JP6994952B2 - X-ray CT device for measurement and its calibration method - Google Patents

X-ray CT device for measurement and its calibration method Download PDF

Info

Publication number
JP6994952B2
JP6994952B2 JP2018003721A JP2018003721A JP6994952B2 JP 6994952 B2 JP6994952 B2 JP 6994952B2 JP 2018003721 A JP2018003721 A JP 2018003721A JP 2018003721 A JP2018003721 A JP 2018003721A JP 6994952 B2 JP6994952 B2 JP 6994952B2
Authority
JP
Japan
Prior art keywords
ray
measurement
carriage
rotary table
measurement target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003721A
Other languages
Japanese (ja)
Other versions
JP2019124491A (en
Inventor
久嘉 境
香苗 小林
誠治 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2018003721A priority Critical patent/JP6994952B2/en
Publication of JP2019124491A publication Critical patent/JP2019124491A/en
Application granted granted Critical
Publication of JP6994952B2 publication Critical patent/JP6994952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、計測用X線CT装置、及び、その校正方法に係り、特に、被測定物と参照体の比較照合による校正を容易に行うことができ、測定の高精度化と効率向上を図ることが可能な計測用X線CT装置、及び、その校正方法に関する。 The present invention relates to an X-ray CT apparatus for measurement and a calibration method thereof, and in particular, it is possible to easily perform calibration by comparing and collating the object to be measured and a reference body, and to improve the accuracy and efficiency of measurement. The present invention relates to an X-ray CT apparatus for measurement capable of being capable of, and a calibration method thereof.

1970年代に医療用X線CT装置が実用に供され、この技術をベースに1980年代初期頃より工業用製品のためのX線CT装置が登場した。以来、工業用X線CT装置は、外観からでは確認困難な鋳物部品の巣、溶接部品の溶接不良、および電子回路部品の回路パターンの欠陥などの観察・検査に用いられてきた。一方、近年3Dプリンタの普及に伴い、3Dプリンタによる加工品内部の観察・検査のみならず、内部構造の3D寸法計測とその高精度化の需要が増大しつつある。 Medical X-ray CT equipment was put into practical use in the 1970s, and based on this technology, X-ray CT equipment for industrial products appeared from the early 1980s. Since then, industrial X-ray CT devices have been used for observing and inspecting nests of cast parts, welding defects of welded parts, and circuit pattern defects of electronic circuit parts, which are difficult to confirm from the outside. On the other hand, with the spread of 3D printers in recent years, there is an increasing demand not only for observing and inspecting the inside of processed products by 3D printers, but also for measuring 3D dimensions of internal structures and improving their accuracy.

上述の技術の動向に対して、計測用X線CT装置がドイツを中心に普及し始めている(特許文献1、2参照)。この計測用X線CT装置では、測定対象を回転テーブル中心に配置して測定対象を回転させながらX線照射を行う。 In response to the above-mentioned technological trends, X-ray CT devices for measurement have begun to spread mainly in Germany (see Patent Documents 1 and 2). In this X-ray CT apparatus for measurement, the measurement target is arranged at the center of the rotary table, and X-ray irradiation is performed while rotating the measurement target.

計測で使用する一般的なX線CT装置1の構成を図1に示す。X線を遮蔽するブース5の中にコーンビーム状のX線25を照射するX線源21、X線25を検出するX線検出器41、測定対象Wを置いてCT撮像の為に測定対象Wを回転させる回転テーブル32、X線検出器41に映る測定対象Wの位置や倍率を調整するためのXYZ移動機構部3があり、それらのデバイスを制御するモーションコントローラ7、及び、ユーザ操作によりモーションコントローラ7に指示を与えるホストコンピュータ6などで構成される。 FIG. 1 shows the configuration of a general X-ray CT apparatus 1 used for measurement. An X-ray source 21 that irradiates a cone beam-shaped X-ray 25, an X-ray detector 41 that detects the X-ray 25, and a measurement target W are placed in a booth 5 that shields X-rays, and a measurement target is placed for CT imaging. There is a rotary table 32 that rotates W, an XYZ movement mechanism unit 3 for adjusting the position and magnification of the measurement target W reflected on the X-ray detector 41, a motion controller 7 that controls those devices, and a user operation. It is composed of a host computer 6 and the like that give instructions to the motion controller 7.

ホストコンピュータ6は、各デバイス制御の他に、X線検出器41に映る測定対象Wの投影画像を表示する機能や、測定対象Wの複数の投影画像から断層画像を再構成する機能を有する。 In addition to controlling each device, the host computer 6 has a function of displaying a projected image of the measurement target W reflected on the X-ray detector 41 and a function of reconstructing a tomographic image from a plurality of projected images of the measurement target W.

X線源21から照射されたX線25は、図2に示す如く、回転テーブル32上の測定対象Wを透過してX線検出器41に届く。測定対象Wを回転させながらあらゆる方向の測定対象Wの透過画像(投影画像)をX線検出器41で得て、逆投影法や逐次近似法などの再構成アルゴリズムを使って再構成することにより、測定対象Wの断層画像を生成する。 As shown in FIG. 2, the X-ray 25 emitted from the X-ray source 21 passes through the measurement target W on the rotary table 32 and reaches the X-ray detector 41. By obtaining a transmitted image (projected image) of the measurement target W in all directions while rotating the measurement target W with the X-ray detector 41 and reconstructing it using a reconstruction algorithm such as a back projection method or a sequential approximation method. , Generate a tomographic image of the measurement target W.

前記XYZ移動機構部3のXYZ軸と回転テーブル32のθ軸を制御することにより、測定対象Wの位置を移動することができ、測定対象Wの撮影範囲(位置、倍率)や撮影角度を調整することができる。 By controlling the XYZ axis of the XYZ moving mechanism unit 3 and the θ axis of the rotary table 32, the position of the measurement target W can be moved, and the shooting range (position, magnification) and shooting angle of the measurement target W can be adjusted. can do.

又、近年、寸法計測の高精度化の要求に応えるため、X線CT装置の内部(特許文献3)や近傍(特許文献4)に三次元測定機(CMM)を併設した複合型測定システムが提案されている。この複合型測定システムでは、CMMによる測定で得られた外形寸法を基準にしてX線CT装置で得られた3D寸法を校正することによって高精度化が図られている。 Further, in recent years, in order to meet the demand for higher accuracy of dimensional measurement, a combined measurement system in which a coordinate measuring machine (CMM) is installed inside (Patent Document 3) or in the vicinity (Patent Document 4) of an X-ray CT device has been introduced. Proposed. In this composite type measurement system, high accuracy is achieved by calibrating the 3D dimensions obtained by the X-ray CT apparatus with reference to the external dimensions obtained by the measurement by CMM.

特開2002-71345号公報Japanese Unexamined Patent Publication No. 2002-71345 特開2004-12407号公報Japanese Unexamined Patent Publication No. 2004-12407 特許第5408873号公報Japanese Patent No. 5408873 特許第3427046号公報Japanese Patent No. 3427046

しかしながら、CMMとX線CT装置を併設した複合型測定システムにおいては、CMMとX線CT装置による測定を連続的に行う必要があり、一方の稼働中には他方が停止状態となる。従って、共に高価な装置であるCMMとX線CT装置を同時に並行して使用することができず、特に量産ワークの連続測定が必要な場合には、作業効率に支障が出る。 However, in the combined measurement system in which the CMM and the X-ray CT device are installed side by side, it is necessary to continuously perform the measurement by the CMM and the X-ray CT device, and the other is stopped while one is in operation. Therefore, the CMM and the X-ray CT device, which are both expensive devices, cannot be used in parallel at the same time, and the work efficiency is hindered especially when continuous measurement of mass-produced workpieces is required.

一方、CMMとX線CT装置が別置とされていれば、両者を独立して有効活用できるが、被測定物の測定値をマスタワークやゲージ等の参照体の測定値で校正するためには、被測定物と参照体をいちいち置き換える必要があり、その都度、放射線の遮蔽と解除を行う必要もあるため、やはり作業に時間がかかるという問題点を有していた。 On the other hand, if the CMM and the X-ray CT device are installed separately, both can be effectively used independently, but in order to calibrate the measured value of the object to be measured with the measured value of the reference body such as the master work or gauge. Has the problem that it takes a long time to work because it is necessary to replace the object to be measured and the reference object one by one, and it is also necessary to shield and release the radiation each time.

本発明は、前記従来の問題点を解決するべくなされたもので、三次元寸法計測により計測用X線CTの測定の高精度化を実現するだけでなく、計測用X線CT装置と三次元寸法計測装置を効率良く稼働させ、経済性を向上することを課題とする。 The present invention has been made to solve the above-mentioned conventional problems, and not only realizes high accuracy of measurement of X-ray CT for measurement by three-dimensional dimensional measurement, but also has an X-ray CT device for measurement and three-dimensional. The challenge is to operate the dimension measuring device efficiently and improve the economic efficiency.

本発明は、回転テーブル上に配置した測定対象を回転させながらX線を照射し、その投影画像を再構成して測定対象の断層画像を得るようにした計測用X線CT装置において、タンデム状に設けられた複数の回転テーブルと、該回転テーブルを搭載したキャリッジと、該キャリッジをX線放射の中心軸と直交する方向に移動するための移動手段とを備え、前記回転テーブルの1つを被測定物搭載用、他の1つを参照体搭載用とすることにより、前記課題を解決したものである。 The present invention is a tandem-shaped measurement X-ray CT apparatus in which an X-ray is irradiated while rotating a measurement target placed on a rotary table and the projected image is reconstructed to obtain a tomographic image of the measurement target. The rotary table is provided with a plurality of rotary tables, a carriage on which the rotary table is mounted, and a moving means for moving the carriage in a direction orthogonal to the central axis of X-ray radiation, and one of the rotary tables is provided. The above-mentioned problems are solved by mounting the object to be measured and mounting the other one on the reference body.

ここで、前記計測用X線CT装置で発生するX線が外部に漏れないようにするためのX線遮蔽ブースを設け、非測定状態のキャリッジを、該X線遮蔽ブースの外からアクセス可能とすることができる。 Here, an X-ray shielding booth is provided to prevent the X-rays generated by the measurement X-ray CT apparatus from leaking to the outside, and the carriage in the non-measurement state can be accessed from outside the X-ray shielding booth. can do.

又、複数の互いに独立して移動可能なキャリッジを設け、各キャリッジ毎に前記回転テーブルを1台搭載することができる。 Further, a plurality of carriages that can be moved independently of each other are provided, and one rotary table can be mounted on each carriage.

又、前記参照体をマスタワーク又はゲージとすることができる。 Further, the reference body can be a master work or a gauge.

本発明は、又、前記の計測用X線CT装置の校正に際して、タンデム状に設けられた回転テーブルの1つに被測定物を搭載し、他の1つに参照体を搭載して、該参照体との比較照合により校正を行うことを特徴とする計測用X線CT装置の校正方法を提供するものである。 In the present invention, when the X-ray CT apparatus for measurement is calibrated, the object to be measured is mounted on one of the rotary tables provided in a tandem shape, and the reference body is mounted on the other one. It provides a calibration method of an X-ray CT apparatus for measurement, which is characterized in that calibration is performed by comparison and collation with a reference body.

本発明によれば、計測用X線CT装置の構成要素の一つである回転テーブルをタンデム状に複数設け、その内の一つの回転テーブルを被測定物搭載用とし、他の一つの回転テーブルを形状寸法が高精度に値付けされる参照体(例えば被測定物と同一形状のマスタワークもしくは、図3(A)に例示するような、所定サイズの孔が多数空けられたホールプレート、図3(B)に例示するような、多数のボールが植設されたボールプレート、図3(C)、(D)に例示するような、直径が異なる複数の円柱が重ねられた段付きのステップシリンダ、図3(E)に例示するような、多数の先端球付柱が林立されたフォレストゲージ、図3(F)に例示するような、洗濯板状のステップゲージ等のゲージ等)搭載用とすることで、随時参照体との比較照合が可能となり、計測用X線CT装置による寸法測定の高精度化を図ることが可能となる。 According to the present invention, a plurality of rotary tables, which are one of the components of the X-ray CT apparatus for measurement, are provided in a tandem shape, one of which is used for mounting the object to be measured, and the other rotary table. A reference body whose shape and dimensions are valued with high accuracy (for example, a master work having the same shape as the object to be measured, or a hole plate having a large number of holes of a predetermined size as illustrated in FIG. 3A, FIG. A ball plate in which a large number of balls are planted, as illustrated in 3 (B), and a stepped step in which a plurality of cylinders having different diameters are stacked, as illustrated in FIGS. 3 (C) and 3 (D). Cylinder, forest gauge with a large number of pillars with tip balls as illustrated in FIG. 3 (E), gauge such as a washing plate-shaped step gauge as illustrated in FIG. 3 (F), etc.) By doing so, it is possible to compare and collate with the reference body at any time, and it is possible to improve the accuracy of dimensional measurement by the measurement X-ray CT device.

又、回転テーブルをタンデム状に複数設けることで、一つの回転テーブル上の測定対象をX線CTにより測定・検査している間に、他の一つの回転テーブル上では、先にX線CT測定に供された測定対象の取り外しや次の測定対象の設定を並行して行うことができ、測定・検査の効率を向上することが可能となる。 Further, by providing a plurality of rotary tables in a tandem shape, while the measurement target on one rotary table is measured and inspected by X-ray CT, the X-ray CT measurement is performed first on the other rotary table. It is possible to remove the measurement target and set the next measurement target in parallel, and it is possible to improve the efficiency of measurement and inspection.

計測用X線CT装置の基本的な構成を示す図The figure which shows the basic structure of the X-ray CT apparatus for measurement. 同じく測定方法を説明するための概略図Schematic diagram for explaining the measurement method as well 計測用X線CT装置で使用されるゲージ類を示す図The figure which shows the gauges used in the X-ray CT apparatus for measurement. 本発明の第1実施形態の全体構成を示す水平断面図Horizontal cross-sectional view showing the overall configuration of the first embodiment of the present invention. 同じく要部構成を示す斜視図Similarly, a perspective view showing the main part configuration 本発明の第2実施形態の構成を示す水平断面図Horizontal sectional view showing the configuration of the second embodiment of the present invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments and examples. Further, the constituent requirements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equal range. Further, the components disclosed in the embodiments and examples described below may be appropriately combined or appropriately selected and used.

図4に本発明の第1実施形態を示す。なお、図4では、紙面に対して左右方向をX軸方向、紙面に対して上下方向をY軸方向とし、紙面に垂直な方向をZ軸方向として説明する。また、図5はX線CT本体部10の立体図であり、図4におけるZ軸方向の情報を補うものである。 FIG. 4 shows a first embodiment of the present invention. In FIG. 4, the left-right direction with respect to the paper surface is defined as the X-axis direction, the vertical direction with respect to the paper surface is defined as the Y-axis direction, and the direction perpendicular to the paper surface is described as the Z-axis direction. Further, FIG. 5 is a three-dimensional view of the X-ray CT main body 10, which supplements the information in the Z-axis direction in FIG.

計測用のX線CT装置1は、主にハードウェアからなるX線CT本体部10、X線CT本体部10を囲みX線の漏れを防ぐX線遮蔽ブース5、ホストコンピュータ6およびモーションコントローラ7から構成されている。図において、51は遮蔽外壁である。 The X-ray CT apparatus 1 for measurement includes an X-ray CT main body 10 mainly composed of hardware, an X-ray shielding booth 5 that surrounds the X-ray CT main body 10 to prevent X-ray leakage, a host computer 6, and a motion controller 7. It is composed of. In the figure, 51 is a shielding outer wall.

まず、X線CT本体部10に関して、X線CT計測に関わる主要なハードウェアの構成要素はベース11の上面に配置される。ベース11の上面には、互いに離間しかつ平行にX軸方向に延びる2本のXガイドレール12aと12bが配置され、X線源21を搭載するX線源キャリッジ22とXキャリッジ31をX軸方向に案内する。 First, regarding the X-ray CT main body 10, the main hardware components related to the X-ray CT measurement are arranged on the upper surface of the base 11. Two X-guide rails 12a and 12b extending in the X-axis direction apart from each other and extending in parallel on the upper surface of the base 11 are arranged, and the X-ray source carriage 22 and the X-carriage 31 on which the X-ray source 21 is mounted are X-axis. Guide in the direction.

X線源キャリッジ22はX軸第1駆動部23aで、Xキャリッジ31はX軸第2駆動部23bでX軸方向にそれぞれ独立して駆動制御される。X軸第1駆動部23aおよびX軸第2駆動部23bのX軸方向に延びる駆動軸は、Z軸上方から見て2本のXガイドレール12aと12bの中央線CLに一致して一直線上に配置される。 The X-ray source carriage 22 is driven by the X-axis first drive unit 23a, and the X-carriage 31 is driven and controlled independently in the X-axis direction by the X-axis second drive unit 23b. The drive shafts of the X-axis first drive unit 23a and the X-axis second drive unit 23b extending in the X-axis direction coincide with the center line CL of the two X-axis guide rails 12a and 12b when viewed from above the Z-axis and are on a straight line. Is placed in.

X線源キャリッジ22に搭載されるX線源21は、X線源駆動部26によってZ軸方向に駆動制御される。X線放射の発生ポイントであるX線焦点24はZ軸上方から見て前記中央線CL上にほぼ一致して配置され、X線の放射ビームはX軸方向に円錐状に広がり(コーンビームX線25)、その中心線は中央線CLに一致するように調整される。 The X-ray source 21 mounted on the X-ray source carriage 22 is driven and controlled in the Z-axis direction by the X-ray source driving unit 26. The X-ray focal point 24, which is the generation point of X-ray radiation, is arranged almost coincidently on the center line CL when viewed from above the Z axis, and the X-ray radiation beam spreads in a conical shape in the X-axis direction (cone beam X). Line 25), its center line is adjusted to coincide with the center line CL.

Xキャリッジ31の上面には互いに離間しかつ平行にY軸方向に延びる2本のYガイドレール34aと34bが配置され、第1Yキャリッジ33aと第2Yキャリッジ33bをY軸方向に案内する。 Two Y guide rails 34a and 34b extending in the Y-axis direction are arranged on the upper surface of the X-carriage 31 so as to be separated from each other and in parallel, and guide the first Y-carriage 33a and the second Y-carriage 33b in the Y-axis direction.

第1Yキャリッジ33aはY軸第1駆動部35aで、第2Yキャリッジ33bはY軸第2駆動部35bでY軸方向にそれぞれ独立して駆動制御される。 The first Y-carriage 33a is driven by the Y-axis first drive unit 35a, and the second Y-carriage 33b is driven and controlled independently by the Y-axis second drive unit 35b in the Y-axis direction.

第1Yキャリッジ33aおよび第2Yキャリッジ33bのそれぞれ上面には、第1回転テーブル32aおよび第2回転テーブル32bが配置され、それぞれの回転軸は互いに平行に、且つZ軸と平行に調整され固定される。 A first rotary table 32a and a second rotary table 32b are arranged on the upper surfaces of the first Y carriage 33a and the second Y carriage 33b, respectively, and their respective rotation axes are adjusted and fixed in parallel with each other and in parallel with the Z axis. ..

第1回転テーブル32aおよび第2回転テーブル32bの上面にはX線CT測定に供される測定対象が搭載される。ここで、第1回転テーブル32aおよび第2回転テーブル32bのどちらか一方には被測定物となるワークW2が搭載され、他方にはワークW2の比較参照基準となるマスタワークW1が搭載されることとなる。 A measurement target to be used for X-ray CT measurement is mounted on the upper surfaces of the first rotary table 32a and the second rotary table 32b. Here, one of the first rotary table 32a and the second rotary table 32b is mounted with the work W 2 as the object to be measured, and the other is mounted with the master work W 1 as a comparison reference reference for the work W 2 . Will be done.

第1Yキャリッジ33aおよび第2Yキャリッジ33bのY軸方向の移動範囲は、それぞれ中央線CLとY駆動軸の交点CからY軸(-)方向のA点までとC点からY軸(+)方向のB点までである。 The range of movement of the first Y carriage 33a and the second Y carriage 33b in the Y-axis direction is from the intersection C of the center line CL and the Y drive axis to point A in the Y-axis (-) direction and from point C to the Y-axis (+) direction, respectively. Up to point B of.

X線源21からX軸方向にXキャリッジ31を挟んでX線源21に対向するように、検出器支持コラム42に支持されてX線検出器41が設けられている。また、X線検出器41は、X線源21のZ軸方向の移動に同調してZ軸方向に検出器駆動部43によって駆動される。 The X-ray detector 41 is supported by the detector support column 42 so as to face the X-ray source 21 with the X-carriage 31 sandwiched in the X-axis direction from the X-ray source 21. Further, the X-ray detector 41 is driven by the detector drive unit 43 in the Z-axis direction in synchronization with the movement of the X-ray source 21 in the Z-axis direction.

これによりX線源21から放射され、X軸方向に円錐状に広がるコーンビームX線25は、C点に位置する第1回転テーブル32aまたはB点に位置する第2回転テーブル32bの上面に搭載される測定対象を透過し、X線検出器41に到達し検出されるようになっている。 As a result, the cone beam X-ray 25 emitted from the X-ray source 21 and spreading in a conical shape in the X-axis direction is mounted on the upper surface of the first rotary table 32a located at the C point or the second rotary table 32b located at the B point. It passes through the measurement target to be measured, reaches the X-ray detector 41, and is detected.

X線検出器41で得られた検出信号はホストコンピュータ6のデータ収集部63で収集され、測定演算処理部62で測定対象の投影画像が再構成処理されて三次元像が得られる。 The detection signal obtained by the X-ray detector 41 is collected by the data collection unit 63 of the host computer 6, and the projection image to be measured is reconstructed by the measurement calculation processing unit 62 to obtain a three-dimensional image.

また、ホストコンピュータ6には、駆動制御部71、カウンタ部72、パワーアンプ部73、電源部74を含むモーションコントローラ7が接続され、移動指令部61からの移動指令が駆動制御部71に送信され、X線源キャリッジ22、Xキャリッジ31、第1Yキャリッジ33a、第2Yキャリッジ33b、X線源21、X線検出器41の直線駆動および第1回転テーブル32aと第2回転テーブル32bの回転駆動の制御を行う。 Further, a motion controller 7 including a drive control unit 71, a counter unit 72, a power amplifier unit 73, and a power supply unit 74 is connected to the host computer 6, and a movement command from the movement command unit 61 is transmitted to the drive control unit 71. , X-ray source carriage 22, X-carrying 31, 1st Y-carrying 33a, 2nd Y-carrying 33b, X-ray source 21, linear drive of X-ray detector 41 and rotary drive of 1st rotary table 32a and 2nd rotary table 32b. Take control.

本実施形態によれば、2台の回転テーブル32a、32bをタンデム方式に構成することで、比較照合による校正を随時可能とし測定精度を向上することができる。 According to the present embodiment, by configuring the two rotary tables 32a and 32b in a tandem system, calibration by comparison and collation can be performed at any time, and measurement accuracy can be improved.

図6に本発明の第2実施形態を示す。 FIG. 6 shows a second embodiment of the present invention.

この第2実施形態では、X線遮蔽ブース5の両側面に、外側位置にある回転テーブル32a、32bに作業者Oがアクセスするための外部スライドドア52を設けると共に、X線遮蔽ブース5内に、X線25の通過部分から、その外側位置にある回転テーブル32a、32bをそれぞれ遮蔽するための、Y軸方向に延びる作業者Oから見て左右一対の遮蔽内壁53と、X線25に沿ってX軸方向にスライド可能な内部スライドドア54を設けている。 In the second embodiment, external sliding doors 52 for the worker O to access the rotary tables 32a and 32b located at the outer positions are provided on both side surfaces of the X-ray shielding booth 5, and the X-ray shielding booth 5 is provided with the external sliding doors 52. , A pair of left and right shielding inner walls 53 extending in the Y-axis direction from the passing portion of the X-ray 25 to shield the rotary tables 32a and 32b located outside the X-ray 25, and along the X-ray 25. An internal slide door 54 that can slide in the X-ray direction is provided.

この第2実施形態では、例えば第1回転テーブル32a上の測定対象の測定が実施されている時に、外部スライドドア52を開きかつ内部スライドドア54を閉めることにより、作業者Oが放射線を気にすることなく第2回転テーブル32b上に次の測定対象のセッティングを行い、次の測定の準備を行うことが可能になる。 In this second embodiment, for example, when the measurement of the measurement target on the first rotary table 32a is being carried out, the worker O is concerned about the radiation by opening the external slide door 52 and closing the internal slide door 54. It is possible to set the next measurement target on the second rotary table 32b and prepare for the next measurement without doing so.

これによって量産品の測定対象のX線CTによる検査効率を向上させることが可能になる。 This makes it possible to improve the inspection efficiency by X-ray CT of the measurement target of mass-produced products.

本実施形態においては、1台の回転テーブルで測定中に、もう一方の回転テーブル上にX線を浴びることなく測定対象又は参照体を載せることができるので、安全性が高く且つ作業効率が高い。 In the present embodiment, the measurement target or the reference body can be placed on the other rotary table without being exposed to X-rays while the measurement is being performed on one rotary table, so that the safety and work efficiency are high. ..

なお、前記実施形態においては、いずれも、回転テーブル毎にキャリッジを設け、互いに独立してX線が通過する測定位置へ出し入れ可能としているので、例えば回転テーブルを両側に移動し、中央のX線通過部分を空けた状態でそれぞれに測定対象又は参照体を配設した後、例えば測定対象、続いて参照体をX線通過部分に移動して連続的に測定を行うことができ、自由度が高い。なお、共通のキャリッジの上に2台の回転テーブルを載置して、例えば両方の回転テーブルが空いている状態で一方に測定対象を載せ、測定対象をX線通過部分に移動した状態で他方の回転テーブルに参照体を載せ、その後で測定対象、次いで参照体と連続的に測定を行うこともできる。この場合には、キャリッジは1台でよく、構成が簡略である。 In each of the above embodiments, a carriage is provided for each rotary table so that the rotary table can be moved to and from the measurement position where X-rays pass independently of each other. Therefore, for example, the rotary table is moved to both sides and the central X-ray is emitted. After arranging the measurement target or reference body in each with the passing portion open, for example, the measurement target and then the reference body can be moved to the X-ray passing portion to perform continuous measurement, and the degree of freedom is increased. high. Two rotary tables are placed on a common carriage, for example, the measurement target is placed on one of them while both rotary tables are empty, and the measurement target is moved to the X-ray passing portion on the other. It is also possible to place the reference body on the rotary table of the above, and then perform continuous measurement with the measurement target and then with the reference body. In this case, only one carriage is required, and the configuration is simple.

なお、キャリッジに載せる回転テーブルの数は1台又は2台に限定されず、3台以上とすることも可能である。 The number of rotary tables mounted on the carriage is not limited to one or two, and may be three or more.

1…X線CT装置
5…X線遮蔽ブース
21…X線源
22…X線源キャリッジ
23a、23b…X軸駆動部
25…X線
31…Xキャリッジ
32a、32b…回転テーブル
33a、33b…Yキャリッジ
35a、35b…Y軸駆動部(移動手段)
41…X線検出器
1…マスタワーク(参照体)
2…ワーク(被測定物)
1 ... X-ray CT device 5 ... X-ray shielding booth 21 ... X-ray source 22 ... X-ray source carriage 23a, 23b ... X-axis drive unit 25 ... X-ray 31 ... X-ray carriage 32a, 32b ... Rotating table 33a, 33b ... Y Carriage 35a, 35b ... Y-axis drive unit (moving means)
41 ... X-ray detector W 1 ... Masterwork (reference body)
W 2 … Work (measured object)

Claims (5)

回転テーブル上に配置した測定対象を回転させながらX線を照射し、その投影画像を再構成して測定対象の断層画像を得るようにした計測用X線CT装置において、
タンデム状に設けられた複数の回転テーブルと、
該回転テーブルを搭載したキャリッジと、
該キャリッジをX線放射の中心軸と直交する方向に移動するための移動手段とを備え、
前記回転テーブルの1つが被測定物搭載用、他の1つが参照体搭載用とされている
ことを特徴とする計測用X線CT装置。
In a measurement X-ray CT device that irradiates X-rays while rotating a measurement target placed on a rotary table and reconstructs the projected image to obtain a tomographic image of the measurement target.
Multiple rotary tables provided in tandem, and
A carriage equipped with the rotary table and
A moving means for moving the carriage in a direction orthogonal to the central axis of X-ray radiation is provided.
An X-ray CT apparatus for measurement, characterized in that one of the rotary tables is for mounting an object to be measured and the other is for mounting a reference body.
前記計測用X線CT装置で発生するX線が外部に漏れないようにするためのX線遮蔽ブースが設けられ、非測定状態のキャリッジが、該X線遮蔽ブースの外からアクセス可能とされていることを特徴とする請求項1に記載の計測用X線CT装置。 An X-ray shielding booth is provided to prevent X-rays generated by the measurement X-ray CT apparatus from leaking to the outside, and the carriage in the non-measurement state can be accessed from outside the X-ray shielding booth. The X-ray CT apparatus for measurement according to claim 1, wherein the X-ray CT apparatus is used. 複数の互いに独立して移動可能なキャリッジが設けられ、各キャリッジ毎に前記回転テーブルが1台搭載されていることを特徴とする請求項1又は2に記載の計測用X線CT装置。 The X-ray CT apparatus for measurement according to claim 1 or 2, wherein a plurality of carriages that can move independently of each other are provided, and one rotary table is mounted on each carriage. 前記参照体がマスタワーク又はゲージとされていることを特徴とする請求項1に記載の計測用X線CT装置。 The X-ray CT apparatus for measurement according to claim 1, wherein the reference body is a master work or a gauge. 請求項1乃至4のいずれかに記載の計測用X線CT装置の校正に際して、
タンデム状に設けられた回転テーブルの1つに被測定物を搭載し、他の1つに参照体を搭載して、
該参照体との比較照合により校正を行うことを特徴とする計測用X線CT装置の校正方法。
When calibrating the measurement X-ray CT apparatus according to any one of claims 1 to 4.
The object to be measured is mounted on one of the rotary tables provided in a tandem shape, and the reference body is mounted on the other one.
A method for calibrating an X-ray CT apparatus for measurement, which comprises performing calibration by comparison with the reference body.
JP2018003721A 2018-01-12 2018-01-12 X-ray CT device for measurement and its calibration method Active JP6994952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003721A JP6994952B2 (en) 2018-01-12 2018-01-12 X-ray CT device for measurement and its calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003721A JP6994952B2 (en) 2018-01-12 2018-01-12 X-ray CT device for measurement and its calibration method

Publications (2)

Publication Number Publication Date
JP2019124491A JP2019124491A (en) 2019-07-25
JP6994952B2 true JP6994952B2 (en) 2022-01-14

Family

ID=67399429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003721A Active JP6994952B2 (en) 2018-01-12 2018-01-12 X-ray CT device for measurement and its calibration method

Country Status (1)

Country Link
JP (1) JP6994952B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060042A (en) * 2019-12-30 2020-04-24 中国工程物理研究院应用电子学研究所 Method for measuring uncertainty of industrial CT geometric dimension based on spherical model
CN112903729B (en) * 2021-01-26 2023-03-28 西安增材制造国家研究院有限公司 Industrial online CT for additive manufacturing
CN113702406A (en) * 2021-08-27 2021-11-26 珠海格力智能装备有限公司 Scanning detection equipment
CN114113168B (en) * 2021-09-30 2024-03-19 阿塔米智能装备(北京)有限公司 DR/CT detection device suitable for 2D/2.5D/3D
CN116892893B (en) * 2023-09-11 2023-12-12 上海福柯斯智能科技有限公司 Industrial CT cone beam center projection point measuring method and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170876A (en) 2004-12-17 2006-06-29 Hitachi Ltd Ct apparatus
JP2008185359A (en) 2007-01-26 2008-08-14 Shimadzu Corp X-ray ct equipment
JP2012189517A (en) 2011-03-13 2012-10-04 National Institute Of Advanced Industrial & Technology Standard gauge for calibration and evaluation of x-ray ct apparatus, and calibration method and evaluation method of x-ray ct apparatus using standard gauge for calibration and evaluation of x-ray ct apparatus
JP5306972B2 (en) 2009-11-26 2013-10-02 古河電気工業株式会社 Wire harness, method for manufacturing wire harness
JP2015531480A (en) 2012-09-07 2015-11-02 カール・ツァイス・エックス−レイ・マイクロスコピー・インコーポレイテッドCarl Zeiss X−Ray Microscopy, Inc. Confocal X-ray fluorescence / X-ray computed tomography combined system and method
JP2017156243A (en) 2016-03-02 2017-09-07 株式会社日立製作所 Computer tomography method and computer tomography device
JP6267432B2 (en) 2013-03-23 2018-01-24 京セラ株式会社 Optical device manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680420B2 (en) * 1985-09-20 1994-10-12 株式会社日立製作所 X-ray CT system
JP3313755B2 (en) * 1992-04-30 2002-08-12 東芝アイティー・コントロールシステム株式会社 Tomography equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170876A (en) 2004-12-17 2006-06-29 Hitachi Ltd Ct apparatus
JP2008185359A (en) 2007-01-26 2008-08-14 Shimadzu Corp X-ray ct equipment
JP5306972B2 (en) 2009-11-26 2013-10-02 古河電気工業株式会社 Wire harness, method for manufacturing wire harness
JP2012189517A (en) 2011-03-13 2012-10-04 National Institute Of Advanced Industrial & Technology Standard gauge for calibration and evaluation of x-ray ct apparatus, and calibration method and evaluation method of x-ray ct apparatus using standard gauge for calibration and evaluation of x-ray ct apparatus
JP2015531480A (en) 2012-09-07 2015-11-02 カール・ツァイス・エックス−レイ・マイクロスコピー・インコーポレイテッドCarl Zeiss X−Ray Microscopy, Inc. Confocal X-ray fluorescence / X-ray computed tomography combined system and method
JP6267432B2 (en) 2013-03-23 2018-01-24 京セラ株式会社 Optical device manufacturing method
JP2017156243A (en) 2016-03-02 2017-09-07 株式会社日立製作所 Computer tomography method and computer tomography device

Also Published As

Publication number Publication date
JP2019124491A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6994952B2 (en) X-ray CT device for measurement and its calibration method
JP6767045B2 (en) Coordinate matching jig between X-ray CT device for measurement and coordinate measuring machine
JP5408873B2 (en) Calibration method of X-ray sensing device in coordinate measuring device
CN107515229A (en) A kind of multiple degrees of freedom industrial X-ray computed tomography (SPECT) system
WO2014068784A1 (en) Three-dimensional image capture system, and particle beam therapy device
CN103975232B (en) The manufacture method of device, x-ray irradiation method and structure
JP6631624B2 (en) X-ray inspection apparatus, X-ray inspection method and structure manufacturing method
DE202009019014U1 (en) Computer tomographic workpiece measuring device
US8121247B2 (en) Method for the tomographic measurement of mechanical workpieces
JP2009505083A (en) Measuring apparatus and method for computed tomography
CN101023322A (en) Coordinate measuring apparatus and method for measuring an object
JP2006239403A5 (en)
CN101072540A (en) In bore ct localization marking lasers
WO2014068785A1 (en) Three-dimensional image capture system, and particle beam therapy device
JP2020071181A (en) X-ray ct scanner for measurement
TW201515638A (en) A scanning system for three-dimensional imaging
KR101527311B1 (en) Machine tool
WO2009121051A2 (en) X-ray inspection systems and methods
US20180024079A1 (en) Image reconstruction method for x-ray measuring device, structure manufacturing method, image reconstruction program for x-ray measuring device, and x-ray measuring device
JP4636258B2 (en) X-ray equipment
JP6358994B2 (en) X-ray CT system
JPH01235839A (en) Apparatus and method for forming transmission line image
KR20230135005A (en) Procedure for generating the data for the reconstruction of a volume in a flat object using an x-ray system
JP2021042998A (en) X-ray CT device for measurement
JP2021050937A (en) Calibration method of x-ray ct scanner for measurement, measurement method, and x-ray ct scanner for measurement

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211214

R150 Certificate of patent or registration of utility model

Ref document number: 6994952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150