sbにある第一溶接部330間が第二流出口Rb2となるとともに、伝熱プレート積層体LBのうちの何れか他方のブロックB1,B2(本実施形態においては、下側にある一方のブロックB1)の第二表面Sbにある第一溶接部330間が第二流入口Rb1となる。 Specifically, as shown in FIG. 15, it is on the first surface Sa of one of the blocks B1 and B2 (in this embodiment, the one block B1 on the upper side) of the heat transfer plate laminated body LB. The space between the first welded portions 330 serves as the second inflow port Rb1, and the other blocks B1 and B2 of the heat transfer plate laminated body LB (in the present embodiment, the other block B2 on the lower side). The space between the first welded portions 330 on the first surface Sa is the second outlet Rb2. Along with this, between the first welded portions 330 on the second surface Sb of one of the blocks B1 and B2 (in this embodiment, the one block B1 on the upper side) of the heat transfer plate laminated body LB. A second outlet Rb2 and a second surface Sb on the second surface Sb of any one of the heat transfer plate laminated body LBs, blocks B1 and B2 (in this embodiment, one block B1 on the lower side). The space between the welded portions 330 is the second inflow port Rb1.

さらに、図16に示す如く、伝熱プレート積層体LBのうちの何れか一方のブロックB1,B2(本実施形態においては、下側にある他方のブロックB2)の第三表面Scにある第二溶接部331間が第一流入口Ra1となるとともに、伝熱プレート積層体LBのうちの何れか他方のブロックB1,B2(本実施形態においては、上側にある一方のブロックB1)の第三表面Scにある第二溶接部331間が第一流出口Ra2となる。これに伴い、伝熱プレート積層体LBのうちの何れか一方のブロックB1,B2(本実施形態においては、下側にある他方のブロックB2)の第四表面Sdにある第二溶接部331間が第一流出口Ra2となるとともに、伝熱プレート積層体LBのうちの何れか他方のブロックB1,B2(本実施形態においては、上側にある一方のブロックB1)の第四表面Sdにある第二溶接部331間が第一流入口Ra1となる。 Further, as shown in FIG. 16, the second block B1 and B2 (in this embodiment, the other block B2 on the lower side) of any one of the heat transfer plate laminated body LB is on the third surface Sc. The space between the welded portions 331 serves as the first inflow port Ra1, and the third surface Sc of any one of the heat transfer plate laminated body LBs, blocks B1 and B2 (in this embodiment, one block B1 on the upper side). The space between the second welded portions 331 in the above is the first outlet Ra2. Along with this, between the second welded portions 331 on the fourth surface Sd of one of the blocks B1 and B2 of the heat transfer plate laminated body LB (in this embodiment, the other block B2 on the lower side). Is the first outlet Ra2, and is the second on the fourth surface Sd of any one of the heat transfer plate laminated body LBs, blocks B1 and B2 (in this embodiment, one block B1 on the upper side). The space between the welded portions 331 is the first inflow port Ra1.

本実施形態に係るプレート式熱交換器1は、以上の通りであり、第一流体Aが第一給液口Pa1から供給されると、第一流体Aは、図2及び図17に示す如く、伝熱プレート積層体LBの他方のブロックB2にある複数の第一流入口Ra1を介して複数の第一流路Raを流通した上で複数の第一流出口Ra2から流出し、第四外装プレート43によって方向変換される。そして、第一流体Aは、図2及び図18に示す如く、伝熱プレート積層体LBの一方のブロックB1にある複数の第一流入口Ra1を介して複数の第一流路Raを流通した上で複数の第一流出口Ra2から流出し、第一排液口Pa2から排液される。 The plate heat exchanger 1 according to the present embodiment is as described above, and when the first fluid A is supplied from the first liquid supply port Pa1, the first fluid A becomes as shown in FIGS. 2 and 17. After flowing through the plurality of first flow paths Ra through the plurality of first inlets Ra1 in the other block B2 of the heat transfer plate laminated body LB, the heat transfer plate is discharged from the plurality of first outlets Ra2 by the fourth exterior plate 43. The direction is changed. Then, as shown in FIGS. 2 and 18, the first fluid A circulates through the plurality of first flow paths Ra through the plurality of first inflow ports Ra1 in one block B1 of the heat transfer plate laminated body LB. It flows out from a plurality of first outlets Ra2 and is drained from the first drain port Pa2.

また、これに併せ、第二流体Bが第二給液口Pb1から供給されると、第二流体Bは、図3及び図19に示す如く、伝熱プレート積層体LBの一方のブロックB1にある複数の第二流入口Rb1を介して複数の第二流路Rbを流通した上で複数の第二流出口Rb2から流出し、第二外装プレート41によって方向変換される。そして、第二流体Bは、図3及び図20に示す如く、伝熱プレート積層体LBの他方のブロックB2にある複数の第二流入口Rb1を介して複数の第二流路Rbを流通した上で複数の第二流出口Rb2から流出し、第二排液口Pb2から排液される。 At the same time, when the second fluid B is supplied from the second liquid supply port Pb1, the second fluid B is transferred to one block B1 of the heat transfer plate laminated body LB as shown in FIGS. 3 and 19. After flowing through the plurality of second flow paths Rb through the plurality of second inlets Rb1, the fluid flows out from the plurality of second outlets Rb2 and is redirected by the second exterior plate 41. Then, as shown in FIGS. 3 and 20, the second fluid B circulated through the plurality of second flow paths Rb via the plurality of second inlets Rb1 in the other block B2 of the heat transfer plate laminated body LB. Above, it flows out from the plurality of second outlets Rb2 and is drained from the second drain port Pb2.

このように第一流路Raで第一流体Aが流通するとともに、第二流路Rbで第二流体Bが流通することにより、第一流体A及び第二流体Bは、第一流路Raと第二流路Rbとの境界となる伝熱プレート3(伝熱部30)を介して熱交換を行う。 As the first fluid A flows through the first flow path Ra and the second fluid B flows through the second flow path Rb, the first fluid A and the second fluid B become the first flow path Ra and the first flow path Ra. Heat exchange is performed via the heat transfer plate 3 (heat transfer unit 30) which is a boundary with the two flow paths Rb.

ところで、第一流体Aが第一流路Raを流通する際、第一流体Aは、主として対向する伝熱部30間をY軸方向に流通するが、その中には、間隔をあけて対向する第一中段部310間に直接入り込むものや、第一流路Raを画定する伝熱部30の第一面S1にある凹条301に沿って流れ、第一中段部310間に入り込むものがある。 By the way, when the first fluid A flows through the first flow path Ra, the first fluid A mainly flows between the heat transfer portions 30 facing each other in the Y-axis direction, but the first fluid A faces the heat transfer portions 30 at intervals. Some directly enter between the first middle stage portions 310, and some flow along the recess 301 on the first surface S1 of the heat transfer portion 30 defining the first flow path Ra and enter between the first middle stage portions 310.

本実施形態において、伝熱プレート3は、図15に示す如く、第一流路Raの上流側から延びる凹条301が開放する境界を画定する第一中段部310から相手方に向けて突出した第一凸部312を有するため、第一中段部310間を流通しようとする第一流体Aの流れを阻害する。これにより、第一中段部310間にある第一流体Aに抵抗を与え、該第一流体Aを主たる経路に戻す或いは第一中段部310間で停滞させるため、第一中段部310間に入った第一流体Aを熱交換に寄与させることができる。 In the present embodiment, as shown in FIG. 15, the heat transfer plate 3 protrudes toward the other party from the first middle stage portion 310 defining the boundary where the concave portion 301 extending from the upstream side of the first flow path Ra opens. Since it has the convex portion 312, it obstructs the flow of the first fluid A that tries to flow between the first middle stage portions 310. As a result, resistance is given to the first fluid A between the first middle stage portions 310, and the first fluid A is returned to the main path or stagnated between the first middle stage portions 310, so that the first middle stage portion 310 is entered. The first fluid A can contribute to heat exchange.

特に、本実施形態において、対向する伝熱プレート3のそれぞれが対応した位置に第一凸部312を有し、該第一凸部312が伝熱部30の第一面S1にある凸条302よりも低いため、対向する第一凸部312間に僅かに空間ができる。従って、第一中段部310間にある第一流体Aは、第一凸部312間の空間を通って下流側に流通できる。これにより、第一流体Aに不純物等が含まれている場合、その不純物が第一中段部310間で堆積し、腐敗する等をいった事態になることが防止される。 In particular, in the present embodiment, the convex portions 302 have the first convex portions 312 at the positions corresponding to each of the facing heat transfer plates 3, and the first convex portions 312 are on the first surface S1 of the heat transfer portion 30. Because it is lower than, there is a slight space between the first convex portions 312 facing each other. Therefore, the first fluid A between the first middle stage portions 310 can flow to the downstream side through the space between the first convex portions 312. As a result, when impurities or the like are contained in the first fluid A, it is possible to prevent the impurities from accumulating between the first middle stage portions 310 and causing putrefaction or the like.

また、第二流体Bが第二流路Rbを流通する際も同様である。具体的には、第二流体Bが第二流路Rbを流通する際、第二流体Bは、主として対向する伝熱部30間をX軸方向に流通するが、その中には、間隔をあけて対向する第二中段部320間に直接入り込むものや、第二流路Rbを画定する伝熱部30の第二面S2にある凹条301に沿って流れ、第二中段部320間に入り込むものがある。 The same applies when the second fluid B flows through the second flow path Rb. Specifically, when the second fluid B flows through the second flow path Rb, the second fluid B mainly flows between the facing heat transfer portions 30 in the X-axis direction, but there is an interval in the second fluid B. Those that directly enter between the second middle stage portions 320 that are opened and face each other, or flow along the recess 301 on the second surface S2 of the heat transfer portion 30 that defines the second flow path Rb, and flow between the second middle stage portions 320. There is something that gets in.

本実施形態において、伝熱プレート3は、図16に示す如く、第二流路Rbの上流側から延びる凹条301が開口する境界を画定する第二中段部320から相手方に向けて突出した第二凸部322を有するため、第二中段部320間を流通しようとする第二流体Bの流れを阻害する。これにより、第二中段部320間にある第二流体Bに抵抗を与え、該第二流体Bを主たる経路に戻す或いは第二中段部320間で停滞させるため、第二中段部320間に入った第二流体Bを熱交換に寄与させることができる。 In the present embodiment, as shown in FIG. 16, the heat transfer plate 3 protrudes toward the other party from the second middle stage portion 320 that defines the boundary through which the recess 301 extending from the upstream side of the second flow path Rb opens. Since it has the biconvex portion 322, it obstructs the flow of the second fluid B that is going to flow between the second middle stage portions 320. As a result, resistance is given to the second fluid B between the second middle stages 320, and the second fluid B is returned to the main path or stagnated between the second middle stages 320, so that the second fluid B enters between the second middle stages 320. The second fluid B can contribute to heat exchange.

特に、本実施形態において、対向する伝熱プレート3のそれぞれが対応した位置に第二凸部322を有し、該第二凸部322が伝熱部30の第二面S2にある凸条302よりも低いため、対向する第二凸部322間に僅かに空間ができる。従って、第二中段部320間にある第二流体Bは、第二凸部322間の空間を通って下流側に流通できる。これにより、第二流体Bに不純物等が含まれている場合、その不純物が第二中段部320間で堆積し、腐敗する等をいった事態になることが防止される。 In particular, in the present embodiment, the second convex portion 322 is provided at a position corresponding to each of the facing heat transfer plates 3, and the second convex portion 322 is located on the second surface S2 of the heat transfer portion 30. Because it is lower than, there is a slight space between the second convex portions 322 facing each other. Therefore, the second fluid B between the second middle stage portions 320 can flow to the downstream side through the space between the second convex portions 322. As a result, when impurities and the like are contained in the second fluid B, it is possible to prevent the impurities from accumulating between the second middle stage portions 320 and causing putrefaction and the like.

さらに、本実施形態に係るプレート式熱交換器1においては、伝熱プレート3同士の接続部分(第一溶接部330、第二溶接部331)が損傷することが防止される。 Further, in the plate heat exchanger 1 according to the present embodiment, it is possible to prevent the connection portions (first welded portion 330 and second welded portion 331) of the heat transfer plates 3 from being damaged.

具体的には、第一流体Aが第一流路Raを流通する際、Z軸方向で隣り合う伝熱プレート3(伝熱部30)には流体圧が作用し、第一流体A(流体圧)が隣り合う伝熱プレート3(伝熱部30)をZ軸方向において離間させようとする。このとき、第一折曲部311が先端Ea1側を支点に起き上がろうとし、隣り合う伝熱プレート3の第一端縁Ea1,Ea1同士を接続した部分にも同様の互いに離間しようとする。そのため、第一溶接部330に対して、隣り合う伝熱プレート3が離間しようとする力(第一折曲部311が先端Ea1側を支点に起き上がろうとする力)が作用することになるが、本実施形態において、第一端縁Ea1,Ea1同士を接続する第一溶接部330が第一流路Ra内に露呈しているため、その力が第一流路Ra内に露呈する第一溶接部330の表面で分散される。従って、第一溶接部330の一か所に力が集中的に作用しないため、第一溶接部330に亀裂等入ることなく第一溶接部330が十分に対抗する。 Specifically, when the first fluid A flows through the first flow path Ra, the fluid pressure acts on the heat transfer plates 3 (heat transfer portions 30) adjacent to each other in the Z-axis direction, and the first fluid A (fluid pressure). ) Try to separate the adjacent heat transfer plates 3 (heat transfer portions 30) in the Z-axis direction. At this time, the first bent portion 311 tries to rise up with the tip Ea1 side as a fulcrum, and also tries to separate from each other at the portion where the first end edges Ea1 and Ea1 of the adjacent heat transfer plates 3 are connected to each other. Therefore, a force that causes the adjacent heat transfer plates 3 to separate from each other (a force that causes the first bent portion 311 to rise with the tip Ea1 side as a fulcrum) acts on the first welded portion 330. In the present embodiment, since the first welded portion 330 connecting the first end edges Ea1 and Ea1 is exposed in the first flow path Ra, the force thereof is exposed in the first flow path Ra. Dispersed on the surface of. Therefore, since the force does not concentrate on one part of the first welded portion 330, the first welded portion 330 sufficiently opposes the first welded portion 330 without cracking or the like.

特に、本実施形態において、第一流路Ra内に露出する第一溶接部330は、図21に示す如く、接続された二つの第一折曲部311のそれぞれの内面に沿った二本の第一仮想線VL1の交点P1を含むように形成されるため、二つの第一折曲部311の離間の起点となる箇所(交点P1と一致する部分)が二つの第一折曲部311に跨って形成される第一溶接部330によって埋められている。これにより、第一溶接部330の亀裂等の発生要因となる二つの第一折曲部311の離間(起き上がり)が抑えられる。従って、本実施形態では、第一溶接部330は、第一流体Aの流体圧の影響で発生する力に対する対抗性を有するだけでなく、自身に影響を与える発生要因を解消できるため、亀裂や割れ等の損傷の発生をより抑えることができる。 In particular, in the present embodiment, the first welded portion 330 exposed in the first flow path Ra has two first welded portions along the inner surface of each of the two connected first bent portions 311 as shown in FIG. Since it is formed so as to include the intersection P1 of one virtual line VL1, the portion (the portion corresponding to the intersection P1) that is the starting point of the separation between the two first bending portions 311 straddles the two first bending portions 311. It is filled with the first welded portion 330 formed in the above. As a result, the separation (raising) of the two first bent portions 311 that cause cracks and the like in the first welded portion 330 can be suppressed. Therefore, in the present embodiment, the first welded portion 330 not only has resistance to the force generated by the influence of the fluid pressure of the first fluid A, but also can eliminate the generation factor affecting itself, so that cracks and cracks occur. The occurrence of damage such as cracks can be further suppressed.

また、第二流体Bが第二流路Rbを流通する際、Z軸方向で隣り合う伝熱プレート3(伝熱部30)には流体圧が作用し、第二流体B(流体圧)が隣り合う伝熱プレート3(伝熱部30)をZ軸方向において離間させようとする。このとき、第二折曲部321が先端Ea2側を支点に起き上がろうとし、隣り合う伝熱プレート3の第二端縁Ea2,Ea2同士を接続した部分にも同様の互いに離間しようとする。そのため、第二溶接部331に対して、隣り合う伝熱プレート3が離間しようとする力(第二折曲部321が先端Ea2側を支点に起き上がろうとする力)が作用することになるが、本実施形態において、第二端縁Ea2,Ea2同士を接続する第二溶接部331が第二流路Rb内に露呈しているため、その力が第二流路Rb内に露呈する第二溶接部331の表面で分散される。従って、第二溶接部331の一か所に力が集中的に作用しないため、第二溶接部331に亀裂等入ることなく第二溶接部331が十分に対抗する。 Further, when the second fluid B flows through the second flow path Rb, the fluid pressure acts on the heat transfer plates 3 (heat transfer portions 30) adjacent to each other in the Z-axis direction, and the second fluid B (fluid pressure) is generated. An attempt is made to separate adjacent heat transfer plates 3 (heat transfer portions 30) in the Z-axis direction. At this time, the second bent portion 321 tries to rise up with the tip Ea2 side as a fulcrum, and also tries to separate the second end edges Ea2 and Ea2 of the adjacent heat transfer plates 3 from each other. Therefore, a force that causes the adjacent heat transfer plates 3 to separate from each other (a force that causes the second bent portion 321 to rise with the tip Ea2 side as a fulcrum) acts on the second welded portion 331. In the present embodiment, since the second welded portion 331 connecting the second end edges Ea2 and Ea2 is exposed in the second flow path Rb, the force is exposed in the second flow path Rb in the second weld. It is dispersed on the surface of the portion 331. Therefore, since the force does not concentrate on one part of the second welded portion 331, the second welded portion 331 sufficiently opposes the second welded portion 331 without cracking or the like.

特に、本実施形態において、第二流路Rb内に露出する第二溶接部331は、図22に示す如く、接続された二つの第二折曲部321のそれぞれの内面に沿った二本の第二仮想線VL2の交点P2を含むように形成されるため、二つの第二折曲部321の離間の起点となる箇所(交点P2と一致する部分)が二つの第二折曲部321に跨って形成される第二溶接部331によって埋められている。これにより、第二溶接部331の亀裂等の発生要因となる二つの第二折曲部321の離間(起き上がり)が抑えられる。従って、本実施形態では、第二溶接部331は、第二流体Bの流体圧の影響で発生する力に対する対抗性を有するだけでなく、自身に影響を与える発生要因を解消できるため、亀裂や割れ等の損傷の発生をより抑えることができる。 In particular, in the present embodiment, the second welded portion 331 exposed in the second flow path Rb is two along the inner surface of each of the two connected second bent portions 321 as shown in FIG. 22. Since it is formed so as to include the intersection P2 of the second virtual line VL2, the portion (the portion corresponding to the intersection P2) that is the starting point of the separation between the two second folding portions 321 becomes the two second bending portions 321. It is filled with a second welded portion 331 formed over the straddle. As a result, the separation (raising) of the two second bent portions 321 that cause cracks and the like in the second welded portion 331 can be suppressed. Therefore, in the present embodiment, the second welded portion 331 not only has resistance to the force generated by the influence of the fluid pressure of the second fluid B, but also can eliminate the generation factor affecting itself, so that cracks and cracks occur. The occurrence of damage such as cracks can be further suppressed.

また、本実施形態において、図5及び図6に示す如く、伝熱部30が、主伝熱領域300aの複数の凹条301及び凸条302のうち、凹条301及び凸条302の延長線が第一溶接部330又は第二溶接部331の端部に到達する凹条301及び凸条302の延長線を含む領域に設定された応力緩和領域300bを含み、応力緩和領域300bは、図11及び図12に示す如く、Z軸方向における第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間で、Z軸方向と直交する方向(X軸方向及びY軸方向のそれぞれ)に広がる中段平板部305を含む。これにより、第一流体Aと第二流体Bとの熱交換による熱影響によって、伝熱部30(主伝熱領域300a)が凹条301及び凸条302の延びる方向に膨張又は収縮をしたとしても、その膨張又は収縮に伴う力(凹条301及び凸条302)の延びる方向に作用する力)が中段平板部305によって面方向に分散される。これによって、第一溶接部330の端部及び第二溶接部331の端部に対して応力が集中的に作用することが抑制される。 Further, in the present embodiment, as shown in FIGS. 5 and 6, the heat transfer unit 30 is an extension line of the concave ridges 301 and the ridges 302 among the plurality of ridges 301 and ridges 302 of the main heat transfer region 300a. Includes a stress relaxation region 300b set in a region including an extension of the recess 301 and the ridge 302 reaching the end of the first weld 330 or the second weld 331, the stress relaxation region 300b being FIG. And as shown in FIG. 12, between the top of the ridge 302 of the first surface S1 and the top of the ridge 302 of the second surface S2 in the Z-axis direction, the direction orthogonal to the Z-axis direction (X-axis direction and Y). Includes the middle flat plate portion 305 extending in each of the axial directions). As a result, it is assumed that the heat transfer portion 30 (main heat transfer region 300a) expands or contracts in the extending direction of the recesses 301 and the ridges 302 due to the heat effect of the heat exchange between the first fluid A and the second fluid B. Also, the force (force acting in the extending direction of the concave section 301 and the convex line 302) accompanying the expansion or contraction is dispersed in the surface direction by the middle flat plate portion 305. As a result, the stress is suppressed from being concentrated on the end portion of the first welded portion 330 and the end portion of the second welded portion 331.

また、本実施形態において、伝熱部30の第一面S1同士を対向させて隣り合う伝熱プレート3は、互いの応力緩和領域300bの第一面S1の凸部306の頂部同士を当接させ、伝熱部30の第二面S2同士を対向させて隣り合う伝熱プレート3は、互いの応力緩和領域300bの第二面S2の凸部306の頂部同士を当接させているため、第一流体Aと第二流体Bとの熱交換による熱影響や、第一流体A又は第二流体Bの流体圧の影響によって、伝熱プレート3(応力緩和領域300b)がZ軸方向に移動(湾曲)しようとしても、相互に支持し合うため、伝熱プレート3同士の相対的な移動が阻止される。これによっても、第一溶接部330の端部及び第二溶接部331の端部に対して応力が集中的に作用することが抑制される。 Further, in the present embodiment, the heat transfer plates 3 adjacent to each other with the first surfaces S1 of the heat transfer portions 30 facing each other abut each other on the tops of the convex portions 306 of the first surface S1 of the stress relaxation region 300b. Since the heat transfer plates 3 adjacent to each other with the second surfaces S2 of the heat transfer portions 30 facing each other are in contact with each other at the tops of the convex portions 306 of the second surface S2 of the stress relaxation region 300b. The heat transfer plate 3 (stress relaxation region 300b) moves in the Z-axis direction due to the heat effect of heat exchange between the first fluid A and the second fluid B and the influence of the fluid pressure of the first fluid A or the second fluid B. Even if they try to (curve), they support each other, so that the relative movement of the heat transfer plates 3 is prevented. This also suppresses the concentrated action of stress on the end of the first welded portion 330 and the end of the second welded portion 331.

特に、本実施形態において、第一面S1の凸部306の頂部及び第二面S2の凸部306の頂部のそれぞれは、Z軸方向と直交する方向に広がる平面であるため、隣り合う伝熱プレート3(伝熱部30)の凸部306同士を接触させた状態(支持した状態)にしても、凸部306同士の接触面においてZ軸方向と直交する方向の移動が許容される。この結果、第一流体Aと第二流体Bとの熱交換による熱影響や、第一流体A又は第二流体Bの流体圧の影響によって、伝熱プレート3(応力緩和領域300b)がZ軸方向に移動(湾曲)しようとしたときに、Z軸方向と直交する方向において相互を拘束し合うことがなく、当該領域においても応力が集中的に作用することが阻止される。 In particular, in the present embodiment, since each of the top of the convex portion 306 of the first surface S1 and the top of the convex portion 306 of the second surface S2 are planes extending in a direction orthogonal to the Z-axis direction, they are adjacent to each other for heat transfer. Even in a state where the convex portions 306 of the plate 3 (heat transfer portion 30) are in contact with each other (supported state), movement in a direction orthogonal to the Z-axis direction is permitted on the contact surface between the convex portions 306. As a result, the heat transfer plate 3 (stress relaxation region 300b) has a Z-axis due to the heat effect of heat exchange between the first fluid A and the second fluid B and the influence of the fluid pressure of the first fluid A or the second fluid B. When trying to move (curve) in a direction, they do not restrain each other in the direction orthogonal to the Z-axis direction, and the stress is prevented from acting intensively in the region as well.

以上のように、本実施形態に係るプレート式熱交換器1は、それぞれがZ軸方向において第一面S1と該第一面S1に対して反対側を向く第二面S2とを有する伝熱部30を含むとともに、Z軸方向から見て互いに平行又は略平行な一対の端縁Ea1,Ea2を少なくとも二対を含んだ輪郭Eaを有し、且つ輪郭Eaを一致又は略一定させるようにZ軸方向に重ね合わされた複数の伝熱プレート3であって、それぞれの伝熱部30の第一面S1をZ軸方向の一方側で隣り合う伝熱プレート3の伝熱部30の第一面S1と対向させるとともに、それぞれの伝熱部30の第二面S2をZ軸方向の他方側で隣り合う伝熱プレート3の伝熱部30の第二面S2と対向させた複数の伝熱プレート3と、伝熱部30の第一面S1同士を対向させて隣り合う伝熱プレート3の二対のうちの一方の対を構成する端縁Ea1を含む部分同士が溶け込むことで形成された第一溶接部330であって、隣り合う伝熱プレート3の二対のうちの一方の対を構成する端縁Ea1同士を液密に接続する第一溶接部330と、伝熱部30の第二面S2同士を対向させて隣り合う伝熱プレート3の二対のうちの他方の対を構成する端縁Ea2を含む部分が溶け込むことで形成された第二溶接部331であって、隣り合う伝熱プレート3の二対のうちの他方の対を構成する端縁Ea2同士を液密に接続する第二溶接部331とを備え、隣り合う伝熱プレート3の伝熱部30の第一面S1間に第一流体Aを第一溶接部330の延びる方向と同方向に流通させる第一流路Raが形成されるとともに、隣り合う伝熱プレート3の伝熱部30の第二面S2間に第二流体Bを第二溶接部331の延びる方向と同方向に流通させる第二流路Rbが形成され、複数の伝熱プレート3のそれぞれの伝熱部30は、第一面S1及び第二面S2のそれぞれに第一溶接部330又は第二溶接部331の延びる方向に対して傾斜する方向に延びる複数の凹条301及び凸条302を有する主伝熱領域300aと、主伝熱領域300aに隣接する応力緩和領域300bであって、主伝熱領域300aの複数の凹条301及び凸条302のうち、凹条301及び凸条302の延長線が第一溶接部330又は第二溶接部331の端部に到達する凹条301及び凸条302の延長線を含む領域に設定された応力緩和領域300bとを含み、応力緩和領域300bは、Z軸方向における第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間で、Z軸方向と直交するX軸方向及びZ軸方向とX軸方向とに直交するY軸方向に広がる中段平板部305を含む。 As described above, the plate type heat exchanger 1 according to the present embodiment has a first surface S1 and a second surface S2 facing opposite to the first surface S1 in the Z-axis direction. Z so as to have a contour Ea including a portion 30 and including at least two pairs of a pair of edge edges Ea1 and Ea2 parallel to or substantially parallel to each other when viewed from the Z-axis direction, and to make the contours Ea coincident or substantially constant. A plurality of heat transfer plates 3 stacked in the axial direction, and the first surface S1 of each heat transfer portion 30 is adjacent to each other on one side in the Z-axis direction. A plurality of heat transfer plates facing S1 and having the second surface S2 of each heat transfer unit 30 facing the second surface S2 of the heat transfer unit 30 of the adjacent heat transfer plates 3 on the other side in the Z-axis direction. 3 and the portion including the edge Ea1 constituting one of the two pairs of adjacent heat transfer plates 3 with the first surface S1 of the heat transfer portion 30 facing each other are fused to each other. The first welded portion 330, which is one welded portion 330 and liquid-tightly connects the end edges Ea1 constituting one of the two pairs of adjacent heat transfer plates 3, and the second heat transfer portion 30. A second welded portion 331 formed by melting the portion including the edge Ea2 constituting the other pair of the two pairs of adjacent heat transfer plates 3 with the surfaces S2 facing each other, and the adjacent heat transfer plates. The first surface S1 of the heat transfer portions 30 of the adjacent heat transfer plates 3 is provided with a second welded portion 331 for liquid-tightly connecting the end edges Ea2 constituting the other pair of the two pairs of the heat plate 3. A first flow path Ra that allows the first fluid A to flow in the same direction as the extension direction of the first welded portion 330 is formed between them, and a second surface S2 between the second surfaces S2 of the heat transfer portions 30 of the adjacent heat transfer plates 3 is formed. A second flow path Rb is formed in which the two fluids B flow in the same direction as the extension of the second welded portion 331, and the heat transfer portions 30 of the plurality of heat transfer plates 3 are the first surface S1 and the second surface. In the main heat transfer region 300a having a plurality of recesses 301 and ridges 302 extending in a direction inclined with respect to the extension direction of the first welded portion 330 or the second welded portion 331 in each of S2, and in the main heat transfer region 300a. Of the plurality of recesses 301 and ridges 302 in the adjacent stress relaxation region 300b, the extension lines of the ridges 301 and ridges 302 are the first welded portion 330 or the second welded portion 331. The stress relaxation region 300b is included in the region including the concave line 301 reaching the end of the protrusion and the extension line of the convex line 302, and the stress relaxation region 300b is the first surface S1 in the Z-axis direction. A middle flat plate portion extending between the top of the ridge 302 and the top of the ridge 302 on the second surface S2 in the X-axis direction orthogonal to the Z-axis direction and in the Y-axis direction orthogonal to the Z-axis direction and the X-axis direction. Includes 305.

上記構成によれば、応力緩和領域300bは、主伝熱領域300aの凹条301及び凸条302の延長線であって、第一溶接部330又は第二溶接部331の端部に到達する延長線を含む領域に設定されるため、第一流体Aと第二流体Bとの熱交換に伴う熱影響によって伝熱部30が膨張又は収縮し、該伝熱部30に対して凹条301及び凸条302の延びる方向に力が作用したときに、その力が第一溶接部330又は第二溶接部331の端部に作用する前に応力緩和領域300bがその力を受ける。すなわち、応力緩和領域300bは、主伝熱領域300aの凹条301及び凸条302の延びる方向の力が第一溶接部330又は第二溶接部331に直接作用することを阻止する。 According to the above configuration, the stress relaxation region 300b is an extension of the concave section 301 and the convex line 302 of the main heat transfer region 300a, and is an extension that reaches the end of the first welded portion 330 or the second welded portion 331. Since it is set in the region including the wire, the heat transfer portion 30 expands or contracts due to the heat effect caused by the heat exchange between the first fluid A and the second fluid B, and the concave portion 301 and the concave portion 301 with respect to the heat transfer portion 30. When a force acts in the extending direction of the ridge 302, the stress relaxation region 300b receives the force before the force acts on the end of the first weld 330 or the second weld 331. That is, the stress relaxation region 300b prevents the force in the extending direction of the concave portion 301 and the convex portion 302 of the main heat transfer region 300a from directly acting on the first welded portion 330 or the second welded portion 331.

そして、応力緩和領域300bは、Z軸方向と直交するX軸方向及びZ軸方向とX軸方向とに直交するY軸方向に広がる中段平板部305を含むため、中段平板部305が凹条301及び凸条302の延びる方向に作用する力をZ軸方向と直交する方向に分散させる。これに伴い、第一溶接部330又は第二溶接部331の端部には、大きな力がそのまま作用することなく分散された小さな力が作用することになる。従って、第一溶接部330又は第二溶接部331の端部に応力が集中的に作用することがなく、第一溶接部330又は第二溶接部331の損傷が抑えられる。 Since the stress relaxation region 300b includes the middle flat plate portion 305 extending in the X-axis direction orthogonal to the Z-axis direction and the Y-axis direction orthogonal to the Z-axis direction and the X-axis direction, the middle flat plate portion 305 is a concave portion 301. And the force acting in the extending direction of the ridge 302 is dispersed in the direction orthogonal to the Z-axis direction. Along with this, a small force dispersed is applied to the end portion of the first welded portion 330 or the second welded portion 331 without applying a large force as it is. Therefore, stress does not concentrate on the ends of the first welded portion 330 or the second welded portion 331, and damage to the first welded portion 330 or the second welded portion 331 is suppressed.

また、本実施形態において、応力緩和領域300bは、第一面S1及び第二面S2のそれぞれに形成された複数の凸部306…であって、Z軸方向と直交する方向に間隔をあけて配置された複数の凸部306…を含み、第一面S1の凸部306と第二面S2の凸部306とはZ軸方向と直交する方向に位置ずれして配置され、中段平板部305は、第一面S1の凸部306と第二面S2の凸部306との間に配置され、伝熱部30の第一面S1同士を対向させて隣り合う伝熱プレート3は、互いの応力緩和領域300bの第一面S1の凸部306の頂部同士を当接させ、伝熱部30の第二面S2同士を対向させて隣り合う伝熱プレートは、互いの応力緩和領域300bの第二面S2の凸部306の頂部同士を当接させる。 Further, in the present embodiment, the stress relaxation region 300b is a plurality of convex portions 306 formed on each of the first surface S1 and the second surface S2, and is spaced apart from each other in a direction orthogonal to the Z-axis direction. The convex portion 306 of the first surface S1 and the convex portion 306 of the second surface S2 are arranged so as to be displaced in the direction orthogonal to the Z-axis direction, including the plurality of arranged convex portions 306, and the middle flat plate portion 305. Is arranged between the convex portion 306 of the first surface S1 and the convex portion 306 of the second surface S2, and the heat transfer plates 3 adjacent to each other with the first surfaces S1 of the heat transfer portions 30 facing each other are attached to each other. The heat transfer plates adjacent to each other with the tops of the convex portions 306 of the first surface S1 of the stress relaxation region 300b in contact with each other and the second surfaces S2 of the heat transfer portions 30 facing each other are the first of the stress relaxation regions 300b. The tops of the convex portions 306 of the two surfaces S2 are brought into contact with each other.

上記構成によれば、隣り合う伝熱プレート3の伝熱部30の応力緩和領域300bの凸部306の頂部同士を接触させているため、隣り合う伝熱プレート3の伝熱部30全域(主伝熱領域300a及び応力緩和領域300b)が互いに支持し合う。これにより、第一流体Aと第二流体Bとの熱交換に伴う熱影響や、第一流体A又は第二流体Bの流体圧の作用によって、伝熱プレート3(伝熱部30)がZ軸方向に変形しようとしても、互いに拘束し合う。従って、伝熱プレート3(伝熱部30)の変形することが抑制されるため、第一溶接部330又は第二溶接部331の端部に集中した応力が作用することが防止される。 According to the above configuration, since the tops of the convex portions 306 of the stress relaxation region 300b of the heat transfer portions 30 of the adjacent heat transfer plates 3 are in contact with each other, the entire area of the heat transfer portions 30 of the adjacent heat transfer plates 3 (mainly). The heat transfer region 300a and the stress relaxation region 300b) support each other. As a result, the heat transfer plate 3 (heat transfer section 30) becomes Z due to the heat effect associated with the heat exchange between the first fluid A and the second fluid B and the action of the fluid pressure of the first fluid A or the second fluid B. Even if they try to deform in the axial direction, they restrain each other. Therefore, since the deformation of the heat transfer plate 3 (heat transfer portion 30) is suppressed, the stress concentrated on the end portion of the first welded portion 330 or the second welded portion 331 is prevented from acting.

特に、本実施形態において、第一面S1の凸部306の頂部及び第二面S2の凸部306の頂部のそれぞれは、Z軸方向と直交する方向に広がる平面であるため、隣り合う伝熱プレート3の伝熱部30の応力緩和領域300b同士がZ軸方向と直交する方向で相互に移動できる状態になる。これにより、隣り合う伝熱部30におけるZ軸方向と直交する方向の伸びや収縮の状態が異なったとしても、応力緩和領域300b同士の支持点において応力が集中的に作用することが抑制される。 In particular, in the present embodiment, since each of the top of the convex portion 306 of the first surface S1 and the top of the convex portion 306 of the second surface S2 are planes extending in a direction orthogonal to the Z-axis direction, they are adjacent to each other for heat transfer. The stress relaxation regions 300b of the heat transfer portion 30 of the plate 3 can move to each other in a direction orthogonal to the Z-axis direction. As a result, even if the extension and contraction states of the adjacent heat transfer portions 30 in the direction orthogonal to the Z-axis direction are different, the stress is suppressed from acting intensively at the support points between the stress relaxation regions 300b. ..

さらに、本実施形態において、伝熱プレート3は、Z軸方向から見て四角形状に形成され、伝熱部30は、Z軸向から見て伝熱プレート3よりも小さな四角形状であって、対角線が伝熱プレート3の対角線と重なる四角形状に設定され、応力緩和領域300bは、伝熱部30の角部に配置される。 Further, in the present embodiment, the heat transfer plate 3 is formed in a quadrangular shape when viewed from the Z-axis direction, and the heat transfer portion 30 has a quadrangular shape smaller than that of the heat transfer plate 3 when viewed from the Z-axis direction. The diagonal line is set in a rectangular shape that overlaps the diagonal line of the heat transfer plate 3, and the stress relaxation region 300b is arranged at the corner portion of the heat transfer portion 30.

かかる構成によれば、応力緩和領域300bの配置が均等となるため、隣り合う伝熱プレート3,3(伝熱部30,30)間に形成される流路(第一流路Ra、第二流路Rb)内において、流体(第一流体A、第二流体B)の流れが不均衡になることを防止することができる。 According to this configuration, since the stress relaxation regions 300b are evenly arranged, the flow paths (first flow path Ra, second flow) formed between the adjacent heat transfer plates 3, 3 (heat transfer portions 30, 30). It is possible to prevent the flow of the fluids (first fluid A, second fluid B) from becoming unbalanced in the path Rb).

なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更を加え得ることは勿論である。 It should be noted that the present invention is not limited to the above embodiment, and it is needless to say that modifications can be made as appropriate without departing from the gist of the present invention.

上記実施形態において、伝熱プレート3の輪郭Eaが二対の端縁Ea1,Ea2を含み、伝熱プレート3がZ軸方向から見て四角形状にされたが、これに限定されない。例えば、伝熱プレート3の輪郭Eaが三対以上の端縁を含み、伝熱プレート3がZ軸方向から見て六角形以上の多角形状にされてもよいし、伝熱プレート3の輪郭Eaが二対以上の端縁を含み、伝熱プレート3がZ軸方向から見て非多角形状であってもよい。 In the above embodiment, the contour Ea of the heat transfer plate 3 includes two pairs of edge edges Ea1 and Ea2, and the heat transfer plate 3 has a rectangular shape when viewed from the Z-axis direction, but is not limited thereto. For example, the contour Ea of the heat transfer plate 3 may include three or more pairs of edge edges, and the heat transfer plate 3 may have a polygonal shape of hexagon or more when viewed from the Z-axis direction, or the contour Ea of the heat transfer plate 3 may be formed. May include two or more pairs of edges and the heat transfer plate 3 may be non-polygonal when viewed from the Z-axis direction.

上記実施形態において、一種類の伝熱プレート3を複数重ね合わせるようにしたが、これに限定されない。例えば、伝熱部30の凹条301及び凸条302の形態を異にする複数種類の伝熱プレート3を重ね合わせるようにしてもよい。但し、隣り合う伝熱プレート3の凸条302同士が交差衝合する(交差点CP1,CP2を形成する)ことが前提である。 In the above embodiment, a plurality of heat transfer plates 3 of one type are overlapped with each other, but the present invention is not limited to this. For example, a plurality of types of heat transfer plates 3 having different forms of the concave strips 301 and the convex strips 302 of the heat transfer portion 30 may be overlapped with each other. However, it is premised that the protrusions 302 of the adjacent heat transfer plates 3 intersect with each other (form the intersections CP1 and CP2).

上記実施形態において、応力緩和領域300bが伝熱部30の四隅に設けられたが、これに限定されない。例えば、応力緩和領域300bは、主伝熱領域300aの凸条302の延長線上にある伝熱部30の角部にのみに設けられてもよい。 In the above embodiment, stress relaxation regions 300b are provided at the four corners of the heat transfer portion 30, but the present invention is not limited to this. For example, the stress relaxation region 300b may be provided only at the corner portion of the heat transfer portion 30 on the extension line of the protrusion 302 of the main heat transfer region 300a.

また、伝熱部30の輪郭が四角形状(正方形状)に形成されることを前提に、伝熱部30の対角のうちの一方の角部であって、主伝熱領域300aの凸条302の延長線上にある一方の角部のみに設けられてもよい。 Further, on the premise that the contour of the heat transfer portion 30 is formed in a square shape (square shape), it is one of the diagonal corners of the heat transfer portion 30 and is a convex strip of the main heat transfer region 300a. It may be provided only at one corner on the extension of 302.

このようにしても、応力緩和領域300bが中段平板部305を有することで、熱交換に伴って主伝熱領域300aの凹条301及び凸条302の延びる方向に力が作用しても、その力を中段平板部305によって分散させることができる。これによって、隣り合う伝熱プレート3の端縁Ea1,Ea2同士を接続した溶接部(第一溶接部330又は第二溶接部331)の端部(始端又は終端)に応力集中が生じることが抑制される。 Even in this way, since the stress relaxation region 300b has the middle flat plate portion 305, even if a force acts in the extending direction of the concave portions 301 and the convex portions 302 of the main heat transfer region 300a due to heat exchange, the force is applied. The force can be dispersed by the middle flat plate portion 305. As a result, stress concentration is suppressed at the end (start or end) of the welded portion (first welded portion 330 or second welded portion 331) connecting the end edges Ea1 and Ea2 of the adjacent heat transfer plates 3 to each other. Will be done.

上記実施形態において、応力緩和領域300bの中段平板部305が第一面S1の凸条302の頂部と第二面S2の凸条の頂部との中間位置にある基準面(第一仮想平面)BLに沿って配置されたが、これに限定されるものではない。応力緩和領域300bの中段平板部305は、Z軸方向と直交する方向に広がっていることを前提に、第一面S1の凸条302の頂部と第二面S2の凸条302の頂部との間の位置に配置されていればよい。 In the above embodiment, the reference plane (first virtual plane) BL in which the middle flat plate portion 305 of the stress relaxation region 300b is located at an intermediate position between the top of the ridge 302 of the first surface S1 and the top of the ridge of the second surface S2. It is arranged along, but is not limited to this. Assuming that the middle flat plate portion 305 of the stress relaxation region 300b extends in a direction orthogonal to the Z-axis direction, the top of the ridge 302 of the first surface S1 and the top of the ridge 302 of the second surface S2 It suffices if it is arranged at a position between them.

上記実施形態において、応力緩和領域300bが複数の凸部306を備えたが、これに限定されない。例えば、応力緩和領域300bは、中段平板部305のみで構成されてもよい。 In the above embodiment, the stress relaxation region 300b includes a plurality of protrusions 306, but the present invention is not limited to this. For example, the stress relaxation region 300b may be composed of only the middle flat plate portion 305.

上記実施形態において、応力緩和領域300bの凸部306の頂部が平面にされたが、これに限定されない。例えば、応力緩和領域300bが凸部306を有する場合、応力緩和領域300bの凸部306の頂部が円弧面状にされ、隣り合う伝熱プレート3の凸部306の頂部と点接触するようにしてもよい。 In the above embodiment, the top of the convex portion 306 of the stress relaxation region 300b is made flat, but the present invention is not limited to this. For example, when the stress relaxation region 300b has the convex portion 306, the top of the convex portion 306 of the stress relaxation region 300b is formed into an arcuate surface so as to make point contact with the top of the convex portion 306 of the adjacent heat transfer plates 3. May be good.

1…プレート式熱交換器、2…熱交換部、3…伝熱プレート、4…外装体、5…第一仕切プレート、6…第二仕切プレート、30…伝熱部、31…第一延出部、32…第二延出部、40…第一外装プレート(外装プレート)、41…第二外装プレート(外装プレート)、42…第三外装プレート(外装プレート)、43…第四外装プレート(外装プレート)、44…アンダープレート(外装プレート)、45…アッパープレート(外装プレート)、46…支持フレーム、46a…柱体、47…ライニング部材、300a…主伝熱領域、300b…応力緩和領域、301…凹条、302…凸条、303…補強部、304…屈曲平板部、304a…起点部、304b…接続部、305…中段平板部、306…凸部、310…第一中段部、311…第一折曲部、312…第一凸部、320…第二中段部、321…第二折曲部、322…第二凸部、330…第一溶接部、331…第二溶接部、A…第一流体、B…第二流体、B1,B2…ブロック、BL…第一仮想平面(基準面)、BL…第二仮想平面(基準面)、CL1…縦中心線(中心線)、CL2…横中心線(中心線)、CP1,CP2…交差点(交差衝合する部分)、Ea…輪郭、Ea1…第一端縁(端縁、先端)、Ea2…第二端縁(端縁、先端)、Eb…輪郭、Eb1…第一外縁(外縁)、Eb2…第二外縁(外縁)、LB…伝熱プレート積層体、P1,P2…交点、Pa1…第一給液口、Pa2…第一排液口、Pb1…第二給液口、Pb2…第二排液口、Ra…第一流路(流路)、Ra1…第一流入口、Ra2…第一流出口、Rb…第二流路(流路)、Rb1…第二流入口、Rb2…第二流出口、S1…第一面、S2…第二面、Sa…第一表面(表面)、Sb…第二表面(表面)、Sc…第三表面(表面)、Sd…第四表面(表面)、VL1…第一仮想線(仮想線)、VL2…第二仮想線(仮想線) 1 ... Plate type heat exchanger, 2 ... Heat transfer unit, 3 ... Heat transfer plate, 4 ... Exterior body, 5 ... First partition plate, 6 ... Second partition plate, 30 ... Heat transfer unit, 31 ... First extension Outlet, 32 ... Second extension, 40 ... First exterior plate (exterior plate), 41 ... Second exterior plate (exterior plate), 42 ... Third exterior plate (exterior plate), 43 ... Fourth exterior plate (Exterior plate), 44 ... Under plate (Exterior plate), 45 ... Upper plate (Exterior plate), 46 ... Support frame, 46a ... Pillar, 47 ... Lining member, 300a ... Main heat transfer region, 300b ... Stress relaxation region , 301 ... concave, 302 ... convex, 303 ... reinforcing, 304 ... bent flat plate, 304a ... starting point, 304b ... connecting, 305 ... middle flat, 306 ... convex, 310 ... first middle, 311 ... 1st bent part, 312 ... 1st convex part, 320 ... 2nd middle stage part, 321 ... 2nd bent part, 322 ... 2nd convex part, 330 ... 1st welded part, 331 ... 2nd welded part , A ... first fluid, B ... second fluid, B1, B2 ... block, BL ... first virtual plane (reference plane), BL ... second virtual plane (reference plane), CL1 ... vertical center line (center line) , CL2 ... Horizontal center line (center line), CP1, CP2 ... Intersection (intersection mating part), Ea ... Contour, Ea1 ... First end edge (edge, tip), Ea2 ... Second edge (end edge) , Tip), Eb ... contour, Eb1 ... first outer edge (outer edge), Eb2 ... second outer edge (outer edge), LB ... heat transfer plate laminate, P1, P2 ... intersection, Pa1 ... first liquid supply port, Pa2 ... First drainage port, Pb1 ... second liquid supply port, Pb2 ... second drainage port, Ra ... first flow path (flow path), Ra1 ... first inflow port, Ra2 ... first outflow port, Rb ... second flow path (Flow path), Rb1 ... Second inflow port, Rb2 ... Second outflow port, S1 ... First surface, S2 ... Second surface, Sa ... First surface (surface), Sb ... Second surface (surface), Sc ... Third surface (surface), Sd ... Fourth surface (surface), VL1 ... First virtual line (virtual line), VL2 ... Second virtual line (virtual line)

Claims (4)

それぞれが第一方向において第一面と該第一面に対して反対側を向く第二面とを有する伝熱部を含むとともに、第一方向から見て互いに平行な一対の端縁を少なくとも二対を含んだ輪郭を有し、且つ輪郭を一致させるように第一方向に重ね合わされた複数の伝熱プレートであって、それぞれの伝熱部の第一面を第一方向の一方側で隣り合う伝熱プレートの伝熱部の第一面と対向させるとともに、それぞれの伝熱部の第二面を第一方向の他方側で隣り合う伝熱プレートの伝熱部の第二面と対向させた複数の伝熱プレートと、伝熱部の第一面同士を対向させて隣り合う伝熱プレートの二対のうちの一方の対を構成する端縁を含む部分同士が溶け込むことで形成された第一溶接部であって、隣り合う伝熱プレートの二対のうちの一方の対を構成する端縁同士を液密に接続する第一溶接部と、伝熱部の第二面同士を対向させて隣り合う伝熱プレートの二対のうちの他方の対を構成する端縁を含む部分が溶け込むことで形成された第二溶接部であって、隣り合う伝熱プレートの二対のうちの他方の対を構成する端縁同士を液密に接続する第二溶接部とを備え、隣り合う伝熱プレートの伝熱部の第一面間に第一流体を第一溶接部の延びる方向と同方向に流通させる第一流路が形成されるとともに、隣り合う伝熱プレートの伝熱部の第二面間に第二流体を第二溶接部の延びる方向と同方向に流通させる第二流路が形成され、複数の伝熱プレートのそれぞれの伝熱部は、第一面及び第二面のそれぞれに第一溶接部又は第二溶接部の延びる方向に対して傾斜する方向に延びる複数の凹条及び凸条を有する主伝熱領域と、主伝熱領域に隣接する応力緩和領域であって、主伝熱領域の複数の凹条及び凸条のうち、凹条及び凸条の延長線が第一溶接部又は第二溶接部の端部に到達する凹条及び凸条の延長線を含む領域に設定された応力緩和領域とを含み、応力緩和領域は、第一方向における第一面の凸条の頂部と第二面の凸条の頂部との間で、第一方向と直交する第二方向及び第一方向と第二方向とに直交する第三方向に広がる中段平板部を含むことを特徴とするプレート式熱交換器。 Each contains a heat transfer section having a first surface in the first direction and a second surface facing away from the first surface, and at least two pairs of edges parallel to each other when viewed from the first direction. A plurality of heat transfer plates having contours including pairs and superposed in the first direction so as to match the contours, and the first surface of each heat transfer portion is on one side of the first direction. Face the first surface of the heat transfer part of the adjacent heat transfer plate, and make the second surface of each heat transfer part the second surface of the heat transfer part of the adjacent heat transfer plate on the other side of the first direction. Formed by melting together a plurality of heat transfer plates facing each other and a portion including an edge constituting one of two pairs of adjacent heat transfer plates with the first surfaces of the heat transfer portions facing each other. The first welded part, which is the first welded part, which connects the edges constituting one of the two pairs of adjacent heat transfer plates in a liquid-tight manner, and the second surface of the heat transfer part. It is a second welded part formed by melting the part including the edge constituting the other pair of the two pairs of adjacent heat transfer plates with the two pairs of adjacent heat transfer plates facing each other. It is provided with a second welded portion that liquidally connects the edges constituting the other pair, and the first fluid extends between the first surfaces of the heat transfer portions of adjacent heat transfer plates. A first flow path is formed to circulate in the same direction as the direction, and a second fluid is circulated between the second surfaces of the heat transfer portions of adjacent heat transfer plates in the same direction as the extension direction of the second weld portion. A flow path is formed, and each of the heat transfer portions of the plurality of heat transfer plates extends in a direction inclined with respect to the extension direction of the first welded portion or the second welded portion on each of the first surface and the second surface. The main heat transfer region having the concaves and ridges and the stress relaxation region adjacent to the main heat transfer region, which is an extension of the concaves and ridges among the plurality of concaves and ridges in the main heat transfer region. The stress relaxation region includes the stress relaxation region set in the region including the extension of the concave and convex ridges where the wire reaches the end of the first weld or the second weld, and the stress relaxation region is the first in the first direction. Between the top of the ridges on the surface and the top of the ridges on the second surface, a middle flat plate portion extending in the second direction orthogonal to the first direction and the third direction orthogonal to the first direction and the second direction. A plate-type heat exchanger characterized by including. 応力緩和領域は、第一面及び第二面のそれぞれに形成された複数の凸部であって、第一方向と直交する方向に間隔をあけて配置された複数の凸部を含み、第一面の凸部と第二面の凸部とは第一方向と直交する方向に位置ずれして配置され、中段平板部は、第一面の凸部と第二面の凸部との間に配置され、伝熱部の第一面同士を対向させて隣り合う伝熱プレートは、互いの応力緩和領域の第一面の凸部の頂部同士を当接させ、伝熱部の第二面同士を対向させて隣り合う伝熱プレートは、互いの応力緩和領域の第二面の凸部の頂部同士を当接させる請求項1に記載のプレート式熱交換器。 The stress relaxation region is a plurality of convex portions formed on each of the first surface and the second surface, and includes a plurality of convex portions arranged at intervals in a direction orthogonal to the first direction. The convex portion of the surface and the convex portion of the second surface are displaced from each other in the direction orthogonal to the first direction, and the middle flat plate portion is located between the convex portion of the first surface and the convex portion of the second surface. The heat transfer plates that are arranged and adjacent to each other with the first surfaces of the heat transfer portions facing each other abut each other on the tops of the convex portions of the first surface of the stress relaxation region, and the second surfaces of the heat transfer portions are brought into contact with each other. The plate-type heat exchanger according to claim 1, wherein the heat transfer plates adjacent to each other face each other so that the tops of the convex portions on the second surface of each other in the stress relaxation region are brought into contact with each other. 第一面の凸部の頂部及び第二面の凸部の頂部のそれぞれは、第一方向と直交する方向に広がる平面である請求項2に記載のプレート式熱交換器。 The plate heat exchanger according to claim 2, wherein each of the top of the convex portion on the first surface and the top of the convex portion on the second surface are planes extending in a direction orthogonal to the first direction. 伝熱プレートは、第一方向から見て四角形状に形成され、伝熱部は、第一方向から見て伝熱プレートよりも小さな四角形状であって、対角線が伝熱プレートの対角線と重なる四角形状に設定され、応力緩和領域は、伝熱部の角部に配置される請求項1乃至3の何れか1項に記載のプレート式熱交換器。 The heat transfer plate is formed in a square shape when viewed from the first direction, and the heat transfer portion is a square shape smaller than the heat transfer plate when viewed from the first direction, and the diagonal line overlaps the diagonal line of the heat transfer plate. The plate-type heat exchanger according to any one of claims 1 to 3, wherein the stress relaxation region is set in a shape and is arranged at a corner portion of a heat transfer portion.
JP2017188277A 2017-09-28 2017-09-28 Plate heat exchanger Active JP7001413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017188277A JP7001413B2 (en) 2017-09-28 2017-09-28 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017188277A JP7001413B2 (en) 2017-09-28 2017-09-28 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2019066051A JP2019066051A (en) 2019-04-25
JP7001413B2 true JP7001413B2 (en) 2022-01-19

Family

ID=66339372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017188277A Active JP7001413B2 (en) 2017-09-28 2017-09-28 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP7001413B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255826A (en) 2006-03-24 2007-10-04 Hisaka Works Ltd Plate type heat exchanger
JP4065435B2 (en) 2001-12-18 2008-03-26 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchange plate, board package, and plate heat exchanger
JP2009521658A (en) 2005-12-22 2009-06-04 アルファ ラヴァル コーポレイト アクチボラゲット Heat conduction plate for plate heat exchanger that evenly distributes load in port area

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229580A (en) * 1996-02-26 1997-09-05 Ishikawajima Harima Heavy Ind Co Ltd Primary surface type heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4065435B2 (en) 2001-12-18 2008-03-26 アルファ ラヴァル コーポレイト アクチボラゲット Heat exchange plate, board package, and plate heat exchanger
JP2009521658A (en) 2005-12-22 2009-06-04 アルファ ラヴァル コーポレイト アクチボラゲット Heat conduction plate for plate heat exchanger that evenly distributes load in port area
JP2007255826A (en) 2006-03-24 2007-10-04 Hisaka Works Ltd Plate type heat exchanger

Also Published As

Publication number Publication date
JP2019066051A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
TWI445917B (en) A heat exchanger plate and a plate heat exchanger
JP5037524B2 (en) Heat conduction plate for plate heat exchanger that evenly distributes load in port area
KR20060096949A (en) Outer shell structure for a heat exchanger
KR101357917B1 (en) Heat exchanger
JP2020176828A (en) Heat transfer plate and plate heat exchanger comprising such heat transfer plates
JPH07506420A (en) plate heat exchanger
JP5284303B2 (en) Plate heat exchanger
JP7001413B2 (en) Plate heat exchanger
KR20060086872A (en) Heat exchange plate
KR100918756B1 (en) A heat exchanger plate
JP6963957B2 (en) Plate heat exchanger
JP5356927B2 (en) Plate heat exchanger
KR20060116732A (en) Heat exchange unit
JP6917236B2 (en) Plate heat exchanger
US20070151717A1 (en) Heat exchange plate
JP5085723B2 (en) Plate heat exchanger
JPWO2018216165A1 (en) Plate heat exchanger
JP7100074B2 (en) Plate heat exchanger
JP2019027732A (en) Plate type heat exchanger
JP6069425B2 (en) Plate heat exchanger
WO2020045595A1 (en) Plate heat exchanger
JP7018299B2 (en) Plate heat exchanger
JP6235645B2 (en) Plate heat exchanger
JP6872598B1 (en) Plate heat exchanger
JP7375492B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250