JP6995022B2 - Vehicle course control method - Google Patents

Vehicle course control method Download PDF

Info

Publication number
JP6995022B2
JP6995022B2 JP2018138100A JP2018138100A JP6995022B2 JP 6995022 B2 JP6995022 B2 JP 6995022B2 JP 2018138100 A JP2018138100 A JP 2018138100A JP 2018138100 A JP2018138100 A JP 2018138100A JP 6995022 B2 JP6995022 B2 JP 6995022B2
Authority
JP
Japan
Prior art keywords
route
vehicle
course
angle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018138100A
Other languages
Japanese (ja)
Other versions
JP2020015349A (en
Inventor
義大 須田
孝幸 安藤
賢治 江尻
航 釘宮
冨士男 籾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Advanced Smart Mobility Co Ltd
Original Assignee
University of Tokyo NUC
Advanced Smart Mobility Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Advanced Smart Mobility Co Ltd filed Critical University of Tokyo NUC
Priority to JP2018138100A priority Critical patent/JP6995022B2/en
Publication of JP2020015349A publication Critical patent/JP2020015349A/en
Application granted granted Critical
Publication of JP6995022B2 publication Critical patent/JP6995022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明はバス等の決められた経路に沿って自動運転制御で走行する車両の進路制御方法に関し、特に決められた経路に障害物(イベント)を発見した場合の経路の変更方法に関する。 The present invention relates to a method of controlling the course of a vehicle traveling by automatic driving control along a predetermined route such as a bus, and particularly to a method of changing the route when an obstacle (event) is found on the determined route.

古くは、進路変更について近藤による考察(非特許文献1)がある。
国立研究開発法人新エネルギー産業技術開発機構(NEDO:New Energy Industrial Technology)のエネルギーITSプロジェクトが2008年から2013年まで推進された。その間に進路変更や障害物回避の制御目標生成の報告(非特許文献2)、車両の前後運動の数学モデルの報告(非特許文献3)及び車線維持の数学モデルの報告(非特許文献4)がされている。
In the olden days, there was a consideration by Kondo about the change of course (Non-Patent Document 1).
The Energy ITS project of the New Energy Industrial Technology Development Organization (NEDO) was promoted from 2008 to 2013. In the meantime, a report on the generation of control targets for course change and obstacle avoidance (Non-Patent Document 2), a report on a mathematical model of vehicle forward / backward movement (Non-Patent Document 3), and a report on a mathematical model for lane keeping (Non-Patent Document 4). Has been done.

その実用化に向けて、内閣府が主導する「戦略的イノベーション創造プログラム(SIP)」において、次世代公共交通システムの実用化の開発が推進され、車両の停車方法(特許文献1)、車両操舵装置(特許文献2)などの成果が出ている。
一方で、市販車両の自動化が進展してきており、障害物の回避経路を決定する方法(特許文献3)がある。
Toward its practical application, the "Strategic Innovation Creation Program (SIP)" led by the Cabinet Office promoted the development of practical application of next-generation public transportation systems, and the method of stopping vehicles (Patent Document 1) and vehicle steering. The results of the device (Patent Document 2) have been achieved.
On the other hand, automation of commercial vehicles is progressing, and there is a method of determining an obstacle avoidance route (Patent Document 3).

前記非特許文献1は、人の運転による車線乗り移り距離と最大進路角、最大横加速度を調べて、それを近似する三角関数表現の経路曲線を示している。 The non-patent document 1 examines a lane transfer distance, a maximum course angle, and a maximum lateral acceleration due to human driving, and shows a path curve expressed by a trigonometric function that approximates them.

前記非特許文献2は、人間の運転動作を基本とした危険感を考慮して目標生成アルゴリズムを提案している。 The non-patent document 2 proposes a target generation algorithm in consideration of a sense of danger based on human driving motion.

前記非特許文献3は、アクセル%、ブレーキ%に対する前後運動モデルを提案して実車との整合を報告している。 The non-patent document 3 proposes a front-back motion model for accelerator% and brake%, and reports matching with an actual vehicle.

前記非特許文献4は、開通前の高速道路で大型トラックを走らせて、道路構造と車両運動を対応づける実験をし、道路の曲率とカントと車速によって変化するハンドル中心変動を報告して、道路の曲率とカントに対応する必要舵角の算出式を示している。 In Non-Patent Document 4, a large truck is run on a highway before opening, an experiment of associating a road structure with a vehicle motion is performed, and a steering wheel center change that changes depending on a road curvature, a cant, and a vehicle speed is reported. The formula for calculating the required steering angle corresponding to the curvature and cant of is shown.

前記特許文献1は、最短距離でバス停に横づけする後軸路側車輪の軌跡の採り方とその軌跡を辿るためのハンドル角の出し方を示している。 The above-mentioned Patent Document 1 shows a method of taking a locus of a wheel on the rear axle road side to be laid on a bus stop at the shortest distance and a method of setting a steering wheel angle for following the locus.

前記特許文献2は、自重や道路の曲率などの状態変化および2軸車・3軸車・4軸車の車種違いに適応する車両操舵装置において目標コースを描きそれを辿る車両操舵装置を提供している。 The above-mentioned Patent Document 2 provides a vehicle steering device that draws and follows a target course in a vehicle steering device that adapts to changes in conditions such as own weight and road curvature and differences in vehicle types of 2-axle, 3-axle, and 4-axle vehicles. ing.

前記特許文献3は、車両の経路に障害物があるときに回避経路が決定され、この回避経路にさらに別の障害物があるときに前記回避経路を決定するための手順がもう一度適用される。無衝突の回避経路を見つけることが出来ないときには、残存制動距離と障害物からの残存距離との差の一番短い前記経路が選択される。 In Patent Document 3, the avoidance route is determined when there is an obstacle in the route of the vehicle, and the procedure for determining the avoidance route when there is yet another obstacle in the avoidance route is applied again. When a non-collision avoidance route cannot be found, the route having the shortest difference between the remaining braking distance and the remaining distance from the obstacle is selected.

特許第5981010号公報Japanese Patent No. 5981010 特許第6202700号公報Japanese Patent No. 6202700 特表2004-504216号公報Japanese Patent Publication No. 2004-504216

近藤政市著:基礎自動車工学(後期偏),養賢堂, 1967.4.p.151-158Masaichi Kondo: Basic Automotive Engineering (Late Bias), Yokendo, 1967.4.p.151-158 「車両周辺環境の変化に対応した危険感ポテンシャルと車両運動性能を考慮した自律走行のための制御目標生成」金子哲也ほか,自動車技術論文集,Vol.44, No.2, March 2013, No.20134252, p.759-764."Generation of control targets for autonomous driving considering the danger potential and vehicle kinetic performance in response to changes in the surrounding environment of the vehicle" Tetsuya Kaneko et al., Automotive Technology Papers, Vol.44, No.2, March 2013, No. 20134252, p.759-764. 「大型トラックの前後運動の同定とそのモデル化手法」籾山 冨士男ほか,自動車技術論文集,Vol.43,No.2,March 2012,No.20124209,p.211-216."Identification of back-and-forth motion of heavy-duty trucks and its modeling method" Fujio Hiyama et al., Automotive Technology Papers, Vol.43, No.2, March 2012, No.20124209, p.211-216. 「自度運転トラックのカント路車線維持解析とモデリング」籾山冨士男ほか,自動車技術論文集,Vol.45,No.6,November 20144800,p.1027-1034."Kant Road Lane Maintenance Analysis and Modeling of Self-driving Trucks" Fujio Hiyama et al., Automobile Technology Papers, Vol.45, No.6, November 20144800, p.1027-1034.

本発明は、自動運転システムにおいて本流相当の経路(バス路線などの決められた経路)と予定ないし予定外事象(イベント)とを円滑に結合させる課題の解決に関する。 The present invention relates to solving a problem of smoothly connecting a route corresponding to a main stream (a determined route such as a bus route) and a planned or unscheduled event (event) in an automatic driving system.

交通流を川の流れに例えると、本流があり、川筋変化があり、合流があり、分流がある。流れの中での流線変化、淀み、滞留を伴う流速変化がある。上記川筋変化は道路曲率の変化であり、流線変化は車線変更、合流は車線への侵入、分流は車線脱出になる。淀み・滞留は一時停止やバス停になる。 If you compare a traffic flow to a river flow, there is a main stream, there is a change in the river line, there is a confluence, and there is a diversion. There are streamline changes, stagnation, and flow velocity changes with stagnation in the flow. The above river line change is a change in road curvature, a streamline change is a lane change, a merging is an intrusion into a lane, and a divergence is a lane escape. Stagnation / retention will be a stop sign or a bus stop.

目的地までの旅程が決まれば、経路と曲率と勾配は決まる。決まった経路と曲率と勾配のどこかにバス停への進入・停止・脱出などの予定された事象があり、また障害物による車線変更などの予定外の事象が生じる。 Once the itinerary to the destination is decided, the route, curvature and slope will be decided. There are scheduled events such as entering, stopping, and exiting the bus stop somewhere on the fixed route, curvature, and slope, and unscheduled events such as lane changes due to obstacles occur.

自動運転車両の速度調整は前後運動モデルによって制御され、方向制御は横運動モデルによって制御されるので速度と方向の両方のモデルの同期を取る必要がある(課題1)。 Since the speed adjustment of the self-driving vehicle is controlled by the front-back motion model and the direction control is controlled by the lateral motion model, it is necessary to synchronize both the speed and direction models (Problem 1).

同期がとれないと狙いの場所を狙いの速度で通過する、或いは狙いの場所に止まることが出来ない。また途中に傷害物(イベント)がある場合には他の経路へ乗り移らねばならない場合が生じるが、旅程の経路が直線であれ曲線であれ、そこに障害物を回避するような適切な部分経路を嵌め込まれなければならない(課題2)。 If you cannot synchronize, you will not be able to pass the target location at the target speed or stop at the target location. Also, if there is an injury (event) on the way, you may have to transfer to another route, but whether the itinerary route is a straight line or a curved line, there is an appropriate partial route to avoid obstacles. Must be fitted (problem 2).

経路の過程で生じるイベントは前後と横の移動距離変化と速度変化は一様にはいけないので、それに柔軟に適応する部分経路でなければならない。(課題3) Events that occur in the course of the route must be partial routes that flexibly adapt to the front-back and lateral movement distance changes and velocity changes, as they cannot be uniform. (Problem 3)

例えば、幅寄せしてバス停に正確に停止する、或いは、荷役デッキに横付けする、或いは、交差点に進入して右左折レーンに入り停止線で停車する、或いは、隊列の巡航速度に合わせて隊列に参入する、或いは、速度調整しながら障害物を回避するなどの、速度調整をしながら経路を変更して狙った位置を決める(停止する)自動運転制御システムにおいて、希望の経路と速度と位置を同期させて制御することが要求される。 For example, you can squeeze and stop exactly at the bus stop, or you can lay it next to the cargo handling deck, or you can enter an intersection and enter the right / left turn lane and stop at the stop line, or you can join the platoon according to the cruising speed of the platoon. In an automatic driving control system that decides (stops) the target position by changing the route while adjusting the speed, such as entering or avoiding obstacles while adjusting the speed, the desired route, speed and position can be determined. It is required to be synchronized and controlled.

しかしながら、非特許文献1は、人の操作を近似する経路曲線を三角関数で記述することは有用なるも、道路線形にはめ込む方法や経路速度変化に適応する必要までは言及していない。 However, although it is useful to describe a route curve that approximates a human operation with a trigonometric function, Non-Patent Document 1 does not mention a method of fitting into a road alignment or a need to adapt to a change in route speed.

非特許文献2は、危険感ポテンシャルマップを作成し前方注視モデルと車両モデルの3要素を用いて経路生成するものであり、言い換えると、前方認識の仕方、前方注視モデルの使い方、車両モデルの3条件付で提供される経路を提供するものであるので、その3条件に拘束され実用上の自由度が制約される。 Non-Patent Document 2 creates a danger potential map and generates a route using three elements of a forward gaze model and a vehicle model. In other words, how to recognize the front, how to use the forward gaze model, and 3 of the vehicle model. Since it provides a route provided conditionally, it is constrained by the three conditions and the degree of freedom in practical use is restricted.

非特許文献3は、アクセル%とブレーキ%に対して生じる加速度を示すに留まり、目標速度、目標加速度に対応するアクセル%、ブレーキ%を求める方法までは言及していない。 Non-Patent Document 3 only shows the acceleration generated for the accelerator% and the brake%, and does not refer to the method of obtaining the target speed, the accelerator% corresponding to the target acceleration, and the brake%.

非特許文献4に示される「道路の曲率とカントに対応する必要舵角の算出式」は有用なるも、操舵系のヒステリシスのために変動するギヤレシオの変動への対処に問題がある。 Although the "calculation formula of the required steering angle corresponding to the curvature of the road and the cant" shown in Non-Patent Document 4 is useful, there is a problem in dealing with the fluctuation of the gear ratio which fluctuates due to the hysteresis of the steering system.

特許文献1はバス停への停車制御目的に限られており本発明が必要とする車線変更などへの適用を自在にする目的までは考慮されていない。 Patent Document 1 is limited to the purpose of controlling a stop at a bus stop, and does not consider the purpose of freely applying it to a lane change or the like required by the present invention.

特許文献2は操舵角を制御して目標コースを辿るもので、前後運動と関係づける方法や経路変更へ適応する方法までは言及していない。 Patent Document 2 follows a target course by controlling the steering angle, and does not mention a method of relating to anteroposterior motion or a method of adapting to a route change.

特許文献3は、操舵速度を変数とするクロソイド曲線を使用しているので、本発明が課題とする「目標経路のための操舵角」、換言すれば、決められた経路上に障害物が発見された場合の迅速な処理の解決にはならない。 Since Patent Document 3 uses a clothoid curve having a steering speed as a variable, an obstacle is found on a determined path, that is, a "steering angle for a target path", which is an object of the present invention. If it is done, it will not be a quick solution.

上記の課題を解決するため、本発明は、決められた経路に沿って自動運転制御で走行する車両の障害物を回避する進路制御方法であって、この進路制御方法は前記決められた経路の一部に部分経路を嵌め込むことで障害物を回避し、前記部分経路は基準となる部分経路が制御装置内に記憶され、車両の進路上に認識した障害物に合わせて前記基準となる部分経路の進路に沿った距離(L)と進路と直交する幅(D)を変更し、この変更された部分経路を前記決められた経路の一部に嵌め込むことを要旨とする。 In order to solve the above-mentioned problems, the present invention is a course control method for avoiding obstacles of a vehicle traveling by automatic driving control along a predetermined route, and this course control method is for the determined route. Obstacles are avoided by fitting a partial route into a part of the vehicle, and the reference partial route is stored in the control device for the partial route, and the reference portion is matched to the obstacle recognized on the vehicle path. The gist is to change the distance (L) along the course and the width (D) orthogonal to the course, and fit the changed partial route into a part of the determined route.

前記部分経路の進路に沿った距離(L)と進路と直交する幅(D)の変更は、車両の前後運動をつかさどる制御要素と横運動をつかさどる制御要素から決定する。 The change of the distance (L) along the course of the partial route and the width (D) orthogonal to the course is determined from the control element that controls the front-rear movement of the vehicle and the control element that controls the lateral movement.

前記前後運動をつかさどる制御要素は、例えば自重及び道路勾配を検出して計画車速に修正を加えて現実の交通流速に適合する要求加速度、要求減速度を算出し、この算出した速度に基づいて前記横運動をつかさどる制御要素が障害回避のための進路変更巾(D)によって生じる横加速度を算出し、その横加速度が許容横加速度に収まるように進路変更長さ(L)を算出する。 The control element that controls the back-and-forth motion detects, for example, its own weight and the road gradient, corrects the planned vehicle speed, calculates the required acceleration and the required deceleration that match the actual traffic flow velocity, and uses the calculated speed as the basis for calculating the required acceleration and deceleration. The control element controlling the lateral motion calculates the lateral acceleration generated by the course change width (D) for avoiding obstacles, and the course change length (L) is calculated so that the lateral acceleration falls within the allowable lateral acceleration.

本発明によれば、予定の経路を運行する車両の進路制御方法において、交通流に適応し、且つ経路途上で生じる経路の部分変更の必要に適応して走行することができる。 According to the present invention, in the course control method of a vehicle traveling on a planned route, it is possible to adapt to the traffic flow and to adapt to the need for partial change of the route occurring on the route.

前記経路の部分変更は予め部分経路を作成しておき、この部分経路の進路に沿った距離(L)と進路と直交する幅(D)を障害物に合わせて変更し、変更した部分経路を既定の決定経路に嵌め込むため、障害物に対する対応を迅速且つ安全に行うことができる。 To partially change the route, a partial route is created in advance, and the distance (L) along the route of this partial route and the width (D) orthogonal to the route are changed according to the obstacle, and the changed partial route is changed. Since it fits into the predetermined decision path, it is possible to respond quickly and safely to obstacles.

経路イベントに適応する進路制御システム構造の説明図Explanatory diagram of the route control system structure adapted to the route event 道路勾配を推定する方法の説明図Explanatory diagram of how to estimate the road slope 双曲線定数を指標とする加速性能曲線の説明図Explanatory diagram of acceleration performance curve using hyperbolic constant as an index 自重(車両総重量)を推定しアクセル開度を求める計算図表の説明図Explanatory diagram of a nomogram that estimates its own weight (gross vehicle weight) and obtains the accelerator opening 混合交通流の中での仮想先行車の考え方の説明図Explanatory diagram of the concept of a virtual preceding vehicle in a mixed traffic flow 必要ブレーキ%の求め方の説明図Explanatory diagram of how to find the required brake% 経路イベントモジュールの説明図Explanatory diagram of the route event module ハンドル角とハンドル遊びの説明図Explanatory drawing of handle angle and handle play ハンドル中立補正の方法の説明図Explanatory drawing of the method of handle neutrality correction センサ切替の仕方の説明図Explanatory diagram of how to switch sensors

以下、本発明の実施の形態を図1~10に基づいて説明する。
図1は、経路イベントに適応する進路制御システム構造の説明図である。上段に車速制御部、中断にGPSないし電子地図データによる経路をフィードフォワード項とする慣性航行部、下段にカメラ又はレーザーによって目標を捕らえ追跡する慣性航行部を示す。前後運動と横運動の位置と速度をIDで同期させるシステムである。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 10.
FIG. 1 is an explanatory diagram of a route control system structure adapted to a route event. The upper part shows the vehicle speed control unit, the inertial navigation part whose feed-forward term is the route by GPS or electronic map data for interruption, and the lower part shows the inertial navigation unit that captures and tracks the target by a camera or a laser. It is a system that synchronizes the position and speed of back-and-forth movement and lateral movement by ID.

上段部分について以下に記す。図1の(1)の部分で、積載による自重変化、道路の勾配とカントによって前後横方向への車両の運動が変わるので、それをオフラインないしオンラインで解析可能にしている。車輪速と前後加速度によって道路勾配を推定(図2)し、道路勾配とアクセル%によって自重を推定(図3及び図4)する。 The upper part is described below. In the part (1) of Fig. 1, the movement of the vehicle in the front-back and lateral directions changes depending on the change in its own weight due to loading, the slope of the road and the cant, so it is possible to analyze it offline or online. The road gradient is estimated by the wheel speed and the front-rear acceleration (Fig. 2), and the own weight is estimated by the road gradient and the accelerator% (FIG. 3 and 4).

図1の(2)の部分で、計画速度IDに従って速度制御するも仮想先行車を見立てて、単独走行の場合には自車の前を行く一般車両を“先行車”と捕らえ、及び隊列走行の場合には、隊列編成車両を“先行車”と捕らえる(図5)。 In the part (2) of Fig. 1, the speed is controlled according to the planned speed ID, but the virtual preceding vehicle is regarded as a virtual preceding vehicle. In the case of, the platooning vehicle is regarded as the "preceding vehicle" (Fig. 5).

図1の(3)の部分で、速度変化を加速度変数でアクセル%(図4)、ブレーキ%(図6)を計算し、それに坂路抵抗を加算し、実車に入力して速度を得る。但し、仮想先行車がありそれに追随する場合は仮想先行車の速度になる。この速度が横運動に入力される。 In the part (3) of FIG. 1, the accelerator% (FIG. 4) and the brake% (FIG. 6) are calculated for the speed change by the acceleration variable, the slope resistance is added to it, and the speed is input to the actual vehicle to obtain the speed. However, if there is a virtual preceding vehicle and it follows it, the speed will be the speed of the virtual preceding vehicle. This velocity is input to the lateral motion.

図1の中段部分について以下に記す。(4)の部分で、予め経路の全行程のGPS座標を収集して進路曲線式y=F(t)を作成する。その式を曲率式ρに変換してフィードフォワード項とする。 The middle part of FIG. 1 is described below. In the part (4), the GPS coordinates of the entire route are collected in advance to create the course curve equation y = F (t). The equation is converted into the curvature equation ρ to be the feed forward term.

図1の(5)の部分に、障害物回避や追い越しなどのための車線変更式を経路イベントモジュール(図7)として用意する。本来の経路の曲率ρ_routsに部分変更部の曲率ρ_part をIDで同期させて両曲率の微分(即ち経路角)の和ρ_plusをとることによって、直線部でも曲線部でも自在に連続する進路変更が可能になる。 In the part (5) of FIG. 1, a lane change type for avoiding obstacles and overtaking is prepared as a route event module (FIG. 7). By synchronizing the curvature ρ _part of the partially changed part with the curvature ρ _routs of the original path by ID and taking the sum ρ _plus of the derivatives of both curvatures (that is, the path angle), the course can be freely continuous in both the straight part and the curved part. Can be changed.

図1の(6)の部分で、この曲率ρ_plusと車速によって生じる横加速度と、道路横断勾配(カントξ)をρ_plusと共にハンドル角の式(7)(図8)に代入してハンドル角を算出する。それに(8)ブロックによるハンドル中立位置補正(図9)を加え実車操舵モータへ入力する。 In the part (6) of FIG. 1, the lateral acceleration generated by this curvature ρ _plus and the vehicle speed, and the road crossing gradient (cant ξ) are substituted into the handle angle equation (7) (FIG. 8) together with ρ _plus to handle the handle angle. Is calculated. (8) Steering wheel neutral position correction by block (Fig. 9) is added and input to the actual vehicle steering motor.

図1の(9)で実車が走り前後加速度Gx、横加速度Gy、ヨーレイトγが生じる。(10)にてGx,Gyを積分して前後速度Vx、横速度Vyを得て、VyをVxで除して、横すべり角β (11)、速度V(12)を得る。 In (9) of FIG. 1, the actual vehicle runs and the front-rear acceleration Gx, the lateral acceleration Gy, and the yaw rate γ are generated. In (10), Gx and Gy are integrated to obtain the front-back velocity Vx and the lateral velocity Vy, and Vy is divided by Vx to obtain the lateral slip angle β (11) and the velocity V (12).

尚、図1の(12)のVはGPSによる(V)でも良い。そのGPSで求められる速度(V)を車輪速から求められる車速(Vx)を用いて、β=cos-1 Vx/V から求めても良い。或いは、横加速度(Gy)とヨーレイト(γ)から、β=∫(Gy/V-γ)の関係から求めても良い。 The V in (12) in FIG. 1 may be (V) by GPS. The speed (V) obtained by the GPS may be obtained from β = cos -1 Vx / V using the vehicle speed (Vx) obtained from the wheel speed. Alternatively, it may be obtained from the relationship of β = ∫ (Gy / V-γ) from the lateral acceleration (Gy) and the yaw rate (γ).

横すべり角βとヨー角Φの和の余弦と正弦に車速を乗じて図1の(13)に示す慣性航法による座標Xpos,Yposを得る。この座標は、GPSデータから取得しても良い。目標軌跡の曲率に横加速度を乗じると目標軌跡の線形から生じるヨーレイト(14)になる。この軌跡のヨーレイトと車両のヨーレイトの差を積分すると軌跡角と車両姿勢角の角度偏差e3(15)が求まる。このe3はGPS目標軌跡と現在地点GPSデータから得られる車両姿勢角との差から求めても良い。慣性航法によるYposとGPSによるYと画像又はレーザーによるYposとの横偏差e2(16)が求まる。 Multiply the cosine and sine of the sum of the sideslip angle β and the yaw angle Φ by the vehicle speed to obtain the coordinates Xpos and Ypos by inertial navigation shown in (13) of FIG. These coordinates may be obtained from GPS data. Multiplying the curvature of the target locus by the lateral acceleration yields the yaw rate (14) resulting from the alignment of the target locus. By integrating the difference between the yaw rate of this locus and the yaw rate of the vehicle, the angle deviation e3 (15) between the locus angle and the vehicle attitude angle can be obtained. This e3 may be obtained from the difference between the GPS target locus and the vehicle attitude angle obtained from the current position GPS data. The lateral anomaly e2 (16) between Ypos by inertial navigation, Y by GPS, and Ypos by image or laser can be obtained.

このe2(16)はGPS目標軌跡座標とGPSデータから得られる現在地座標との差から求めても良い。横偏差e2、角度偏差e3を、修正舵角式の式(17)に代入して制御定数を乗じて(18)のハンドル角を調整する。 This e2 (16) may be obtained from the difference between the GPS target trajectory coordinates and the current location coordinates obtained from the GPS data. Substitute the lateral deviation e2 and the angle deviation e3 into the modified rudder angle equation (17) and multiply by the control constant to adjust the handle angle of (18).

下段部分について以下に記す。前方Xposの目標点の横偏差Ypos、角度偏差Φxyをカメラ又はレーザーセンサによって得る。このXpos,Ypos,Φxy から曲率ρを求め、このρをフィードフォワード項として中断の(6)・・・(17)の工程を辿る。中段部分におけるGPS軌跡による曲率ρから下段部分におけるXpos,Ypos,Φxyから曲率ρへ、或いはその逆への切替は図10による The lower part is described below. The lateral deviation Ypos and the angle deviation Φxy of the target point of the forward Xpos are obtained by a camera or a laser sensor. The curvature ρ is obtained from these Xpos, Ypos, and Φxy, and the process of interruption (6) ... (17) is followed with this ρ as the feed forward term. Switching from the curvature ρ due to the GPS trajectory in the middle part to the curvature ρ from Xpos, Ypos, Φxy to the curvature ρ in the lower part, or vice versa, is as shown in FIG.

図2は、車輪速と前後加速度によって道路勾配を推定する方法の説明図である。静止時の加速度計よみ値は、重力加速度(9.81)に坂道勾配の正弦を乗じた値になり、式(1)のように記述される。 FIG. 2 is an explanatory diagram of a method of estimating a road gradient based on wheel speed and front-rear acceleration. The accelerometer reading value at rest is the value obtained by multiplying the gravitational acceleration (9.81) by the sine and cosine of the slope gradient, and is described as in Eq. (1).

Figure 0006995022000001
Figure 0006995022000001

走行時の加速度計よみ値は、車輪加速度成分が重畳した値になり、式(2)のように記述される。 The accelerometer reading value during running is a value on which the wheel acceleration component is superimposed, and is described as in the equation (2).

Figure 0006995022000002
Figure 0006995022000002

式(2)から坂道勾配は式(3)になる。 From equation (2), the slope slope becomes equation (3).

Figure 0006995022000003
Figure 0006995022000003

図2の下段に示すブロック図のように、加速度センサから前後加速度を取込みプロペラシャフトの回転速度ないし車輪回転速度を取り込み、リアルタイムでの道路勾配検出が可能である。 As shown in the block diagram shown in the lower part of FIG. 2, it is possible to detect the road gradient in real time by taking in the front-rear acceleration from the acceleration sensor and taking in the rotation speed or the wheel rotation speed of the propeller shaft.

図3は、加速性能曲線の説明図であり、図4は、自重を推定する方法の説明図である。図3により加速性能実験を実施して、図4に示す計算図表を作成して自重推定に供する。 FIG. 3 is an explanatory diagram of an acceleration performance curve, and FIG. 4 is an explanatory diagram of a method of estimating its own weight. An acceleration performance experiment is carried out according to FIG. 3, and a nomogram shown in FIG. 4 is prepared and used for self-weight estimation.

図3は、日本工業規格JIS D 1014(自動車加速試験方法)および JIS D 1015(自動車惰行試験方法)に準じて実施している。図の左側に空積載での惰行実験結果とアクセル100%での加速実験結果を示し、図の右側に定積載での惰行実験結果とアクセル100%での加速実験結果を示す。横軸が車速、縦軸が加速度である。加速実験結果はプラス側、惰行実験結果はマイナス側に出る。マイナス側に出る惰行実験結果の符合をプラスに変えて加速実験結果に重ねると双曲線Y=aXになる。”a”は双曲線定数である。車速”X”に、双曲線定数”a”を乗ずると加速度”Y”を求めることができる。この実験を、アクセル%と積載量をパラメータにして実施して、車両総重量(x)とアクセル開度(y)と双曲線定数(z)として、xyz軸で構成する計算図表にすると図4になる。 FIG. 3 is carried out in accordance with Japanese Industrial Standards JIS D 1014 (automobile acceleration test method) and JIS D 1015 (automobile coasting test method). The left side of the figure shows the coasting experiment result with empty loading and the acceleration experiment result with 100% accelerator, and the right side of the figure shows the coasting experiment result with constant loading and the acceleration experiment result with 100% accelerator. The horizontal axis is the vehicle speed and the vertical axis is the acceleration. The acceleration experiment result is on the plus side, and the coasting experiment result is on the minus side. If the sign of the coasting experiment result on the minus side is changed to plus and superimposed on the acceleration experiment result, a hyperbola Y = aX is obtained. "A" is a hyperbolic constant. The acceleration "Y" can be obtained by multiplying the vehicle speed "X" by the hyperbolic constant "a". This experiment is carried out with the accelerator% and the load capacity as parameters, and the gross vehicle weight (x), the accelerator opening (y), and the hyperbolic constant (z) are shown in FIG. Become.

この計算図表から、下の式(4)にアクセル%の値(y)を代入することにより自重、即ち車両総重量(xL)求めることができる。 From this nomogram, the own weight, that is, the gross vehicle weight (x L ) can be obtained by substituting the value (y) of the accelerator% into the following equation (4).

Figure 0006995022000004
Figure 0006995022000004

図5は混合交通流の中での仮想先行車の考え方の説明図である。アクセルの赴くままに走るならアクセル%に対して生じるエンジントルクと車両質量と走行抵抗の関係で生じる加速度で走るのであるが、混合交通流の中では先行する他車があり信号などによって自由が制限され加速度変化を余儀なくされる。その変化の全体を仮想先行車と見做す。隊列走行の場合の仮想先行車は、現実先行車に置き換わる。 FIG. 5 is an explanatory diagram of the concept of a virtual preceding vehicle in a mixed traffic flow. If you run with the accelerator going, you will run at the acceleration generated by the relationship between the engine torque generated for the accelerator%, the vehicle mass and the running resistance, but in the mixed traffic flow there are other vehicles ahead and freedom is restricted by signals etc. It is forced to change the acceleration. The whole change is regarded as a virtual preceding vehicle. The virtual preceding vehicle in the case of platooning is replaced with the actual preceding vehicle.

自車の前を行く車両と自車との車間距離は、カメラ・レーザー等によって検出できる。その変化を捉えれば、車間加速度が分かり、それに自車加速度を加えれば、先行車加速度が分かるので、先行車との加速度差異の補償の加速度(A)と目標車間との差異を補償する加速度(B)および遅れ補償(C)の和の加速度を制御量とする車間距離制御ができる。この制御量を要求加速度としてそれに応えるアクセル%を下の式(5)によって求める。 The distance between the vehicle in front of the vehicle and the vehicle can be detected by a camera, a laser, or the like. If you capture the change, you can find the acceleration between vehicles, and if you add the acceleration of your own vehicle, you can find the acceleration of the preceding vehicle. Inter-vehicle distance control can be performed using the acceleration of the sum of B) and delay compensation (C) as the control amount. Using this controlled amount as the required acceleration, the accelerator% corresponding to the required acceleration is obtained by the following equation (5).

Figure 0006995022000005
Figure 0006995022000005

式(5)において、アクセル開度(%)yは、xlに予め求めた車両総重量(自重)を代入し、Zxyに“車速(m/s^2)×加速度(m/s^2)”を代入して求められる。
アクセル開度100%におけるAxから現在のアクセル開度Y%におけるZxyを差し引いた値“Ax-Zxy”が余剰牽引力に相当する余剰加速度になる。尚、この加速度は”実測値+惰行減速度+勾配抵抗“相当の加速度である。
In equation (5), the accelerator opening (%) y is obtained by substituting the gross vehicle weight (own weight) obtained in advance into x l , and "vehicle speed (m / s ^ 2) x acceleration (m / s ^ 2)" in Zxy. ) ”Is calculated by substituting.
The value "Ax-Zxy" obtained by subtracting Zxy at the current accelerator opening Y% from Ax at 100% accelerator opening is the surplus acceleration corresponding to the surplus traction force. It should be noted that this acceleration is an acceleration equivalent to "actual measurement value + coasting deceleration + gradient resistance".

図6は、必要ブレーキ%の求め方の説明図である。4軸大型トラックの実測例である。発生する減速度の大きさはトランスミッションギヤ位置に依存するので、ここではトランスミッションギヤが11速の場合について、リターダブレーキを相乗させる効果を示している。この図から要求減速度の実験式を用意し、これに坂路勾配抵抗を加算して制御に供する。 FIG. 6 is an explanatory diagram of how to obtain the required brake%. This is an actual measurement example of a 4-axis heavy-duty truck. Since the magnitude of the deceleration that occurs depends on the position of the transmission gear, the effect of synergizing the retarder brake is shown here when the transmission gear is in 11th speed. An empirical formula for the required deceleration is prepared from this figure, and the slope resistance is added to this for control.

図7は、経路イベントモジュールの説明図である。図の右上にモジュール曲線を示す。距離Lm走行する間に横へDm移動する“進路変更の要素曲線”である。横移動に伴う経路進路角を式(6)とする。 FIG. 7 is an explanatory diagram of the route event module. The module curve is shown in the upper right of the figure. It is an "element curve of course change" that moves Dm sideways while traveling a distance of Lm. The route course angle associated with lateral movement is given by Eq. (6).

Figure 0006995022000006
Figure 0006995022000006

ここにTは進路変更の所要時間である。車速v、時間Tで前後Lm、横Dmの移動する単位要素即ちモジュールである。予定された“或る経路”を走行中に障害を回避する必要などのイベントが生じる。或る経路の経路角をΦrouteとしモジュールの経路角をΦpartとすると回避経路の進路角は「Φroute+Φpart」になる。その経路計算の方法を図の中央に示す。このように障害回避などのイベントに対応する経路の経路角は「Φroute+Φpart」になり、この経路を通過する際の横加速度は、式(7)になるので、横加速度を許容する車速で走行する制御が自在になる。 Here, T is the time required for changing the course. It is a unit element, that is, a module that moves forward and backward Lm and lateral Dm at vehicle speed v and time T. Events such as the need to avoid obstacles occur while driving on a planned "certain route". If the route angle of a certain route is Φroute and the route angle of the module is Φpart, the route angle of the avoidance route is “Φroute + Φpart”. The method of route calculation is shown in the center of the figure. In this way, the path angle of the route corresponding to the event such as obstacle avoidance is "Φroute + Φpart", and the lateral acceleration when passing through this route is equation (7). You can freely control the running.

Figure 0006995022000007
Figure 0006995022000007

図8はハンドル角とハンドル遊びの説明図である。この図は、前軸の左右輪をそれぞれターンテーブルに乗せて操舵した場合の操舵角に対する操舵トルク変化の実車計測値である。操舵角±100°の場合を太線で示し、前輪タイヤ切れ角を左右に最大切れ角まで操舵する“ロックツーロック操舵”の場合を細線で示す。
ロックツーロックのヒステリシスループの中に、±100°操舵のヒステリシスループが収まっている。ヒステリシスの巾がロックツーロックの場合で±16°、±100°操舵の場合で±8°ある。操舵角に対する実舵角変化の勾配がギヤ比になるが、ロックツーロックでのギヤ比は24、±100°操舵でのギヤ比は28と読み取れ、ギヤ比は操舵角に反比例して変化することが読み取れる。この関係を右図の模式図にしてヒステリシスの対角線をギヤ比にとると操舵角に反比例するギヤ比の近似ができる。これを“対角線ギヤ比”と称し数式(8)で定義して、制御に用いる。
FIG. 8 is an explanatory diagram of the handle angle and the handle play. This figure is an actual vehicle measurement value of a change in steering torque with respect to a steering angle when the left and right wheels of the front axle are each placed on a turntable and steered. The case of steering angle ± 100 ° is shown by a thick line, and the case of "lock-to-lock steering" in which the front wheel tire turning angle is steered to the maximum turning angle to the left and right is shown by a thin line.
The ± 100 ° steering hysteresis loop is contained in the lock-to-lock hysteresis loop. The width of the hysteresis is ± 16 ° for lock-to-lock and ± 8 ° for steering ± 100 °. The gradient of the change in the actual steering angle with respect to the steering angle is the gear ratio, but the gear ratio in lock-to-lock is 24, the gear ratio in ± 100 ° steering is 28, and the gear ratio changes in inverse proportion to the steering angle. Can be read. If this relationship is taken as the schematic diagram on the right and the diagonal line of hysteresis is taken as the gear ratio, the gear ratio that is inversely proportional to the steering angle can be approximated. This is called a "diagonal gear ratio" and is defined by the mathematical formula (8) and used for control.

Figure 0006995022000008
Figure 0006995022000008

ここに、R:対角線ギヤ比、R:ギヤ比(ヒステリシスがない場合のギヤ比)、B:ヒステリシスの巾、δH:操舵角である。 Here, RD : diagonal gear ratio, RG : gear ratio (gear ratio when there is no hysteresis), B: hysteresis width, δ H : steering angle.

図9はハンドル中立補正の方法の説明図である。目標経路を辿るためのハンドル角は、経路の曲率によって生じる横加速度と道路のカントによって生じる横加速度がつり合う実舵角にギヤ比を乗じて得られるハンドル角に、ハンドル遊び分を加えての操舵が必要になる。横加速度とヨーレイトと車速から、その場所の曲率とカントを分離して把握することができる。曲率分を除去した位置が直進位置になる。 FIG. 9 is an explanatory diagram of a method of steering wheel neutrality correction. The steering wheel angle for following the target path is the steering wheel angle obtained by multiplying the actual steering angle obtained by multiplying the lateral acceleration generated by the curvature of the path and the lateral acceleration generated by the cant of the road by the gear ratio, and steering by adding the steering wheel play. Is required. From the lateral acceleration, yaw rate, and vehicle speed, the curvature and cant of the place can be grasped separately. The position where the curvature is removed is the straight position.

車載する加速度計によって検出する横加速度(図9の(1))と車載するジャイロから検出されるヨーレイトに車速を乗じて算出される横加速度(図9の(2))との差分が道路のカント相当の横加速度(図9の(3))になる。このカント相当の横加速度を車速の二乗で除算するとカント相当曲率(図9の(4))になり、そのカント相当曲率からカント相当実舵角(図9の(5))を求める。これにギヤ比を乗じた角度が「直進ハンドル角」になる。この「直進ハンドル角」は、カント相当あて舵角に他ならない。 The difference between the lateral acceleration detected by the on-board accelerometer ((1) in Fig. 9) and the lateral acceleration calculated by multiplying the yaw rate detected by the on-board gyro by the vehicle speed ((2) in Fig. 9) is the difference between the road. Lateral acceleration equivalent to Kant ((3) in Fig. 9). Dividing the lateral acceleration equivalent to the cant by the square of the vehicle speed gives the curvature equivalent to the cant ((4) in FIG. 9), and the actual steering angle equivalent to the cant ((5) in FIG. 9) is obtained from the curvature equivalent to the cant. The angle obtained by multiplying this by the gear ratio is the "straight steering wheel angle". This "straight steering wheel angle" is nothing but a countersteering angle equivalent to Kant.

一方、ヨーレイトを車速で除算して得られる道路の曲(図9の(6))から曲率相当の実舵角(図9の(7))になる。(5)のカント相当実舵角と(7)の曲率相当実舵角の差分にギヤ比を乗じたハンドル角、即ち、カントと曲率の両方を合算した“曲線ハンドル角”になる。この“直進ハンドル角”及び“曲線ハンドル角”に“ハンドル遊び”が影響する。それを図9の(8)に示す。カント路でのハンドル遊びはカント登り側に寄っているので登り側には影響せず下り側の速目の操舵に影響する。それをSwitchコマンドで切替える。参考までに、遊び巾はトラックの実験データでは16°(0.28rad:図8のB値)ある。この値(B)が曲線でのあて舵に加算され、直進ハンドル角には、その1/2が加算される。 On the other hand, the actual steering angle corresponding to the curvature ((7) in FIG. 9) is obtained from the road curve ((6) in FIG. 9) obtained by dividing the yaw rate by the vehicle speed. The handle angle is obtained by multiplying the difference between the actual steering angle equivalent to the cant in (5) and the actual steering angle equivalent to the curvature in (7) by the gear ratio, that is, the "curved handle angle" which is the sum of both the cant and the curvature. "Handle play" affects the "straight handle angle" and "curve handle angle". This is shown in FIG. 9 (8). Since the steering wheel play on the cant road is closer to the cant climbing side, it does not affect the climbing side and affects the steering speed on the descending side. Switch it with the Switch command. For reference, the play width is 16 ° (0.28 rad: B value in Fig. 8) in the experimental data of the truck. This value (B) is added to the countersteering on the curve, and 1/2 of that is added to the straight steering wheel angle.

図10はセンサ切替の仕方の説明図である。前出の図1の中段部分にて、(4)に予め経路の全行程のGPS座標を収集して経路曲率をフィードフォワード項とするとし、下段部分にカメラ、レーザー等による前方を注視との切替について述べた。図10はその切替の仕方に関する。 FIG. 10 is an explanatory diagram of how to switch the sensor. In the middle part of Fig. 1 above, GPS coordinates of the entire route are collected in advance in (4) and the path curvature is used as the feed forward term, and the lower part is gazed at the front by a camera, laser, etc. I mentioned switching. FIG. 10 relates to the method of switching.

車体の前部の(1)にカメラ・レーザー等、或いは、その両方のセンサが装備されているとする。そのセンサによって前方の目標(2)へ向かおうとする。(1)の位置から見る(2)の位置は、角度Φsの方向に、距離Ltsになる。これを、車両重心位置基準で捉え慣性航法で走行する。 It is assumed that (1) at the front of the vehicle body is equipped with sensors such as a camera, laser, etc., or both. The sensor tries to reach the target (2) ahead. The position of (2) seen from the position of (1) is the distance Lts in the direction of the angle Φs. This is grasped based on the position of the center of gravity of the vehicle, and the vehicle travels by inertial navigation.

カメラ、ライダなどのセンサ位置からの方位と距離を常に車両重心位置基準に換算して捉えることによって、カメラ、レーザー、GPSなどによる多重制御、或は、走行環境に応じてのセンサ切替の必要に円滑適応する。車両重心の前方LGにセンサが装備されているから、車両重心位置からの目標(2)の位置は、角度ΦG式(12)、距離LTG式(13)の位置になる。 車両重心が目標(2)に至る軌跡は式(14)、(15)になり、この軌跡の曲率ρは式(16)になり、この曲率を辿る前輪実舵角δは、前出の式(10)になる。尚、式(14)、(15)に含まれる車体横すべり角(β,β0)は、式(17)、(18)で与えられ、車両状態方程式(参照:論文No.20144800)による計算、或いは、同式の同定実験により得る。 By always converting the direction and distance from the sensor position of the camera, rider, etc. into the vehicle center of gravity position reference, it is necessary to perform multiple control by camera, laser, GPS, etc., or to switch the sensor according to the driving environment. Smoothly adapt. Since the sensor is installed in the front LG of the center of gravity of the vehicle, the position of the target (2) from the position of the center of gravity of the vehicle is the position of the angle Φ G type (12) and the distance L T G type (13). The locus where the center of gravity of the vehicle reaches the target (2) is given by equations (14) and (15), the curvature ρ of this locus is given by equation (16), and the front wheel actual steering angle δ that follows this curvature is given by the above equation. It becomes (10). The vehicle body side slip angles (β, β 0 ) included in equations (14) and (15) are given by equations (17) and (18), and are calculated by the vehicle equation of state (reference: Paper No. 20144800). Alternatively, it can be obtained by the identification experiment of the same equation.

以上述べた様に、本発明は、前後方向の車両運動と横方向の車両運動が同期するように制御する自動運転方法である。
道路の曲率と勾配とカントを地図データとして取得ないし自車によって予備走行或いはリアルタイムに検出して、アクセル、ブレーキ、及びハンドルを制御して予定の経路を計画経路と計画速度を対応づけて辿る。先行する他車のために計画速度が成立しない場合は、先行車を仮想先行車として捕らえて車間距離を制御して交通流速度で走行する。経路途上における分進、幅寄せ、バス停・路肩などへの接舷などの“予定された進路変更”と障害物回避などの“予定外の進路変更”に共通して使用する進路変更巾と進路変更長を変数とする“部分経路変更曲線式”を備えて、計画経路と部分変更経路との“経路角の和”をとり、その和の曲率を車両制御モデル式に代入してハンドル角を算出して実車の操舵モータに入力することによって実車は部分変更経路を含む計画経路を辿る進路の制御方法である。
As described above, the present invention is an automatic driving method for controlling the vehicle motion in the front-rear direction and the vehicle motion in the lateral direction so as to be synchronized with each other.
The curvature, slope, and cant of the road are acquired as map data, or preliminary driving or real-time detection is performed by the own vehicle, and the accelerator, brake, and handle are controlled to follow the planned route in association with the planned route and the planned speed. If the planned speed is not established due to another vehicle in front, the vehicle in front is regarded as a virtual preceding vehicle and the inter-vehicle distance is controlled to drive at the traffic flow speed. A course change width and course that are commonly used for "planned course changes" such as branching, width adjustment, and contact with bus stops and shoulders on the way, and "unplanned course changes" such as obstacle avoidance. A "partial route change curve formula" with the change length as a variable is provided, the "sum of route angles" between the planned route and the partial change route is taken, and the curvature of the sum is substituted into the vehicle control model formula to obtain the steering wheel angle. By calculating and inputting to the steering motor of the actual vehicle, the actual vehicle is a method of controlling the course following the planned route including the partial change route.

GPS軌跡とその軌跡に沿っての車両運動物理量をフィードフォワード項として走行する慣性航法にカメラ・レーザーによって目標を捕らえ追跡、或いは回避走行する慣性航法を“重畳させ或いは切替えて”走行する進路制御装置である。 A course control device that "superimposes or switches" the inertial navigation that captures and tracks the target with a camera laser on the inertial navigation that travels with the GPS trajectory and the physical quantity of vehicle motion along the trajectory as the feed forward term. Is.

慣性航法はジャイロと横加速度計によって、車体横すべり角とヨーレイトを検出して軌跡を算出して、目標経路との差異を修正して目標経路を辿るものである。
Inertial navigation uses a gyro and a lateral accelerometer to detect the lateral slip angle and yaw rate of the vehicle body, calculate the trajectory, correct the difference from the target route, and follow the target route.

Claims (2)

決められた経路の一部を部分経路に変更することで障害物を回避する自動運転における進路制御方法であって、この進路制御方法は、予定外の進路変更に共通して使用する部分経路変更曲線式を制御装置内に記憶し、前記部分経路変更曲線式は進路変更巾(D)と進路変更長(L)を変数とし、進路変更巾(D)、車速(v)及び進路変更の所要時間(T)を式(2)(ただし、L=vT)に代入して部分経路の進路角(Φpart)を算出し、この部分経路の進路角(Φpart)と前記決められた経路の進路角(Φroute)との和を式(1)に代入して、進路変更巾(D)だけ進路を変更する際に生じる横加速度(vΦ)を算出し、この横加速度(vΦ)が許容横加速度に収まる進路変更巾(D)と進路変更長(L)の部分経路に変更することを特徴とする車両の進路制御方法。
Figure 0006995022000009

Figure 0006995022000010
It is a route control method in automatic driving that avoids obstacles by changing a part of the determined route to a partial route, and this route control method is a partial route change that is commonly used for unplanned route changes. The curve formula is stored in the control device, and the partial route change curve formula has the course change width (D) and the course change length (L) as variables, and the course change width (D), the vehicle speed (v), and the required course change are required. By substituting the time (T) into the equation (2) (where L = vT), the course angle (Φpart) of the partial route is calculated, and the course angle (Φpart) of this partial route and the course angle of the determined route are obtained. By substituting the sum with (Φroute) into the equation (1), the lateral acceleration (vΦ) generated when the course is changed by the course change width (D) is calculated, and this lateral acceleration (vΦ) becomes the allowable lateral acceleration. A vehicle course control method comprising changing to a partial route having a course change width (D) and a course change length (L) that can be accommodated .
Figure 0006995022000009

Figure 0006995022000010
請求項1に記載の車両の進路制御方法において、前記車両の速度を算出する制御要素は自重及び道路勾配を検出して計画車速に修正を加えて現実の交通流速に適合する要求加速度又は要求減速度であることを特徴とする車両の進路制御方法。 In the vehicle course control method according to claim 1, the control element for calculating the speed of the vehicle detects its own weight and the road gradient, corrects the planned vehicle speed, and adjusts the required acceleration or the required reduction to match the actual traffic flow velocity. A vehicle course control method characterized by speed.
JP2018138100A 2018-07-24 2018-07-24 Vehicle course control method Active JP6995022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018138100A JP6995022B2 (en) 2018-07-24 2018-07-24 Vehicle course control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138100A JP6995022B2 (en) 2018-07-24 2018-07-24 Vehicle course control method

Publications (2)

Publication Number Publication Date
JP2020015349A JP2020015349A (en) 2020-01-30
JP6995022B2 true JP6995022B2 (en) 2022-01-14

Family

ID=69579975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138100A Active JP6995022B2 (en) 2018-07-24 2018-07-24 Vehicle course control method

Country Status (1)

Country Link
JP (1) JP6995022B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609866B (en) * 2020-06-04 2023-09-12 山东交通学院 Intelligent driving path fitting tracking control method for park vehicles based on differential GPS
CN113022555B (en) * 2021-03-01 2023-01-20 重庆兰德适普信息科技有限公司 Target following control method and device for differential slip steering vehicle
JP7468425B2 (en) * 2021-03-25 2024-04-16 トヨタ自動車株式会社 Ride sharing system and ride sharing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014012A1 (en) 2015-07-22 2017-01-26 本田技研工業株式会社 Route generator, route generation method, and route generation program

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573526B2 (en) * 2015-10-21 2019-09-11 株式会社Subaru Vehicle driving support control device
JP6376523B2 (en) * 2016-11-29 2018-08-22 マツダ株式会社 Vehicle control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017014012A1 (en) 2015-07-22 2017-01-26 本田技研工業株式会社 Route generator, route generation method, and route generation program

Also Published As

Publication number Publication date
JP2020015349A (en) 2020-01-30

Similar Documents

Publication Publication Date Title
CN110187639B (en) Trajectory planning control method based on parameter decision framework
CN110126825B (en) System and method for low-level feed-forward vehicle control strategy
US9650043B2 (en) Real-time anticipatory speed control
Hima et al. Trajectory tracking for highly automated passenger vehicles
Khodayari et al. A historical review on lateral and longitudinal control of autonomous vehicle motions
CN110827535B (en) Nonlinear vehicle queue cooperative self-adaptive anti-interference longitudinal control method
JP6995022B2 (en) Vehicle course control method
US20180141547A1 (en) Vehicle Stop Position Setting Apparatus and Method
US20090222166A1 (en) Method and Device for Steering a Motor Vehicle
CN107085424A (en) Pre- for automatic Pilot takes aim at crosswise joint
US20100145575A1 (en) Method for Providing a Lanekeeping Assistance Based on Modifying Mechanical Sources of Steering Torques
Ali et al. Predictive prevention of loss of vehicle control for roadway departure avoidance
Tang et al. Teleoperated Road Vehicles–The" Free Corridor" as a Safety Strategy Approach
CN112519777B (en) Control method of automatic driving fleet, vehicle-mounted device, vehicle and system
JP7397408B2 (en) Vehicle control device
Hayakawa et al. Driver-compatible steering system for wide speed-range path following
Katriniok Optimal vehicle dynamics control and state estimation for a low-cost GNSS-based collision avoidance system
Rachman et al. Real-time performance and safety validation of an integrated vehicle dynamic control strategy
Chen et al. Path-following steering controller of automated lane change system with adaptive preview time
JP2021160659A (en) Vehicle control device
LeBlanc et al. A warning and intervention system to prevent road-departure accidents
Lucet et al. Accurate autonomous navigation strategy dedicated to the storage of buses in a bus center
CN112519776B (en) Control method of automatic driving fleet, vehicle-mounted device and automatic driving vehicle
Göhring Controller architecture for the autonomous cars: Madeingermany and e-instein
CN115042770A (en) Vehicle queue transverse control method based on distributed robust model prediction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200313

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200318

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200929

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200929

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201014

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201124

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201125

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201228

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210105

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210121

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210325

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

C092 Termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C092

Effective date: 20210511

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210810

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210811

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211020

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211110

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211213

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6995022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150