JP6998995B2 - 固体撮像装置、その制御方法、撮像システム及びカメラ - Google Patents

固体撮像装置、その制御方法、撮像システム及びカメラ Download PDF

Info

Publication number
JP6998995B2
JP6998995B2 JP2020122344A JP2020122344A JP6998995B2 JP 6998995 B2 JP6998995 B2 JP 6998995B2 JP 2020122344 A JP2020122344 A JP 2020122344A JP 2020122344 A JP2020122344 A JP 2020122344A JP 6998995 B2 JP6998995 B2 JP 6998995B2
Authority
JP
Japan
Prior art keywords
gain
signal
analog signal
correction value
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020122344A
Other languages
English (en)
Other versions
JP2020171061A (ja
Inventor
隆 武藤
靖司 松野
大介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2020171061A publication Critical patent/JP2020171061A/ja
Application granted granted Critical
Publication of JP6998995B2 publication Critical patent/JP6998995B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、固体撮像装置、その制御方法、撮像システム及びカメラに関する。
広いダイナミックレンジ又は高速な読み出しを実現するために、画素が生成した1つの画素信号に対して複数のゲインを適用する固体撮像装置が知られている。特許文献1及び特許文献2には、あるゲインで画素信号を増幅することによって得られた信号のレベルに応じて、別のゲインで当該画素信号を増幅することが記載されている。増幅された画素信号はAD変換器でデジタル信号に変換される。画素信号の増幅に用いられたゲインに対応する値でこのデジタル信号を割ることによって、ゲインの相違が補正された画素値が得られる。
特開2005-175517号公報 特開2014-131147号公報
後述するように、増幅後のデジタル信号をゲインに対応する値で割るだけでは、生成される画素値が良好な直線性を有しない場合がある。本発明は、画素信号を増幅する増幅回路のゲインを切り替え可能な固体撮像装置において、良好な直線性を有する画素値を生成するための技術を提供することを目的とする。
上記課題に鑑みて、入力されるアナログ信号を増幅する増幅回路と、前記増幅回路によって増幅された前記アナログ信号を、前記増幅回路に設定されたゲインに対応する第1補正値と、当該ゲインにおける前記増幅回路のオフセットに対応する第2補正値とを用いて補正する補正回路と、を備え、前記増幅回路は、アナログ信号を異なる複数のゲインのそれぞれで増幅し、前記アナログ信号を増幅中にゲインを変更することを特徴とする固体撮像装置が提供される。
上記手段により、画素信号を増幅する増幅回路のゲインを切り替え可能な固体撮像装置において、良好な直線性を有する画素値を生成するための技術が提供される。
第1実施形態に係る固体撮像装置の構成例を説明する図。 図1の固体撮像装置の各回路構成例を説明する図。 図1の固体撮像装置の画素信号読み取り動作を説明する図。 図1の固体撮像装置の画素値補正動作を説明する図。 図1の固体撮像装置の補正値算出動作を説明する図。 図1の固体撮像装置の第1変形例の回路構成例を説明する図。 図1の固体撮像装置の第1変形例の画素信号読み取り動作を説明する図。 図1の固体撮像装置の第2変形例の構成例を説明する図。 図1の固体撮像装置の第2変形例の回路構成例を説明する図。 図1の固体撮像装置の第2変形例の画素信号読み取り動作を説明する図。 図1の固体撮像装置の第3変形例の回路構成例を説明する図。 第2実施形態に係る固体撮像装置の構成例を説明する図。 図12の固体撮像装置の各回路構成例を説明する図。 図12の固体撮像装置の画素値補正動作を説明する図。 図12の固体撮像装置の補正値算出動作を説明する図。 第3実施形態に係る撮像システムの構成例を説明する図。
添付の図面を参照しつつ本発明の実施形態について以下に説明する。様々な実施形態を通じて同様の要素には同一の参照符号を付し、重複する説明を省略する。また、各実施形態は適宜変更、組み合わせが可能である。
<第1実施形態>
図1の回路ブロック図を参照して、第1実施形態に係る固体撮像装置IM1の構成について説明する。固体撮像装置IM1は図1に示す各構成要素を有する。行列状に配置された複数の画素100によって画素アレイ101が構成される。図1では一例として画素アレイ101が4行3列の画素100を有する場合を説明する。しかし、画素アレイ101の配置はこれに限られない。各画素100は、画素100への入射光に応じた画素信号を生成する。同じ行を構成する複数の画素100は、1つの駆動線に共通に接続される。駆動線を通じて垂直走査回路103から画素100に、画素100の動作を制御するための制御信号が供給される。また、同じ列を構成する複数の画素100は、1つの垂直線102に共通に接続される。垂直線102を通じて増幅回路104に供給される電圧信号を垂直線信号Vvlと呼ぶ。画素100から垂直線102に画素信号が読み出された場合に、垂直線信号Vvlは画素信号に応じた値となる。
増幅回路104は、垂直線信号Vvlを増幅することによって増幅信号Vampを生成し、増幅信号Vampを設定回路105及び比較回路107に供給する。後述するように、増幅回路104は複数のゲインの何れかで垂直線信号Vvlを増幅することによって増幅信号Vampを生成する。垂直線信号Vvlが画素信号に応じた値である場合に、増幅回路104は画素信号を増幅する。
設定回路105は、増幅信号Vampと所定の閾値電圧Vshとを比較し、その比較結果に基づいて増幅回路104のゲインを設定する。設定回路105は、増幅回路104のゲインの設定を示す設定信号ATTを増幅回路104及びメモリ部109に供給する。一例として、本実施形態の設定回路105は、増幅信号Vampが閾値電圧Vshよりも小さい場合に設定信号ATTをLレベルとし、増幅信号Vampが閾値電圧Vshよりも大きい場合に設定信号ATTをHレベルとする。増幅回路104は、設定信号ATTのレベルに応じて、垂直線信号Vvlの増幅に用いるゲインを維持又は変更する。すなわち、設定回路105は、増幅回路104がゲインを変更すべきかを判定する。ゲインの変更は、増幅回路104が画素信号を増幅中に行われる。
比較回路107には、増幅回路104からの増幅信号Vampのほかに、参照信号発生回路106から参照信号Vrが供給される。参照信号発生回路106は、制御回路113からの指示に応じて、参照信号Vrとしてランプ信号を出力する。ランプ信号とは、時間の経過に対して一定の比率で変化する信号である。比較回路107は、増幅信号Vampと参照信号Vrとを比較し、その比較結果に応じた比較信号Vcmpをメモリ部109に供給する。一例として、本実施形態の比較回路107は、増幅信号Vampが参照信号Vrよりも大きい場合に比較信号VcmpをLレベルとし、増幅信号Vampが参照信号Vrよりも小さい場合に比較信号VcmpをHレベルとする。比較回路107として例えば比較器が用いられる。
メモリ部109には、設定回路105からの設定信号ATT及び比較回路107からの比較信号Vcmpのほかに、カウンタ108からカウント信号CNTが供給される。カウンタ108は、制御回路113からの指示に応じて、参照信号発生回路106がランプ信号の供給を開始するとともにカウントを開始し、カウント信号CNTが表すカウント値を時間の経過とともにカウントアップする。メモリ部109は、メモリ109Sと、メモリ109Nと、メモリ109Dとを含む。メモリ109Dは、設定回路105から供給された設定信号ATTのレベルを保持する。メモリ109S及びメモリ109Nはそれぞれ、比較信号Vcmpのレベルが切り替わった時点のカウント値を保持する。すなわち、参照信号発生回路106と、比較回路107と、カウンタ108と、メモリ部109とによって、増幅信号Vampをデジタル値に変換するAD変換回路が構成される。メモリ109Nは、画素100がリセットされた状態で増幅回路104が出力する増幅信号Vampに対応するデジタル値を保持する。メモリ109Sは、画素100から画素信号が読み出された状態で増幅回路104が出力する増幅信号Vampに対応するデジタル値を保持する。
増幅回路104、設定回路105、比較回路107及びメモリ部109は、垂直線102ごとに個別に配置される。水平走査回路110は、複数のメモリ部109からデジタル値を順次、信号処理回路111に読み出す。信号処理回路111は、メモリ部109から読み出されたデジタル値に基づいて、画素信号に対応するデジタル信号Dを生成し、デジタル信号Dを固体撮像装置IM1の外部へ出力する。デジタル信号Dは、各画素100の画素値を表す。制御回路113は、固体撮像装置IM1の各構成要素に対して後述の制御信号を供給することによって、各構成要素の動作を制御する。
続いて、図2を参照して、図1の画素100、増幅回路104及び設定回路105の回路構成例について説明する。図2(a)は、画素100の回路構成例を説明する。画素100はフォトダイオードPD、増幅トランジスタMSF、転送トランジスタMTX、リセットトランジスタMRS及び選択トランジスタMSELを含む。フォトダイオードPDは、画素100への入射光に応じた電荷を発生し、この電荷を蓄積する。転送トランジスタMTX、リセットトランジスタMRS及び選択トランジスタMSELは、それぞれ垂直走査回路103から供給される制御信号φPTX、φPRS、φPSELによって導通状態または非導通状態となるように制御される。増幅トランジスタMSFのゲートは、フローティングディフュージョンFDに接続される。また、増幅トランジスタMSFのソースは選択トランジスタMSELを介して垂直線102に接続される。制御信号φPRSがHレベルになると、リセットトランジスタMRSが導通状態となり、フローティングディフュージョンFDが電源電圧VDDに接続され、フローティングディフュージョンFDの電圧がリセットされる。フローティングディフュージョンFDの電圧がリセットされることを、画素100がリセットされるという。制御信号φPTXがHレベルになると、転送トランジスタMTXが導通状態になり、フォトダイオードPDに蓄積された電荷がフローティングディフュージョンFDに転送される。制御信号φPSELがHレベルになると、選択トランジスタMSELが導通状態となり、不図示の電流源から垂直線102を介して増幅トランジスタMSFに電流が供給される。それによって、フローティングディフュージョンFDの電圧に基づいた信号(すなわち、画素信号)が垂直線102に読み出される。
図2(b)は、増幅回路104の回路構成例を説明する。増幅回路104は、反転増幅器AMP、容量CIN、CFB1、CFB2及びスイッチS1、S2を含む。反転増幅器AMPの入力端子には容量CINを介して垂直線信号Vvlが供給される。反転増幅器AMPの入力端子と出力端子との間には、スイッチS1と、容量CFB1と、直列に接続されたスイッチS2及び容量CFB2とが並列に接続される。容量CFB1は、フィードバック容量として作用する。スイッチS2のオン・オフは、設定信号ATTと制御信号φFB2との論理和により制御され、この論理和がHレベルの場合にスイッチS2がオンとなり、容量CFB2がフィードバック容量として作用する。スイッチS1は、制御信号φARSがHレベルの場合にオンとなり、容量CFB1、CFB2に蓄積された電荷がリセットされる。一例として、本実施形態の容量CIN、CFB1、CFB2の容量値をそれぞれC、C、3Cとする。そのため、スイッチS2がオフの場合に増幅回路104のゲインは1倍に設定され、スイッチS2がオンの場合に増幅回路104のゲインは4倍に設定される。反転増幅器AMPは、設定されたゲインで垂直線信号Vvlを増幅することによって得られた信号を増幅信号Vampとして出力する。容量CIN、CFB1、CFB2の容量値は、増幅回路104に設定したいゲインによって適宜設定される。
一例として、本実施形態の反転増幅器AMPは、NMOSトランジスタであるトランジスタM1及びM2と、PMOSトランジスタであるトランジスタM3及びM4とから構成されたNMOSソース接地増幅回路によって実現される。トランジスタM1は、ソース接地増幅トランジスタとして動作する。トランジスタM2は、ゲート接地増幅トランジスタとして動作する。また、トランジスタM3とM4とは、カスコード接続され、定電流負荷を構成する。トランジスタM2、M3、M4のゲートにはDCバイアス電圧Vbn1、Vbp1、Vbp2がそれぞれ供給され、これらのDCバイアスによって各トランジスタの動作点が定まる。
図2(c)は、設定回路105の回路構成例を説明する。設定回路105は、比較器CMP1、Dラッチ回路DL及びANDゲートを含む。比較器CMP1の非反転入力端子には増幅信号Vampが供給される。比較器CMP1の反転入力端子には閾値電圧Vshが供給される。比較器CMP1は、増幅信号Vampと閾値電圧Vshとの大小関係を判定し、判定結果に応じた信号をDラッチ回路DLのD端子に供給する。比較器CMP1は、増幅信号Vampが閾値電圧Vshよりも小さい場合にLレベルの信号を出力し、増幅信号Vampが閾値電圧Vshよりも大きい場合にHレベルの信号を出力する。Dラッチ回路DLは、E端子に供給される制御信号φDLに応じて、D端子に供給されている信号のレベルを保持し、保持しているレベルをANDゲートの入力端子に供給する。ANDゲートの別の入力端子には制御信号φDLOが供給される。ANDゲートは、制御信号φDLOがHレベルの場合に、ANDゲートはDラッチ回路DLが保持しているレベルを設定信号ATTとして設定回路105の外部へ出力する。また、ANDゲートは、制御信号φDLOがLレベルの場合に、Lレベルを設定信号ATTとして設定回路105の外部へ出力する。
続いて、図3~図5を参照して、固体撮像装置IM1の動作について説明する。固体撮像装置IM1の動作は、制御回路113が固体撮像装置IM1の各構成要素の動作を制御することによって行われる。画素100の動作は、制御回路113が垂直走査回路103を制御することによって行われる。また、メモリ部109から信号処理回路111へのデジタル値の読出しは、制御回路113が水平走査回路110を制御することによって行われる。固体撮像装置IM1は、主に、画素信号読み出し動作と、補正値算出動作と、画素値算出動作とを行う。画素信号読み出し動作とは、画素から画素信号を読み出し、画素信号に対応するデジタル値をメモリ部109に保持する動作のことである。補正値算出動作とは、このデジタル値を補正するための補正値を算出する動作のことである。画素値算出動作とは、このデジタル値を補正することによって画素値を算出する動作のことである。固体撮像装置IM1は、補正値算出動作、画素信号読み出し動作、画素値算出動作の順に行う。これらの動作は、画素100ごとに行われる。以下では、画素信号読み出し動作、画素値算出動作、補正値算出動作の順に説明する。
図3のタイミング図を参照して、画素信号読み出し動作について説明する。図3は、1つの画素100から画素信号を1回読み出すための動作を説明する。同じ行を構成する複数の画素100に対して、図3に説明される動作が同時に行われる。固体撮像装置IM1は、画素アレイ101を構成する複数の画素行のそれぞれに対して図3に説明される動作を行うことによって、画素アレイ101の各画素から画素信号を読み出す。垂直走査回路103は、図3に示す期間を通じて、画素信号読み出し動作の対象の画素100に供給する制御信号φPSELをHレベルに維持し、他の画素100に供給する制御信号φPSELをLレベルに維持する。
画素信号読み出し動作が開始されると、垂直走査回路103は、制御信号φPRSを一時的にHレベルにすることによって、画素100をリセットする。これにより、リセット状態にある画素100に応じた信号が垂直線102に読み出される。この信号を画素リセット信号と呼ぶ。画素リセット信号が垂直線102に読み出されると、垂直線信号Vvlはこの信号に応じた値となる。制御回路113は、画素のリセットに並行して、制御信号φARS、φFB2をそれぞれ一時的にHレベルにすることによって、容量CFB1、CFB2に蓄積された電荷をリセットする。垂直走査回路103が制御信号φPRSをLレベルにした後、制御回路113は、制御信号φARS、φFB2をそれぞれLレベルにする。
上述の動作中に、制御回路113は、制御信号φDLOをLレベルとする。その結果、設定回路105が出力する設定信号ATTはLレベルとなる。設定信号ATTと制御信号φFB2とが両方ともLレベルであるので、増幅回路104のスイッチS2はオフとなり、反転増幅器AMPに接続されているフィードバック容量の容量値はCとなる。反転増幅器AMPに接続されている入力容量の容量値もCであるので、増幅回路104のゲインは1倍に設定される。
その後、参照信号発生回路106は、制御回路113からの指示に応じて、参照信号Vrとしてランプ信号を供給し始める。言い換えると、参照信号発生回路106は、参照信号Vrの値を時間の経過に対して一定の比率で変化し始める。これと同時に、カウンタ108は、制御回路113からの指示に応じて、出力するカウント値をゼロからカウントアップし始める。参照信号Vrが増幅信号Vampを上回り、比較信号VcmpがLレベルからHレベルに切り替わると、メモリ109Nは、その時点のカウンタ108からのカウント値を保持する。このカウント値は、画素リセット信号を1倍のゲインで増幅することによって得られた増幅信号VampをAD変換したデジタル値に対応する。以下、このデジタル値をNと呼ぶ。
その後、垂直走査回路103は、制御信号φPTXを一時的にHレベルにすることによって、フォトダイオードPDに蓄積された電荷をフローティングディフュージョンFDに転送する。これにより、画素100から画素信号が垂直線102に読み出され、垂直線信号Vvlが画素信号に応じた値となる。画素100のリセット時を基準としたこの時点における垂直線信号Vvlの変化量(すなわち、画素信号と画素リセット信号との差分)をΔVvlで表す。ΔVvlは画素100への入射光量に応じた値となる。垂直線信号Vvlの変化に伴い、増幅信号Vampも変化する。増幅回路104のゲインが1倍に設定されている状態の増幅信号Vampの変化量をΔVamp1と呼ぶ。ここで、閾値電圧Vshは、増幅回路104の出力ダイナミックレンジの1/4以下となるように設定されている。そのため、増幅信号Vampが、閾値電圧Vsh以上となる場合と、閾値電圧Vsh未満となる場合とで、固体撮像装置IM1は互いに異なる動作を行う。以下では、画素信号を1倍のゲインで増幅することによって得られる増幅信号Vampが閾値電圧Vshよりも大きい場合について説明する。
垂直走査回路103が制御信号φPTXをLレベルにしてから所定の時間が経過した後に、制御回路113は、制御信号φDLを一時的にHレベルにする。増幅信号Vampが閾値電圧Vshよりも大きいので、Dラッチ回路DLにHレベルが保持される。次に、制御回路113は、制御信号φDLOをHレベルにする。設定回路105はDラッチ回路DLに保持された信号を出力し、設定信号ATTはHレベルとなる。その結果、増幅回路104のスイッチS2がオンとなり、容量CFB2が反転増幅器AMPに接続され、反転増幅器AMPに接続されているフィードバック容量の容量値が4Cとなる。反転増幅器AMPに接続されている入力容量の容量値がCであるので、増幅回路104のゲインは1/4倍に設定される。それに伴い、増幅信号Vampの値も変化する。増幅回路104のゲインが1/4倍に設定されている状態の増幅信号Vampの変化量をΔVamp2と呼ぶ。
その後、固体撮像装置IM1は、画素リセット信号を増幅することによって得られた増幅信号VampをA/D変換したのと同様にして、画素信号を増幅することによって得られた増幅信号VampをA/D変換する。メモリ109Sは、画素信号を増幅することによって得られた増幅信号VampをA/D変換したデジタル値を保持する。以下、このデジタル値をSと呼ぶ。その後、メモリ109Dは、設定信号ATTのレベルを保持する。最後に、制御回路113は、制御信号φDLOをLレベルとすることによって、次の行の読み出しに移るために判定信号ATTをLレベルとする。
以上の動作によって、画素信号をA/D変換した際の設定信号ATTのレベルがメモリ109Dに保持され、増幅された画素リセット信号を表すデジタル値Nがメモリ109Nに保持され、増幅された画素信号を表すデジタル値Sがメモリ109Sに保持される。上述の例のように、増幅回路104のゲインが1倍から1/4倍に変更された場合に、メモリ109DにはHレベルの設定信号ATTが保持され、メモリ109Sには1/4倍のゲインで増幅された画素信号を表すデジタル値が保持される。一方、画素信号を1倍のゲインで増幅することによって得られる増幅信号Vampが閾値電圧Vshよりも小さい場合に、増幅回路104のゲインは1倍のまま維持される。この場合に、メモリ109DにはLレベルの設定信号ATTが保持され、メモリ109Sには1倍のゲインで増幅された画素信号を表すデジタル値Sが保持される。増幅回路104のゲインが1倍から1/4倍に変更された場合と1倍のまま維持された場合との両方において、メモリ109Nには1倍のゲインで増幅された画素リセット信号を表すデジタル値Nが保持される。
続いて、画素値算出動作について説明する。信号処理回路111は、メモリ部109に保持されたデジタル値に基づいて画素値を算出する。まず、メモリ109DにLレベルの設定信号ATTが保持されている場合について説明する。この場合に、メモリ109Sには1倍のゲインで増幅された画素信号を表すデジタル値Sが保持され、メモリ109Nには1倍のゲインで増幅された画素リセット信号を表すデジタル値Nが保持されている。従って、信号処理回路111は、デジタルCDS(Correlated Double Sampling)処理を行うことによって画素値を算出する。具体的に、信号処理回路111は、S-Nを算出し、この値を画素値とする。
次に、メモリ109DにHレベルの設定信号ATTが保持されている場合について説明する。この場合に、メモリ109Sには1/4倍のゲインで増幅された画素信号を表すデジタル値Sが保持され、メモリ109Nには1倍のゲインで増幅された画素リセット信号を表すデジタル値Nが保持されている。そのため、信号処理回路111は、デジタル値S、Nを用いて単にデジタルCDS処理を行っただけでは、正しい画素値を算出できない。図4を参照してその理由について説明する。
図4のグラフの横軸は、垂直線信号Vvlの変化量ΔVvlを示す。図4のグラフの縦軸は、デジタル値を表す。変化量ΔVvlは、画素100へ入射した光の光量に対応する。垂直線信号Vvlが画素リセット信号に応じた値である場合に、変化量ΔVvlはゼロとなる。
直線401は、増幅回路104のゲインが1倍に設定される範囲に含まれる変化量ΔVvlと、以下の式(1)に従って算出されるデジタル信号D1との関係を示す。
D1=S-N …式(1)
デジタル値Sとデジタル値Nとはともに、増幅回路104のゲインが1倍に設定された状態で生成された値であるので、デジタルCDS処理を行うことによって入射光量を適切に表すデジタル信号D1が求まる。例えば、変化量ΔVvl(入射光量)がゼロの場合に、デジタル信号D1もゼロとなる。信号処理回路111は、増幅回路104のゲインが1倍に設定されている場合(すなわち、メモリ109DにLレベルが保持されている場合)に、デジタル信号D1を上述のデジタル信号Dとして出力する。
直線402は、増幅回路104のゲインが1/4倍に設定される範囲に含まれる変化量ΔVvlと、以下の式(2)に従って算出されるデジタル信号D2との関係を示す。
D2=4(S-N) …式(2)
デジタルCDS処理によって得られたS-Nにゲインの逆数(4)を掛けているので、直線402の傾きは直線401の傾きと一致する。しかし、容量CFB2を接続することにより発生するスイッチS2のフィードスルー等により、1倍のゲインで増幅された画素リセット信号と、1/4倍のゲインで増幅された画素リセット信号とは互いに異なるオフセットを有する。そのため、図4に示すように、ゲイン設定か切り替わるΔVvlの値において、デジタル信号D2とデジタル信号D1との間にαのずれが生じる。
そこで、信号処理回路111は、増幅回路104のゲインが1/4倍に設定されている場合に、以下の式(3)に従ってデジタル信号D3を算出する。
D3=4(S-N)-α …式(3)
直線403は、増幅回路104のゲインが1/4倍に設定される範囲に含まれる変化量ΔVvlと、上記の式(3)に従って算出されるデジタル信号D3との関係を示す。図4に示すように、直線403は、直線401に対して良好な直線性を有する。信号処理回路111は、増幅回路104のゲインが1/4倍に設定されている場合(すなわち、メモリ109DにHレベルが保持されている場合)に、デジタル信号D3を上述のデジタル信号Dとして出力する。
ここで、増幅回路104のゲインをGとして一般化すると、信号処理回路111は、以下の式(4)に従ってデジタル信号Dを算出する。
D=βG×(S-N)-αG …式(4)
αGは、増幅回路104のオフセットに対応するオフセット補正値であり、βGは、増幅回路104のゲインに対応するゲイン補正値である。αG及びβGはそれぞれ、ゲインごとに設定され、メモリ112に保持されている。上述の例では、α1=0、α1/4=α、β1=1、β1/4=4となる。本実施形態では、1倍のゲインで増幅された画素リセット信号を表すデジタル値Nを用いてデジタルCDS処理を行うので、α1=0となる。αは、後述する補正値算出動作によって算出される。βGは、ゲインの逆数である。βGは、増幅器AMPに接続される容量値に基づいて理論的に算出され、固体撮像装置IM1の製造時にメモリ112に格納される。信号処理回路111は、上述のようにして算出された画素値を表すデジタル信号Dを生成し、このデジタル信号Dを固体撮像装置IM1の外部へ出力する。上述のように、信号処理回路111は、画素信号を表すデジタル値Sを補正しているので、補正回路と称されてもよい。
図5のタイミング図を参照して、補正値算出動作について説明する。図5は、1つの増幅回路104に対する補正値を算出する動作を説明する。この補正値は、当該増幅回路104に共通に接続された複数の画素100に対して使用される。画素アレイ101は、画像生成に寄与せず、補正値を算出するための画素100からなる行を1つ以上有する。垂直走査回路103は、図5に示す期間を通じて、補正値算出用の画素100に供給する制御信号φPSELをHレベルに維持し、他の画素100に供給する制御信号φPSELをLレベルに維持する。また、垂直走査回路103は、図5に示す期間を通じて、補正値算出用の画素100に供給する制御信号φPRSをHレベルに維持し、制御信号φPTXをLレベルに維持する。従って、図5に示す期間を通じて、垂直線信号Vvlとして画素リセット信号が供給される。
補正値算出動作は、期間H1に行われる動作と、その後の期間H2に行われる動作とによって構成される。期間H1において、制御回路113は、画素信号読み出し動作と同様にして、メモリ109Nにデジタル値N1を保持した後にメモリ109Sにデジタル値S1を保持する。期間H1において、制御回路113が制御信号φDLOをLレベルとすることによって、Lレベルの設定信号ATTが出力される。従って、これらのデジタル値N1、S1はともに、1倍のゲインで得られた増幅信号Vampを表す。信号処理回路111は、デジタル値N1、S1を読み出し、メモリ112に保持する。
続いて、期間H2において、制御回路113は、期間H1と同様の処理を行うことによって、メモリ109Nにデジタル値N2を保持した後にメモリ109Sにデジタル値S2を保持する。ただし、制御回路113は、デジタル値S2を生成する前に、制御信号φFB2をHレベルに切り替えることによって、増幅回路104のゲインを1/4倍に設定する。そのため、デジタル値N2は1倍のゲインで得られた増幅信号Vampを表し、デジタル値S2は1/4倍のゲインで得られた増幅信号Vampを表す。信号処理回路111は、デジタル値N2、S2を読み出し、メモリ112に保持する。
続いて、信号処理回路111は、以下の式(5)に従ってオフセット補正値α1/4を算出する。
α1/4=(S2-N2)-(S1-N1) …式(5)
ここで、デジタル値N1、N2の何れも、画素リセット信号を1倍のゲインで増幅することによって得られる増幅信号Vampの値を表す。デジタル値S1は、ΔVvl=0である場合の画素信号を1倍のゲインで増幅することによって得られる増幅信号Vampの値を表す。デジタル値S2は、ΔVvl=0である場合の画素信号を1/4倍のゲインで増幅することによって得られる増幅信号Vampの値を表す。よって、この式(5)に従って得られるα1/4は図4に示したαに一致する。
以上のように、本実施形態によれば、増幅回路104のゲイン変更によるフィードスルー等に起因したオフセット誤差を除去することができ、良好な直線性を有する固体撮像装置を実現できる。本実施形態の補正値算出動作では、画素リセット信号に基づいてデジタル値S1、S2を算出したが、これに代えて、画素100とは異なる別の電圧源から一定値のテスト信号を増幅回路104に供給してもよい。固体撮像装置IM1の各構成要素は同一の半導体基板上に実装されてもよいし、信号処理回路111と他の構成要素とが別個の半導体基板上に実装されてもよい。
<第1実施形態の第1変形例>
図6及び図7を参照して、固体撮像装置IM1の第1変形例について説明する。第1変形では、設定回路105の構成が異なる。第1変形例の設定回路105は、増幅信号Vampを閾値電圧Vsh以下にクリップする機能を有する。図6は、第1変形例における設定回路105の回路構成例を説明する。
設定回路105は、PMOSトランジスタであるトランジスタM5と、NMOSトランジスタであるトランジスタM6及びM7とを含む。トランジスタM5のソースは増幅回路104の出力端子に接続され、トランジスタM5は増幅信号Vampをクリップする。クリップ動作の閾値電圧VshはトランジスタM5のゲートに入力された電圧Vclpによって決定される。トランジスタM6のゲートにはDCバイアス電圧Vbn2が入力され、トランジスタM5がクリップ動作を行った際に、トランジスタM5のドレインに定電流を供給する。トランジスタM5のドレインは、さらに、トランジスタM7のゲートと、インバータとに接続される。トランジスタM7のソースはGND電位に接地されており、トランジスタM7のドレインは増幅回路104の出力端子に接続される。また、インバータからの出力は、制御信号φDRSとのNOR処理が行われた後、RSラッチ回路LCHのS端子に入力される。RSラッチ回路LCHのもう一方の入力であるR端子には、制御信号φDRSが入力される。従って、制御信号φDRSがHレベルとなると、R端子がHレベル、S端子がLレベルとなるためRSラッチ回路LCHがリセットされる。RSラッチ回路LCHの出力は、設定回路105の出力となり設定信号ATTを出力する。
増幅信号Vampが閾値電圧Vshよりも低い場合に、トランジスタM5は非導通状態である。トランジスタM6のゲートにはDCバイアス電圧が入力されているため、トランジスタM7のゲート電圧は、概ねGNDレベルとなる。従って、トランジスタM7は非導通状態となる。この場合に、トランジスタM5、M7はともに非導通状態であるため、反転増幅器AMPの動作に対して影響を与えない。一方、増幅信号Vampが閾値電圧Vshを超えると、トランジスタM5は導通状態となる。この場合に、トランジスタM7のゲート電圧も上昇し、トランジスタM7も導通状態となる。この結果、トランジスタM3及びM4から供給される反転増幅器AMPの負荷電流が設定回路105にも供給され、増幅信号Vampが概ね閾値電圧Vshより上昇しないクリップ状態となる。
図7のタイミング図を参照して、第1変形例における画素信号読み出し動作について説明する。第1変形例における補正値算出動作及び画素値算出動作は、上述の第1実施形態のものと同一であってもよい。第1変形例における画素信号読み出し動作は、制御回路113が制御信号φDL、φDLOに代えて、制御信号φDRSを設定回路105に供給する点で第1実施形態における画素信号読み出し動作とは異なり、他の点は同様であってもよい。
画素信号読み出し動作が開始されると、制御回路113は、制御信号φDRSを一時的にHレベルにすることによって、RSラッチ回路LCHをリセットする。これにより、設定回路105はLレベルの設定信号ATTを出力する。その後、第1実施形態と同様の処理が行われた後、画素100から画素信号が垂直線102に読み出され、垂直線信号Vvlが画素信号に応じた値となる。
増幅信号Vampが閾値電圧Vshよりも低い場合に、トランジスタM7のゲート電圧は概ねGNDレベルとなっている。従って、RSラッチ回路LCHのS端子にLレベルが入力され続けるため、設定信号ATTはLレベルを維持する。一方、増幅信号Vampが閾値電圧Vshに到達すると、トランジスタM7のゲート電圧もインバータの閾値に到達する。その結果、RSラッチ回路LCHのS端子への入力がHレベルに反転する。これに伴って、RSラッチ回路LCHは、Hレベルの設定信号ATTを出力するとともに、この状態を維持する。設定信号ATTがHレベルとなると、増幅回路104のゲインが1/4倍に変更され、増幅信号Vampが閾値電圧Vsh以下となりクリップが解除される。このとき、設定信号ATTはHレベルに保持されているため、垂直線信号Vvlはゲイン1/4倍で増幅される。増幅信号Vampが十分にセトリングした後、第1実施形態と同様の処理が行われ、デジタル値Sが生成される。
第1変形例においても第1実施形態と同様の効果が得られる。また、第1変形例では、設定回路105のクリップ機能により、増幅信号Vampが閾値電圧Vshよりも大きくなることがない。そのため、閾値電圧Vshを増幅回路104の出力飽和レベルに設定でき、増幅回路104のダイナミックレンジを有効に活用できる。なお、増幅信号Vampがクリップ電圧に近い値になる場合、増幅信号Vampは、トランジスタM5の影響を大きく受けて精度が高い信号を出力できない。そこで、画素信号に応じた垂直線信号Vvlが増幅回路104に入力されてから設定回路105が判定する期間以外は、設定回路105のクリップ機能を無効にしてもよい。例えば、制御回路113は、画素信号が垂直線102に読み出される前と、設定回路105が判定した後とに、電圧Vclpを高くすると、より精度の良いデジタル値を得られる。
<第1実施形態の第2変形例>
図8~図10を参照して、固体撮像装置IM1の第2変形例である固体撮像装置IM2について説明する。図8に示すように、第2変形例の固体撮像装置IM2は、設定回路105及び比較回路107にかえて設定回路805を有する点で固体撮像装置IM1と異なり、他の点は同様であってもよい。図9を参照して、設定回路805の回路構成例について説明する。図9に示すように、設定回路805は、図1に示した設定回路105と比較回路107とを共通化した構成を有する。
続いて、図10のタイミング図を参照して、第2変形例における画素信号読み出し動作について説明する。第2変形例における補正値算出動作及び画素値算出動作は、上述の第1実施形態のものと同一であってもよい。第2変形例における画素信号読み出し動作は、参照信号発生回路106が供給する参照信号Vrが異なる点で第1実施形態における画素信号読み出し動作とは異なり、他の点は同様であってもよい。制御回路113は、デジタル値Nをメモリ109Nに保持した後に、参照信号発生回路106が供給する参照信号Vrの値を閾値電圧Vshに変更する。これによって、設定回路805によって、増幅信号Vampと閾値電圧Vshとが比較され、比較結果が設定信号ATTとして出力される。
<第1実施形態の第3変形例>
図11を参照して、固体撮像装置IM1の第3変形例である固体撮像装置IM3について説明する。図11に示すように、第3変形例の固体撮像装置IM3は、カウンタ108及びメモリ部109にかえてカウンタ1108及びメモリ部1109を有する点で固体撮像装置IM1と異なり、他の点は同様であってもよい。
カウンタ1108は、アップダウンカウント機能を有する。カウンタ1108は、画素列ごとに配置されている。画素リセット信号を増幅することによって得られた増幅信号VampをAD変換する際に、カウンタ1108は、制御回路113からの指示に応じて、ゼロからダウンカウントを開始する。これにより、カウンタ1108には、第1実施形態のデジタル値Nの符号を変えた値が保持される。続いて、画素信号を増幅することによって得られた増幅信号VampをAD変換する際に、カウンタ1108は、制御回路113からの指示に応じて、保持されている値(すなわち、-N)を初期値としてアップカウントを開始する。このAD変換が終了した時点で、カウンタ1108は、第1実施形態のS-Nに対応する値を出力する。メモリ部1109のメモリ1109Vはこの値を保持する。信号処理回路111は、メモリ1109Vに保持された値(S-N)を用いて上述の画素値算出動作を行う。また、補正値算出動作では、メモリ1109Vに、S1-N1、S2-N2に対応する値が保持されるので、信号処理回路111はこれらの値を用いて補正値を算出する。
<第2実施形態>
図12~図15を参照して、第2実施形態に係る固体撮像装置IM4について説明する。固体撮像装置IM4は、テスト信号生成回路1201を更に備える点で固体撮像装置IM1と異なる。テスト信号生成回路1201は、複数の垂直線102のそれぞれに、テスト信号を供給する。第1実施形態では、ゲイン補正値β1/4として、フィードバック容量の容量値に基づいて理論的に算出した値(4)を用いる。しかし、ゲインを精確に制御することは困難であるので、増幅回路104のゲインが1/4倍に設定されたとしても、実際の増幅信号Vampは異なる値のゲインで増幅されることがある。
図14のグラフの横軸は、垂直線信号Vvlの変化量ΔVvlを示す。図14のグラフの縦軸は、デジタル値を表す。変化量ΔVvlは、画素100へ入射した光の光量に対応する。垂直線信号Vvlが画素リセット信号に応じた値である場合に、変化量ΔVvlはゼロとなる。
直線1401は、直線401と同様に、増幅回路104のゲインが1倍に設定される範囲に含まれる変化量ΔVvlと、上記の式(1)に従って算出されるデジタル信号D1との関係を示す。
直線1402は、増幅回路104のゲインが1/4倍に設定される範囲に含まれる変化量ΔVvlと、上記の式(2)に従って算出されるデジタル信号D2との関係を示す。デジタルCDS処理によって得られたS-Nに、ゲインの逆数(4)を掛けているので、直線1402の傾きは直線1401の傾きと理論的には一致する。しかし、ゲイン誤差により、これらの直線の傾きが一致しないことがある。この場合に、図1の実施形態のようにオフセット補正を行ったとしても、デジタル信号Dは良好な直線性を有しない。そこで、本実施形態の信号処理回路111は、上述の式(4)のゲイン補正値β1/4を理論値からではなく実際に得られた増幅信号Vampに基づいて決定する。
一例では、信号処理回路111は、ゲイン補正値を補正するための補正係数bを算出し、この補正係数bをゲインの理論値の逆数(4)に乗じることによって得られる値を上述のゲイン補正値β1/4とする。具体的に、信号処理回路111は、以下の式(6)に従って算出されるデジタル信号D4を表す直線1403の傾きが直線1401の傾きと一致するように補正係数bを算出する。
D4=4b(S-N) …式(6)
補正係数bの算出方法については後述する。
その後、信号処理回路111は、D4からオフセット補正値αを引くことによって、デジタル値を算出する。すなわち、信号処理回路111は、以下の式(7)に従ってデジタル信号D5を算出する。
D5=4b(S-N)-α …式(7)
直線1404は、増幅回路104のゲインが1/4倍に設定される範囲に含まれる変化量ΔVvlと、上記の式(7)に従って算出されるデジタル信号D5との関係を示す。図14に示すように、直線1404は、直線1401に対して良好な直線性を有する。信号処理回路111は、増幅回路104のゲインが1/4倍に設定されている場合(すなわち、メモリ109DにHレベルが保持されている場合)に、デジタル信号D5を上述のデジタル信号Dとして出力する。
図13を参照して、テスト信号生成回路1201の回路構成例について説明する。テスト信号生成回路1201は、制御信号φTS1により制御されるマルチプレクサMX1と、制御信号φTS2により制御されるマルチプレクサMX2と、各列の垂直線102に接続されるトランジスタM8とを備える。トランジスタM8は、NMOSトランジスタである。トランジスタM8のソースは垂直線102に接続され、トランジスタM8のドレインは電源に接続される。トランジスタM8は、マルチプレクサMX2により制御されるゲート電圧に応じて垂直線102の電圧を制御する。マルチプレクサMX2には、電圧V5と、マルチプレクサMX1の出力とが供給される。マルチプレクサMX1には、電圧V3とV4とが供給される。マルチプレクサMX1は、制御信号φTS1がLレベルの場合に電圧V3を出力し、制御信号φTS1がHレベルの場合に電圧V4を出力する。トランジスタM8のゲートに電圧V3が供給された場合にテスト信号生成回路1201が垂直線102に供給する信号を第1テスト信号と呼ぶ。トランジスタM8のゲートに電圧V4が供給された場合にテスト信号生成回路1201が垂直線102に供給する信号を第2テスト信号と呼ぶ。第1テスト信号と第2テスト信号とは互いに異なる値である。
制御信号φTS2がLレベルになると、マルチプレクサMX2は電圧V5を選択し、トランジスタM8のゲートに電圧V5を供給される。一方、制御信号φTS2がHレベルになると、マルチプレクサMX2はマルチプレクサMX1の出力を選択し、電圧V3又はV4をトランジスタM8のゲートに供給する。補正値算出動作において、制御信号φTS2はHレベルとなり、電圧V3又はV4に応じた電圧が垂直線信号Vvlとして垂直線102に供給される。また、画素信号読み出し動作において、制御信号φTS2がLレベルとなり、電圧V5に応じて垂直線102がクリップされる。テスト信号生成回路1201がこのようなクリップ機能を有することによって、画素信号のレベルが局所的に増大した際に生じる垂直線102の過度な電圧低下を防ぎ、スミア抑制の効果が得られる。
図15のタイミング図を参照して、補正値算出動作について説明する。第2実施形態の補正値算出動作では、オフセット補正値だけでなく、ゲイン補正値も算出する。図15は、1つの増幅回路104に対する補正値を算出する動作を説明する。この補正値は、当該増幅回路104に共通に接続された複数の画素100に対して使用される。垂直走査回路103は、図15に示す期間を通じて、すべての画素100に供給する制御信号φPSELをLレベルに維持する。
補正値算出動作は、連続する期間H1~期間H4に行われる動作によって構成される。各期間に行われる動作は、図5の期間H1に行われる動作と同様のため、主に相違点について説明する。
期間H1では、垂直線信号Vvlが第1テスト信号であり、ゲインが1倍に設定されている状態でデジタル値N1が生成され、その後に、垂直線信号Vvlが第1テスト信号であり、ゲインが1倍に設定されている状態でデジタル値S1が生成される。期間H2では、垂直線信号Vvlが第1テスト信号であり、ゲインが1倍に設定されている状態でデジタル値N2が生成され、その後に、垂直線信号Vvlが第1テスト信号であり、ゲインが1/4倍に設定されている状態でデジタル値S2が生成される。期間H3では、垂直線信号Vvlが第1テスト信号であり、ゲインが1倍に設定されている状態でデジタル値N3が生成され、その後に、垂直線信号Vvlが第2テスト信号であり、ゲインが1倍に設定されている状態でデジタル値S3が生成される。期間H4では、垂直線信号Vvlが第1テスト信号であり、ゲインが1倍に設定されている状態でデジタル値N4が生成され、その後に、垂直線信号Vvlが第2テスト信号であり、ゲインが1/4倍に設定されている状態でデジタル値S4が生成される。信号処理回路111は、これらのデジタル値をメモリ部109からメモリ112に適宜読み出す。
増幅回路104に設定された変更後のゲインをG(上記の例では1/4)とすると、信号処理回路111は、以下の式(8)~(10)に従って補正係数b、ゲイン補正値βG及びオフセット補正値αGをそれぞれ算出する。
b={(S3-N3)-(S1-N1)}/{(S4-N4)/G-(S2-N2)/G} …式(8)
βG=b/G …式(9)
αG=b(S2-N2)/G-(S1-N1) …式(10)
信号処理回路111は、このようにして算出したゲイン補正値βG及びオフセット補正値αGをメモリ112に格納する。信号処理回路111は、式(10)に代えて、以下の式(11)に従ってオフセット補正値αGを算出してもよい。
αG=b(S4-N4)/G-(S3-N3) …式(11)
本実施形態では、増幅信号Vampに基づいて増幅回路のゲインを補正することによって、さらに良好な直線性を有する固体撮像装置を実現できる。第2実施形態に対して、第1実施形態の第1変形例~第3変形例を組み合わせてもよい。
上述の各実施形態では、画素列ごとに補正値を算出し、画素値を補正する場合について説明した。これに代えて、画素列ごとに算出した補正値から平均値又は中間値を算出し、この値を複数の画素列からの画素値の補正に共通に用いてもよい。また、上述の各実施形態では、増幅回路104が2種類のゲインを切り替える場合について説明したが、これに限られず、増幅回路104は、3種類以上の複数のゲインを切り替えてもよい。この場合に、オフセット補正値、ゲイン補正値は、複数のゲインのそれぞれに対して設定される。
<第3実施形態>
図16を参照して、第3実施形態に係る撮像システムについて説明する。図16において、撮像システムは、レンズの保護のためのバリア151、被写体の光学像を撮像装置154に結像させるレンズ152、レンズ152を通った光量を可変にするための絞り153を有する。さらに撮像システムは、撮像装置154から出力される信号の処理を行う信号処理部155を有する。撮像装置154から出力される信号は、被写体を撮影した画像を生成するための撮像信号である。信号処理部155は撮像装置154から出力される撮像信号を必要に応じて各種の補正、圧縮を行って画像を生成する。レンズ152及び絞り153は撮像装置154に光を集光する光学系を構成する。
図16に例示した撮像システムはさらに、画像データを一時的に記憶する為のバッファメモリ部156、外部コンピュータ等と通信するための外部インターフェース部157を有する。さらに撮像システムは、撮像データの記録または読み出しを行うための半導体メモリ等の着脱可能な記録媒体159、記録媒体159に記録または読み出しを行うための記録媒体制御インターフェース部158を有する。さらに撮像システムは、各種演算とデジタルスチルカメラ全体を制御する制御・演算部1510を有する。
図16に示した撮像システムでは、第1実施形態及び第2実施形態で説明した信号処理回路111を、撮像装置154とは別の半導体基板上に設けられた信号処理部155が有する形態とすることができる。この形態の場合には、信号処理部155が、補正部を有する信号処理部である。この形態としても、本実施形態の撮像システムは、第1実施形態及び第2実施形態で説明した効果と同様の効果を得ることができる。他の形態として、第1実施形態及び第2実施形態で説明した信号処理回路111を、撮像装置154とは別の半導体基板上に設けられた制御・演算部1510が有する形態とすることもできる。この形態の場合には、制御・演算部1510が、補正部を有する信号処理部である。
本実施形態の上述の説明では、第1実施形態及び第2実施形態で説明した信号処理回路111を、撮像装置154の外部に有する形態としたが、一部の機能のみを撮像装置154の外部に有する形態としてもよい。例えば、信号処理回路111は、S1-N1、S2-N2、さらにS3-N3、S4-N4を撮像装置154の外部へと出力する。信号処理部155または制御・演算部1510がオフセット補正値αGおよびゲイン補正値βGを算出する。信号処理部155または制御・演算部1510は求めたオフセット補正値αGおよびゲイン補正値βGを撮像装置154が備える信号処理回路111に返す。撮像装置154の信号処理回路111はこれら補正値を用いて、画素信号読み出し動作を行う。このような形態としても、第1実施形態及び第2実施形態で説明した効果と同様の効果を得ることができる。
また、撮像装置154が設けられた半導体基板と、補正部である信号処理部155あるいは制御・演算部1510が設けられた別の半導体基板とが積層されていてもよい。
IM1~IM4 固体撮像装置、100 画素、104 増幅回路、105 判定回路、111 信号処理回路、111 信号処理回路

Claims (28)

  1. 入力されるアナログ信号を増幅する増幅回路と、
    前記増幅回路によって増幅された前記アナログ信号を、前記増幅回路に設定されたゲインに対応する第1補正値と、当該ゲインにおける前記増幅回路のオフセットに対応する第2補正値とを用いて補正する補正回路と、を備え、
    前記増幅回路は
    ナログ信号を異なる複数のゲインのそれぞれで増幅し、
    前記アナログ信号を増幅中にゲインを変更することを特徴とする固体撮像装置。
  2. 入力されるアナログ信号を増幅する増幅回路と、
    前記増幅回路によって増幅された前記アナログ信号を、前記増幅回路に設定されたゲインに対応する第1補正値と、当該ゲインにおける前記増幅回路のオフセットに対応する第2補正値とを用いて補正する補正回路と、を備え、
    前記増幅回路は
    ナログ信号を、第1ゲインと、前記第1ゲインとは異なる第2ゲインとを含む異なる複数のゲインのそれぞれで増幅し、
    リセット状態の画素から供給される画素リセット信号を前記第1ゲインで増幅し、
    前記補正回路は、
    前記第1ゲインで増幅された前記アナログ信号を、前記第1ゲインで増幅された画素リセット信号を用いて補正し、
    前記第2ゲインで増幅された前記アナログ信号を、前記第1補正値と、前記第2補正値と、前記第1ゲインで増幅された画素リセット信号とを用いて補正することを特徴とする固体撮像装置。
  3. 前記第2ゲインで増幅された前記アナログ信号の値をS、前記第1ゲインで増幅された前記画素リセット信号の値をN、前記第1補正値をβ、前記第2補正値をαとして、前記補正回路は、
    β×(S-N)-α
    に従って前記アナログ信号を補正することを特徴とする請求項に記載の固体撮像装置。
  4. 前記アナログ信号は、第1アナログ信号であり、
    前記増幅回路は更に、第2アナログ信号を異なる複数のゲインのそれぞれで増幅することを特徴とする請求項1乃至3の何れか1項に記載の固体撮像装置。
  5. 前記増幅回路は、前記第1アナログ信号を異なる複数のゲインのそれぞれで増幅した後、前記第2アナログ信号を異なる複数のゲインのそれぞれで増幅することを特徴とする請求項に記載の固体撮像装置。
  6. 記アナログ信号を異なる複数のゲインで増幅して得られた複数の信号のそれぞれをデジタル信号に変換するAD変換回路を更に備えることを特徴とする請求項1乃至の何れか1項に記載の固体撮像装置。
  7. 前記アナログ信号は、第1アナログ信号であり、
    前記増幅回路は更に、第2アナログ信号を異なる複数のゲインのそれぞれで増幅し、
    前記AD変換回路は更に、前記第2アナログ信号を異なる複数のゲインで増幅して得られた複数の信号のそれぞれをデジタル信号に変換することを特徴とする請求項に記載の固体撮像装置。
  8. 記アナログ信号を生成する画素を更に備えることを特徴とする請求項1乃至の何れか1項に記載の固体撮像装置。
  9. 前記第1補正値及び前記第2補正値のそれぞれは、前記アナログ信号を異なる複数のゲインで増幅して得られた複数の信号に基づいて決定されることを特徴とする請求項1乃至の何れか1項に記載の固体撮像装置。
  10. 前記アナログ信号は、第1アナログ信号であり、
    前記第1補正値及び前記第2補正値のそれぞれは、第2アナログ信号を異なる複数のゲインで増幅して得られた複数の信号に更に基づいて決定されることを特徴とする請求項に記載の固体撮像装置。
  11. 前記固体撮像装置は、
    前記入力されるアナログ信号として入射光に応じた画素信号を生成する複数の画素と、
    画素ごとに前記増幅回路のゲインを設定する設定回路と、を更に備えることを特徴とする請求項1乃至10の何れか1項に記載の固体撮像装置。
  12. 前記複数の画素が複数の列に渡って配され、
    前記複数の列のそれぞれに対応して、複数の前記増幅回路のそれぞれが配され、
    前記複数の増幅回路によって増幅された複数の前記画素信号に対して、前記補正回路は、共通の前記第1補正値と、共通の前記第2補正値とを用いて補正することを特徴とする請求項11に記載の固体撮像装置。
  13. 前記固体撮像装置は、増幅された前記アナログ信号をデジタル値に変換するAD変換回路を更に備え、
    前記補正回路は、デジタル値に変換された前記アナログ信号を補正することを特徴とする請求項1乃至12の何れか1項に記載の固体撮像装置。
  14. 前記増幅回路は、複数のゲインのそれぞれを用いてテスト信号を増幅することによって複数の増幅されたテスト信号を生成し、
    前記補正回路は、前記複数の増幅されたテスト信号に基づいて前記第2補正値を決定することを特徴とする請求項1乃至13の何れか1項に記載の固体撮像装置。
  15. 前記テスト信号は、リセット状態の画素から前記増幅回路に供給される信号であることを特徴とする請求項14に記載の固体撮像装置。
  16. 前記増幅回路は、複数のゲインのそれぞれを用いて、第1テスト信号と、前記第1テスト信号とは異なる値の第2テスト信号とを増幅することによって複数の増幅されたテスト信号を生成し、
    前記補正回路は、前記複数の増幅されたテスト信号に基づいて前記第1補正値を決定することを特徴とする請求項1乃至15の何れか1項に記載の固体撮像装置。
  17. 前記第1補正値及び前記第2補正値を保持するメモリを更に備え、
    前記補正回路は、前記メモリから読み出した前記第1補正値及び前記第2補正値を用いて、増幅された前記アナログ信号を補正することを特徴とする請求項1乃至16の何れか1項に記載の固体撮像装置。
  18. 増幅された前記アナログ信号と閾値との比較結果に基づいて前記増幅回路がゲインを変更すべきかを判定する設定回路を更に備えることを特徴とする請求項1乃至17の何れか1項に記載の固体撮像装置。
  19. 前記増幅回路は、前記増幅回路がゲインを変更すべきと前記設定回路が判定した場合に、ゲインを小さくすることを特徴とする請求項18に記載の固体撮像装置。
  20. 増幅された前記アナログ信号をクリップする回路を更に備えることを特徴とする請求項1乃至19の何れか1項に記載の固体撮像装置。
  21. 請求項1乃至20の何れか1項に記載の固体撮像装置と、
    前記固体撮像装置によって得られた画素値を処理する信号処理部と、
    を備えることを特徴とするカメラ。
  22. 入力されるアナログ信号を増幅する増幅回路を有する固体撮像装置と、
    前記増幅回路によって増幅された前記アナログ信号を補正するための第1補正値と第2補正値とを得る補正回路とを備える撮像システムであって、
    前記第1補正値は、前記増幅回路に設定されたゲインに対応する補正値であり、
    前記第2補正値は、当該ゲインにおける前記増幅回路のオフセットに対応する補正値であり、
    前記増幅回路は
    ナログ信号を異なる複数のゲインのそれぞれで増幅し、
    前記アナログ信号を増幅中にゲインを変更することを特徴とする撮像システム。
  23. 入力されるアナログ信号を増幅する増幅回路を有する固体撮像装置と、
    前記増幅回路によって増幅された前記アナログ信号を補正するための第1補正値と第2補正値とを得る補正回路とを備える撮像システムであって、
    前記第1補正値は、前記増幅回路に設定されたゲインに対応する補正値であり、
    前記第2補正値は、当該ゲインにおける前記増幅回路のオフセットに対応する補正値であり、
    前記増幅回路は
    ナログ信号を、第1ゲインと、前記第1ゲインとは異なる第2ゲインとを含む複数のゲインのそれぞれで増幅し、
    リセット状態の画素から供給される画素リセット信号を前記第1ゲインで増幅し、
    前記補正回路は、
    前記第1ゲインで増幅された前記アナログ信号を、前記第1ゲインで増幅された画素リセット信号を用いて補正し、
    前記第2ゲインで増幅された前記アナログ信号を、前記第1補正値と、前記第2補正値と、前記第1ゲインで増幅された画素リセット信号とを用いて補正することを特徴とする撮像システム。
  24. 前記固体撮像装置は、前記補正回路から前記第1補正値と前記第2補正値とが入力される信号処理回路を備え、
    前記信号処理回路は、前記第1補正値と前記第2補正値とを用いて、前記増幅回路に設定されたゲインで増幅された前記アナログ信号を補正することを特徴とする請求項22又は23に記載の撮像システム。
  25. 前記固体撮像装置は第1半導体基板に設けられ、
    前記補正回路は、前記第1半導体基板とは別の第2半導体基板に設けられていることを特徴とする請求項22乃至24の何れか1項に記載の撮像システム。
  26. 前記第1半導体基板と前記第2半導体基板とが積層されていることを特徴とする請求項25に記載の撮像システム。
  27. 固体撮像装置の制御方法であって、
    前記固体撮像装置は、入力されるアナログ信号を増幅する増幅回路を備え、
    前記制御方法は、
    前記増幅回路によって増幅された前記アナログ信号を、前記増幅回路に設定されたゲインに対応する第1補正値と、当該ゲインにおける前記増幅回路のオフセットに対応する第2補正値とを用いて補正する工程と、
    前記増幅回路によってアナログ信号を異なる複数のゲインのそれぞれで増幅し、前記アナログ信号を増幅中にゲインを変更する工程と、を有することを特徴とする制御方法。
  28. 固体撮像装置の制御方法であって、
    前記固体撮像装置は、入力されるアナログ信号を増幅する増幅回路を備え、
    前記制御方法は、
    前記増幅回路によって増幅された前記アナログ信号を、前記増幅回路に設定されたゲインに対応する第1補正値と、当該ゲインにおける前記増幅回路のオフセットに対応する第2補正値とを用いて補正する工程と、
    前記増幅回路によってアナログ信号を、第1ゲインと、前記第1ゲインとは異なる第2ゲインとを含む複数のゲインのそれぞれで増幅する工程と、
    前記増幅回路によって、リセット状態の画素から供給される画素リセット信号を前記第1ゲインで増幅する工程と、を有し、
    前記増幅回路によって増幅された前記アナログ信号を補正する工程は、
    前記第1ゲインで増幅された前記アナログ信号を、前記第1ゲインで増幅された画素リセット信号を用いて補正することと、
    前記第2ゲインで増幅された前記アナログ信号を、前記第1補正値と、前記第2補正値と、前記第1ゲインで増幅された画素リセット信号とを用いて補正することと、を含む
    ことを特徴とする制御方法。
JP2020122344A 2015-10-21 2020-07-16 固体撮像装置、その制御方法、撮像システム及びカメラ Active JP6998995B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015207496 2015-10-21
JP2015207496 2015-10-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016164065A Division JP6739288B2 (ja) 2015-10-21 2016-08-24 固体撮像装置、その制御方法、撮像システム及びカメラ

Publications (2)

Publication Number Publication Date
JP2020171061A JP2020171061A (ja) 2020-10-15
JP6998995B2 true JP6998995B2 (ja) 2022-01-18

Family

ID=58665574

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016164065A Active JP6739288B2 (ja) 2015-10-21 2016-08-24 固体撮像装置、その制御方法、撮像システム及びカメラ
JP2020122344A Active JP6998995B2 (ja) 2015-10-21 2020-07-16 固体撮像装置、その制御方法、撮像システム及びカメラ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016164065A Active JP6739288B2 (ja) 2015-10-21 2016-08-24 固体撮像装置、その制御方法、撮像システム及びカメラ

Country Status (2)

Country Link
JP (2) JP6739288B2 (ja)
CN (1) CN106973246B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019068267A (ja) 2017-09-29 2019-04-25 キヤノン株式会社 撮像装置、撮像システム、移動体
JP7361582B2 (ja) 2019-11-29 2023-10-16 キヤノン株式会社 光電変換装置、光電変換システムおよび輸送機器
JP2021121060A (ja) 2020-01-30 2021-08-19 キヤノン株式会社 半導体装置、システム、および機器
JP2022069132A (ja) 2020-10-23 2022-05-11 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP2022069136A (ja) 2020-10-23 2022-05-11 キヤノン株式会社 撮像装置、撮像システム及び撮像装置の駆動方法
JP2022069133A (ja) 2020-10-23 2022-05-11 キヤノン株式会社 光電変換装置、光電変換システム、移動体
JP2023023220A (ja) 2021-08-04 2023-02-16 キヤノン株式会社 光電変換装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080252A (ja) 2010-09-30 2012-04-19 Canon Inc 固体撮像装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053959A (ja) * 2006-08-23 2008-03-06 Matsushita Electric Ind Co Ltd 固体撮像装置
US7382298B1 (en) * 2007-01-17 2008-06-03 Analog Devices, Inc. Code-correction structures and methods for digital displays
JP2008236158A (ja) * 2007-03-19 2008-10-02 Olympus Imaging Corp 撮像モジュール
JP5246016B2 (ja) * 2009-04-24 2013-07-24 ソニー株式会社 Da変換装置、固体撮像素子、およびカメラシステム
US8310580B2 (en) * 2009-07-27 2012-11-13 Sony Corporation Solid-state imaging device and camera system for suppressing occurrence of quantization vertical streaks
WO2012043867A1 (en) * 2010-09-30 2012-04-05 Canon Kabushiki Kaisha Solid-state imaging apparatus
WO2013129225A1 (ja) * 2012-03-02 2013-09-06 三菱電機株式会社 画像処理装置及び方法
JP5893550B2 (ja) * 2012-04-12 2016-03-23 キヤノン株式会社 撮像装置及び撮像システム
JP5813067B2 (ja) * 2012-12-20 2015-11-17 キヤノン株式会社 撮像装置の駆動方法、デジタル信号の補正方法、撮像装置、撮像システムの駆動方法、撮像システム
CN104639850A (zh) * 2013-11-11 2015-05-20 联咏科技股份有限公司 图像感测装置及其黑阶控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080252A (ja) 2010-09-30 2012-04-19 Canon Inc 固体撮像装置

Also Published As

Publication number Publication date
JP2017079464A (ja) 2017-04-27
JP2020171061A (ja) 2020-10-15
CN106973246B (zh) 2020-05-01
CN106973246A (zh) 2017-07-21
JP6739288B2 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
JP6998995B2 (ja) 固体撮像装置、その制御方法、撮像システム及びカメラ
JP5034610B2 (ja) 固体撮像装置、固体撮像装置の信号処理方法および撮像装置
US9838637B2 (en) Solid-state image sensor, method of controlling the same, image sensing system, and camera
TWI404411B (zh) 固態成像裝置、其控制方法及相機系統
JP4929090B2 (ja) 固体撮像装置およびその駆動方法
US9800809B2 (en) Imaging apparatus, imaging system, and method for reducing a difference in resolutions
US9485445B2 (en) Imaging apparatus and method of driving the same
US20190036540A1 (en) Photoelectric conversion apparatus and image capturing system
JP5893550B2 (ja) 撮像装置及び撮像システム
US8218049B2 (en) Solid-state image sensing device, method for reading signal of solid-state image sensing device, and image pickup apparatus
US8174422B2 (en) Power-supply-noise cancelling circuit and solid-state imaging device
KR20050054843A (ko) 고체 촬상 장치와 촬상 방법
JP6562243B2 (ja) 撮像装置
JP2016042633A (ja) 撮像装置、撮像システム及び撮像システムの駆動方法
JP2016005054A (ja) 固体撮像装置
WO2009131018A1 (ja) イメージセンサー用a/d変換器
WO2011093225A1 (ja) 固体撮像装置、及び固体撮像装置の画素アレイから信号を読み出す方法
JP6666043B2 (ja) 撮像装置及び撮像システム
JP6808564B2 (ja) 信号処理装置及び方法、撮像素子、及び撮像装置
JP6529352B2 (ja) 撮像装置及び撮像システム
JP2012134666A (ja) 固体撮像装置
US20100110231A1 (en) Output control circuit and imaging device
JP2011109612A (ja) 固体撮像装置
JP4722582B2 (ja) 固体撮像装置
JP6320435B2 (ja) 撮像装置および撮像システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211221

R151 Written notification of patent or utility model registration

Ref document number: 6998995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151