JP6997617B2 - Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank - Google Patents

Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank Download PDF

Info

Publication number
JP6997617B2
JP6997617B2 JP2017252026A JP2017252026A JP6997617B2 JP 6997617 B2 JP6997617 B2 JP 6997617B2 JP 2017252026 A JP2017252026 A JP 2017252026A JP 2017252026 A JP2017252026 A JP 2017252026A JP 6997617 B2 JP6997617 B2 JP 6997617B2
Authority
JP
Japan
Prior art keywords
molten salt
temperature
electrolysis
molten
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017252026A
Other languages
Japanese (ja)
Other versions
JP2019116671A (en
Inventor
大輔 鈴木
文二 秋元
健人 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2017252026A priority Critical patent/JP6997617B2/en
Publication of JP2019116671A publication Critical patent/JP2019116671A/en
Application granted granted Critical
Publication of JP6997617B2 publication Critical patent/JP6997617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

この発明は、電解槽の内部を溶融塩浴とし、電解槽の内部で、電解室にて陽極および陰極を含む電極に通電して溶融塩を電気分解し、その電気分解により得られる溶融金属を貯留室へ流入させる溶融塩電解方法、それを用いる溶融金属の製造方法および、溶融塩電解槽に関するものであり、特には、電流効率の向上に寄与することのできる技術を提案するものである。 In the present invention, the inside of the electrolytic cell is a molten salt bath, and inside the electrolytic cell, an electrode including an anode and a cathode is energized to electrolyze the molten salt, and the molten metal obtained by the electrolysis is obtained. The present invention relates to a molten salt electrolysis method for flowing into a storage chamber, a method for producing a molten metal using the molten salt electrolysis method, and a molten salt electrolytic cell, and in particular, proposes a technique capable of contributing to an improvement in current efficiency.

たとえば、クロール法による金属チタンの製造に際し、副次的に生成される塩化マグネシウムは、溶融塩電解槽を用いて、電気分解により金属マグネシウムと塩素ガスとに分解され、それぞれ四塩化チタンの還元およびチタン鉱石の塩素化に用いられて再利用されることがある。 For example, magnesium chloride secondary to the production of metallic titanium by the Kroll process is decomposed into metallic magnesium and chlorine gas by electrolysis using a molten salt electrolytic tank, and the reduction of titanium tetrachloride and chlorine tetrachloride, respectively. It may be used for chlorination of titanium ore and reused.

この種の電気分解では一般に、電解槽の内部で塩化マグネシウム等の溶融塩を貯留させて溶融塩浴とし、電解槽の内部の溶融塩を貯留室から電解室へ流して、ここで電極への通電に基き、金属マグネシウム等の溶融金属と塩素等のガスとに分解する。電解室で生成された溶融金属は電解槽の内部で貯留室へとさらに循環して、溶融塩との密度差によって溶融塩浴の液面上に浮上した後に回収され、また、ガスは電解槽に設けられたガス排出通路を経て電解槽の外部に排出される。このような技術としては従来、特許文献1~4に記載されたもの等がある。 In this type of electrolysis, generally, a molten salt such as magnesium chloride is stored inside the electrolytic cell to form a molten salt bath, and the molten salt inside the electrolytic cell is flowed from the storage chamber to the electrolytic cell, where it is transferred to an electrode. Based on energization, it decomposes into molten metal such as metallic magnesium and gas such as chlorine. The molten metal generated in the electrolytic cell is further circulated inside the electrolytic cell to the storage chamber, floats on the liquid surface of the molten salt bath due to the density difference with the molten salt, and then recovered, and the gas is recovered in the electrolytic cell. It is discharged to the outside of the electrolytic cell through the gas discharge passage provided in. As such a technique, there are conventionally those described in Patent Documents 1 to 4.

ところで、電気分解の途中での溶融塩浴の温度低下は、電気分解により生成される溶融金属の固化に起因する短絡現象を引き起こすおそれがある。一方、溶融塩浴の温度上昇は、一度は電気分解した溶融金属とガスとが反応して溶融塩に戻る再反応性が増大し、金属回収率の低下を招く。これらに対処するため、溶融塩浴の温度を管理するべく、溶融塩電解槽の貯留室には、内部に流す気体等の流体と溶融塩浴との間で熱エネルギーを交換する管状等の熱交換器を、溶融塩浴に浸漬させて配置している。 By the way, a decrease in temperature of the molten salt bath during electrolysis may cause a short-circuit phenomenon due to solidification of the molten metal produced by electrolysis. On the other hand, when the temperature of the molten salt bath rises, the rereactivity of the molten metal once electrolyzed and the gas reacting to return to the molten salt increases, leading to a decrease in the metal recovery rate. In order to deal with these problems, in order to control the temperature of the molten salt bath, the heat of the tubular or the like that exchanges heat energy between the fluid such as gas flowing inside and the molten salt bath is stored in the storage chamber of the molten salt electrolytic tank. The exchanger is placed by immersing it in a molten salt bath.

特開2005-089801号公報Japanese Unexamined Patent Publication No. 2005-08901 特開2005-171357号公報Japanese Unexamined Patent Publication No. 2005-171357 特開2007-231388号公報Japanese Unexamined Patent Publication No. 2007-231388 特開2015-140459号公報JP-A-2015-140459

しかるに、上述したような溶融塩電解槽での電気分解時に主な発熱源となるのは、電極や、電極の間の箇所、また再反応が発生し得る箇所であり、それらはすべて電解室であるが、上述した熱交換器は、スペース上の制約等の理由から貯留室に配置されていた。そして、熱交換器内に冷却気体を流すことによって溶融塩浴の温度上昇を抑制する場合、貯留室の熱交換器が電解室の発熱源から離れて位置することから、発熱源から熱交換器までの領域の溶融塩浴の温度が所定の温度より上昇し、先述したように溶融塩の再反応が増大し、電流効率が低下するという問題があった。 However, the main heat sources during electrolysis in the molten salt electrolytic cell as described above are the electrodes, the locations between the electrodes, and the locations where re-reactions can occur, all of which are in the electrolytic cell. However, the above-mentioned heat exchanger is arranged in the storage chamber due to space limitations and the like. When the temperature rise of the molten salt bath is suppressed by flowing a cooling gas into the heat exchanger, the heat exchanger in the storage chamber is located away from the heat generation source in the electrolytic chamber, so that the heat exchanger is removed from the heat exchanger. There is a problem that the temperature of the molten salt bath in the above region rises above a predetermined temperature, the rereaction of the molten salt increases as described above, and the current efficiency decreases.

この発明は、従来技術が抱えるこのような問題を解決することを課題とするものであり、その目的は、溶融塩浴の温度制御を効果的に行って、電流効率を向上させることのできる溶融塩電解方法、それを用いる溶融金属の製造方法および、溶融塩電解槽を提供することにある。 An object of the present invention is to solve such a problem of the prior art, and an object thereof is melting which can effectively control the temperature of a molten salt bath and improve the current efficiency. It is an object of the present invention to provide a salt electrolysis method, a method for producing a molten metal using the same, and a molten salt electrolysis tank.

この発明の溶融塩電解方法は、電解槽の内部を溶融塩浴とし、その内部にて、陽極および陰極を含む電極が配置された電解室で、前記電極への通電に基いて溶融塩を電気分解し、当該電気分解により得られる溶融金属を貯留室に流入させる溶融塩電解方法であって、溶融塩の電気分解に際する溶融塩浴全体の温度制御を、少なくとも電解室での温度調整により行うことにある。 In the molten salt electrolysis method of the present invention, the inside of an electrolytic cell is a molten salt bath, and inside the molten salt bath, an electrode including an anode and a cathode is arranged, and the molten salt is electrolyzed based on the energization of the electrodes. It is a molten salt electrolysis method that decomposes and causes the molten metal obtained by the electrolysis to flow into the storage chamber. The temperature of the entire molten salt bath during the electrolysis of the molten salt is controlled at least by adjusting the temperature in the electrolytic cell. To do.

ここで、この発明の溶融塩電解方法では、溶融塩の電気分解の際に前記陽極および/または陰極の温度を変化させることにより、前記電解室の溶融塩浴の温度を調整することが好ましい。 Here, in the molten salt electrolysis method of the present invention, it is preferable to adjust the temperature of the molten salt bath in the electrolytic chamber by changing the temperature of the anode and / or the cathode during electrolysis of the molten salt.

この場合、前記陽極および/または陰極の温度の変化を、溶融塩浴からの当該電極の露出部分を冷却する冷却媒体の流量および/または温度の変更により行うことが好適である。なお、前記冷却媒体は液体とすることができる。
ここでは、溶融塩浴からの陽極の露出部分は、400℃以下にすることが好ましく、また、溶融塩浴からの陰極の露出部分は、400℃以下にすることが好ましい。
In this case, it is preferable to change the temperature of the anode and / or the cathode by changing the flow rate and / or temperature of the cooling medium that cools the exposed portion of the electrode from the molten salt bath. The cooling medium can be a liquid.
Here, the exposed portion of the anode from the molten salt bath is preferably 400 ° C. or lower, and the exposed portion of the cathode from the molten salt bath is preferably 400 ° C. or lower.

またこの場合、溶融塩の電気分解の際に、前記陽極および陰極のうち、少なくとも陽極の温度を変化させることが好適である。 In this case, it is preferable to change the temperature of at least the anode of the anode and the cathode during the electrolysis of the molten salt.

この発明の溶融塩電解方法は、溶融塩の電気分解に際する溶融塩浴の温度制御に、貯留室に配置した熱交換器をさらに用いることも可能である。
この場合、前記熱交換器を温度調整管とし、温度調整管の稼働率を50%以下とすることが好適である。
In the molten salt electrolysis method of the present invention, it is also possible to further use a heat exchanger arranged in the storage chamber for temperature control of the molten salt bath at the time of electrolysis of the molten salt.
In this case, it is preferable to use the heat exchanger as a temperature control tube and set the operating rate of the temperature control tube to 50% or less.

この発明の溶融金属の製造方法は、上記のいずれかの溶融塩電解方法を用いて、溶融塩から溶融金属を製造することにある。 The method for producing a molten metal of the present invention is to produce a molten metal from a molten salt by using any of the above-mentioned molten salt electrolysis methods.

この発明の溶融塩電解槽は、内部を溶融塩浴とし、その内部が、溶融塩を電気分解する電解室と、当該電気分解により得られる溶融金属が流入する貯留室とに区分けされた電解槽と、電解室に配置した陽極及び陰極を含む電極とを備えるものであって、電解室に、該電解室の溶融塩浴の温度を調整して溶融塩の電気分解に際する溶融塩浴全体の温度を制御する電解室温度調整手段を設けてなるものである。 The molten salt electrolysis tank of the present invention has an inside as a molten salt bath, and the inside thereof is divided into an electrolytic chamber for electrolyzing the molten salt and a storage chamber into which the molten metal obtained by the electrolysis flows. And an electrode including an anode and a cathode arranged in the electrolysis chamber, and the entire molten salt bath for electrolysis of the molten salt by adjusting the temperature of the molten salt bath in the electrolytic chamber in the electrolytic chamber. The electrolytic chamber temperature adjusting means for controlling the temperature of the above is provided.

この発明の溶融塩電解槽では、電解室温度調整手段を、溶融塩浴からの陽極および/または陰極の露出部分に冷却媒体を流して該露出部分を冷却する電極冷却機構とすることが好ましい。
この場合においては、前記電極冷却機構が、冷却媒体の流量および/または温度を溶融塩の電気分解の際に変更可能に構成されることが好適である。
In the molten salt electrolytic cell of the present invention, it is preferable that the electrolytic cell temperature adjusting means is an electrode cooling mechanism for cooling the exposed portion by flowing a cooling medium through the exposed portion of the anode and / or the cathode from the molten salt bath.
In this case, it is preferable that the electrode cooling mechanism is configured so that the flow rate and / or temperature of the cooling medium can be changed during the electrolysis of the molten salt.

この発明によれば、溶融塩の電気分解に際する溶融塩浴全体の温度制御を、少なくとも電解室での温度調整で行うことにより、主として発熱源となる電極、電極間および再反応箇所が存在する電解室を、その近傍で効果的に冷却することができるので、高い電流効率で溶融塩浴の温度制御を有効に抑制することができる。 According to the present invention, by controlling the temperature of the entire molten salt bath during electrolysis of the molten salt by at least adjusting the temperature in the electrolytic chamber, there are electrodes, inter-electrodes, and re-reaction points that are mainly heat sources. Since the electrolytic chamber to be electrolyzed can be effectively cooled in the vicinity thereof, the temperature control of the molten salt bath can be effectively suppressed with high current efficiency.

この発明の一の実施形態の溶融塩電解方法を実施することのできる溶融塩電解槽の一例を示す縦断面図である。It is a vertical sectional view which shows an example of the molten salt electrolysis tank which can carry out the molten salt electrolysis method of one Embodiment of this invention. 図1のII-II線に沿う部分断面図である。It is a partial cross-sectional view along the line II-II of FIG. 図1の溶融塩電解槽が備える陰極を、溶融塩電解槽から取り出して示す側面図及び斜視図である。FIG. 3 is a side view and a perspective view showing the cathode included in the molten salt electrolytic cell of FIG. 1 taken out from the molten salt electrolytic cell.

以下に図面を参照しつつ、この発明の実施の形態について詳細に説明する。
図1に例示する溶融塩電解槽1は、たとえば主としてAl23等の耐火煉瓦その他の適切な材料からなる容器形状を有し、その内部に供給された溶融塩からなる溶融塩浴で、溶融塩を電気分解するとともに、その電気分解により溶融金属が生成される電解槽2と、図2に図1のII-II線に沿う断面図で示すように、電解槽2内に溶融塩浴の深さ方向と平行に並べて配置した略平板形状の陽極3a及び陰極3bを含む電極3と、電解槽2内の温度調整を行う熱交換器としての温度調整管4とを備えてなる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The molten salt electrolytic cell 1 illustrated in FIG. 1 has a container shape mainly made of fire-resistant bricks such as Al 2 O 3 and other suitable materials, and is a molten salt bath made of molten salt supplied therein. The electrolytic cell 2 in which the molten salt is electrolyzed and the molten metal is generated by the electrolysis, and the molten salt bath in the electrolytic cell 2 as shown in the cross-sectional view taken along the line II-II of FIG. It is provided with an electrode 3 including a substantially flat plate-shaped anode 3a and a cathode 3b arranged side by side in the depth direction of the above, and a temperature adjusting tube 4 as a heat exchanger for adjusting the temperature in the electrolytic cell 2.

なおここでは、溶融塩を溶融塩化マグネシウム(MgCl2)とした場合を例として説明し、この場合、溶融塩化マグネシウムの電気分解により、図1に示すように、溶融金属として金属マグネシウム(Mg)が生成されるとともに、ガスとして塩素ガス(Cl2)が発生する。金属マグネシウムは、金属チタンを製造するクロール法における四塩化チタンの還元に、また塩素ガスは、同法におけるチタン鉱石の塩素化にそれぞれ用いることができる。この電気分解の原料とする塩化マグネシウムとしては、クロール法で副次的に生成されるものを使用可能である。但し、この発明の溶融塩電解方法は、溶融塩化カルシウム(CaCl2)、溶融塩化アルミニウム(AlCl3)、溶融塩化亜鉛(ZnCl2)等の他の溶融塩の電気分解にも用いることができる。 Here, a case where the molten salt is molten magnesium chloride (MgCl 2 ) will be described as an example. In this case, as shown in FIG. 1, metallic magnesium (Mg) is produced as the molten metal by electrolysis of the molten magnesium chloride. At the same time as being generated, chlorine gas (Cl 2 ) is generated as a gas. Metallic magnesium can be used for the reduction of titanium tetrachloride in the Kroll process for producing metallic titanium, and chlorine gas can be used for the chlorination of titanium ore in the same method. As the magnesium chloride used as a raw material for this electrolysis, those produced as a by-product by the Kroll process can be used. However, the molten salt electrolysis method of the present invention can also be used for electrolysis of other molten salts such as molten calcium chloride (CaCl 2 ), molten aluminum chloride (AlCl 3 ), and molten zinc chloride (ZnCl 2 ).

ここで、図示の溶融塩電解槽1は、電解槽2の内部に、図1に示すところでは図の略中央域に配置された隔壁5をさらに備えるものであり、かかる隔壁5により、電解槽2の内部が、図1の右側に位置して電極3が配置される電解室2aと、図1の左側に位置し、電解室2aでの電気分解により得られた溶融金属が流れ込んで該溶融金属が溶融塩との密度差により上方側に溜まる貯留室2bとに区画される。具体的には、この隔壁5は、電解槽2の上方側開口を覆蓋する、ここでは図示しない蓋部材に近接させて配置されることにより、電解槽2の下方側の底部との間に、貯留室2bから電解室2aへの溶融塩の移動を可能にする溶融塩循環路5aを形成する。また、隔壁5自体に貫通させて設けた溶融金属流路5bにより、電解室2aから貯留室2bへの溶融金属の流入が可能になる。 Here, the illustrated molten salt electrolytic cell 1 further includes a partition wall 5 arranged in the substantially central region of the figure as shown in FIG. 1 inside the electrolytic cell 2, and the electrolytic cell 5 further comprises a partition wall 5. The inside of 2 is located on the right side of FIG. 1 and the electrode 3 is arranged, and the molten metal located on the left side of FIG. 1 and obtained by electrolysis in the electrolytic cell 2a flows into the molten metal. The metal is partitioned into a storage chamber 2b where the metal accumulates on the upper side due to the difference in density from the molten salt. Specifically, the partition wall 5 is arranged close to a lid member (not shown here) that covers the upper opening of the electrolytic cell 2, so that the partition wall 5 is placed close to the lower bottom portion of the electrolytic cell 2. A molten salt circulation path 5a that enables the movement of the molten salt from the storage chamber 2b to the electrolytic cell 2a is formed. Further, the molten metal flow path 5b provided so as to penetrate the partition wall 5 itself enables the molten metal to flow from the electrolytic chamber 2a into the storage chamber 2b.

またここで、電解室2aに配置された電極3は、少なくとも、整流器等に接続された平板状その他の形状の陽極3a及び陰極3bを有し、たとえばMgCl2→Mg+Cl2等といった所定の反応に基き、陽極3aの表面で酸化反応により塩素等のガスが生じるとともに、陰極3bの表面で還元反応により金属マグネシウム等の溶融金属が生成される。
この溶融塩電解槽1では、電極3がさらに、図2に示すように、陽極3aと陰極3bとの間に配置されて、陽極3a及び陰極3b間への電圧の印加によって分極する、これも実質的に平板状等の二枚のバイポーラ電極3c、3dを有し、これにより電気分解の生成効率の向上等を図っているも、このようなバイポーラ電極3c、3dは必ずしも必要ではない。
Further, here, the electrode 3 arranged in the electrolytic chamber 2a has at least a flat plate-shaped or other shaped anode 3a and a cathode 3b connected to a rectifier or the like, and undergoes a predetermined reaction such as MgCl 2 → Mg + Cl 2 . Based on this, a gas such as chlorine is generated by an oxidation reaction on the surface of the anode 3a, and a molten metal such as metallic magnesium is generated by a reduction reaction on the surface of the cathode 3b.
In this molten salt electrolytic cell 1, as shown in FIG. 2, the electrode 3 is further arranged between the anode 3a and the cathode 3b, and is polarized by applying a voltage between the anode 3a and the cathode 3b. Although it has two bipolar electrodes 3c and 3d that are substantially flat and the like, thereby improving the efficiency of electrolysis generation and the like, such bipolar electrodes 3c and 3d are not always necessary.

このような溶融塩電解槽1を用いた溶融塩電解方法では、貯留室2bから溶融塩循環路5aを経て電解室2aに流動した溶融塩が電気分解されて、電解室2aで溶融金属が生成され、そしてこの溶融金属は、隔壁5の溶融金属流路5bを通って貯留室2bに流入し、その後、溶融塩に対する比重の小さい溶融金属は、貯留室2bの浅い箇所に浮上してそこに溜まることになり、これを図示しないポンプ等により回収することができる。したがって、ここでは、溶融塩から溶融金属を製造することができる。 In such a molten salt electrolysis method using the molten salt electrolysis tank 1, the molten salt that has flowed from the storage chamber 2b to the electrolytic chamber 2a via the molten salt circulation path 5a is electrolyzed to generate molten metal in the electrolytic chamber 2a. Then, the molten metal flows into the storage chamber 2b through the molten metal flow path 5b of the partition wall 5, and then the molten metal having a small specific gravity to the molten salt floats in a shallow part of the storage chamber 2b and there. It will accumulate and can be collected by a pump or the like (not shown). Therefore, here, the molten metal can be produced from the molten salt.

ところで、貯留室2b内に延びるように配置された温度調整管4は典型的には、溶融塩浴が所期した温度になるように、内部に気体その他の流体が流されて当該流体と溶融塩浴との間で熱エネルギーの交換を行う熱交換器等として機能するものである。それにより、溶融金属や溶融塩の温度を、溶融塩化マグネシウムの電気分解では一般に650~670℃の範囲、たとえば660℃といった所定の適切な範囲に管理して、溶融金属の固化に起因する短絡現象や、電気分解した溶融金属と塩素ガスが反応して溶融塩となる再反応性の増大を防止する。 By the way, the temperature control tube 4 arranged so as to extend into the storage chamber 2b is typically melted with the fluid by flowing a gas or other fluid inside so that the molten salt bath reaches the desired temperature. It functions as a heat exchanger or the like for exchanging heat energy with a salt bath. Thereby, the temperature of the molten metal and the molten salt is generally controlled in the range of 650 to 670 ° C., for example, 660 ° C. in the electrolysis of the molten magnesium chloride, and the short-circuit phenomenon caused by the solidification of the molten metal is controlled. In addition, it prevents the increase in rereactivity of the electrolyzed molten metal and chlorine gas to form a molten salt.

しかしながら、電気分解時に主な発熱源となる電極3や、陽極3aと陰極3bとの間、再反応が発生し得る箇所は電解室2aにあるのに対し、温度調整管4は貯留室2bに配置されていることから、発熱反応により所定の温度を超えた溶融塩浴の温度を低下させる場合、貯留室2bのこの温度調整管4で、発熱源の電解室2aを十分有効に冷却できるとは言い難い。したがって、溶融塩浴の温度制御を温度調整管4のみに依存していた従来の方法では、電流効率の観点から改善の余地があった。 However, while the electrode 3 which is the main heat generating source during electrolysis and the place where a re-reaction can occur between the anode 3a and the cathode 3b are in the electrolytic chamber 2a, the temperature control tube 4 is in the storage chamber 2b. Since it is arranged, when the temperature of the molten salt bath exceeding a predetermined temperature is lowered by an exothermic reaction, the temperature adjusting tube 4 of the storage chamber 2b can sufficiently effectively cool the electrolytic chamber 2a of the heating source. Is hard to say. Therefore, in the conventional method in which the temperature control of the molten salt bath depends only on the temperature control tube 4, there is room for improvement from the viewpoint of current efficiency.

このことに関し、この発明の実施形態では、溶融塩の電気分解時の溶融塩浴全体の温度制御を、少なくとも電解室2aでの温度調整により行うこととする。この場合、発熱源となる電解室2aの箇所を容易かつ効果的に冷却することができて、電流効率向上の観点から有利になる。 In this regard, in the embodiment of the present invention, the temperature of the entire molten salt bath at the time of electrolysis of the molten salt is controlled by at least the temperature adjustment in the electrolytic chamber 2a. In this case, the location of the electrolytic chamber 2a, which is the heat generation source, can be easily and effectively cooled, which is advantageous from the viewpoint of improving the current efficiency.

また、電解槽2内の溶融塩浴は、図1に示すように、貯留室2bから溶融塩循環路5aを経て電解室2aに流入し、さらに電解室2aから溶融金属流路5bを通って貯留室2bに流れて循環するところ、この発明の実施形態のように電解室2aで溶融塩浴の温度調整を行うことにより、従来は高温になりがちであった溶融金属流路5bを、比較的低温の溶融金属が流れるので、溶融金属流路5bも効果的に冷却することが可能になる。 Further, as shown in FIG. 1, the molten salt bath in the electrolytic tank 2 flows from the storage chamber 2b into the electrolytic chamber 2a via the molten salt circulation path 5a, and further from the electrolytic chamber 2a through the molten metal flow path 5b. When it flows to the storage chamber 2b and circulates, the molten metal flow path 5b, which has conventionally tended to be high in temperature, is compared by adjusting the temperature of the molten salt bath in the electrolytic chamber 2a as in the embodiment of the present invention. Since the molten metal at a relatively low temperature flows, the molten metal flow path 5b can also be effectively cooled.

電解室2aでの溶融塩浴の温度調整は具体的には、たとえば、溶融塩の電気分解の際に陽極3aおよび/または陰極3bの温度を変化させることで実現することができる。陽極3a及び陰極3bは、酸化消耗防止や浴漏れ防止等を目的として、その溶融塩浴からの露出部分3e、3fを、電極冷却機構を用いて、一定の流量および温度の水その他の液体または気体等の冷却媒体に接触させて冷却して一定の温度に維持する場合があるが、溶融塩浴の温度の変動に応じて、当該冷却媒体の流量および/または温度を変更することにより、陽極3aおよび/または陰極3bの温度を変化させることが好ましい。ここでは、当該電極冷却機構は電解室温度調整手段として機能する。 Specifically, the temperature adjustment of the molten salt bath in the electrolytic chamber 2a can be realized by, for example, changing the temperature of the anode 3a and / or the cathode 3b during the electrolysis of the molten salt. The anode 3a and the cathode 3b have exposed portions 3e and 3f from the molten salt bath for the purpose of preventing oxidative consumption and bath leakage, using an electrode cooling mechanism, water or other liquid having a constant flow rate and temperature, or It may be kept at a constant temperature by contacting it with a cooling medium such as gas to cool it, but by changing the flow rate and / or temperature of the cooling medium according to the fluctuation of the temperature of the molten salt bath, the anode It is preferable to change the temperature of 3a and / or the cathode 3b. Here, the electrode cooling mechanism functions as an electrolytic chamber temperature adjusting means.

なおここで、この溶融塩電解槽1では、陽極3aは、上方側開口を覆蓋する蓋部材より上方に位置する露出部分3eを、水冷もしくは空冷その他の方法により冷却することができ、また、陰極3bは、融塩電解槽1の側壁を貫通して側方に突出する露出部分3fを同様の方法にて冷却することができる。 Here, in the molten salt electrolytic cell 1, the anode 3a can cool the exposed portion 3e located above the lid member covering the upper opening by water cooling, air cooling or other methods, and the cathode. In 3b, the exposed portion 3f that penetrates the side wall of the molten salt electrolytic cell 1 and projects laterally can be cooled by the same method.

電極冷却機構による冷却媒体の流量および/または温度の変更により、カーボン等からなる陽極3aの酸化消耗防止のため、陽極3aの露出部分3eはカーボンの燃焼速度が遅くなる温度である400℃以下にすることが好ましい。電流効率向上のためには、陽極3aの露出部分3eを250℃以下にすることが好ましい。陽極3aの露出部分3eは、より好ましくは200℃以下とする。
また冷却媒体の流量および/または温度の変更により、浴漏れ防止のため、陰極3bの露出部分3fは溶融塩の凝固点である400℃以下にすることが好ましい。電流効率向上のためには、陰極3bの露出部分3fを120℃以下とすることが好ましい。陰極3bの露出部分3fは、より好ましくは80℃以下とする。
Due to the change of the flow rate and / or temperature of the cooling medium by the electrode cooling mechanism, the exposed portion 3e of the anode 3a is kept at 400 ° C. or lower, which is the temperature at which the combustion speed of carbon is slowed down, in order to prevent oxidative consumption of the anode 3a made of carbon or the like. It is preferable to do so. In order to improve the current efficiency, it is preferable to keep the exposed portion 3e of the anode 3a at 250 ° C. or lower. The exposed portion 3e of the anode 3a is more preferably 200 ° C. or lower.
Further, it is preferable that the exposed portion 3f of the cathode 3b is set to 400 ° C. or lower, which is the freezing point of the molten salt, in order to prevent bath leakage due to a change in the flow rate and / or temperature of the cooling medium. In order to improve the current efficiency, it is preferable that the exposed portion 3f of the cathode 3b is 120 ° C. or lower. The exposed portion 3f of the cathode 3b is more preferably 80 ° C. or lower.

電気分解の際に、陽極3aまたは陰極3bのいずれか一方のみの温度を変化させてもよいが、少なくとも、発熱量が多い陽極3aの温度は変化させることが好ましい。また、陰極3bの付近では電気分解によって溶融金属が生成されるので、陰極3bの温度を低下させすぎると、当該溶融金属の固化が生じることが懸念される。この観点からも、陽極3aの温度を変化させることが好適である。 At the time of electrolysis, the temperature of only one of the anode 3a and the cathode 3b may be changed, but at least the temperature of the anode 3a having a large calorific value is preferably changed. Further, since molten metal is generated by electrolysis in the vicinity of the cathode 3b, there is a concern that solidification of the molten metal may occur if the temperature of the cathode 3b is lowered too much. From this viewpoint as well, it is preferable to change the temperature of the anode 3a.

したがって、陽極3aおよび陰極3bのうちの陽極3aのみの温度を変化させることで溶融塩浴全体の温度を制御することができ、あるいは、陽極3aおよび陰極3bの両方の温度を変化させる場合、溶融塩浴全体の温度制御に、陰極3bに比して陽極3aの温度変化を積極的に用いることが好ましい。 Therefore, the temperature of the entire molten salt bath can be controlled by changing the temperature of only the anode 3a of the anode 3a and the cathode 3b, or when the temperatures of both the anode 3a and the cathode 3b are changed, the temperature is melted. It is preferable to positively use the temperature change of the anode 3a as compared with the cathode 3b for controlling the temperature of the entire salt bath.

なお、電極3の冷却に用いられて温度が上昇した水等の液体その他の冷却媒体は、空冷棚段式のクーリングタワーに送られて温度を低下させた後、再度ポンプ等で電極3に向けて送給することができる。この冷却媒体の送給ポンプを複数台とすれば、稼働数を増やすことによって流量を増加させることが可能である。
また、冷却媒体の送り方向で各電極3の手前には、バルブを設けることができ、これにより、電極3ごとに流量を調整することができる。
冷却媒体としての水を追加する場合、夏場でも10℃程度の低温である井水を使用することが有効である。
Liquids such as water and other cooling media whose temperature has risen used for cooling the electrode 3 are sent to an air-cooled shelf-stage cooling tower to lower the temperature, and then directed toward the electrode 3 again by a pump or the like. Can be sent. If a plurality of pumps for the cooling medium are used, it is possible to increase the flow rate by increasing the number of operating pumps.
Further, a valve can be provided in front of each electrode 3 in the feeding direction of the cooling medium, whereby the flow rate can be adjusted for each electrode 3.
When adding water as a cooling medium, it is effective to use well water having a low temperature of about 10 ° C. even in the summer.

たとえば、炭素鋼等からなる陰極3bには、内部に、図3(a)及び(b)に側面図及び斜視図で例示するように、陰極3bの露出部分3f側の端面で深さ方向の異なる位置に設けた二個の開口部のそれぞれから、それとは逆側の端面に向けて斜めに延びて途中でつながる孔状の冷媒用通路3gを設けることができる。これにより、気体等の冷却媒体を、冷媒用通路3gの一方の前記開口部から陰極3bの内部を経て他方の開口部へと流動させることができて、陰極3bを冷却することができる。陰極3bの内部での冷媒用通路3gの延在形態及び形状は図示のものに限定されないが、このような冷媒用通路3gは、露出部分3f側の端面からボーリングを行って内部でボーリング孔をつなげることにより形成することができる。 For example, in the cathode 3b made of carbon steel or the like, as illustrated in the side views and perspective views in FIGS. 3 (a) and 3 (b), the end face of the cathode 3b on the exposed portion 3f side is in the depth direction. From each of the two openings provided at different positions, a hole-shaped refrigerant passage 3g that extends diagonally toward the end face on the opposite side and is connected in the middle can be provided. As a result, a cooling medium such as a gas can flow from one opening of the refrigerant passage 3g through the inside of the cathode 3b to the other opening, and the cathode 3b can be cooled. The extending form and shape of the refrigerant passage 3g inside the cathode 3b is not limited to the one shown in the drawing, but such a refrigerant passage 3g is bored from the end surface on the exposed portion 3f side to form a boring hole inside. It can be formed by connecting them.

電極3のこのような温度変化に代えて又はそれに加えて、図示は省略するが、電解室2aの底部側から、電解室2aの溶融塩浴に、それよりも低温のアルゴンその他の不活性ガスを供給し、それにより、電解室2bの溶融塩浴の温度調整を行うことも可能である。このような電解室2aの溶融塩浴に不活性ガスを供給するための、図示しない配管等の機構もまた、電解室温度調整手段に相当する。 In place of or in addition to such temperature changes of the electrode 3, although not shown, argon or other inert gas at a lower temperature from the bottom side of the electrolytic chamber 2a to the molten salt bath of the electrolytic chamber 2a. It is also possible to adjust the temperature of the molten salt bath in the electrolytic chamber 2b. A mechanism such as a pipe (not shown) for supplying the inert gas to the molten salt bath of the electrolytic chamber 2a also corresponds to the electrolytic chamber temperature adjusting means.

上述したような電解室2aでの温度調整を行うことにより、貯留室2b内の温度調整管4等の熱交換器による温度調整は不要になることがある。この場合、貯留室2bから温度調整管4を除去して、溶融塩電解槽1が、温度調整管等の熱交換器を有しないものとすることもできる。
但し、電解室2aでの温度調整に加えて、補助的に温度調整管4等の熱交換器を用いることも可能である。温度調整管4を用いる場合、温度調整管4の稼働率は、電流効率向上の観点から、好ましくは50%以下、より好ましくは30%以下とする。
By adjusting the temperature in the electrolytic chamber 2a as described above, it may not be necessary to adjust the temperature by a heat exchanger such as the temperature adjusting tube 4 in the storage chamber 2b. In this case, the temperature control tube 4 may be removed from the storage chamber 2b so that the molten salt electrolytic cell 1 does not have a heat exchanger such as a temperature control tube.
However, in addition to the temperature control in the electrolytic chamber 2a, it is also possible to use a heat exchanger such as a temperature control tube 4 as an auxiliary. When the temperature control tube 4 is used, the operating rate of the temperature control tube 4 is preferably 50% or less, more preferably 30% or less, from the viewpoint of improving the current efficiency.

たとえば電解槽2の内部の各箇所の温度を確認し、電気分解の最中での、陽極3aおよび陰極3bのそれぞれの電極冷却機構、不活性ガス供給機構ならびに温度調整管4の使用割合の調整や不使用の選択等により、当該電気分解に応じた電流効率の最適化を達成することができる。 For example, by checking the temperature of each part inside the electrolytic cell 2, adjusting the usage ratio of the electrode cooling mechanism, the inert gas supply mechanism, and the temperature control tube 4 of the anode 3a and the cathode 3b during electrolysis. It is possible to achieve the optimization of the current efficiency according to the electrolysis by selecting or not using it.

次に、この発明の溶融塩電解方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的とするものであり、それに限定されることを意図するものではない。 Next, the molten salt electrolysis method of the present invention was carried out on a trial basis, and its effect was confirmed, which will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.

図1に示す溶融塩電解槽で、次の条件で、溶融塩化マグネシウムの電気分解を行った。溶融塩電解槽は、内壁がAl23の含有率が95%以上の煉瓦からなる電解槽で、電解室が2m3、貯留室が1m3であり、囲い型電極の電極構造で、黒鉛製の陽極及び陰極ならびに二枚のバイポーラ電極を用いて電気分解回数NをN=3とした。溶融塩浴の浴組成と質量については、MgCl2、CaCl2、NaCl、MgF2がそれぞれ質量比で20%、30%、49%、1%からなる溶融塩2900kgとし、溶融塩浴の目標維持温度を660℃とし、電流密度0.48A/cm2で通電し、6か月の期間にわたって運転を行った。理論マグネシウム生産量は21.8kg/hである。 In the molten salt electrolytic cell shown in FIG. 1, molten magnesium chloride was electrolyzed under the following conditions. The molten salt electrolytic cell is an electrolytic cell whose inner wall is made of brick with an Al 2 O 3 content of 95% or more. The number of electrolysis N was set to N = 3 using the anode and cathode made of the same product and two bipolar electrodes. Regarding the bath composition and mass of the molten salt bath, MgCl 2 , CaCl 2 , NaCl, and MgF 2 were set to 2900 kg of molten salt consisting of 20%, 30%, 49%, and 1% by mass ratio, respectively, and the target of the molten salt bath was maintained. The temperature was set to 660 ° C., the current was energized at a current density of 0.48 A / cm 2 , and the operation was carried out for a period of 6 months. The theoretical magnesium production is 21.8 kg / h.

このような電気分解において、比較例では、貯留室に配置した温度調整管のみを用いて溶融塩浴全体の温度を制御した。
これに対して実施例1では、電解室の陽極及び陰極の露出部分を水冷する電極冷却機構と温度調整管の両方を用いて溶融塩浴全体の温度を制御した。実施例2および3では、電解室の陽極の露出部分を水冷する電極冷却機構と温度調整管の両方を用いて溶融塩浴全体の温度を制御した。実施例4および5では、電解室の陰極の露出部分を水冷する電極冷却機構と温度調整管の両方を用いて溶融塩浴全体の温度を制御した。
In such electrolysis, in the comparative example, the temperature of the entire molten salt bath was controlled using only the temperature control tube arranged in the storage chamber.
On the other hand, in Example 1, the temperature of the entire molten salt bath was controlled by using both an electrode cooling mechanism for water-cooling the exposed portions of the anode and cathode of the electrolytic chamber and a temperature control tube. In Examples 2 and 3, the temperature of the entire molten salt bath was controlled by using both an electrode cooling mechanism for cooling the exposed portion of the anode of the electrolytic chamber with water and a temperature control tube. In Examples 4 and 5, the temperature of the entire molten salt bath was controlled by using both an electrode cooling mechanism for water-cooling the exposed portion of the cathode in the electrolytic chamber and a temperature control tube.

比較例および実施例1~5のそれぞれで、電気分解の間に、電極近傍の温度A、溶融金属流路の温度B、温度調整管近傍の温度Cおよび、溶融塩循環路の温度Dを測定したところ、表1に示す結果を得た。これらの温度A~Dは、K熱電対をアルミナ製の保護管に挿入し、溶融塩浴の温度を測定した。
また、比較例および実施例1~5の各電気分解での温度調整管の稼働率も表1に示す。この温度調整管の稼働率は、オンオフ制御である温度調整管の稼働率を意味し、電気分解を行った時間のうち、温度調整管が稼働していた時間の割合として算出したものである。
また、比較例および実施例1~5の各電気分解での電流効率の結果も表1に示す。この電流効率は、以下の式により算出したものであり、表1の「電流効率」は、比較例の電流効率を100とし、実施例1~5の電流効率を比較例1の電流効率に対する相対値で示したものである。
電流効率=電解槽から回収したマグネシウム質量/理論マグネシウム生産量
理論マグネシウム生産量は、ファラデーの法則から求める金属の理論生成量であり、以下の式により算出する。
理論マグネシウム生産量 =((電流(A)×通電時間(秒))/(マグネシウムイオンの電荷数n×ファラデー定数F))×(電気分解回数N)×マグネシウムの原子量
In Comparative Examples and Examples 1 to 5, during electrolysis, the temperature A near the electrode, the temperature B of the molten metal flow path, the temperature C near the temperature control tube, and the temperature D of the molten salt circulation path were measured. As a result, the results shown in Table 1 were obtained. For these temperatures A to D, a K thermocouple was inserted into a protective tube made of alumina, and the temperature of the molten salt bath was measured.
Table 1 also shows the operating rates of the temperature control pipes in each of the comparative examples and the electrolysis of Examples 1 to 5. The operating rate of this temperature control tube means the operating rate of the temperature control tube that is on / off controlled, and is calculated as the ratio of the time during which the temperature control tube was operating to the time during which the electrolysis was performed.
Table 1 also shows the results of current efficiency in each electrolysis of Comparative Examples and Examples 1 to 5. This current efficiency is calculated by the following formula, and in "Current efficiency" in Table 1, the current efficiency of Comparative Example is set to 100, and the current efficiencies of Examples 1 to 5 are relative to the current efficiency of Comparative Example 1. It is shown by a value.
Current efficiency = Magnesium mass recovered from the electrolytic cell / Theoretical magnesium production amount The theoretical magnesium production amount is the theoretical production amount of the metal obtained from Faraday's law, and is calculated by the following formula.
Theoretical magnesium production = ((current (A) x energization time (seconds)) / (magnesium ion charge number n x Faraday constant F)) x (electrolysis frequency N) x magnesium atomic weight

Figure 0006997617000001
Figure 0006997617000001

表1に示すところから、陽極及び陰極の電極冷却機構を用いた実施例1~5では、比較例に比して、温度A及びBが所期した値まで低下したこと、及び、電流効率が有効に向上したことが解かる。
よって、この発明によれば、電流効率の向上に寄与できることが解かった。
From the place shown in Table 1, in Examples 1 to 5 using the electrode cooling mechanism of the anode and the cathode, the temperatures A and B were lowered to the expected values and the current efficiency was higher than those in the comparative example. It can be seen that it has improved effectively.
Therefore, it was found that the present invention can contribute to the improvement of current efficiency.

1 溶融塩電解槽
2 電解槽
2a 電解室
2b 貯留室
3 電極
3a 陽極
3b 陰極
3c、3d バイポーラ電極
3e 陽極の露出部分
3f 陰極の露出部分
3g 冷媒用通路
4 温度調整管(鋼製器具)
5 隔壁
5a 溶融塩循環路
5b 溶融金属流路
GL 溶融塩浴の気液界面
1 Molten salt electrolytic cell 2 Electrolytic cell 2a Electrolytic cell 2b Storage chamber 3 Electrode 3a Anode 3b Cathode 3c, 3d Bipolar electrode 3e Exposed part of anode 3f Exposed part of cathode 3g Passage for refrigerant 4 Temperature control tube (steel equipment)
5 Partition 5a Molten salt circulation path 5b Molten metal flow path GL Gas-liquid interface of molten salt bath

Claims (12)

電解槽の内部を溶融塩浴とし、その内部にて、陽極および陰極を含む電極が配置された電解室で、前記電極への通電に基いて溶融塩の塩化マグネシウムを電気分解し、当該電気分解により得られる溶融金属の金属マグネシウムを貯留室に流入させる溶融塩電解方法であって、
前記溶融塩の電気分解に際する溶融塩浴全体の温度制御を、少なくとも電解室での温度調整により行い、
溶融塩の電気分解の際に前記陽極および/または陰極の温度を変化させることにより、前記電解室の溶融塩浴の温度を調整し、前記陽極および/または陰極の温度の変化を、溶融塩浴からの当該電極の露出部分を冷却する冷却媒体の流量および/または温度の変更により行い、
前記溶融塩浴の温度の変動に応じて、前記冷却媒体の流量および/または温度を変更する溶融塩電解方法。
The inside of the electrolytic cell is a molten salt bath, and inside the electrolytic cell, in an electrolytic chamber in which electrodes including an anode and a cathode are arranged, magnesium chloride in the molten salt is electrolyzed based on energization of the electrodes, and the electrolysis is performed. This is a molten salt electrolysis method in which metallic magnesium , which is a molten metal obtained in the above-mentioned method, is allowed to flow into a storage chamber.
The temperature of the entire molten salt bath during the electrolysis of the molten salt is controlled at least by adjusting the temperature in the electrolytic chamber .
By changing the temperature of the anode and / or the cathode during the electrolysis of the molten salt, the temperature of the molten salt bath in the electrolytic chamber is adjusted, and the temperature change of the anode and / or the cathode is changed by the molten salt bath. By changing the flow rate and / or temperature of the cooling medium that cools the exposed part of the electrode from
A molten salt electrolysis method in which the flow rate and / or temperature of the cooling medium is changed according to the fluctuation of the temperature of the molten salt bath .
前記溶融塩の電気分解により、前記貯留室で前記溶融金属が浮上して溜まる請求項1に記載の溶融塩電解方法。 The molten salt electrolysis method according to claim 1 , wherein the molten metal floats and accumulates in the storage chamber by electrolysis of the molten salt. 前記溶融塩の電気分解の際に、前記溶融金属及び前記溶融塩の温度を650℃~670℃の範囲に管理する請求項1又は2に記載の溶融塩電解方法。 The molten salt electrolysis method according to claim 1 or 2, wherein the temperature of the molten metal and the molten salt is controlled in the range of 650 ° C. to 670 ° C. at the time of electrolysis of the molten salt. 前記冷却媒体を、10℃以下の液体とする請求項1~のいずれか一項に記載の溶融塩電解方法。 The molten salt electrolysis method according to any one of claims 1 to 3, wherein the cooling medium is a liquid having a temperature of 10 ° C. or lower . 溶融塩浴からの陽極の露出部分を、400℃以下にする請求項1~のいずれか一項に記載の溶融塩電解方法。 The molten salt electrolysis method according to any one of claims 1 to 4, wherein the exposed portion of the anode from the molten salt bath is set to 400 ° C. or lower. 前記陰極が炭素鋼製または黒鉛製であり、溶融塩浴からの陰極の露出部分を、120℃以下にする請求項~5のいずれか一項に記載の溶融塩電解方法。 The molten salt electrolysis method according to any one of claims 1 to 5, wherein the cathode is made of carbon steel or graphite, and the exposed portion of the cathode from the molten salt bath is set to 120 ° C. or lower. 溶融塩の電気分解に際する溶融塩浴の温度制御に、貯留室に配置した熱交換器をさらに用いる請求項1~のいずれか一項に記載の溶融塩電解方法。 The molten salt electrolysis method according to any one of claims 1 to 6 , further comprising a heat exchanger arranged in a storage chamber for temperature control of the molten salt bath during electrolysis of the molten salt. 前記熱交換器を温度調整管とし、温度調整管の稼働率を50%以下とする請求項に記載の溶融塩電解方法。 The molten salt electrolysis method according to claim 7 , wherein the heat exchanger is a temperature control tube, and the operating rate of the temperature control tube is 50% or less. 請求項1~のいずれか一項に記載の溶融塩電解方法を用いて、溶融塩から溶融金属を製造する、溶融金属の製造方法。 A method for producing a molten metal, wherein the molten metal is produced from the molten salt by using the molten salt electrolysis method according to any one of claims 1 to 8 . 内部を溶融塩浴とし、その内部が、溶融塩の塩化マグネシウムを電気分解する電解室と、当該電気分解により得られる溶融金属の金属マグネシウムが流入する貯留室とに区分けされた電解槽と、電解室に配置した陽極及び陰極を含む電極とを備える溶融塩電解槽であって、
電解室に、該電解室の溶融塩浴の温度を調整して溶融塩の電気分解に際する溶融塩浴全体の温度を制御する電解室温度調整手段を設けられおり、
電解室温度調整手段が、溶融塩浴からの陽極および/または陰極の露出部分に冷却媒体を流して該露出部分を冷却する電極冷却機構を含み、
前記電極冷却機構が、冷却媒体の流量および/または温度を溶融塩の電気分解の際に変更可能に構成されており、
前記溶融塩浴の温度の変動に応じて、前記冷却媒体の流量および/または温度を変更することが可能な溶融塩電解槽。
The inside is a molten salt bath, and the inside is divided into an electrolytic cell that electrolyzes the molten salt magnesium chloride and a storage chamber into which the molten metal metal magnesium obtained by the electrolysis flows in, and electrolysis. A molten salt electrolytic cell provided with an anode and an electrode including a cathode arranged in a chamber.
The electrolytic chamber is provided with an electrolytic chamber temperature adjusting means for adjusting the temperature of the molten salt bath in the electrolytic chamber to control the temperature of the entire molten salt bath during electrolysis of the molten salt .
The electrolytic chamber temperature adjusting means includes an electrode cooling mechanism for cooling the exposed portion by flowing a cooling medium through the exposed portion of the anode and / or the cathode from the molten salt bath.
The electrode cooling mechanism is configured so that the flow rate and / or temperature of the cooling medium can be changed during the electrolysis of the molten salt.
A molten salt electrolytic cell capable of changing the flow rate and / or temperature of the cooling medium according to the fluctuation of the temperature of the molten salt bath.
貯留室に、前記電気分解により得られた前記溶融金属が浮上して溜まる箇所がある請求項10に記載の溶融塩電解槽。 The molten salt electrolytic cell according to claim 10 , wherein the storage chamber has a portion where the molten metal obtained by the electrolysis floats and accumulates . 前記陰極が炭素鋼製または黒鉛製である請求項10又は11に記載の溶融塩電解槽。 The molten salt electrolytic cell according to claim 10 or 11 , wherein the cathode is made of carbon steel or graphite .
JP2017252026A 2017-12-27 2017-12-27 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank Active JP6997617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017252026A JP6997617B2 (en) 2017-12-27 2017-12-27 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017252026A JP6997617B2 (en) 2017-12-27 2017-12-27 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Publications (2)

Publication Number Publication Date
JP2019116671A JP2019116671A (en) 2019-07-18
JP6997617B2 true JP6997617B2 (en) 2022-02-04

Family

ID=67304117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017252026A Active JP6997617B2 (en) 2017-12-27 2017-12-27 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Country Status (1)

Country Link
JP (1) JP6997617B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264758B2 (en) * 2019-07-30 2023-04-25 東邦チタニウム株式会社 Electrode, molten salt electrolysis device, molten salt electrolysis method, and metal production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084847A (en) 2005-09-20 2007-04-05 Sumitomo Titanium Corp METHOD AND DEVICE FOR PRODUCING Ti
JP2007231388A (en) 2006-03-02 2007-09-13 Sumitomo Titanium Corp Molten salt electrolysis method and molten salt electrolytic cell
JP2010504432A (en) 2006-09-22 2010-02-12 ノルスク・ヒドロ・アーエスアー Method for producing metal from molten chloride and electrolysis cell
JP2010116602A (en) 2008-11-13 2010-05-27 Toho Titanium Co Ltd Electrolytic apparatus for producing metal and operation method of the same
WO2016002377A1 (en) 2014-06-30 2016-01-07 東邦チタニウム株式会社 Metal production method and production method for high-melting-point metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084847A (en) 2005-09-20 2007-04-05 Sumitomo Titanium Corp METHOD AND DEVICE FOR PRODUCING Ti
JP2007231388A (en) 2006-03-02 2007-09-13 Sumitomo Titanium Corp Molten salt electrolysis method and molten salt electrolytic cell
JP2010504432A (en) 2006-09-22 2010-02-12 ノルスク・ヒドロ・アーエスアー Method for producing metal from molten chloride and electrolysis cell
JP2010116602A (en) 2008-11-13 2010-05-27 Toho Titanium Co Ltd Electrolytic apparatus for producing metal and operation method of the same
WO2016002377A1 (en) 2014-06-30 2016-01-07 東邦チタニウム株式会社 Metal production method and production method for high-melting-point metal

Also Published As

Publication number Publication date
JP2019116671A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US4592812A (en) Method and apparatus for electrolytic reduction of alumina
JP7017361B2 (en) Molten salt electrolytic cell
JP6997617B2 (en) Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP4342413B2 (en) Method for producing Ti or Ti alloy by Ca reduction
JP7129828B2 (en) Molten salt electrolysis method and metal magnesium production method
JP2009019250A (en) Method and apparatus for producing metal
JP2020193378A (en) Method of molten salt electrolysis and production method of magnesium metal
JP7061519B2 (en) Molten salt moisture reduction method, molten salt electrolysis method, and molten metal manufacturing method
JP7333223B2 (en) Molten salt electrolytic cell, method for forming molten salt solidified layer, method for manufacturing metal
JP7043275B2 (en) Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank
JP7206160B2 (en) A molten salt electrolytic bath and a method for producing metal using the same.
JP2010504432A (en) Method for producing metal from molten chloride and electrolysis cell
JP7458916B2 (en) Molten salt electrolysis method, metal magnesium manufacturing method, and magnesium chloride supply device
KR102023751B1 (en) Electrolytic cell for production of rare earth metals
JP2022183913A (en) Method for producing metal
JP2022072375A (en) Production method of magnesium metal
JPH024994A (en) Manufacture of neodymium or neodynium alloy
US2950236A (en) Electrolytic production of magnesium metal
JP7453109B2 (en) Passage section structure of melt feeding pipe and method for producing metal magnesium
JP7453044B2 (en) Molten salt electrolytic cell, metal manufacturing method, and method of using molten salt electrolytic cell
JP7076296B2 (en) Method of manufacturing molten metal and molten salt electrolytic cell
JP6933936B2 (en) Molten salt electrolytic cell
JPH0211676B2 (en)
JP2021021131A (en) Electrode, molten salt electrolytic device, molten salt electrolytic method, and metal production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211217

R150 Certificate of patent or registration of utility model

Ref document number: 6997617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150