JP6994677B2 - Batteries assembled - Google Patents

Batteries assembled Download PDF

Info

Publication number
JP6994677B2
JP6994677B2 JP2020134083A JP2020134083A JP6994677B2 JP 6994677 B2 JP6994677 B2 JP 6994677B2 JP 2020134083 A JP2020134083 A JP 2020134083A JP 2020134083 A JP2020134083 A JP 2020134083A JP 6994677 B2 JP6994677 B2 JP 6994677B2
Authority
JP
Japan
Prior art keywords
battery
insulator
bind bar
battery cell
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020134083A
Other languages
Japanese (ja)
Other versions
JP2020177935A (en
Inventor
恒行 江嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020134083A priority Critical patent/JP6994677B2/en
Publication of JP2020177935A publication Critical patent/JP2020177935A/en
Application granted granted Critical
Publication of JP6994677B2 publication Critical patent/JP6994677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本開示は、複数の電池セルを一方向に配列した組電池に関する。 The present disclosure relates to an assembled battery in which a plurality of battery cells are arranged in one direction.

従来の組電池は、複数の電池セルを直列に並べ、隣り合う電池セルの両端にある電極端子をバスバーと呼ばれる集電体で連結する際に、電極端子とバスバーをレーザーで溶接する方法を用いているもの(例えば、特許文献1参照。)が知られている。 The conventional assembled battery uses a method in which a plurality of battery cells are arranged in series and the electrode terminals and the bus bar are welded by a laser when the electrode terminals at both ends of the adjacent battery cells are connected by a current collector called a bus bar. (For example, see Patent Document 1).

図6は、上記特許文献1に記載の従来の組電池の全体構成を示す概略斜視図である。図6は、従来の組電池の全体図を示している。同図において、組電池1は、複数の電池セル2を直列に配置し、その両端をエンドプレート3で挟んだ状態で、配列方向に沿って延在するバインドバー4でエンドプレート3を連結固定する構造となっている。また、電池セル2の上面に電極端子が設けられ、隣り合う電池セル2の一方の電極端子がバスバー5で接合されている。 FIG. 6 is a schematic perspective view showing the overall configuration of the conventional assembled battery described in Patent Document 1. FIG. 6 shows an overall view of a conventional assembled battery. In the figure, in the assembled battery 1, a plurality of battery cells 2 are arranged in series, and the end plates 3 are connected and fixed by a bind bar 4 extending along the arrangement direction with both ends sandwiched between the end plates 3. It has a structure to do. Further, an electrode terminal is provided on the upper surface of the battery cell 2, and one electrode terminal of the adjacent battery cells 2 is joined by a bus bar 5.

国際公開第2014/034106号International Publication No. 2014/034106

近年、特許文献1の組電池に代表されるように、リチウムイオン二次電池の電極端子とバスバーとの接合には、レーザーなどによる溶接が用いられることが多くなってきている。これ以前の組電池の電極端子を接合する方法としては、電極端子をネジ構造として、バスバーをボルト締結して接合する方法が用いられていたが、レーザー溶接を用いた接合はネジ留めに比べると工程が少なくなるという利点がある。反面、レーザー溶接では、ボルト締結に比べると接合部の強度が弱いという欠点がある。例えば、組電池に衝撃や振動などによる荷重が付与されると、組電池を構成する電池セルの変位によってバスバー溶接部に負荷が生じる。さらに、負荷が大きくなりすぎると溶接部で破断することがあり得る。特に、電池セルが直列に並んでいる方向(以下、配列方向と呼ぶ。y方向とする。)に大きな衝撃を受ける場合、図2Aに示すように、この配列方向にエンドプレート以外の拘束がない電池セルは大きく変位する。その結果、溶接部にも大きな負荷が発生し、最も危険となる。 In recent years, as represented by the assembled battery of Patent Document 1, welding by a laser or the like is often used for joining the electrode terminal of the lithium ion secondary battery and the bus bar. Prior to this, as a method of joining the electrode terminals of the assembled battery, a method of joining the electrode terminals with a screw structure and bolting the bus bar was used, but the joining using laser welding is compared with the screw fastening. There is an advantage that the number of steps is reduced. On the other hand, laser welding has the disadvantage that the strength of the joint is weaker than that of bolt fastening. For example, when a load due to impact or vibration is applied to the assembled battery, a load is generated on the bus bar welded portion due to the displacement of the battery cells constituting the assembled battery. Furthermore, if the load becomes too large, it may break at the weld. In particular, when a large impact is applied in the direction in which the battery cells are arranged in series (hereinafter referred to as the arrangement direction; the y direction), as shown in FIG. 2A, there is no constraint other than the end plate in this arrangement direction. The battery cell is greatly displaced. As a result, a large load is also generated on the welded portion, which is the most dangerous.

本開示は、前記従来の課題を解決するもので、バスバーと電極の接合部で破断することを抑制した組電池を提供することを目的とする。 The present disclosure has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide an assembled battery in which breakage at a joint portion between a bus bar and an electrode is suppressed.

上記目的を達成するために、本開示の組電池は、一方向に配列された一列の複数の電池セルと、
前記複数の電池セルの配列方向の両端から、前記一列の前記複数の電池セルを狭持する一対のエンドプレートと、
前記配列方向に垂直な方向から前記複数の電池セルを挟持すると共に、前記配列方向の両端で前記一対のエンドプレートを締結する一対のバインドバーと、
前記バインドバーと前記電池セルとの隙間に挟み込まれた絶縁物と、
を備え、
前記絶縁物は、前記隙間に挿入前の初期厚さが前記隙間より大である圧縮状態にある。
In order to achieve the above object, the assembled battery of the present disclosure includes a plurality of battery cells in a row arranged in one direction.
A pair of end plates that sandwich the plurality of battery cells in a row from both ends in the arrangement direction of the plurality of battery cells.
A pair of bind bars that sandwich the plurality of battery cells from a direction perpendicular to the arrangement direction and fasten the pair of end plates at both ends in the arrangement direction.
An insulator sandwiched between the bind bar and the battery cell,
Equipped with
The insulator is in a compressed state in which the initial thickness before being inserted into the gap is larger than that of the gap.

以上のように、本開示に係る組電池によれば、バインドバーと電池セルとの隙間に挟まれたゴムまたは樹脂等の絶縁物を備える。そこで、複数の電池セルの配列方向に大きな外力を受けた場合においても、バインドバーと電池セルとの間に挟まれたゴムまたは樹脂等の絶縁物との摩擦により、外力の方向のセル変位を小さくすることができ、バスバーと電極の接合部での破断を抑制することができる。さらに、この絶縁物は、隙間に挿入前の初期厚さが隙間より大である圧縮状態にある。これにより、上記効果を、組電池の外形寸法をほとんど変えることなく実現できる。 As described above, according to the assembled battery according to the present disclosure, an insulating material such as rubber or resin sandwiched between the bind bar and the battery cell is provided. Therefore, even when a large external force is applied in the arrangement direction of a plurality of battery cells, the cell displacement in the direction of the external force is caused by the friction between the bind bar and the insulator such as rubber sandwiched between the battery cells. It can be made smaller, and breakage at the joint between the bus bar and the electrode can be suppressed. Further, the insulator is in a compressed state in which the initial thickness before being inserted into the gap is larger than the gap. As a result, the above effect can be realized with almost no change in the external dimensions of the assembled battery.

本開示の実施の形態1に係る組電池の全体構成を示す概略斜視図である。It is a schematic perspective view which shows the whole structure of the assembled battery which concerns on Embodiment 1 of this disclosure. (a)は、図1Aの組電池の一方の端部の電池セルとエンドプレートとの間における、電池セルと薄い絶縁物とバインドバーとの構成を示す分解図であり、(b)は、図1Aの組電池の点線A-A‘を通り配列方向(y方向)と垂直な組電池の断面について、(a)の電池セル、バインドバーおよび絶縁物のみを示す概略断面図である。(A) is an exploded view showing a configuration of a battery cell, a thin insulator, and a bind bar between the battery cell and the end plate at one end of the assembled battery of FIG. 1A, and FIG. 1 (b) is an exploded view. 1A is a schematic cross-sectional view showing only the battery cell, the bind bar, and the insulator of (a) with respect to the cross section of the assembled battery which passes through the dotted line AA'of the assembled battery of FIG. 1A and is perpendicular to the arrangement direction (y direction). (a)は、図1Aの組電池の一方の端部の電池セルとエンドプレートとの間における、電池セルと厚い絶縁物とバインドバーとの構成を示す分解図であり、(b)は、図1Aの組電池の点線A-A‘を通り配列方向(y方向)と垂直な組電池の断面について、(a)の電池セル、バインドバーおよび絶縁物のみを示す概略断面図である。(A) is an exploded view showing a configuration of a battery cell, a thick insulator, and a bind bar between the battery cell and the end plate at one end of the assembled battery of FIG. 1A, and FIG. 1 (b) is an exploded view. 1A is a schematic cross-sectional view showing only the battery cell, the bind bar, and the insulator of (a) with respect to the cross section of the assembled battery which passes through the dotted line AA'of the assembled battery of FIG. 1A and is perpendicular to the arrangement direction (y direction). (a)は、本開示の実施の形態1における組電池が配列方向の衝撃を受けた場合の部材の動きを示す図であり、(b)は、(a)の配列方向の衝撃によって各電池セルが配列方向に圧縮される様子を示す概略図である。(A) is a diagram showing the movement of members when the assembled battery in the first embodiment of the present disclosure receives an impact in the arrangement direction, and (b) is a diagram showing the movement of each battery due to the impact in the arrangement direction of (a). It is a schematic diagram which shows how the cell is compressed in the arrangement direction. (a)は、図1B(b)と同様に、電池セルとバインドバーとの隙間に、初期厚さが上記隙間と同じ薄い絶縁物を挟んでいる組電池の断面構成を示す概略断面図であり、(b)は、(a)の組電池に、配列方向の衝撃を受けた場合のバインドバーの変形を示す概略断面図である。(A) is a schematic cross-sectional view showing a cross-sectional configuration of an assembled battery in which a thin insulator having the same initial thickness as the above gap is sandwiched in a gap between a battery cell and a bind bar, as in FIG. 1B (b). Yes, (b) is a schematic cross-sectional view showing the deformation of the bind bar when the assembled battery of (a) receives an impact in the arrangement direction. (a)は、図1C(b)と同様に、電池セルとバインドバーとの隙間に、初期厚さが上記隙間より厚い絶縁物を挟んでいる組電池の断面構成を示す概略断面図であり、(b)は、(a)の組電池に、配列方向の衝撃を受けた場合のバインドバーの変形及び絶縁物の復元を示す概略断面図である。(A) is a schematic cross-sectional view showing a cross-sectional configuration of an assembled battery in which an insulator having an initial thickness thicker than the above gap is sandwiched in a gap between a battery cell and a bind bar, as in FIG. 1C (b). , (B) are schematic cross-sectional views showing the deformation of the bind bar and the restoration of the insulating material when the assembled battery of (a) is subjected to an impact in the arrangement direction. 本開示の実施の形態1に係るシミュレーションのモデル図である。It is a model diagram of the simulation which concerns on Embodiment 1 of this disclosure. 本開示の実施の形態1に係るシミュレーションで得られたバインドバーと電池セルの隙間を示す等高線図である。FIG. 3 is a contour diagram showing a gap between a bind bar and a battery cell obtained in the simulation according to the first embodiment of the present disclosure. 本開示の実施の形態1に係るシミュレーションで得られた電極とバスバーの溶接部にかかるはく離力と絶縁物の圧縮率との関係を示す図である。It is a figure which shows the relationship between the peeling force applied to the welded part of the electrode and the bus bar obtained by the simulation which concerns on Embodiment 1 of this disclosure, and the compressibility of an insulator. 絶縁物の摩擦係数と圧縮率との関係を示す図である。It is a figure which shows the relationship between the friction coefficient of an insulator, and the compression rate. 特許文献1に記載の従来の組電池の全体構成を示す概略斜視図である。It is a schematic perspective view which shows the whole structure of the conventional assembled battery described in Patent Document 1. FIG.

第1の態様に係る組電池は、一方向に配列された一列の複数の電池セルと、
前記複数の電池セルの配列方向の両端から、前記一列の前記複数の電池セルを狭持する一対のエンドプレートと、
前記配列方向に垂直な方向から前記複数の電池セルを挟持すると共に、前記配列方向の両端で前記一対のエンドプレートを締結する一対のバインドバーと、
前記バインドバーと前記電池セルとの隙間に挟み込まれた絶縁物と、
を備え、
前記絶縁物は、前記隙間に挿入前の初期厚さが前記隙間より大である圧縮状態にある。
The assembled battery according to the first aspect includes a plurality of battery cells in a row arranged in one direction, and a plurality of battery cells.
A pair of end plates that sandwich the plurality of battery cells in a row from both ends in the arrangement direction of the plurality of battery cells.
A pair of bind bars that sandwich the plurality of battery cells from a direction perpendicular to the arrangement direction and fasten the pair of end plates at both ends in the arrangement direction.
An insulator sandwiched between the bind bar and the battery cell,
Equipped with
The insulator is in a compressed state in which the initial thickness before being inserted into the gap is larger than that of the gap.

第2の態様に係る組電池は、上記第1の態様において、前記電池セルおよび前記バインドバーと前記絶縁物との間の摩擦係数をμ、前記絶縁物の圧縮率をΔLとしたときに、
0.2<μ<0.4の場合には、ΔL>13μ-11.55μ+2.63、
μ≦0.4の場合には、ΔL>0.125μ-0.275μ+0.18の関係を満たしてもよい。
In the first aspect, the assembled battery according to the second aspect has a friction coefficient between the battery cell and the bind bar and the insulator as μ, and a compression rate of the insulator as ΔL.
When 0.2 <μ <0.4, ΔL> 13μ 2 -11.55μ + 2.63,
When μ ≦ 0.4, the relationship of ΔL> 0.125μ 2-0.275μ + 0.18 may be satisfied.

第3の態様に係る組電池は、上記第1又は第2の態様において、前記絶縁物は、前記バインドバーまたは前記電池セルの少なくとも一方に接着されていてもよい。 In the assembled battery according to the third aspect, in the first or second aspect, the insulating material may be adhered to at least one of the bind bar or the battery cell.

第4の態様に係る組電池は、上記第1から第3のいずれかの態様において、前記電池セルの電極の設置面を上側とした場合に、前記絶縁物の前記初期厚さは、前記上側に近づくにつれ大となっていてもよい。 In the assembled battery according to the fourth aspect, in any one of the first to third aspects, when the installation surface of the electrode of the battery cell is on the upper side, the initial thickness of the insulator is on the upper side. It may become larger as it gets closer to.

以下、本開示の実施の形態に係る組電池について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。 Hereinafter, the assembled battery according to the embodiment of the present disclosure will be described with reference to the attached drawings. In the drawings, substantially the same members are designated by the same reference numerals.

(実施の形態1)
図1Aは、本開示の実施の形態1に係るおける組電池1の全体を示す斜視図である。図1Bの(a)は、図1Aの組電池1の一方の端部の電池セル2とエンドプレート3との間における、電池セル2と薄い絶縁物7とバインドバー4との構成を示す分解図である。図1Bの(b)は、図1Aの組電池1の点線A-A‘を通り配列方向(y方向)と垂直な組電池1の断面について、(a)の電池セル2、バインドバー4および絶縁物7のみを示す概略断面図である。図1Cの(a)は、図1Aの組電池1の一方の端部の電池セル2とエンドプレート3との間における、電池セル2と厚い絶縁物7とバインドバー4との構成を示す分解図である。図1Cの(b)は、図1Aの組電池1の点線A-A‘を通り配列方向(y方向)と垂直な組電池1の断面について、(a)の電池セル2、バインドバー4および絶縁物7のみを示す概略断面図である。
(Embodiment 1)
FIG. 1A is a perspective view showing the entire assembled battery 1 according to the first embodiment of the present disclosure. FIG. 1B (a) is an exploded view showing the configuration of the battery cell 2, the thin insulator 7, and the bind bar 4 between the battery cell 2 and the end plate 3 at one end of the assembled battery 1 of FIG. 1A. It is a figure. 1B (b) shows the battery cell 2, the bind bar 4 and the bind bar 4 of FIG. 1A with respect to the cross section of the assembled battery 1 which passes through the dotted line AA'of the assembled battery 1 of FIG. 1A and is perpendicular to the arrangement direction (y direction). It is the schematic sectional drawing which shows only the insulation 7. FIG. 1C (a) is an exploded view showing the configuration of the battery cell 2, the thick insulator 7, and the bind bar 4 between the battery cell 2 and the end plate 3 at one end of the assembled battery 1 of FIG. 1A. It is a figure. FIG. 1C shows the battery cell 2, the bind bar 4, and the bind bar 4 of FIG. 1A with respect to the cross section of the assembled battery 1 which passes through the dotted line AA'of the assembled battery 1 of FIG. 1A and is perpendicular to the arrangement direction (y direction). It is the schematic sectional drawing which shows only the insulation 7.

図1Aにおいて、図6と同じ構成要素については同じ符号を用いている。実施の形態1に係る組電池1は、複数の電池セル2と、エンドプレート3と、バインドバー4と、絶縁物と、を備える。電池セル2は、蓄電池の基本となる部品で、発電装置で生成された電気を蓄え、必要に応じて接続された電気製品やデバイスに電気を供給する。複数の電池セル2は、直列に配置されている。エンドプレート3は、複数の電池セル2の両端に1枚ずつ、両端の電池セルのそれぞれに接して配置されることで、エンドプレート3によって配列方向の両端から複数の電池セル2を挟持する。バインドバー4によって、配列方向に垂直な方向から複数の電池セル2を挟持する。また、一対のエンドプレート3は、バインドバー4によって、リベットや溶接、あるいはボルト締結などの方法で結合される。組電池1の両端にある電池セル2をバインドバー4に直接結合することは非常に危険であるためにエンドプレート3を用いている。エンドプレート3には、アルミニウムや鉄などの金属材料を用いることが多い。この場合、エンドプレート3と両端の電池セル2との間には絶縁材料を挟むなどの対策が施される。電池セル2は、充放電を繰り返す過程で膨張するため、バインドバー4にはハイテンなどの引張に強い金属材料が用いられる。 In FIG. 1A, the same reference numerals are used for the same components as those in FIG. The assembled battery 1 according to the first embodiment includes a plurality of battery cells 2, an end plate 3, a bind bar 4, and an insulator. The battery cell 2 is a basic component of a storage battery, stores electricity generated by a power generation device, and supplies electricity to connected electric appliances and devices as needed. The plurality of battery cells 2 are arranged in series. The end plates 3 are arranged in contact with each of the battery cells at both ends, one at each end of the plurality of battery cells 2, so that the end plates 3 sandwich the plurality of battery cells 2 from both ends in the arrangement direction. A plurality of battery cells 2 are sandwiched by the bind bar 4 from a direction perpendicular to the arrangement direction. Further, the pair of end plates 3 are connected by a bind bar 4 by a method such as riveting, welding, or bolting. Since it is very dangerous to directly connect the battery cells 2 at both ends of the assembled battery 1 to the bind bar 4, the end plate 3 is used. A metal material such as aluminum or iron is often used for the end plate 3. In this case, measures such as sandwiching an insulating material between the end plate 3 and the battery cells 2 at both ends are taken. Since the battery cell 2 expands in the process of repeating charging and discharging, a tensile-resistant metal material such as high-tensile steel is used for the bind bar 4.

また、電池セル2の上面には、電気を取り出すための電極端子6が設けられ、バスバー5を介して異なる電池セル2間の電極端子6が互いに接続される。 Further, an electrode terminal 6 for extracting electricity is provided on the upper surface of the battery cell 2, and the electrode terminals 6 between different battery cells 2 are connected to each other via the bus bar 5.

さらに、この実施の形態1に係る組電池1では、電池セル2とバインドバー4の隙間には、図1C(a)に示すように、隙間より初期厚さが厚い絶縁物7が挟まっている。絶縁物7としては、例えば、ゴムまたは樹脂材料で、元の厚さ(初期厚さ)は、前記隙間寸法よりも厚い。組電池1として組み上がった際には、図1C(b)に示すように、絶縁物7は、前記隙間に圧縮された状態(圧縮状態)で挟まることになる。
なお、絶縁物7として、図1B(a)に示すように、隙間と実質的に同じ厚さの薄い場合にも、組電池1として組み上がった際には、図1B(b)に示すように、絶縁物7は厚さの変化なく上記隙間に挟まっている。
Further, in the assembled battery 1 according to the first embodiment, as shown in FIG. 1C (a), an insulator 7 having an initial thickness thicker than the gap is sandwiched in the gap between the battery cell 2 and the bind bar 4. .. The insulator 7 is, for example, a rubber or resin material, and the original thickness (initial thickness) is thicker than the gap size. When assembled as the assembled battery 1, as shown in FIG. 1C (b), the insulating material 7 is sandwiched in the gap in a compressed state (compressed state).
As shown in FIG. 1B (a), the insulating material 7 is as shown in FIG. 1B (b) when assembled as the assembled battery 1 even when it is as thin as the gap and has substantially the same thickness. In addition, the insulating material 7 is sandwiched in the above gap without changing the thickness.

<配列方向に大きな外力を受けた場合について>
特許文献1のような従来の組電池1においては、配列方向に大きな外力を受けた場合に、電極端子6とバスバー5の溶接部に大きなはく離力が発生しやすい。これは、エンドプレート3以外に電池セル2の配列方向への変位を拘束するものがなく、電池セル2がこの方向に動きやすいためである。一方、配列方向以外の方向については、バインドバー4がセルの変位を拘束するため、配列方向に比べると動きづらく、変位は小さく抑えられると考えられる。
<When a large external force is applied in the arrangement direction>
In the conventional assembled battery 1 as in Patent Document 1, when a large external force is applied in the arrangement direction, a large peeling force is likely to occur in the welded portion between the electrode terminal 6 and the bus bar 5. This is because there is nothing other than the end plate 3 that restrains the displacement of the battery cells 2 in the arrangement direction, and the battery cells 2 are easy to move in this direction. On the other hand, in a direction other than the arrangement direction, since the bind bar 4 restrains the displacement of the cell, it is considered that it is harder to move than the arrangement direction and the displacement can be suppressed to be small.

図2A(a)は、実施の形態1における組電池1が配列方向の衝撃11を受けた場合の部材の動きを示す図であり、(b)は、(a)の配列方向の衝撃11によって各電池セルが配列方向に圧縮される様子を示す概略図である。図2B(a)は、図1B(b)と同様に、電池セル2とバインドバー4との隙間に、初期厚さが上記隙間と同じ薄い絶縁物7を挟んでいる組電池の断面構成を示す概略断面図である。図2B(b)は、図2B(a)の組電池に、配列方向の衝撃を受けた場合のバインドバー4の変形を示す概略断面図である。図2C(a)は、図1C(b)と同様に、電池セル2とバインドバー4との隙間に、初期厚さが上記隙間より厚い絶縁物7を挟んでいる組電池の断面構成を示す概略断面図である。図2C(b)は、図2C(a)の組電池に、配列方向の衝撃を受けた場合のバインドバー4の変形及び絶縁物7の復元を示す概略断面図である。なお、図2Bおよび図2Cは、図1Bおよび図1Cと同様、図1AにおけるA-A‘での断面図である。 2A (a) is a diagram showing the movement of the members when the assembled battery 1 in the first embodiment receives an impact 11 in the arrangement direction, and FIG. 2B is a diagram showing the movement of the members due to the impact 11 in the arrangement direction of (a). It is a schematic diagram which shows how each battery cell is compressed in the arrangement direction. FIG. 2B (a) shows a cross-sectional configuration of an assembled battery in which a thin insulator 7 having the same initial thickness as the above gap is sandwiched between the battery cell 2 and the bind bar 4 in the same manner as in FIG. 1B (b). It is a schematic cross-sectional view which shows. 2B (b) is a schematic cross-sectional view showing the deformation of the bind bar 4 when the assembled battery of FIG. 2B (a) receives an impact in the arrangement direction. FIG. 2C (a) shows a cross-sectional configuration of an assembled battery in which an insulator 7 having an initial thickness thicker than the above gap is sandwiched in a gap between a battery cell 2 and a bind bar 4, similarly to FIG. 1C (b). It is a schematic sectional view. 2C (b) is a schematic cross-sectional view showing the deformation of the bind bar 4 and the restoration of the insulator 7 when the assembled battery of FIG. 2C (a) is subjected to an impact in the arrangement direction. 2B and 2C are cross-sectional views taken along the line AA'in FIG. 1A, similar to FIGS. 1B and 1C.

配列方向(y方向)に大きな衝撃11を受けた場合、組電池1は、図2A~図2Cに示すような変形を生じる。つまり、図2A(a)及び(b)に示すように、各電池セル2は、衝撃の方向(y方向)の前方へ集まって圧縮される状態となる。また、図2B(b)および図2C(b)に示すように、バインドバー4は、組電池1から外側、つまりx方向に凸となるように広がる変形を生じる。 When a large impact 11 is received in the arrangement direction (y direction), the assembled battery 1 undergoes deformation as shown in FIGS. 2A to 2C. That is, as shown in FIGS. 2A and 2A, each battery cell 2 is in a state of being gathered and compressed in the front in the direction of impact (y direction). Further, as shown in FIGS. 2B (b) and 2C (b), the bind bar 4 undergoes a deformation that spreads outward from the assembled battery 1, that is, so as to be convex in the x direction.

まず、絶縁物7の厚さが薄いと、図2B(b)に示すように、電池セル2と絶縁物7および絶縁物7とバインドバー4との間隔が広がって、絶縁物7とバインドバー4との間の接触が保てなくなる。このことから、絶縁物7による摩擦力が働かず、電池セル2の配列方向(y方向)への変位を抑えることができなくなる。 First, when the thickness of the insulator 7 is thin, as shown in FIG. 2B (b), the distance between the battery cell 2 and the insulator 7 and the insulator 7 and the bind bar 4 is widened, and the distance between the insulator 7 and the bind bar 4 is widened. The contact with 4 cannot be maintained. For this reason, the frictional force due to the insulator 7 does not work, and the displacement of the battery cells 2 in the arrangement direction (y direction) cannot be suppressed.

一方、本実施の形態1では、図1C(a)に示すように、電池セル2とバインドバー4との隙間の絶縁物7を、両者の間隔よりも厚さの大きいものとし、組電池1を組み立てる際に両者の間に圧縮しながら挟みこむ構造とすることを特徴とする。絶縁物7の材料としては、例えば、ゴムまたは限界圧縮率の高い樹脂材料を用いることができる。このような構造とすることで、配列方向に大きな衝撃を受ける場合においても、電池セル2とバインドバー4の間が広がっても、図2C(b)に示すように、圧縮された絶縁物7が元の厚さに戻ろうとすることで隙間は絶縁物7によって常に埋められる。これにより、電池セル2と絶縁物7、および絶縁物7とバインドバー4は、互いの接触状態を保つことができ、これらの物体の間に摩擦力が働くことで、電池セル2の配列方向の変位を抑えることができる。 On the other hand, in the first embodiment, as shown in FIG. 1C (a), the insulating material 7 in the gap between the battery cell 2 and the bind bar 4 is made thicker than the distance between the two, and the assembled battery 1 is used. It is characterized by having a structure in which it is sandwiched between the two while being compressed when assembling. As the material of the insulator 7, for example, rubber or a resin material having a high critical compressibility can be used. With such a structure, the compressed insulator 7 is as shown in FIG. 2C (b) even when a large impact is applied in the arrangement direction and the space between the battery cell 2 and the bind bar 4 is widened. The gap is always filled with the insulator 7 as it tries to return to its original thickness. As a result, the battery cell 2 and the insulator 7, and the insulator 7 and the bind bar 4 can be kept in contact with each other, and a frictional force acts between these objects, so that the arrangement direction of the battery cell 2 Displacement can be suppressed.

なお、電池セル2の電極端子6の設置面を上側、つまり鉛直上方側(z方向)とした場合に、絶縁物7の初期厚さは、前記上側に近づくにつれて大となるようにしてもよい。このように絶縁物7の初期厚さを設定することで、特に隙間が広がりやすい上側部分においても、効率的に摩擦力を作用させ、電池セル2の配列方向の変位を抑えることができる。 When the installation surface of the electrode terminal 6 of the battery cell 2 is on the upper side, that is, on the vertically upper side (z direction), the initial thickness of the insulator 7 may be increased as it approaches the upper side. .. By setting the initial thickness of the insulator 7 in this way, the frictional force can be efficiently applied even in the upper portion where the gap is likely to widen, and the displacement of the battery cells 2 in the arrangement direction can be suppressed.

(実施例)
本開示の効果を確認するために、実施例としてのシミュレーションを行った。
(Example)
In order to confirm the effect of the present disclosure, a simulation as an example was performed.

図3は、シミュレーションに用いた組電池1およびそれを固定する治具8のモデル図である。このモデルでは、組電池1が電気自動車などの車両や定置用として搭載されることを想定している。組電池1はその4隅において治具8にボルトで締結され、治具8は底面を完全固定される構造となっている。この状態で、組電池1に対して配列方向に80Gの衝撃を与えることを考える。 FIG. 3 is a model diagram of the assembled battery 1 used in the simulation and the jig 8 for fixing the assembled battery 1. In this model, it is assumed that the assembled battery 1 is mounted on a vehicle such as an electric vehicle or for stationary use. The assembled battery 1 is bolted to the jig 8 at its four corners, and the jig 8 has a structure in which the bottom surface is completely fixed. In this state, consider giving an impact of 80 G to the assembled battery 1 in the arrangement direction.

図4に示す組電池1において、電池セル2の側面とバインドバー4との隙間は0.1mmとしている。電池セル2とバインドバー4との隙間に挟む絶縁物7としてはヤング率2.45GPaの樹脂を用いており、初期厚さが前記隙間と同じ0.1mmのものと、0.105mm、0.12mm、0.14mm、0.16mm、0.18mmのものとしている。初期厚さ0.105mm~0.18mmの5つについては、組電池1を組み立てる際に電池セル2とバインドバー4との間に挟まれ、組まれた直後の厚さは0.1mmとなる。各部材間は接触・摩擦を考慮しており、絶縁物7と電池セル2およびバインドバー4との間の摩擦係数は0.2~0.8の間で変化させた。実機における摩擦係数は、JIS規格に定められる試験方法JIS K7125によって測定することができる。 In the assembled battery 1 shown in FIG. 4, the gap between the side surface of the battery cell 2 and the bind bar 4 is 0.1 mm. A resin having a Young's modulus of 2.45 GPa is used as the insulator 7 sandwiched between the battery cell 2 and the bind bar 4, and the initial thickness is 0.1 mm, which is the same as the gap, and 0.105 mm, 0. It is set to 12 mm, 0.14 mm, 0.16 mm, and 0.18 mm. For the five initial thicknesses of 0.105 mm to 0.18 mm, they are sandwiched between the battery cell 2 and the bind bar 4 when assembling the assembled battery 1, and the thickness immediately after being assembled is 0.1 mm. .. Contact and friction were taken into consideration between the members, and the coefficient of friction between the insulator 7 and the battery cell 2 and the bind bar 4 was changed between 0.2 and 0.8. The coefficient of friction in the actual machine can be measured by the test method JIS K7125 defined in the JIS standard.

このモデルに対して、以下の手順で組電池1に境界条件を与える。
1)電池セル2をわずかに膨張させ、電池セル2にバインド力を与える。これは、組電池1を組み立てる際に、直列に配置された電池セル2およびエンドプレート3を一度圧縮した後にバインドバーで両端のエンドプレートを固定した際に発生する反力に相当する。
2)バスバー5が所定の位置に配置されて溶接されることを模擬するため、対応する電極とバスバーの溶接面に対して、全方向の変位が同じとなるように設定する。
3)組電池1の4隅のボルトに対して治具8へ固定するためのねじ締め力を与え、組電池1を治具8へ固定する。
4)配列方向(y方向)、すなわち電池セル2が直列に並ぶ方向に80Gの衝撃11を負荷する。
For this model, boundary conditions are given to the assembled battery 1 by the following procedure.
1) The battery cell 2 is slightly expanded to give a binding force to the battery cell 2. This corresponds to the reaction force generated when the battery cells 2 and the end plates 3 arranged in series are once compressed and then the end plates at both ends are fixed with the bind bar when the assembled battery 1 is assembled.
2) In order to simulate that the bus bar 5 is arranged at a predetermined position and welded, the displacement in all directions is set to be the same with respect to the welding surface of the corresponding electrode and the bus bar.
3) A screw tightening force for fixing the assembled battery 1 to the jig 8 is applied to the bolts at the four corners of the assembled battery 1 to fix the assembled battery 1 to the jig 8.
4) The impact 11 of 80 G is loaded in the arrangement direction (y direction), that is, in the direction in which the battery cells 2 are arranged in series.

以下、シミュレーションの結果を用いて、本開示に係る組電池の効果について説明する。ここで、便宜上、電池セル2の配列方向(y方向)と垂直な方向のうち、バインドバー4の大きな平面と垂直な方向をx方向と定義する。 Hereinafter, the effect of the assembled battery according to the present disclosure will be described using the results of the simulation. Here, for convenience, of the directions perpendicular to the arrangement direction (y direction) of the battery cells 2, the direction perpendicular to the large plane of the bind bar 4 is defined as the x direction.

図4は、本開示の実施の形態1に係るシミュレーションで得られたバインドバーと電池セルの隙間を示す等高線図である。図4では、絶縁物7の初期厚さが0.1mmの組電池1の構造における、バインドバー4の大きな平面に平行な電池セル2の短側面とバインドバー4の大きな平面との隙間(x方向の変位差)の等高線を示す。図中、網掛けで示した、隙間が0.1以下の場所は、絶縁物7を介して電池セル2とバインドバー4が接していることを示している。隙間が0.1よりも大きな場所は、絶縁物7、電池セル2、バインドバー4との間に隙間が発生している、すなわち接触が保たれなくなったことを示している。組電池1は、4隅にて治具8に固定された状態で配列方向(y方向)に衝撃を受けることで、電池セルには配列方向(y方向)に圧縮の力が働く。これによって、x方向に外側へ膨らむような変位が発生する。一方、バインドバー4も配列方向に圧縮の力を受けることになり、これによって大きな平面は外側へ膨らみ、x方向の変位が発生する。バインドバー4のx方向変位が大きい場所は隙間ができ、小さい場所は電池セル2や絶縁物7との接触が保たれることになる。組電池1の下側は治具8に固定されている点に近いために電池セル2やバインドバー4が動きにくいため、隙間はほとんど発生していない構造となっている。一方、上に行くほど隙間が発生しており、電池セル2とバインドバー4が初期では接触している面の約45%に隙間が発生している。この領域では、電池セル2と絶縁物7とバインドバー4との摩擦が有効に作用していないことを示している。なお、このときの、電極とバスバーの溶接部に発生するはく離力の最大値は、図5Aに示すように、許容値を超えている。 FIG. 4 is a contour diagram showing a gap between the bind bar and the battery cell obtained in the simulation according to the first embodiment of the present disclosure. In FIG. 4, in the structure of the assembled battery 1 in which the initial thickness of the insulator 7 is 0.1 mm, the gap (x) between the short side surface of the battery cell 2 parallel to the large plane of the bind bar 4 and the large plane of the bind bar 4. The contour lines of the displacement difference in the direction) are shown. In the figure, the shaded area where the gap is 0.1 or less indicates that the battery cell 2 and the bind bar 4 are in contact with each other via the insulator 7. A place where the gap is larger than 0.1 indicates that a gap has been generated between the insulator 7, the battery cell 2, and the bind bar 4, that is, the contact cannot be maintained. When the assembled battery 1 is impacted in the arrangement direction (y direction) while being fixed to the jig 8 at the four corners, a compression force acts on the battery cell in the arrangement direction (y direction). This causes a displacement that bulges outward in the x direction. On the other hand, the bind bar 4 also receives a compression force in the arrangement direction, which causes the large plane to bulge outward and cause displacement in the x direction. A gap is formed in the place where the displacement of the bind bar 4 in the x direction is large, and the contact with the battery cell 2 and the insulator 7 is maintained in the place where the displacement is small. Since the lower side of the assembled battery 1 is close to the point fixed to the jig 8, the battery cell 2 and the bind bar 4 are difficult to move, so that there is almost no gap. On the other hand, a gap is generated toward the top, and a gap is generated in about 45% of the surfaces where the battery cell 2 and the bind bar 4 are initially in contact with each other. In this region, it is shown that the friction between the battery cell 2, the insulator 7, and the bind bar 4 does not work effectively. At this time, the maximum value of the peeling force generated in the welded portion between the electrode and the bus bar exceeds the permissible value as shown in FIG. 5A.

図4に示す結果を元に、絶縁物7の初期厚さを0.1mmよりも大きくする(圧縮率を0よりも大きくする)と、前期領域においても摩擦を有効に作用させることが可能であると考えられる。 Based on the results shown in FIG. 4, if the initial thickness of the insulator 7 is made larger than 0.1 mm (the compression ratio is made larger than 0), friction can be effectively applied even in the prophase region. It is believed that there is.

図5Aは、本開示の実施の形態1に係るシミュレーションで得られた電極とバスバーの溶接部にかかるはく離力と絶縁物の圧縮率との関係を示す図である。図5Bは、絶縁物の摩擦係数と圧縮率との関係を示す図である。図5Aに、初期厚さを0.105mm~0.18mmとしたときの、電極とバスバーとの溶接部に発生するはく離力の最大値を算出し、その関係をグラフ化したものを示す。ここで、横軸は絶縁物の圧縮率とし、以下のように定義する。
絶縁物の圧縮率=(絶縁物の初期厚さ-電池セルとバインドバーの初期隙間)/絶縁物の初期厚さ
=1-(電池セルとバインドバーの初期隙間/絶縁物の初期厚さ)
FIG. 5A is a diagram showing the relationship between the peeling force applied to the welded portion between the electrode and the bus bar obtained by the simulation according to the first embodiment of the present disclosure and the compressibility of the insulator. FIG. 5B is a diagram showing the relationship between the friction coefficient of the insulator and the compression rate. FIG. 5A shows a graph of the maximum value of the peeling force generated at the welded portion between the electrode and the bus bar when the initial thickness is 0.105 mm to 0.18 mm, and the relationship between them is calculated. Here, the horizontal axis is the compressibility of the insulator and is defined as follows.
Compressibility of insulation = (initial thickness of insulation-initial gap between battery cell and bind bar) / initial thickness of insulation = 1- (initial gap between battery cell and bind bar / initial thickness of insulation)

すなわち、絶縁物7の初期厚さ0.105mm、0.12mm、0.14mm、0.16mm、0.18mmに対して、圧縮率はそれぞれ0.048、0.167、0.286、0.375、0.444となる。なお、初期厚さ0.1mmでは圧縮率ゼロとなる。また、図5Aの縦軸に示す溶接部の最大はく離力は、絶縁物7の初期厚さが0.1mmの場合の値を1として、これに対する比率として、無次元化溶接部はく離力で示している。図5からわかるように、圧縮率が大きくなるにつれて溶接部の最大はく離力は小さくなっており、圧縮された絶縁物7を介して摩擦が有効に働き、衝撃による電池セル2の変位が抑えられていることを示している。 That is, the compression ratios are 0.048, 0.167, 0.286, and 0. For the initial thickness of the insulator 7 of 0.105 mm, 0.12 mm, 0.14 mm, 0.16 mm, and 0.18 mm, respectively. It becomes 375 and 0.444. When the initial thickness is 0.1 mm, the compression rate is zero. Further, the maximum peeling force of the welded portion shown on the vertical axis of FIG. 5A is shown by the dimensionless welded portion peeling force as a ratio to the value when the initial thickness of the insulator 7 is 0.1 mm. ing. As can be seen from FIG. 5, as the compressibility increases, the maximum peeling force of the welded portion decreases, friction works effectively through the compressed insulator 7, and displacement of the battery cell 2 due to impact is suppressed. It shows that it is.

図5Aに示した無次元化溶接部はく離力を指標とすると、設計上の許容値は図5Aの点線で示す0.67未満である。絶縁物の初期厚さ0.1mmではこの値が1で許容値を超えていたが、例えば摩擦係数0.4の場合は、圧縮率を0.09以上にすることで許容値を下回ることができる。したがって、これが絶縁物7に必要な圧縮率となる。また、摩擦係数0.2の場合は、圧縮率を大きくしても無次元化溶接部はく離力は許容値を下回ることがなく、このため、摩擦係数は0.2より大きくなければならないことがわかる。このようにして図5Aより、各摩擦係数に対して無次元化溶接部はく離力が0.67未満となる圧縮率を求めると、その関係は図5Bに示すグラフで表すことができる。図5Bに示すグラフの上側の領域にあれば溶接部の最大はく離力を許容値以下に抑えることができ、そのためにか、摩擦係数をμ、圧縮率をΔLとすると、以下の式を満たす範囲を満たせばよいことがわかる。
0.2<μ<0.4のとき ΔL>13μ-11.55μ+2.63
μ≦0.4のとき ΔL>0.125μ-0.275μ+0.18
Using the dimensionless weld peeling force shown in FIG. 5A as an index, the design tolerance is less than 0.67 shown by the dotted line in FIG. 5A. When the initial thickness of the insulator was 0.1 mm, this value was 1, which exceeded the permissible value. For example, in the case of a friction coefficient of 0.4, the compression ratio may be 0.09 or more to fall below the permissible value. can. Therefore, this is the compressibility required for the insulator 7. Further, in the case of a friction coefficient of 0.2, the peeling force of the non-dimensional welded portion does not fall below the permissible value even if the compression ratio is increased, and therefore the friction coefficient must be larger than 0.2. Recognize. In this way, when the compression rate at which the dimensionless welded portion peeling force is less than 0.67 is obtained for each friction coefficient from FIG. 5A, the relationship can be represented by the graph shown in FIG. 5B. If it is in the upper region of the graph shown in FIG. 5B, the maximum peeling force of the welded portion can be suppressed to the allowable value or less. It turns out that it is sufficient to satisfy.
When 0.2 <μ <0.4 ΔL> 13μ 2 -11.55μ + 2.63
When μ ≤ 0.4 ΔL> 0.125μ 2-0.275μ + 0.18

絶縁物7については、上記の式を満たすように材料および初期寸法を選べばよい。材料としてはゴムや樹脂が適しており、また、組電池に使用される際には難燃性が要求されることから、クロロプレンゴム、ニトリルゴム、スチレン・ブタジエンゴム、EPDM(エチレン・プロピレン)、PTFE(フッ素樹脂)、ポリウレタン、ポリエチレン、ポリカーボネイト、PBT(ポリブチルテレフタレート)、変成PPE(ポリフェニレンエーテル)などであることが望ましい。これらの材料であれば、金属材料である電池セル2の缶やバインドバー4との摩擦係数は0.4よりも大きいことが多く、圧縮率が0.1(10%)よりも大きくなれば十分である。上記以外の材料でも、上記の式を満たせば使用は可能であるが、多くのゴムや樹脂は限界圧縮率が40%よりも小さいものが多いので、摩擦係数は0.3以上あることが望ましい。また、図5Aのグラフからわかるように、摩擦係数が0.2では無次元化はく離力は、許容値よりも小さくはならず、この点からも、摩擦係数は0.3以上あることが望ましい。 For the insulator 7, the material and initial dimensions may be selected so as to satisfy the above formula. Rubber and resin are suitable as materials, and flame retardancy is required when used in assembled batteries. Therefore, chloroprene rubber, nitrile rubber, styrene / butadiene rubber, EPDM (ethylene / propylene), etc. It is desirable that it is PTFE (fluororesin), polyurethane, polyethylene, polycarbonate, PBT (polybutyl terephthalate), modified PPE (polyphenylene ether) or the like. With these materials, the coefficient of friction of the battery cell 2 which is a metal material with the can or the bind bar 4 is often larger than 0.4, and if the compressibility is larger than 0.1 (10%), It is enough. Materials other than the above can be used as long as the above formula is satisfied, but many rubbers and resins have a critical compressibility of less than 40%, so a friction coefficient of 0.3 or more is desirable. .. Further, as can be seen from the graph of FIG. 5A, when the friction coefficient is 0.2, the non-dimensional peeling force does not become smaller than the permissible value, and from this point as well, it is desirable that the friction coefficient is 0.3 or more. ..

(実施の形態2)
実施の形態1では、電池セル2とバインドバー4との間に配置される、圧縮される絶縁物7を挟み込む構造としたが、実施の形態2に係る組電池では、組電池1を組み立てる際に、絶縁物7がバインドバー4または電池セル2のどちらか一方、あるいは両方に接着されている構造としている点で相違する。絶縁物7がバインドバー4または電池セル2の少なくとも一方に接着されていることで、配列方向に衝撃を受けた際の電池セル2の変位は、摩擦のみが働く実施の形態1の場合に比べてさらに小さくなる。したがって、電極端子6とバスバー5との間に働く溶接部への負荷もさらに小さくすることができる。
(Embodiment 2)
In the first embodiment, the structure is such that the compressed insulator 7 arranged between the battery cell 2 and the bind bar 4 is sandwiched, but in the assembled battery according to the second embodiment, when the assembled battery 1 is assembled. The difference is that the insulator 7 has a structure in which one or both of the bind bar 4 and the battery cell 2 are adhered to each other. Since the insulator 7 is adhered to at least one of the bind bar 4 and the battery cell 2, the displacement of the battery cell 2 when an impact is received in the arrangement direction is higher than that in the case of the first embodiment in which only friction works. Becomes even smaller. Therefore, the load on the welded portion acting between the electrode terminal 6 and the bus bar 5 can be further reduced.

なお、電池セル2の外表面が金属材料である場合や金属材料のバインドバー4に対して、表面を粗くすることで摩擦係数を大きくすることができ、実施の形態1で示した方法に対してより大きな効果を得ることができる。例えば、バインドバー4の材料としてよく用いられる鋼材であれば平均粗さRaを5~10μmとすれば摩擦係数は0.4程度となる。平均粗さを10μmより大きくすると、ある値までは摩擦係数を大きくすることも可能であるが、部材の最外表面での接触面積が小さくなると、組電池1が衝撃を受けて電池セル2、絶縁物7およびバインドバー4の間の距離が大きくなる際に摩擦の効果が小さくなる恐れがある。 When the outer surface of the battery cell 2 is made of a metal material, or when the surface of the bind bar 4 is made of a metal material, the friction coefficient can be increased by making the surface rough, as compared with the method shown in the first embodiment. A greater effect can be obtained. For example, in the case of a steel material often used as a material for the bind bar 4, if the average roughness Ra is 5 to 10 μm, the friction coefficient is about 0.4. When the average roughness is made larger than 10 μm, the friction coefficient can be increased up to a certain value, but when the contact area on the outermost surface of the member becomes small, the assembled battery 1 is impacted and the battery cell 2 The effect of friction may diminish as the distance between the insulator 7 and the bind bar 4 increases.

なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。 It should be noted that the present disclosure includes appropriately combining any of the various embodiments and / or embodiments described above, and the respective embodiments and / or embodiments. The effects of the examples can be achieved.

本開示の組電池は、電気自動車やハイブリッド車等の輸送機器、あるいは、家庭用の蓄電池、緊急時の備蓄電源等の用途にも適用できる。 The assembled battery of the present disclosure can also be applied to transportation equipment such as electric vehicles and hybrid vehicles, household storage batteries, emergency storage power sources, and the like.

1 組電池
2 電池セル
3 エンドプレート
4 バインドバー
5 バスバー
6 電極端子
7 絶縁物
8 治具
9 電池ケース
11 衝撃
1 set battery 2 battery cell 3 end plate 4 bind bar 5 bus bar 6 electrode terminal 7 insulation 8 jig 9 battery case 11 impact

Claims (5)

一方向に配列され上面で互いにバスバーで接続された一列の複数の電池セルと、
前記複数の電池セルの配列方向の両端から、前記一列の前記複数の電池セルを狭持する一対のエンドプレートと、
前記電池セルの側面において前記配列方向に垂直な方向から前記複数の電池セルを挟持すると共に、前記配列方向の両端で前記一対のエンドプレートを締結する一対のバインドバーと、
前記バインドバーと前記電池セルとの隙間に挟み込まれた絶縁物と、
を備え、
前記絶縁物は、前記隙間に挿入前の初期厚さが前記隙間より大である圧縮状態にあり、
前記バインドバーは、前記絶縁物の第1主面と接触し、
前記複数の電池セルの側面は、前記第1主面と対向する前記絶縁物の第2主面と接触しており
前記バインドバーは、前記電池セルの上面および下面に直接接触する、
組電池。
A row of battery cells arranged in one direction and connected to each other by a bus bar on the top surface,
A pair of end plates that sandwich the plurality of battery cells in a row from both ends in the arrangement direction of the plurality of battery cells.
A pair of bind bars that sandwich the plurality of battery cells from a direction perpendicular to the arrangement direction on the side surface of the battery cells and fasten the pair of end plates at both ends in the arrangement direction.
An insulator sandwiched between the bind bar and the battery cell,
Equipped with
The insulator is in a compressed state in which the initial thickness before being inserted into the gap is larger than that of the gap.
The bind bar comes into contact with the first main surface of the insulator and
The side surfaces of the plurality of battery cells are in contact with the second main surface of the insulator facing the first main surface.
The bind bar is in direct contact with the top and bottom surfaces of the battery cell.
Batteries assembled.
前記バインドバーは、さらに、前記複数の電池セルの上面および前記複数の電池セルの下面と接触している、請求項1に記載の組電池 The assembled battery according to claim 1, wherein the bind bar is in contact with the upper surface of the plurality of battery cells and the lower surface of the plurality of battery cells. 前記電池セルおよび前記バインドバーと前記絶縁物との間の摩擦係数をμ、前記絶縁物の圧縮率をΔLとしたときに、
摩擦係数μは0.2より大きく、
0.2<μ<0.4の場合には、ΔL>13μ-11.55μ+2.63、
μ≦0.4の場合には、ΔL>0.125μ-0.275μ+0.18の関係を満たす、請求項1または2に記載の組電池。
When the coefficient of friction between the battery cell and the bind bar and the insulator is μ, and the compression rate of the insulator is ΔL,
The coefficient of friction μ is greater than 0.2,
When 0.2 <μ <0.4, ΔL> 13μ 2 -11.55μ + 2.63,
The assembled battery according to claim 1 or 2, which satisfies the relationship of ΔL> 0.125μ 2-0.275μ + 0.18 when μ ≦ 0.4.
前記絶縁物は、前記バインドバーまたは前記電池セルの少なくとも一方に接着されている、請求項1から3のいずれか一項に記載の組電池。 The assembled battery according to any one of claims 1 to 3, wherein the insulating material is adhered to at least one of the bind bar and the battery cell. 前記電池セルの電極の設置面を上側とした場合に、前記絶縁物の前記初期厚さは、前記上側に近づくにつれ大となる、請求項1から4のいずれか一項に記載の組電池。 The assembled battery according to any one of claims 1 to 4, wherein the initial thickness of the insulating material becomes larger as it approaches the upper side when the installation surface of the electrode of the battery cell is on the upper side.
JP2020134083A 2020-08-06 2020-08-06 Batteries assembled Active JP6994677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020134083A JP6994677B2 (en) 2020-08-06 2020-08-06 Batteries assembled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020134083A JP6994677B2 (en) 2020-08-06 2020-08-06 Batteries assembled

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017238850A Division JP2019106318A (en) 2017-12-13 2017-12-13 Battery pack

Publications (2)

Publication Number Publication Date
JP2020177935A JP2020177935A (en) 2020-10-29
JP6994677B2 true JP6994677B2 (en) 2022-01-14

Family

ID=72916233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134083A Active JP6994677B2 (en) 2020-08-06 2020-08-06 Batteries assembled

Country Status (1)

Country Link
JP (1) JP6994677B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337115B2 (en) 2021-04-05 2023-09-01 プライムプラネットエナジー&ソリューションズ株式会社 storage module
CN114665203A (en) * 2022-03-15 2022-06-24 东莞新能安科技有限公司 Battery pack and power utilization device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034079A1 (en) 2012-08-30 2014-03-06 三洋電機株式会社 Power source device, vehicle provided with power source device, and power storage device
JP2015141887A (en) 2014-01-30 2015-08-03 日立建機株式会社 Hybrid construction machine
JP2016119155A (en) 2014-12-18 2016-06-30 株式会社豊田自動織機 Power storage device pack
WO2016136248A1 (en) 2015-02-27 2016-09-01 三洋電機株式会社 Power supply device and vehicle provided with same
JP2016213104A (en) 2015-05-12 2016-12-15 株式会社豊田自動織機 Battery pack
WO2017017914A1 (en) 2015-07-30 2017-02-02 三洋電機株式会社 Power supply device, power supply system provided with said power supply device, and separator for battery cells
JP2017195088A (en) 2016-04-20 2017-10-26 株式会社豊田自動織機 Battery module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034079A1 (en) 2012-08-30 2014-03-06 三洋電機株式会社 Power source device, vehicle provided with power source device, and power storage device
JP2015141887A (en) 2014-01-30 2015-08-03 日立建機株式会社 Hybrid construction machine
JP2016119155A (en) 2014-12-18 2016-06-30 株式会社豊田自動織機 Power storage device pack
WO2016136248A1 (en) 2015-02-27 2016-09-01 三洋電機株式会社 Power supply device and vehicle provided with same
JP2016213104A (en) 2015-05-12 2016-12-15 株式会社豊田自動織機 Battery pack
WO2017017914A1 (en) 2015-07-30 2017-02-02 三洋電機株式会社 Power supply device, power supply system provided with said power supply device, and separator for battery cells
JP2017195088A (en) 2016-04-20 2017-10-26 株式会社豊田自動織機 Battery module

Also Published As

Publication number Publication date
JP2020177935A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US9786965B2 (en) Power source device
EP3343667B1 (en) End plate of battery module and battery module
JP6994677B2 (en) Batteries assembled
KR101739301B1 (en) Battery module
EP3343668A1 (en) End plate assembly of battery module and battery module
US20210320360A1 (en) Battery module, battery pack, device and assembly method of battery module
EP3236510B1 (en) Battery module
US20230352722A1 (en) Linked battery module and linked battery pack
KR20150001604A (en) Battery module
CN110998904A (en) Battery module and vehicle equipped with the same
JP2019016503A (en) Battery module
JP2010040295A (en) Battery device
KR20220087529A (en) Battery packs and electric vehicles
KR20170046823A (en) Device for preventing deformation of fuel cell stack module
US10543872B2 (en) Vehicle front structure
US11283099B2 (en) Battery pack
JP4826705B2 (en) Assembled battery
CN115775945A (en) Electricity storage device
WO2018155090A1 (en) Battery pack and busbar for battery pack
EP3506391B1 (en) Battery module with composite end plate
CN220209157U (en) Battery pack box, battery system and new energy automobile
JP2015210971A (en) Power supply device
JP3888283B2 (en) Battery module
CN219892328U (en) Battery module, battery pack and vehicle
US20210226244A1 (en) Fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211126

R151 Written notification of patent or utility model registration

Ref document number: 6994677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151