JP6992194B2 - Stalker type incinerator and incinerator method - Google Patents

Stalker type incinerator and incinerator method Download PDF

Info

Publication number
JP6992194B2
JP6992194B2 JP2020550289A JP2020550289A JP6992194B2 JP 6992194 B2 JP6992194 B2 JP 6992194B2 JP 2020550289 A JP2020550289 A JP 2020550289A JP 2020550289 A JP2020550289 A JP 2020550289A JP 6992194 B2 JP6992194 B2 JP 6992194B2
Authority
JP
Japan
Prior art keywords
combustion
mixing gas
stoker
gas
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020550289A
Other languages
Japanese (ja)
Other versions
JPWO2020071142A1 (en
Inventor
卓一郎 大丸
潤司 今田
明正 ▲高▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=70055152&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6992194(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2020071142A1 publication Critical patent/JPWO2020071142A1/en
Application granted granted Critical
Publication of JP6992194B2 publication Critical patent/JP6992194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/08Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating
    • F23G5/14Incineration of waste; Incinerator constructions; Details, accessories or control therefor having supplementary heating including secondary combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)

Description

本開示は、ストーカ式焼却設備及び被焼却物の焼却方法に関する。
本願は、2018年10月5日に、日本国に出願された特願2018-190390号に基づき優先権を主張し、この内容をここに援用する。
The present disclosure relates to a stoker-type incinerator and a method for incinerating an incinerator.
This application claims priority based on Japanese Patent Application No. 2018-190390 filed in Japan on October 5, 2018, and this content is incorporated herein by reference.

ストーカ式焼却設備は、ごみ等の被焼却物を搬送するストーカと、ストーカを覆う火炉と、被焼却物の燃焼で発生する燃焼ガスを上方に導く燃焼ガス流路が形成されている燃焼ガス流路枠と、を備える。火炉内は、被焼却物が燃焼する燃焼室を形成する。燃焼ガス流路枠は、火炉の上端に接続されている。 The stoker-type incinerator is a combustion gas flow in which a stoker that transports incinerators such as waste, a furnace that covers the stoker, and a combustion gas flow path that guides the combustion gas generated by combustion of the incinerator upward are formed. It is equipped with a road frame. Inside the incinerator, a combustion chamber is formed in which the incinerated material burns. The combustion gas flow path frame is connected to the upper end of the furnace.

このようなストーカ式焼却設備としては、例えば、以下の特許文献1~3に記載されている設備がある。これら特許文献1~3に記載されている設備では、火炉内を被焼却物が燃焼する一次燃焼室とし、燃焼ガス流路内の下流側の部分を二次燃焼室として、この二次燃焼室に酸素を含むガスをノズルから供給している。これらの設備では、ノズルからのガスの主噴出方向が水平方向になるよう、ノズルが燃焼ガス流路枠に固定されている。 As such a stoker-type incinerator, for example, there are the facilities described in the following Patent Documents 1 to 3. In the equipment described in Patent Documents 1 to 3, the inside of the furnace is used as the primary combustion chamber in which the incinerated material is burned, and the downstream part in the combustion gas flow path is used as the secondary combustion chamber. Gas containing oxygen is supplied from the nozzle. In these facilities, the nozzle is fixed to the combustion gas flow path frame so that the main ejection direction of the gas from the nozzle is horizontal.

これらの設備では、ノズルからガスを二次燃焼室内に噴出することで、被焼却物のうち一次燃焼室内で燃焼しきれなかった未燃分を燃焼させて、被焼却物の燃焼効率を高めている。 In these facilities, gas is ejected from the nozzle into the secondary combustion chamber to burn the unburned portion of the incinerator that could not be burned in the primary combustion chamber, increasing the combustion efficiency of the incinerator. There is.

特許第3210859号公報Japanese Patent No. 3210859 特許第5084581号公報Japanese Patent No. 5084581 特許第5219468号公報Japanese Patent No. 5219468

被燃焼物を焼却する事業者等は、被焼却物の燃焼効率がより高まることを要望している。 Businesses that incinerate the incinerated material are requesting that the combustion efficiency of the incinerated material be further improved.

そこで、本開示は、被焼却物の燃焼効率を高めることができる技術を提供することを目的とする。 Therefore, it is an object of the present disclosure to provide a technique capable of increasing the combustion efficiency of the incinerated material.

前記目的を達成するための本開示に係る一態様のストーカ式燃焼設備は、
水平方向成分を有する方向に被焼却物を搬送するストーカと、前記ストーカを覆い、前記ストーカ上の被焼却物が燃焼する火炉と、前記被焼却物の燃焼で発生する燃焼ガスを上方に導く燃焼ガス流路が形成され、前記ストーカの一部の上方に位置するよう前記火炉に接続されている燃焼ガス流路枠と、前記ストーカ上の前記被焼却物に燃焼用空気を供給する燃焼用空気供給部と、前記燃焼用空気の一部と前記燃焼ガスの一部とのうち、少なくとも一のガスを混合用ガスとして前記火炉内又は前記燃焼ガス流路中に送る混合用ガス供給部と、を備える。前記混合用ガス供給部は、前記混合用ガスを前記火炉内又は前記燃焼ガス流路中に噴出する複数のノズルと、複数の前記ノズルから噴出する前記混合用ガスの流量を調節する流量調節器と、を有する。前記ノズルにおける前記混合用ガスを噴出する噴出口の開口面積は、7850mm以上で49060mm以下である。前記流量調節器は、複数の前記ノズルから噴出する前記混合用ガスの流速が20m/s以上で90m/s以下になるよう、前記混合用ガスの流量を調節する。複数の前記ノズルは、前記混合用ガスが、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の頂部又は火炎の頂部より上の位置に向かうことが可能に、前記燃焼ガス流路の水平断面の中心を通り且つ上下方向の延びる流路軸線に対する周方向に並んで設けられ、前記火炎が前記流路軸線が存在する位置よりも搬送方向下流側に形成されている場合には、前記火炎の形成領域を前記流路軸線が存在する位置を含む領域に近づける。
One aspect of the stoker-type combustion equipment according to the present disclosure for achieving the above object is
A stoker that transports the incinerated material in a direction having a horizontal component, a furnace that covers the stoker and burns the incinerated material on the stoker, and combustion that guides the combustion gas generated by the combustion of the incinerated material upward. Combustion air that supplies combustion air to the combustion gas flow path frame formed by the gas flow path and connected to the furnace so as to be located above a part of the stoker and the incinerated object on the stoker. A supply unit, a mixing gas supply unit that sends at least one of a part of the combustion air and a part of the combustion gas as a mixing gas into the furnace or the combustion gas flow path. To prepare for. The mixing gas supply unit is a flow rate regulator that adjusts the flow rates of a plurality of nozzles that eject the mixing gas into the furnace or the combustion gas flow path, and the mixing gas ejected from the plurality of nozzles. And have. The opening area of the ejection port for ejecting the mixing gas in the nozzle is 7850 mm 2 or more and 49060 mm 2 or less. The flow rate controller adjusts the flow rate of the mixing gas so that the flow velocity of the mixing gas ejected from the plurality of nozzles is 20 m / s or more and 90 m / s or less. The plurality of nozzles of the combustion gas flow path allow the mixing gas to be directed to a position above the top of the flame or the top of the flame formed by the combustion of the incinerated material on the stoker. When the flame is provided side by side in the circumferential direction with respect to the flow path axis extending in the vertical direction and passing through the center of the horizontal cross section, and the flame is formed on the downstream side in the transport direction from the position where the flow path axis exists, the said The flame forming region is brought closer to the region including the position where the flow path axis exists.

本態様では、ノズルからの噴出させた混合用ガスを火炎の頂部又は火炎の頂部より上の位置に届かせることができる。このため、本態様では、混合用ガスの燃焼ガス中への混合率を高めることができ、燃焼ガスに含まれる未燃分の燃焼効率を高めることができる。 In this embodiment, the mixing gas ejected from the nozzle can reach the top of the flame or a position above the top of the flame. Therefore, in this embodiment, the mixing ratio of the mixing gas into the combustion gas can be increased, and the combustion efficiency of the unburned portion contained in the combustion gas can be increased.

生成直後の燃焼ガス中には、未燃分が含まれている。火炎の頂部又は火炎の頂部より上の位置に混合用ガスを向かわせる、本態様では、混合用ガスノズルからの混合用ガスが火炎の頂部又は火炎の頂部より上の位置に供給され得る。すなわち、本態様では、生成直後の燃焼ガス中に、酸素を含む混合用ガスが供給される。このため、本態様では、燃焼ガス中の未燃分は、この燃焼ガスの生成直後から、混合用ガスに含まれる酸素で燃焼可能になる。しかも、本態様では、上下方向の広い範囲に渡って、酸素を含む混合ガスを供給することができる。よって、本態様では、燃焼ガスの生成直後から、燃焼ガス中の未燃分の少なくとも一部が燃焼することになる。 The combustion gas immediately after formation contains unburned components. In this embodiment, the mixing gas from the mixing gas nozzle can be supplied to a position above the top of the flame or the top of the flame, directing the mixing gas to a position above the top of the flame or the top of the flame. That is, in this embodiment, a mixing gas containing oxygen is supplied to the combustion gas immediately after production. Therefore, in this embodiment, the unburned component in the combustion gas can be combusted with oxygen contained in the mixing gas immediately after the combustion gas is generated. Moreover, in this embodiment, the mixed gas containing oxygen can be supplied over a wide range in the vertical direction. Therefore, in this embodiment, at least a part of the unburned portion in the combustion gas is burned immediately after the combustion gas is generated.

混合用ガスノズルから混合用ガスが噴出されると、この混合用ガスの周りの静圧が低下するため、火炎の頂部は、噴出された混合用ガスのそばに引き寄せられる。このため、以上の態様では、最も好ましい領域に火炎が形成されていない場合でも、この火炎の形成領域を最も好ましい領域に近づけることができる。 When the mixing gas is ejected from the mixing gas nozzle, the static pressure around the mixing gas is reduced, so that the top of the flame is attracted to the side of the ejected mixing gas. Therefore, in the above aspect, even when the flame is not formed in the most preferable region, the flame forming region can be brought closer to the most preferable region.

前記目的を達成するための本開示に係る一態様の被焼却物の焼却方法は、
水平方向成分を有する方向に被焼却物を搬送するストーカと、前記ストーカを覆い、前記ストーカ上の被焼却物が燃焼する火炉と、前記被焼却物の燃焼で発生する燃焼ガスを上方に導く燃焼ガス流路が形成され、前記ストーカの一部の上方に位置するよう前記火炉に接続されている燃焼ガス流路枠と、前記ストーカ上の前記被焼却物に燃焼用空気を供給する燃焼用空気供給部と、を備えるストーカ式焼却設備における被焼却物の焼却方法において、前記燃焼用空気の一部と前記燃焼ガスの一部とのうち、少なくとも一のガスを混合用ガスとして複数のノズルから前記火炉内又は前記燃焼ガス流路中に送る混合用ガス供給工程を実行する。複数の前記ノズルにおける前記混合用ガスを噴出する噴出口の開口面積は、7850mm以上で49060mm以下である。複数の前記ノズルは、前記混合用ガスが、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の頂部又は火炎の頂部より上の位置に向かうことが可能に、前記燃焼ガス流路の水平断面の中心を通り且つ上下方向の延びる流路軸線に対する周方向に並んで設けられ、前記火炎が前記流路軸線が存在する位置よりも搬送方向下流側に形成されている場合には、前記火炎の形成領域を前記流路軸線が存在する位置を含む領域に近づける。前記混合用ガス供給工程は、複数の前記ノズルから噴出する前記混合用ガスの流速が20m/s以上で90m/s以下になるよう、前記混合用ガスの流量を調節する流量調節工程を含む。
One aspect of the method for incinerating an incinerator according to the present disclosure for achieving the above object is.
A stoker that transports the incinerated material in a direction having a horizontal component, a furnace that covers the stoker and burns the incinerated material on the stoker, and combustion that guides the combustion gas generated by the combustion of the incinerated material upward. Combustion air that supplies combustion air to the combustion gas flow path frame formed by the gas flow path and connected to the furnace so as to be located above a part of the stoker and the incinerated object on the stoker. In a method of incinerating an incinerated object in a stoker-type incineration facility including a supply unit, at least one of a part of the combustion air and a part of the combustion gas is used as a mixing gas from a plurality of nozzles. The step of supplying the mixing gas to be sent into the furnace or the combustion gas flow path is executed. The opening area of the ejection port for ejecting the mixing gas in the plurality of nozzles is 7850 mm 2 or more and 49060 mm 2 or less. The plurality of nozzles of the combustion gas flow path allow the mixing gas to be directed to a position above the top of the flame or the top of the flame formed by the combustion of the incinerated material on the stoker. When the flame is provided side by side in the circumferential direction with respect to the flow path axis extending in the vertical direction and passing through the center of the horizontal cross section, and the flame is formed on the downstream side in the transport direction from the position where the flow path axis exists, the said The flame forming region is brought closer to the region including the position where the flow path axis exists. The mixing gas supply step includes a flow rate adjusting step of adjusting the flow rate of the mixing gas so that the flow velocity of the mixing gas ejected from the plurality of nozzles is 20 m / s or more and 90 m / s or less.

本開示の一態様によれば、被焼却物の燃焼効率を高めることができる。 According to one aspect of the present disclosure, the combustion efficiency of the incinerated material can be increased.

本開示の第一実施形態におけるストーカ式焼却設備の系統図である。It is a system diagram of the stoker type incinerator in the first embodiment of this disclosure. 本開示の第一実施形態における混合用ガスノズルの正面図である。It is a front view of the gas nozzle for mixing in the 1st Embodiment of this disclosure. CFD解析で得られたグラフであって、噴出口の内径が互いに異なる混合用ガスノズル毎の、混合用ガスノズルからの主噴出方向における距離と、混合用ガスの主噴出方向における流速との関係を示すグラフである。The graph obtained by CFD analysis shows the relationship between the distance in the main ejection direction from the mixing gas nozzle and the flow velocity in the main ejection direction of the mixing gas for each mixing gas nozzle having different inner diameters of the ejection ports. It is a graph. CFD解析で得られたグラフであって、噴出口の内径が互いに異なる混合用ガスノズル毎の、ストーカの上面からの高さと酸素濃度の分散との関係を示すグラフである。It is a graph obtained by CFD analysis, and is a graph which shows the relationship between the height from the upper surface of the stoker, and the dispersion of oxygen concentration, for each mixing gas nozzle which the inner diameter of a spout is different from each other. CFD解析の際の条件として定めた燃焼ガス流路枠の各部の寸法を示す説明図である。It is explanatory drawing which shows the dimension of each part of the combustion gas flow path frame defined as a condition at the time of CFD analysis. CFD解析で得られたグラフであって、CO濃度と高さとの関係を示すグラフである。It is a graph obtained by CFD analysis and is a graph which shows the relationship between CO concentration and height. CFD解析で得られたグラフであって、噴流カバー率と出口CO濃度との関係を示すグラフである。It is a graph obtained by CFD analysis, and is the graph which shows the relationship between the jet coverage rate and the outlet CO concentration. 本開示の第二実施形態におけるストーカ式焼却設備の系統図である。It is a system diagram of the stoker type incinerator in the second embodiment of this disclosure. 本開示の第二実施形態における角度変更機構及び設置高さ変更機構の構成を示す説明図である。It is explanatory drawing which shows the structure of the angle changing mechanism and the installation height changing mechanism in the 2nd Embodiment of this disclosure. 本開示の第二実施形態における制御器の機能ブロック図である。It is a functional block diagram of the controller in the 2nd Embodiment of this disclosure. 本開示の第二実施形態における混合用ガス供給部の動作を示すフローチャートである。It is a flowchart which shows the operation of the mixing gas supply part in the 2nd Embodiment of this disclosure. 混合用ガスノズルの第一変形例の正面図である。It is a front view of the 1st modification of a mixing gas nozzle. 混合用ガスノズルの第二変形例の正面図である。It is a front view of the 2nd modification of a mixing gas nozzle. 混合用ガスノズルの第三変形例を示す。同図(A)は混合ガスノズルの正面である。同図(B)は同図(A)におけるB-B線断面図である。A third modification of the mixing gas nozzle is shown. The figure (A) is the front of the mixed gas nozzle. FIG. (B) is a sectional view taken along line BB in FIG. (A). 混合ガスノズルの配置の変形例を示す説明図である。It is explanatory drawing which shows the modification of the arrangement of a mixed gas nozzle.

本開示に係るストーカ式焼却設備の各種実施形態及び変形例について、図面を参照して説明する。 Various embodiments and modifications of the stoker-type incinerator according to the present disclosure will be described with reference to the drawings.

「ストーカ式焼却設備の第一実施形態」
以下、本開示に係るストーカ式焼却設備の第一実施形態について、図1~図7を参照して説明する。
"First embodiment of stoker type incinerator"
Hereinafter, the first embodiment of the stoker-type incinerator according to the present disclosure will be described with reference to FIGS. 1 to 7.

図1に示すように、本実施形態のストーカ式焼却設備は、ごみ等の被焼却物Mを燃焼させるストーカ式焼却炉1と、被焼却物Mの燃焼で発生した燃焼ガスGcの熱を利用して蒸気を発生させる排熱回収ボイラー2と、排熱回収ボイラー2からの燃焼ガスGcの温度を下げる減温塔3と、燃焼ガス処理器(燃焼ガス処理部)4と、排気ガス流路枠5と、この排気ガスGeを外部に排気する煙突6と、を備える。 As shown in FIG. 1, the stoker-type incineration facility of the present embodiment utilizes the heat of the stoker-type incinerator 1 that burns the incinerated material M such as waste and the heat of the combustion gas Gc generated by the combustion of the incinerated material M. Exhaust heat recovery boiler 2 that generates steam, a temperature reducing tower 3 that lowers the temperature of the combustion gas Gc from the exhaust heat recovery boiler 2, a combustion gas processor (combustion gas processing unit) 4, and an exhaust gas flow path. A frame 5 and a chimney 6 for exhausting the exhaust gas Ge to the outside are provided.

減温塔3は、燃焼ガスGcが流れる空間が形成されている塔本体と、塔本体内に空間中に水等の冷却媒体を噴出する冷却媒体噴出器と、を有する。燃焼ガス処理器(燃焼ガス処理部)4は、例えば、集塵器や脱硝装置等である。排気ガス流路枠5は、燃焼ガス処理器4と煙突6とを接続する。燃焼ガス処理器4を通過した燃焼ガスGcは、排気ガスGeとして、この排気ガス流路枠5内を通って、煙突6に至り、この煙突6から外部に排気される。 The temperature reducing tower 3 has a tower main body in which a space through which combustion gas Gc flows is formed, and a cooling medium ejector that ejects a cooling medium such as water into the space in the tower main body. The combustion gas processing device (combustion gas processing unit) 4 is, for example, a dust collector, a denitration device, or the like. The exhaust gas flow path frame 5 connects the combustion gas processor 4 and the chimney 6. The combustion gas Gc that has passed through the combustion gas processor 4 passes through the exhaust gas flow path frame 5 as exhaust gas Ge, reaches the chimney 6, and is exhausted to the outside from the chimney 6.

ストーカ式焼却炉1は、ホッパー10と、ストーカ11と、火炉12と、燃焼ガス流路枠16と、一次燃焼用空気供給部20と、二次燃焼用空気供給部25と、混合用ガス供給部30と、を備える。 The stoker type incinerator 1 includes a hopper 10, a stoker 11, a furnace 12, a combustion gas flow path frame 16, a primary combustion air supply unit 20, a secondary combustion air supply unit 25, and a mixing gas supply unit. A unit 30 is provided.

ホッパー10は、被焼却物Mを外部から受け入れる枠である。ストーカ11は、ホッパー10からの被焼却物Mを受け取って、水平方向Dh成分を有する搬送方向Dtに被焼却物Mを搬送する。火炉12は、ストーカ11を覆い、ストーカ11上の被焼却物Mが燃焼する一次燃焼室13を形成する。火炉12には、ホッパー10からの被焼却物Mを受け入れる受入口14と、被焼却物Mの燃焼後に残った灰等の焼却残渣を排出する排出口15とが形成されている。受入口14は、火炉12の搬送方向Dtにおける一方側(以下、搬送方向上流側Dtuとする)に形成されている。また、排出口15は、火炉12の搬送方向Dtにおける他方側(以下、搬送方向下流側Dtdとする)に形成されている。燃焼ガス流路枠16は、被焼却物Mの燃焼で発生する燃焼ガスGcを上方に導く燃焼ガス流路17を形成する。この燃焼ガス流路枠16は、ストーカ11の一部の上方に位置するよう火炉12の上端に接続されている。この燃焼ガス流路枠16内の下部空間は、二次燃焼室18を形成する。燃焼ガス流路17を通った燃焼ガスGcは、排熱回収ボイラー2に導かれる。 The hopper 10 is a frame for receiving the incinerator M from the outside. The stoker 11 receives the incinerator M from the hopper 10 and transports the incinerator M in the transport direction Dt having the horizontal Dh component. The incinerator 12 covers the stoker 11 and forms a primary combustion chamber 13 in which the incinerator M on the stoker 11 burns. The incinerator 12 is formed with an inlet 14 for receiving the incinerator M from the hopper 10 and an discharge port 15 for discharging the incineration residue such as ash remaining after the incinerator M is burned. The receiving port 14 is formed on one side of the furnace 12 in the transport direction Dt (hereinafter referred to as the upstream side Dtu in the transport direction). Further, the discharge port 15 is formed on the other side of the furnace 12 in the transport direction Dt (hereinafter, referred to as the downstream side Dtd in the transport direction). The combustion gas flow path frame 16 forms a combustion gas flow path 17 that guides the combustion gas Gc generated by the combustion of the incinerator M upward. The combustion gas flow path frame 16 is connected to the upper end of the furnace 12 so as to be located above a part of the stoker 11. The lower space in the combustion gas flow path frame 16 forms the secondary combustion chamber 18. The combustion gas Gc that has passed through the combustion gas flow path 17 is guided to the exhaust heat recovery boiler 2.

一次燃焼用空気供給部20は、空気供給器21と、複数の風箱22と、を有する。空気供給器21は、外気をすき込む押込送風機と、押込送風機からの空気を加熱する空気加熱器と、を有する。複数の風箱22は、搬送方向Dtに並んでいる。複数の風箱22は、いずれも、空気供給器21からの空気を一次燃焼用空気Ga1としてストーカ11の下からストーカ11上の被焼却物Mに導く。 The primary combustion air supply unit 20 includes an air supply device 21 and a plurality of air boxes 22. The air supply device 21 includes a push-in blower that sucks in outside air and an air heater that heats the air from the push-in blower. The plurality of air boxes 22 are arranged in the transport direction Dt. Each of the plurality of air boxes 22 guides the air from the air supply device 21 as the primary combustion air Ga1 from below the stoker 11 to the incinerator M on the stoker 11.

二次燃焼用空気供給部25は、二次燃焼用空気Ga2を燃焼ガス流路17内に噴出する複数の二次燃焼用空気ノズル29と、複数の二次燃焼用空気ノズル29に二次燃焼用空気Ga2を導く二次燃焼用空気ライン26と、複数の二次燃焼用空気ノズル29から噴出する二次燃焼用空気Ga2の流量を調節する流量調節器27と、を有する。複数の二次燃焼用空気ノズル29は、燃焼ガス流路17の水平断面における中心を通り且つ上下方向Dvに延びる流路軸線Apに対する周方向Dcに並んで、燃焼ガス流路枠16に取り付けられている。二次燃焼用空気ライン26は、前述の空気供給器21と接続されている第一端26aと、複数の二次燃焼用空気ノズル29に接続されている第二端26bと、を有する。よって、二次燃焼用空気ノズル29には、空気供給器21からの空気が二次燃焼用空気Ga2として送られる。流量調節器27は、複数の二次燃焼用空気ノズル29毎に設けられている流量調節弁28を有する。この流量調節弁28は、二次燃焼用空気ライン26に設けられている。 The secondary combustion air supply unit 25 secondary combustion to a plurality of secondary combustion air nozzles 29 for ejecting the secondary combustion air Ga2 into the combustion gas flow path 17 and a plurality of secondary combustion air nozzles 29. It has a secondary combustion air line 26 for guiding the secondary combustion air Ga2, and a flow rate regulator 27 for adjusting the flow rate of the secondary combustion air Ga2 ejected from the plurality of secondary combustion air nozzles 29. The plurality of secondary combustion air nozzles 29 are attached to the combustion gas flow path frame 16 along the circumferential direction Dc with respect to the flow path axis Ap extending in the vertical direction Dv and passing through the center in the horizontal cross section of the combustion gas flow path 17. ing. The secondary combustion air line 26 has a first end 26a connected to the above-mentioned air supply device 21 and a second end 26b connected to a plurality of secondary combustion air nozzles 29. Therefore, the air from the air supply device 21 is sent to the secondary combustion air nozzle 29 as the secondary combustion air Ga2. The flow rate regulator 27 has a flow rate control valve 28 provided for each of the plurality of secondary combustion air nozzles 29. The flow rate control valve 28 is provided in the secondary combustion air line 26.

混合用ガス供給部30は、燃焼用空気Gaの一部と燃焼ガスGcの一部とのうち、少なくとも一のガスを混合用ガスGmとして火炉12内又は燃焼ガス流路17中に送る。この混合用ガス供給部30は、混合用ガスGmを燃焼ガス流路17中に噴出する複数の混合用ガスノズル40と、複数の混合用ガスノズル40に混合用ガスGmを導く混合用ガスライン31と、複数の混合用ガスノズル40から噴出する混合用ガスGmの流量を調節する流量調節器32と、を有する。複数の混合用ガスノズル40は、流路軸線Apに対する周方向Dc(水平方向成分を有する方向)に並んで、燃焼ガス流路枠16に取り付けられている。混合用ガスライン31は、混合用ガスGmの供給元と接続されている第一端31aと、複数の混合用ガスノズル40に接続されている第二端31bと、を有する。具体的に、混合用ガスライン31の第二端31bは、前述の空気供給器21と、火炉12の搬送方向下流側Dtdの端と、排気ガス流路枠5とのうち、少なくとも一つに接続されている。よって、混合用ガスノズル40には、空気供給器21からの新鮮な空気と、火炉12内の燃焼ガスGcと、排気ガス流路枠5内を流れる排気ガスGe(燃焼ガスGcでもある)とのうち、少なくとも一のガスが混合用ガスGmとして送られる。なお、混合用ガスライン31の第一端31aが排気ガス流路枠5に接続される場合、排気ガス流路枠5内から混合用ガスライン31に流入した排気ガスGeを昇圧するために、この混合用ガスライン31に送風機34が設けられる。流量調節器32は、複数の混合用ガスノズル40毎に設けられている流量調節弁33を有する。この流量調節弁33は、混合用ガスライン31に設けられている。 The mixing gas supply unit 30 sends at least one gas out of a part of the combustion air Ga and a part of the combustion gas Gc into the furnace 12 or the combustion gas flow path 17 as the mixing gas Gm. The mixing gas supply unit 30 includes a plurality of mixing gas nozzles 40 for ejecting the mixing gas Gm into the combustion gas flow path 17, and a mixing gas line 31 for guiding the mixing gas Gm to the plurality of mixing gas nozzles 40. , A flow rate regulator 32 for adjusting the flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40. The plurality of mixing gas nozzles 40 are attached to the combustion gas flow path frame 16 side by side in the circumferential direction Dc (direction having a horizontal component) with respect to the flow path axis Ap. The mixing gas line 31 has a first end 31a connected to a supply source of the mixing gas Gm and a second end 31b connected to a plurality of mixing gas nozzles 40. Specifically, the second end 31b of the mixing gas line 31 is at least one of the above-mentioned air supply device 21, the end of the Dtd on the downstream side in the transport direction of the furnace 12, and the exhaust gas flow path frame 5. It is connected. Therefore, the mixing gas nozzle 40 contains the fresh air from the air supply device 21, the combustion gas Gc in the furnace 12, and the exhaust gas Ge (also the combustion gas Gc) flowing in the exhaust gas flow path frame 5. Of these, at least one gas is sent as the mixing gas Gm. When the first end 31a of the mixing gas line 31 is connected to the exhaust gas flow path frame 5, in order to boost the pressure of the exhaust gas Ge flowing into the mixing gas line 31 from the inside of the exhaust gas flow path frame 5. A blower 34 is provided in the mixing gas line 31. The flow rate regulator 32 has a flow rate control valve 33 provided for each of the plurality of mixing gas nozzles 40. The flow rate control valve 33 is provided in the mixing gas line 31.

複数の混合用ガスノズル40のストーカ11の上面からの設置高さHは、いずれも、二次燃焼用空気ノズル29よりも下側であって、ストーカ11の上面から1500mm以上で4000mm以下である。複数の混合用ガスノズル40の設置高さHは、ストーカ11の上面から2000mm以上で3500mm以下であることが好ましい。複数の混合用ガスノズル40は、いずれも、ストーカ11上の被焼却物Mの燃焼で形成される火炎Fの頂部Ftに向かうことが可能に、燃焼ガス流路枠16に設けられている。具体的に、混合用ガスノズル40は、この混合用ガスノズル40からの混合用ガスGmの主噴出方向Dmが、下方向成分と流路軸線Apに近づく水平方向Dh成分とを有する方向、叉は、流路軸線Apに近づく水平方向Dhになるよう、燃焼ガス流路枠16に設けられている。ここで、主噴出方向Dmとは、混合用ガスノズル40から混合用ガスGmが噴出される方向のうち、最も混合用ガスGmの噴出流量が多い方向である。この主噴出方向Dmは、水平方向Dhに対して0°以上で且つ60°以下の角度αの方向である。この主噴出方向Dmは、水平方向Dhに対して30°から50°の角度αの方向が好ましい。本実施形態の主噴出方向Dmは、例えば、水平方向Dhに対して45°の角度αの方向である。 The installation height H of the plurality of mixing gas nozzles 40 from the upper surface of the stoker 11 is lower than the secondary combustion air nozzle 29, and is 1500 mm or more and 4000 mm or less from the upper surface of the stoker 11. The installation height H of the plurality of mixing gas nozzles 40 is preferably 2000 mm or more and 3500 mm or less from the upper surface of the stoker 11. Each of the plurality of mixing gas nozzles 40 is provided in the combustion gas flow path frame 16 so as to be able to reach the top Ft of the flame F formed by the combustion of the incinerator M on the stoker 11. Specifically, the mixing gas nozzle 40 has a direction in which the main ejection direction Dm of the mixing gas Gm from the mixing gas nozzle 40 has a downward component and a horizontal Dh component approaching the flow path axis Ap, or The combustion gas flow path frame 16 is provided so as to have a horizontal direction Dh approaching the flow path axis Ap. Here, the main ejection direction Dm is the direction in which the mixing gas Gm is ejected from the mixing gas nozzle 40 in the direction in which the mixing gas Gm has the largest ejection flow rate. The main ejection direction Dm is a direction having an angle α of 0 ° or more and 60 ° or less with respect to the horizontal direction Dh. The main ejection direction Dm is preferably a direction at an angle α of 30 ° to 50 ° with respect to the horizontal Dh. The main ejection direction Dm of the present embodiment is, for example, a direction at an angle α of 45 ° with respect to the horizontal direction Dh.

複数の混合用ガスノズル40は、いずれも、図2に示すように、混合用ガスGmが流れるガス流路41が形成されている。このガス流路41は、ノズル軸線Anを中心として、ノズル軸線Anに沿ったノズル軸線方向Danに延びている。このガス流路41のノズル軸線方向Danの端は、混合用ガスGmを噴出する噴出口44を成す。この噴出口44は、ノズル軸線Anを中心として円形である。なお、本実施形態では、前述の主噴出方向Dmがノズル軸線方向Danである。 As shown in FIG. 2, each of the plurality of mixing gas nozzles 40 is formed with a gas flow path 41 through which the mixing gas Gm flows. The gas flow path 41 extends in the nozzle axis direction Dan along the nozzle axis An with the nozzle axis An as the center. The end of the nozzle axial direction Dan of the gas flow path 41 forms an ejection port 44 for ejecting the mixing gas Gm. The spout 44 is circular with the nozzle axis An as the center. In this embodiment, the above-mentioned main ejection direction Dm is the nozzle axis direction Dan.

噴出口44の内径は、100mm以上で250mm以下である。この噴出口44の内径は、125mm以上で200mm以下であることが好ましい。本実施形態の噴出口44の内径は、例えば、190mmである。 The inner diameter of the spout 44 is 100 mm or more and 250 mm or less. The inner diameter of the spout 44 is preferably 125 mm or more and 200 mm or less. The inner diameter of the ejection port 44 of the present embodiment is, for example, 190 mm.

なお、噴出口44の内径が100mmのときの開口面積7850mm(=50mm×50mm×3.14)であり、噴出口44の内径が250mmのときの開口面積49060mm(≒125mm×125mm×3.14)である。また、噴出口44の内径が125mmのときの開口面積12265mm(≒62.5mm×62.5mm×3.14)であり、噴出口44の内径が200mmのときの開口面積31400mm(≒100mm×100mm×3.14)である。また、噴出口44の内径が190mmのときの開口面積28338mm(=95mm×95mm×3.14)である。よって、噴出口44の開口面積は、7850mm以上で、49060mm以下である。この噴出口44の開口面積は、12265mm以上で31400mm以下であることが好ましい。本実施形態の噴出口44の開口面積は、例えば、28338mmである。The opening area of the spout 44 is 7850 mm 2 (= 50 mm × 50 mm × 3.14) when the inner diameter of the spout 44 is 100 mm, and the opening area is 49060 mm 2 ( ≈125 mm × 125 mm × 3.14) when the inner diameter of the spout 44 is 250 mm. be. Further, the opening area is 12265 mm 2 (≈62.5 mm × 62.5 mm × 3.14) when the inner diameter of the ejection port 44 is 125 mm, and the opening area 31400 mm 2 (≈100 mm × 100 mm × 3.14) when the inner diameter of the ejection port 44 is 200 mm. ). Further, the opening area is 28338 mm 2 (= 95 mm × 95 mm × 3.14) when the inner diameter of the ejection port 44 is 190 mm. Therefore, the opening area of the ejection port 44 is 7850 mm 2 or more and 49060 mm 2 or less. The opening area of the spout 44 is preferably 12265 mm 2 or more and 31400 mm 2 or less. The opening area of the ejection port 44 of the present embodiment is, for example, 28338 mm 2 .

本願の発明者は、噴出口44の内径を変えて、それぞれの内径毎に、ノズルからの主噴出方向Dmにおける距離と、混合用ガスGmの主噴出方向Dmにおける流速との関係について、CFD(Computational Fluid Dynamics)解析を行った。このCFD解析は、燃焼ガスGcとして窒素ガスを用い、混合用ガスGmとして空気を用いて、以下の条件下で行った。 The inventor of the present application changes the inner diameter of the ejection port 44, and regarding the relationship between the distance in the main ejection direction Dm from the nozzle and the flow velocity in the main ejection direction Dm of the mixing gas Gm for each inner diameter, CFD ( Computational Fluid Dynamics) analysis was performed. This CFD analysis was performed under the following conditions using nitrogen gas as the combustion gas Gc and air as the mixing gas Gm.

燃焼ガス(窒素ガス)の温度:800℃
燃焼ガス(窒素ガス)の上昇速度:3.1m/s
混合用ガス(空気)の温度:150℃
混合用ガス(空気)の噴射直後の主噴出方向Dmにおける流速:60m/s
Combustion gas (nitrogen gas) temperature: 800 ° C
Combustion gas (nitrogen gas) rising speed: 3.1 m / s
Mixing gas (air) temperature: 150 ° C
Flow velocity in the main ejection direction Dm immediately after injection of the mixing gas (air): 60 m / s

このCFD解析の結果、図3に示すように、噴出口44の内径が85mmの場合、ノズルからの距離が0.7mのあたりから、混合用ガスGmの流速が急激に低下し、ノズルからの距離が3m未満の位置で、混合用ガスGmの流速が0m/sになった。噴出口44の内径が100mmの場合、ノズルからの距離が0.9mのあたりから、混合用ガスGmの流速が急激に低下し、ノズルからの距離が4mを超えたあたりで、混合用ガスGmの流速が0m/sになった。噴出口44の内径が140mmの場合、ノズルからの距離が1.2mのあたりから、混合用ガスGmの流速が急激に低下し、ノズルからの距離が6mを超えたあたりで、混合用ガスGmの流速が0m/sになった。噴出口44の内径が190mmの場合、ノズルからの距離が1.9mのあたりから、混合用ガスGmの流速が急激に低下し、ノズルからの距離が6mを超えても、混合用ガスGmの流速が確保された。以上のように、噴出口44の内径を大きくした方が、上昇気流である一次燃焼用空気Ga1や燃焼ガスGcに対する混合用ガスGmの貫通力が増加する。 As a result of this CFD analysis, as shown in FIG. 3, when the inner diameter of the ejection port 44 is 85 mm, the flow velocity of the mixing gas Gm drops sharply from the distance of 0.7 m from the nozzle, and the flow velocity from the nozzle is reduced. At a position where the distance was less than 3 m, the flow velocity of the mixing gas Gm became 0 m / s. When the inner diameter of the ejection port 44 is 100 mm, the flow velocity of the mixing gas Gm drops sharply from around 0.9 m from the nozzle, and when the distance from the nozzle exceeds 4 m, the mixing gas Gm The flow velocity of was 0 m / s. When the inner diameter of the ejection port 44 is 140 mm, the flow velocity of the mixing gas Gm drops sharply from around 1.2 m from the nozzle, and when the distance from the nozzle exceeds 6 m, the mixing gas Gm The flow velocity of was 0 m / s. When the inner diameter of the ejection port 44 is 190 mm, the flow velocity of the mixing gas Gm drops sharply from around 1.9 m from the nozzle, and even if the distance from the nozzle exceeds 6 m, the mixing gas Gm The flow velocity was secured. As described above, when the inner diameter of the ejection port 44 is increased, the penetrating force of the mixing gas Gm with respect to the primary combustion air Ga1 and the combustion gas Gc, which are the updrafts, increases.

本実施形態の燃焼ガス流路17の幅(搬送方向上流側Dtuの縁から搬送方向下流側Dtdの縁までの幅)は、ほぼ4mである。この幅の中で、混合用ガスGmを一次燃焼用空気Ga1や燃焼ガスGcに混合するためには、何れの場所でも混合用ガスGmの主噴出方向Dmにおける流速が残存することが必要である。そこで、燃焼ガス流路17を形成する燃焼ガス流路枠16の搬送方向上流側Dtuの縁に混合用ガスノズル40を設け、その主噴出方向Dmを水平方向Dhにした場合、この混合用ガスノズル40からの混合用ガスGmが燃焼ガス流路枠16の搬送方向下流側Dtdの縁に至るよう、混合用ガスノズル40の内径を100mm以上にしている。一方、複数のノズル毎の噴出流速が同等且つ全体流量一定の条件において、混合用ガスノズル40の内径を大きくし過ぎると、ノズル1本あたりの流量が増加することでノズル本数が減ってノズル毎の設置間隔が大きくなる。このため、ノズル間を一次燃焼用空気Ga1や燃焼ガスGcがすり抜ける懸念がある。例えば、ノズル径85mm条件時のノズル毎の設置間隔が400mmの場合に対して、ノズル径250mm時にはノズル毎の設置間隔が4000mm前後まで広がることとなる。ノズル間の燃焼ガスすり抜けを防止するためにはノズル毎の設置間隔を4000mm以内とする必要がある。そこで、本実施形態では、混合用ガスノズル40の内径を250mm以下にしている。 The width of the combustion gas flow path 17 of the present embodiment (the width from the edge of the Dtu on the upstream side in the transport direction to the edge of the Dtd on the downstream side in the transport direction) is approximately 4 m. Within this width, in order to mix the mixing gas Gm with the primary combustion air Ga1 and the combustion gas Gc, it is necessary that the flow velocity of the mixing gas Gm in the main ejection direction Dm remains at any place. .. Therefore, when a mixing gas nozzle 40 is provided at the edge of the Dtu on the upstream side in the transport direction of the combustion gas flow path frame 16 forming the combustion gas flow path 17, and the main ejection direction Dm thereof is set to the horizontal direction Dh, the mixing gas nozzle 40 is provided. The inner diameter of the mixing gas nozzle 40 is 100 mm or more so that the mixing gas Gm from the above reaches the edge of the Dtd on the downstream side in the transport direction of the combustion gas flow path frame 16. On the other hand, if the inner diameter of the mixing gas nozzle 40 is made too large under the condition that the ejection flow rates of each of the plurality of nozzles are the same and the total flow rate is constant, the flow rate per nozzle increases and the number of nozzles decreases, so that the number of nozzles decreases. The installation interval becomes large. Therefore, there is a concern that the primary combustion air Ga1 and the combustion gas Gc may slip between the nozzles. For example, when the nozzle diameter is 85 mm and the installation interval for each nozzle is 400 mm, when the nozzle diameter is 250 mm, the installation interval for each nozzle is expanded to about 4000 mm. In order to prevent the combustion gas from slipping through between the nozzles, it is necessary to set the installation interval for each nozzle within 4000 mm. Therefore, in the present embodiment, the inner diameter of the mixing gas nozzle 40 is set to 250 mm or less.

なお、以上で説明したCFD解析では、混合用ガス(空気)の噴射直後の主噴出方向Dmにおける流速を60m/sにしている。しかしながら、この流速は、20m/s以上で且つ90m/sであればよい。ノズルから噴出される流速は、ノズル径が大きいほど噴出後の流速低下が小さく、噴出距離における流速低下の比はノズル径にほぼ反比例することが知られている。本実施形態では、ノズル径を従来のノズル径(例えば、85mm)の最大3倍程度まで拡大することを想定しているため、混合用ガスGmの噴出流速は20m/s程度まで低くしても混合を確保することが可能となる。一方で、噴出流速を高くすると混合用ガスGmの貫通力や混合性が高まる半面、ノズル圧損が大きくなりファンの容量を大きくせざるを得ない。ノズル圧損は噴出流速の2乗に比例することから、ファン容量を従来の2倍程度に納めるために流速は90m/s以下とすることが好ましい。 In the CFD analysis described above, the flow velocity in the main ejection direction Dm immediately after the injection of the mixing gas (air) is set to 60 m / s. However, this flow velocity may be 20 m / s or more and 90 m / s. It is known that the larger the nozzle diameter, the smaller the decrease in the flow velocity after ejection, and the ratio of the decrease in the flow velocity to the ejection distance is substantially inversely proportional to the nozzle diameter. In the present embodiment, since it is assumed that the nozzle diameter is expanded up to about 3 times the conventional nozzle diameter (for example, 85 mm), even if the ejection flow rate of the mixing gas Gm is lowered to about 20 m / s. It is possible to secure the mixing. On the other hand, if the ejection flow rate is increased, the penetrating force and mixing property of the mixing gas Gm are increased, but the nozzle pressure loss is increased, and the capacity of the fan has to be increased. Since the nozzle pressure loss is proportional to the square of the ejection flow velocity, the flow velocity is preferably 90 m / s or less in order to keep the fan capacity about twice as large as the conventional one.

すなわち、本実施形態における混合用ガスの噴出条件は、以下の通りである。
噴出口44の内径:100mm以上で250mm以下
(噴出口44の開口面積:7850mm以上で49060mm以下)
混合用ガスの噴射直後の主噴出方向Dmにおける流速:
20m/s以上で且つ90m/s
That is, the conditions for ejecting the mixing gas in this embodiment are as follows.
Inner diameter of spout 44: 100 mm or more and 250 mm or less (Opening area of spout 44: 7850 mm 2 or more and 49060 mm 2 or less)
Flow velocity in the main ejection direction Dm immediately after injection of the mixing gas:
20m / s or more and 90m / s

ここで、本実施形態において、噴出口44の内径を変えた場合でも、複数の混合用ガスノズル40から噴出する混合用ガスGmの総流量を一定にする場合について説明する。例えば、本実施形態の対象範囲外である噴出口44の内径が85mmのときと、本実施形態の対象範囲内である噴出口44の内径が190mmのときとで、混合用ガスGmの噴出流速及び総流量を同じにする場合、噴出口44の内径が190mmの混合用ガスノズルの本数は、噴出口44の内径が85mmの混合用ガスノズルの本数より少なくなる。このため、噴出口44の内径が190mmの一本の混合用ガスノズルから噴出する混合用ガスGmの流量は、噴出口44の内径が85mmの一本の混合用ガスノズルから噴出する混合用ガスGmの流量より多くなる。具体的には、噴出口44の内径が190mmの一本の混合用ガスノズルから噴出する混合用ガスGmの流量は、噴出口44の内径が85mmの一本の混合用ガスノズルから噴出する混合用ガスGmの流量の約5倍になる。よって、噴出口44の内径が190mmの混合用ガスノズルから噴出する混合用ガスGmは、噴出口44の内径が85mmの混合用ガスノズルから噴出する混合用ガスGmよりも、上昇気流である一次燃焼用空気Ga1や燃焼ガスGcに対する混合用ガスGmの貫通力が大きくなる。 Here, in the present embodiment, a case where the total flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40 is kept constant even when the inner diameter of the ejection port 44 is changed will be described. For example, when the inner diameter of the spout 44 which is outside the target range of the present embodiment is 85 mm and when the inner diameter of the spout 44 which is within the target range of the present embodiment is 190 mm, the ejection flow rate of the mixing gas Gm And when the total flow rate is the same, the number of mixing gas nozzles having an inner diameter of 190 mm of the ejection port 44 is smaller than the number of mixing gas nozzles having an inner diameter of 85 mm of the ejection port 44. Therefore, the flow rate of the mixing gas Gm ejected from one mixing gas nozzle having an inner diameter of 190 mm of the ejection port 44 is the flow rate of the mixing gas Gm ejected from one mixing gas nozzle having an inner diameter of 85 mm of the ejection port 44. It will be more than the flow rate. Specifically, the flow rate of the mixing gas Gm ejected from one mixing gas nozzle having an inner diameter of 190 mm at the ejection port 44 is the mixing gas ejected from one mixing gas nozzle having an inner diameter of 85 mm at the ejection port 44. It is about 5 times the flow rate of Gm. Therefore, the mixing gas Gm ejected from the mixing gas nozzle having an inner diameter of 190 mm of the ejection port 44 is for primary combustion, which is an updraft, than the mixing gas Gm ejected from the mixing gas nozzle having an inner diameter of 85 mm of the ejection port 44. The penetrating force of the mixing gas Gm with respect to the air Ga1 and the combustion gas Gc is increased.

被焼却物Mは、ホッパー10から火炉12内のストーカ11上に供給される。被焼却物M中には、水分が含まれていることがある。被焼却物Mは、ストーカ11上の搬送方向上流側Dtuの部分で一次燃焼用空気Ga1により乾燥する。被焼却物Mがある程度乾燥すると、この被焼却物Mに着火し、火炎Fが形成される。この被焼却物Mの燃焼により燃焼ガスGcが生成される。この燃焼ガスGcは、燃焼ガス流路17内を上方に流れて、排熱回収ボイラー2内に流入する。排熱回収ボイラー2では、水と燃焼ガスGcとを熱交換させて、水を加熱して、蒸気を発生させる。排熱回収ボイラー2を通過した燃焼ガスGcは、減温塔3を通過する。燃焼ガスGcは、減温塔3を通過する過程で、その温度が下げられる。減温塔3を通過した燃焼ガスGcは、燃焼ガス処理器4を通過する。燃焼ガスGcは、この燃焼ガス処理器4を通過する過程で、除塵処理及び/又は脱硝処理が施されて、浄化される。燃焼ガス処理器4を通過した燃焼ガスGcは、排気ガスGeとして、排気ガス流路枠5を経て、煙突6から外部に排気される。 The incinerator M is supplied from the hopper 10 onto the stoker 11 in the incinerator 12. Moisture may be contained in the incinerator M. The incinerated material M is dried by the primary combustion air Ga1 at the portion of the Dtu on the upstream side in the transport direction on the stoker 11. When the incinerator M dries to some extent, the incinerator M is ignited and a flame F is formed. Combustion gas Gc is generated by the combustion of the incinerator M. The combustion gas Gc flows upward in the combustion gas flow path 17 and flows into the exhaust heat recovery boiler 2. In the exhaust heat recovery boiler 2, the water and the combustion gas Gc are exchanged for heat to heat the water and generate steam. The combustion gas Gc that has passed through the exhaust heat recovery boiler 2 passes through the heat reducing tower 3. The temperature of the combustion gas Gc is lowered in the process of passing through the temperature reducing tower 3. The combustion gas Gc that has passed through the temperature reducing tower 3 passes through the combustion gas processor 4. The combustion gas Gc is purified by being subjected to a dust removal treatment and / or a denitration treatment in the process of passing through the combustion gas treatment device 4. The combustion gas Gc that has passed through the combustion gas processor 4 is exhausted as exhaust gas Ge from the chimney 6 to the outside through the exhaust gas flow path frame 5.

火炎Fが形成される領域は、被焼却物Mの燃焼効率を高める観点から、搬送方向Dtにおける流路軸線Apが存在する位置を含む領域が最も好ましい。しかしながら、被焼却物M中に水分が多く含まれていると、被焼却物Mの乾燥に時間がかかり、火炎Fは、図1中、二点鎖線で示すように、流路軸線Apが存在する位置よりも搬送方向下流側Dtdに形成される。火炎Fが搬送方向下流側Dtdに形成されると、ストーカ11上に載った直後の被焼却物Mから、この被焼却物Mを加熱する熱源である火炎Fまでの距離が長くなる。このため、さらに被焼却物Mの乾燥に時間がかかり、火炎Fはより搬送方向下流側Dtdに形成されることになる。 The region where the flame F is formed is most preferably a region including the position where the flow path axis Ap exists in the transport direction Dt from the viewpoint of increasing the combustion efficiency of the incinerator M. However, if the incinerator M contains a large amount of water, it takes time to dry the incinerator M, and the flame F has a flow path axis Ap as shown by a two-dot chain line in FIG. It is formed on the Dtd on the downstream side in the transport direction from the position where it is carried. When the flame F is formed on the downstream side Dtd in the transport direction, the distance from the incinerator M immediately after being placed on the stoker 11 to the flame F which is a heat source for heating the incinerator M becomes long. Therefore, it takes more time to dry the incinerator M, and the flame F is formed on the Dtd on the downstream side in the transport direction.

本実施形態では、最も好ましい領域に火炎Fが形成されている場合、複数の混合用ガスノズル40のうち、ほとんどの混合用ガスノズル40からの混合用ガスGmが、この火炎Fの頂部Ftに供給される。また、本実施形態では、最も好ましい領域に火炎Fが形成されていない場合、例えば、流路軸線Apが存在する位置よりも搬送方向下流側Dtdに火炎Fが形成されている場合でも、周方向Dcに並んでいる複数の混合用ガスノズル40のうち、いくつかの混合用ガスノズル40からの混合用ガスGmが火炎Fの頂部Ftに供給される。 In the present embodiment, when the flame F is formed in the most preferable region, the mixing gas Gm from most of the mixing gas nozzles 40 among the plurality of mixing gas nozzles 40 is supplied to the top Ft of the flame F. To. Further, in the present embodiment, when the flame F is not formed in the most preferable region, for example, even when the flame F is formed in the transport direction downstream Dtd from the position where the flow path axis Ap exists, the circumferential direction. Of the plurality of mixing gas nozzles 40 arranged in Dc, the mixing gas Gm from some of the mixing gas nozzles 40 is supplied to the top Ft of the flame F.

生成直後の燃焼ガスGc中には、未燃分が含まれている。本実施形態では、以上で説明したように、複数の混合用ガスノズル40のうち、少なくとも一部の混合用ガスノズル40から、酸素を含む混合用ガスGmが火炎Fの頂部Ftに供給される。すなわち、本実施形態では、生成直後の燃焼ガスGc中に、酸素を含む混合用ガスGmが供給される。このため、本実施形態では、燃焼ガスGc中の未燃分は、この燃焼ガスGcの生成直後から、混合用ガスGmに含まれる酸素で燃焼可能になる。よって、本実施形態では、燃焼ガスGcの生成直後から、燃焼ガスGc中の未燃分の少なくとも一部が燃焼することになる。 The combustion gas Gc immediately after generation contains an unburned component. In the present embodiment, as described above, the mixing gas Gm containing oxygen is supplied to the top Ft of the flame F from at least a part of the mixing gas nozzles 40 among the plurality of mixing gas nozzles 40. That is, in the present embodiment, the mixing gas Gm containing oxygen is supplied to the combustion gas Gc immediately after the generation. Therefore, in the present embodiment, the unburned component in the combustion gas Gc can be combusted by the oxygen contained in the mixing gas Gm immediately after the combustion gas Gc is generated. Therefore, in the present embodiment, at least a part of the unburned portion in the combustion gas Gc is burned immediately after the generation of the combustion gas Gc.

発明者は、噴出口44の内径を変えて、それぞれの内径毎に、ストーカ11の上面からの各高さでの酸素濃度の分散についてCFD解析を行った。 The inventor changed the inner diameter of the ejection port 44, and performed a CFD analysis on the dispersion of the oxygen concentration at each height from the upper surface of the stoker 11 for each inner diameter.

なお、酸素濃度の分散(σ2)は、以下の定義に基づく。
σ2=(xi-μ)2)/n
xi:燃焼ガス流路内を複数のセルに分割した際の各セル内の酸素濃度
μ:燃焼ガス流路の断面における平均酸素濃度
n:セル数
The dispersion of oxygen concentration (σ2) is based on the following definition.
σ2 = (xi-μ) 2) / n
xi: Oxygen concentration in each cell when the combustion gas flow path is divided into a plurality of cells μ: Average oxygen concentration in the cross section of the combustion gas flow path n: Number of cells

図4に示すように、ノズルにおける噴出口44の内径が85mmの場合でも、ノズルにおける噴出口44の内径が195mmの場合でも、ストーカ11の上面からの高さが低くなるに連れて、酸素濃度の分散が大きくなる。具体的に、噴出口44の内径が85mmの場合、ストーカ11の上面からの高さが6mの位置では、酸素濃度の分散が0.004程度で、ストーカ11の上面から高さが1mの位置では、酸素濃度の分散が0.008より大きくなる。また、噴出口44の内径が190mmの場合、ストーカ11の上面からの高さが6mの距離の位置では、酸素濃度の分散が0.002より小さく、ストーカ11の上面からの高さが1mの位置でも、酸素濃度の分散が0.004未満に収まる。 As shown in FIG. 4, regardless of whether the inner diameter of the ejection port 44 in the nozzle is 85 mm or the inner diameter of the ejection port 44 in the nozzle is 195 mm, the oxygen concentration increases as the height from the upper surface of the stoker 11 decreases. Dispersion becomes large. Specifically, when the inner diameter of the ejection port 44 is 85 mm, the oxygen concentration dispersion is about 0.004 at the position where the height from the upper surface of the stoker 11 is 6 m, and the height is 1 m from the upper surface of the stoker 11. Then, the dispersion of the oxygen concentration becomes larger than 0.008. Further, when the inner diameter of the ejection port 44 is 190 mm, the dispersion of oxygen concentration is smaller than 0.002 at a position where the height from the upper surface of the stoker 11 is 6 m, and the height from the upper surface of the stoker 11 is 1 m. Even at the position, the dispersion of oxygen concentration is less than 0.004.

以上のCFD解析により、噴出口44の内径を大きくした方が、上下方向Dvの広い範囲に渡って、酸素濃度の分散を小さくすることができる。すなわち、噴出口44の内径を大きくした方が、上下方向Dvの広い範囲に渡って、高い酸素濃度を維持できる。よって、噴出口44の内径を大きくした方が、燃焼ガスGcと混合用ガスGmとの混合率を高めることができ、燃焼ガスGc中の未燃分を少なくすることができる。本実施形態では、貫通力の観点だけでなくこの分散の観点にも基づいて、混合用ガスノズル40の内径を100mm以上にしている。 By the above CFD analysis, it is possible to reduce the dispersion of the oxygen concentration over a wide range of the vertical Dv by increasing the inner diameter of the ejection port 44. That is, when the inner diameter of the ejection port 44 is increased, a high oxygen concentration can be maintained over a wide range of the vertical Dv. Therefore, by increasing the inner diameter of the ejection port 44, the mixing ratio of the combustion gas Gc and the mixing gas Gm can be increased, and the unburned content in the combustion gas Gc can be reduced. In the present embodiment, the inner diameter of the mixing gas nozzle 40 is set to 100 mm or more not only from the viewpoint of penetration force but also from the viewpoint of this dispersion.

発明者は、さらに、噴出口44の内径を変えて、それぞれの内径毎に、燃焼ガスGc中に含まれる未燃分であるCO濃度と、燃焼ガス流路枠16の下端からの高さとの関係について、CFD解析を行った。このCFD解析は、前述のCFD解析と同様、燃焼ガスGcとして窒素ガスを用い、混合用ガスGmとして空気を用いて、以下の条件下で行った。 The inventor further changes the inner diameter of the ejection port 44 to determine the CO concentration, which is an unburned component contained in the combustion gas Gc, and the height from the lower end of the combustion gas flow path frame 16 for each inner diameter. A CFD analysis was performed on the relationship. This CFD analysis was performed under the following conditions using nitrogen gas as the combustion gas Gc and air as the mixing gas Gm, as in the above-mentioned CFD analysis.

燃焼ガス(窒素ガス)の温度:800℃
燃焼ガス(窒素ガス)の上昇速度:3.1m/s
混合用ガス(空気)の温度:150℃
混合用ガス(空気)の噴射直後の主噴出方向Dmにおける流速:60m/s
噴出口内径85mmの場合→ノズルピッチ:0.4m、
ノズル本数:前側20本+後側20本
噴出口内径100mmの場合→ノズルピッチ:0.6m、
ノズル本数:前側14本+後側14本
噴出口内径190mmの場合→ノズルピッチ:2.0m、
ノズル本数:前側4本+後側4本
※混合用ガス(空気)の総流量は一定
Combustion gas (nitrogen gas) temperature: 800 ° C
Combustion gas (nitrogen gas) rising speed: 3.1 m / s
Mixing gas (air) temperature: 150 ° C
Flow velocity in the main ejection direction Dm immediately after injection of the mixing gas (air): 60 m / s
When the inner diameter of the spout is 85 mm → Nozzle pitch: 0.4 m,
Number of nozzles: 20 on the front side + 20 on the rear side When the inner diameter of the spout is 100 mm → Nozzle pitch: 0.6 m,
Number of nozzles: 14 on the front side + 14 on the rear side When the inner diameter of the spout is 190 mm → Nozzle pitch: 2.0 m,
Number of nozzles: 4 on the front side + 4 on the rear side * The total flow rate of the mixing gas (air) is constant.

また、図5に示すように、燃焼ガス流路枠16の前後幅を4m、燃焼ガス流路枠16の横幅を8.2m、燃焼ガス流路枠16の高さを14mとした。 Further, as shown in FIG. 5, the front-rear width of the combustion gas flow path frame 16 is 4 m, the width of the combustion gas flow path frame 16 is 8.2 m, and the height of the combustion gas flow path frame 16 is 14 m.

このCFD解析の結果、図6に示すように、噴出口44の内径がいずれの場合でも、燃焼ガス流路枠16内で、燃焼ガス流路枠16の下端からの高さが高くなるにつれて、次第にCO濃度が低くなった。噴出口44の内径が190mmの場合、燃焼ガス流路枠16の下端からの高さがほぼ5m以上になると、CO濃度がほぼ0[vol ppm-dry]になった。また、噴出口44の内径が100mmの場合、燃焼ガス流路枠16の下端からの高さがほぼ10m以上になると、CO濃度がほぼ0[vol ppm-dry]になった。一方、噴出口44の内径が85mmの場合、燃焼ガス流路枠16の下端からの高さがほぼ14m以上になっても、CO濃度が0[vol ppm-dry]近くにはならなかった。 As a result of this CFD analysis, as shown in FIG. 6, regardless of the inner diameter of the ejection port 44, as the height from the lower end of the combustion gas flow path frame 16 increases in the combustion gas flow path frame 16, the height from the lower end increases. The CO concentration gradually decreased. When the inner diameter of the ejection port 44 was 190 mm and the height from the lower end of the combustion gas flow path frame 16 was about 5 m or more, the CO concentration became almost 0 [vol ppm-dry]. Further, when the inner diameter of the ejection port 44 is 100 mm and the height from the lower end of the combustion gas flow path frame 16 is approximately 10 m or more, the CO concentration becomes almost 0 [vol ppm-dry]. On the other hand, when the inner diameter of the ejection port 44 was 85 mm, the CO concentration did not approach 0 [vol ppm-dry] even when the height from the lower end of the combustion gas flow path frame 16 was approximately 14 m or more.

このCFD解析の結果に基づき、噴流カバー率と燃焼ガス流路枠16の出口におけるCO濃度との関係について調べた。ここで、燃焼ガス流路枠16の出口は、燃焼ガス流路枠16の上端の位置とした。この上端の位置は、燃焼ガス流路枠16の下端から14mの位置である。また、噴流カバー率は、以下の式に示すように、燃焼ガス流路枠16の前後幅に対する噴流の貫通距離の割合である。噴流の貫通距離は、ノズルから混合用ガスGmの流速が0m/sになる位置までの距離である。
噴流カバー率=噴流の貫通距離/燃焼ガス流路枠の前後幅×100[%]
Based on the results of this CFD analysis, the relationship between the jet coverage and the CO concentration at the outlet of the combustion gas flow path frame 16 was investigated. Here, the outlet of the combustion gas flow path frame 16 is set to the position of the upper end of the combustion gas flow path frame 16. The position of the upper end is 14 m from the lower end of the combustion gas flow path frame 16. Further, the jet coverage ratio is the ratio of the penetration distance of the jet to the front-rear width of the combustion gas flow path frame 16 as shown in the following equation. The penetration distance of the jet is the distance from the nozzle to the position where the flow velocity of the mixing gas Gm becomes 0 m / s.
Jet coverage = Jet penetration distance / Front-back width of combustion gas flow path frame x 100 [%]

燃焼ガス流路枠16の前後幅は、ここでは、前述したように、4mである。また、噴出口44の内径が85mmの場合、図3を用いて前述したように、噴流の貫通距離は、約3mである。噴出口44の内径が100mmの場合、噴流の貫通距離は、約4mである。噴出口44の内径が190mmの場合、噴流の貫通距離は、6m以上である。このため、ここでは、噴出口44の内径が100mmの場合に、噴流カバー率が約100%(=噴流の貫通距離(4m)/燃焼ガス流路枠の前後幅(4m)×100)になる。 Here, the front-rear width of the combustion gas flow path frame 16 is 4 m as described above. When the inner diameter of the jet outlet 44 is 85 mm, the penetration distance of the jet is about 3 m as described above with reference to FIG. When the inner diameter of the jet outlet 44 is 100 mm, the penetration distance of the jet is about 4 m. When the inner diameter of the jet outlet 44 is 190 mm, the penetration distance of the jet is 6 m or more. Therefore, here, when the inner diameter of the jet outlet 44 is 100 mm, the jet coverage rate is about 100% (= jet penetration distance (4 m) / front-rear width of the combustion gas flow path frame (4 m) × 100). ..

図7に示すように、噴流カバー率が約100%以上の場合、つまり、噴出口44の内径が100mmの場合、燃焼ガス流路枠16の出口におけるCO濃度はほぼ0[vol ppm-dry]になる。一方、噴流カバー率が約100%未満の場合、燃焼ガス流路枠16の出口におけるCO濃度は0[vol ppm-dry]にならない。 As shown in FIG. 7, when the jet coverage rate is about 100% or more, that is, when the inner diameter of the jet outlet 44 is 100 mm, the CO concentration at the outlet of the combustion gas flow path frame 16 is almost 0 [vol ppm-dry]. become. On the other hand, when the jet coverage is less than about 100%, the CO concentration at the outlet of the combustion gas flow path frame 16 does not become 0 [vol ppm-dry].

よって、このCFD解析の結果、噴出口44の内径を100mm以上にすると、燃焼ガス流路枠16の出口におけるCO濃度をほぼ0[vol ppm-dry]にできる、ことが分かった。 Therefore, as a result of this CFD analysis, it was found that when the inner diameter of the ejection port 44 is 100 mm or more, the CO concentration at the outlet of the combustion gas flow path frame 16 can be made almost 0 [vol ppm-dry].

燃焼ガスGcには、混合用ガスGmが供給された後、燃焼ガス流路17内を上昇する過程で、二次燃焼用空気Ga2が供給される。このため、混合用ガスGmが供給された後の燃焼ガスGc中に未燃分(例えば、CO)が残っていても、この未燃分を二次燃焼用空気Ga2で燃焼させることができる。 After the mixing gas Gm is supplied to the combustion gas Gc, the secondary combustion air Ga2 is supplied in the process of rising in the combustion gas flow path 17. Therefore, even if an unburned component (for example, CO) remains in the combustion gas Gc after the mixing gas Gm is supplied, this unburned component can be burned by the secondary combustion air Ga2.

以上のように、本実施形態では、燃焼ガスGc中に供給される酸素の存在領域が上下方向Dvに長くなり、効率的に未燃分を燃焼させることができる。このため、本実施形態では、被焼却物Mの燃焼効率を高めることができる。 As described above, in the present embodiment, the region where oxygen supplied in the combustion gas Gc exists becomes longer in the vertical direction Dv, and the unburned portion can be efficiently burned. Therefore, in the present embodiment, the combustion efficiency of the incinerator M can be improved.

ところで、混合用ガスノズル40から混合用ガスGmが噴出されると、この混合用ガスGmの周りの静圧が低下するため、火炎Fの頂部Ftは、噴出された混合用ガスGmのそばに引き寄せられる。このため、本実施形態では、最も好ましい領域に火炎Fが形成されていない場合、例えば、搬送方向Dtにおける流路軸線Apが存在する位置よりも搬送方向下流側Dtdに火炎F(図1中、二点鎖線で示す)が形成されている場合でも、この火炎Fの形成領域を最も好ましい領域に近づけることができる。従って、本実施形態では、この観点からも、被焼却物Mの燃焼効率を高めることができる。 By the way, when the mixing gas Gm is ejected from the mixing gas nozzle 40, the static pressure around the mixing gas Gm decreases, so that the top Ft of the flame F is attracted to the side of the ejected mixing gas Gm. Be done. Therefore, in the present embodiment, when the flame F is not formed in the most preferable region, for example, the flame F (in FIG. 1 in FIG. 1) is located on the downstream side Dtd in the transport direction from the position where the flow path axis Ap exists in the transport direction Dt. Even when the two-dot chain line) is formed, the region where the flame F is formed can be brought closer to the most preferable region. Therefore, in the present embodiment, the combustion efficiency of the incinerator M can be improved from this viewpoint as well.

本実施形態では、以上のように、混合用ガスGmによる火炎Fの引き寄せ効果により、この火炎Fの形成領域を最も好ましい領域に近づけることができる。このため、CFD解析では、例えば、混合用ガスノズル40からの混合用ガスGmの噴出流速が50m/sでも、この噴出流速が60m/sのときと同様に、混合用ガスGmと燃焼ガスGcとの混合が良好に行われることが確認できた。よって、本実施形態では、混合用ガスGmによる火炎Fの引き寄せ効果により、この火炎Fの形成領域を最も好ましい領域に近づけることができる。このため、一本の混合用ガスノズル40から噴出する混合用ガスGmの流量を抑えることができる。 In the present embodiment, as described above, the formation region of the flame F can be brought closer to the most preferable region due to the attraction effect of the flame F by the mixing gas Gm. Therefore, in the CFD analysis, for example, even if the ejection flow rate of the mixing gas Gm from the mixing gas nozzle 40 is 50 m / s, the mixing gas Gm and the combustion gas Gc are the same as when the ejection flow rate is 60 m / s. It was confirmed that the mixing was performed well. Therefore, in the present embodiment, the formation region of the flame F can be brought closer to the most preferable region due to the attraction effect of the flame F by the mixing gas Gm. Therefore, the flow rate of the mixing gas Gm ejected from one mixing gas nozzle 40 can be suppressed.

本実施形態の流量調節器32は、複数の混合用ガスノズル40毎に設けられている流量調節弁33を有する。ここで、複数の混合用ガスノズル40のうち、流路軸線Apよりも搬送方向上流側Dtuに配置されている複数の混合用ガスノズル40を上流側ノズル群とし、流路軸線Apよりも搬送方向下流側Dtdに配置されている複数の混合用ガスノズル40を下流側ノズル群とする。この場合、流量調節器は、複数の混合用ガスノズル40毎の流量調節弁33の替わりに、上流側ノズル群を構成する複数の混合用ガスノズル40から噴出する混合用ガスGmの流量をまとめて調節する上流側群用流量調節弁と、下流側ノズル群を構成する複数の混合用ガスノズル40から噴出する混合用ガスGmの流量をまとめて調節する下流側群用流量調節弁と、を有してもよい。また、複数の混合用ガスノズル40から噴出する混合用ガスGmの総流量のみを調節する場合、流量調節器は、複数の混合用ガスノズル40毎の流量調節弁33の替わりに、混合用ガスGmの供給元若しくはこの供給元近くに設けた送風機を有してもよい。この場合、送風機の回転数を変える等により、複数の混合用ガスノズル40から噴出する混合用ガスGmの総流量を調節する。 The flow rate regulator 32 of the present embodiment has a flow rate control valve 33 provided for each of the plurality of mixing gas nozzles 40. Here, among the plurality of mixing gas nozzles 40, a plurality of mixing gas nozzles 40 arranged on the upstream side Dtu in the transport direction from the flow path axis Ap are designated as upstream nozzle groups, and are downstream in the transport direction from the flow path axis Ap. A plurality of mixing gas nozzles 40 arranged on the side Dtd are designated as a downstream nozzle group. In this case, the flow rate regulator collectively adjusts the flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40 constituting the upstream nozzle group instead of the flow rate adjusting valve 33 for each of the plurality of mixing gas nozzles 40. It has a flow rate control valve for the upstream side group and a flow rate control valve for the downstream side group that collectively adjusts the flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40 constituting the downstream side nozzle group. May be good. Further, when adjusting only the total flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40, the flow rate regulator uses the mixing gas Gm instead of the flow rate adjusting valve 33 for each of the plurality of mixing gas nozzles 40. You may have a blower installed at or near the supplier. In this case, the total flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40 is adjusted by changing the rotation speed of the blower or the like.

「ストーカ式焼却設備の第二実施形態」
以下、本開示に係るストーカ式焼却設備の第二実施形態について、図8~図11を参照して説明する。
"Second embodiment of stoker type incinerator"
Hereinafter, the second embodiment of the stoker-type incinerator according to the present disclosure will be described with reference to FIGS. 8 to 11.

本実施形態のストーカ式焼却設備は、第一実施形態のストーカ式焼却設備と、混合用ガス供給部の構成のみが異なっている。そこで、以下では、本実施形態の混合用ガス供給部30aについて主として説明する。 The stoker-type incinerator of the present embodiment differs from the stoker-type incinerator of the first embodiment only in the configuration of the mixing gas supply unit. Therefore, in the following, the mixing gas supply unit 30a of the present embodiment will be mainly described.

図8に示すように、本実施形態の混合用ガス供給部30aも、第一実施形態の混合用ガス供給部30と同様に、複数の混合用ガスノズル40と、複数の混合用ガスノズル40に混合用ガスGmを導く混合用ガスライン31と、複数の混合用ガスノズル40から噴出する混合用ガスGmの流量を調節する流量調節器32と、を有する。本実施形態の混合用ガス供給部30aは、さらに、火炎形成領域情報を取得する情報取得部50と、混合用ガスノズル40からの混合用ガスGmの主噴出方向Dmを変える角度変更機構60と、混合用ガスノズル40の上下方向Dvにおける位置を変える設置高さ変更機構65と、制御器70と、を有する。 As shown in FIG. 8, the mixing gas supply unit 30a of the present embodiment is also mixed with the plurality of mixing gas nozzles 40 and the plurality of mixing gas nozzles 40, similarly to the mixing gas supply unit 30 of the first embodiment. It has a mixing gas line 31 for guiding the gas Gm, and a flow rate regulator 32 for adjusting the flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40. The mixing gas supply unit 30a of the present embodiment further includes an information acquisition unit 50 for acquiring flame formation region information, an angle changing mechanism 60 for changing the main ejection direction Dm of the mixing gas Gm from the mixing gas nozzle 40, and an angle changing mechanism 60. It has an installation height changing mechanism 65 that changes the position of the mixing gas nozzle 40 in the vertical direction Dv, and a controller 70.

情報取得部50が取得する火炎形成領域情報は、ストーカ11上の被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための情報である。情報取得部50は、例えば、火炉12内を上方から撮像する赤外線カメラ51、叉は、ホッパー10内の被焼却物M中に含まれる水分量を検知する水分計52を有する。赤外線カメラ51では、撮像範囲内における温度分布を検知することができる。赤外線カメラ51の撮像範囲内で、温度が高い領域には火炎Fが形成されていると言える。このため、赤外線カメラ51で得られたデータは、火炎形成領域情報になる。また、ホッパー10内の被焼却物M中に含まれる水分量が増加するに連れて、この被焼却部の乾燥に時間が長くなるため、火炎Fは搬送方向下流側Dtdに寄る。このため、水分計52で検知された被焼却物Mの水分量も、火炎形成領域情報になる。なお、ここでは、情報取得部50の例として、赤外線カメラ51や水分計52を例示したが、情報取得部50は、火炎形成領域情報を取得できれば、他の計器等であってもよい。 The flame forming region information acquired by the information acquisition unit 50 is information for grasping the forming region of the flame F formed by the combustion of the incinerator M on the stoker 11. The information acquisition unit 50 includes, for example, an infrared camera 51 that captures an image of the inside of the furnace 12 from above, or a moisture meter 52 that detects the amount of moisture contained in the incinerator M in the hopper 10. The infrared camera 51 can detect the temperature distribution within the imaging range. It can be said that the flame F is formed in the region where the temperature is high within the imaging range of the infrared camera 51. Therefore, the data obtained by the infrared camera 51 becomes the flame formation region information. Further, as the amount of water contained in the incinerator M in the hopper 10 increases, it takes longer to dry the incinerator portion, so that the flame F moves closer to the Dtd on the downstream side in the transport direction. Therefore, the water content of the incinerator M detected by the moisture meter 52 also becomes the flame forming region information. Here, an infrared camera 51 and a moisture meter 52 are illustrated as examples of the information acquisition unit 50, but the information acquisition unit 50 may be another instrument or the like as long as it can acquire flame formation region information.

角度変更機構60は、図9に示すように、混合用ガスノズル40を支持するノズル支持体61と、このノズル支持体61を回転可能に支持する支持体受け62と、ノズル支持体61を回転させる回転駆動機構63と、を有する。支持体受け62は、混合用ガスノズル40の主噴出方向Dmの水平方向Dhに対する角度αが、少なくとも0°から60°の範囲内で、ノズル支持体61を回転可能に支持する。混合用ガスノズル40は、第一実施形態で説明したように、ストーカ11の上面から1500mm以上で4000mm以下の位置に配置することが好ましい。ストーカ11の上面から火炎Fの頂部Ftまでの距離は通常は1.5m程度から2~3m程度である。この場合、ノズルから火炎Fの頂部Ftまでの垂直高さは0mから最大2.5m程度の範囲となる。このため、燃焼ガス流路枠16の前後幅が4mのときに、ノズル角度αを前述したように0°から60°の範囲とすることで、混合用ガスGmを火炎Fの頂部Ftへと供給することが可能となる。 As shown in FIG. 9, the angle changing mechanism 60 rotates the nozzle support 61 that supports the mixing gas nozzle 40, the support receiver 62 that rotatably supports the nozzle support 61, and the nozzle support 61. It has a rotation drive mechanism 63 and. The support receiver 62 rotatably supports the nozzle support 61 within an angle α of the main ejection direction Dm of the mixing gas nozzle 40 with respect to the horizontal direction Dh of at least 0 ° to 60 °. As described in the first embodiment, the mixing gas nozzle 40 is preferably arranged at a position of 1500 mm or more and 4000 mm or less from the upper surface of the stoker 11. The distance from the upper surface of the stoker 11 to the top Ft of the flame F is usually about 1.5 m to about 2 to 3 m. In this case, the vertical height from the nozzle to the top Ft of the flame F is in the range of 0 m to a maximum of about 2.5 m. Therefore, when the front-rear width of the combustion gas flow path frame 16 is 4 m, the nozzle angle α is set in the range of 0 ° to 60 ° as described above, so that the mixing gas Gm is transferred to the top Ft of the flame F. It will be possible to supply.

設置高さ変更機構65は、角度変更機構60の支持体受け62が固定されているスライドベース66と、スライドベース66を上下方向Dvに移動させる移動機構67と、シール機構68と、を有する。燃焼ガス流路枠16には、混合用ガスノズル40からの混合用ガスGmが燃焼ガス流路枠16内に噴出できるよう、開口19が形成されている。シール機構68は、スライドベース66の上下方向Dvの移動に伴うスライドベース66と開口19との間の隙間をシールする。 The installation height changing mechanism 65 includes a slide base 66 to which the support receiver 62 of the angle changing mechanism 60 is fixed, a moving mechanism 67 for moving the slide base 66 in the vertical direction Dv, and a sealing mechanism 68. The combustion gas flow path frame 16 is formed with an opening 19 so that the mixing gas Gm from the mixing gas nozzle 40 can be ejected into the combustion gas flow path frame 16. The sealing mechanism 68 seals the gap between the slide base 66 and the opening 19 as the slide base 66 moves in the vertical direction Dv.

制御器70は、角度変更機構60、設置高さ変更機構65、複数の混合用ガスノズル40毎に設けられている流量調節弁33の動作を制御する。この制御器70は、図10に示すように、火炎位置推定部71と、目標火炎位置記憶部72と、ズレ量算出部73と、操作対象決定部74と、操作量算出部75と、操作量出力部76と、を有する。火炎位置推定部71は、情報取得部50が取得した火炎形成領域情報に基づいて、つまり赤外線カメラ51叉は水分計52からのデータに基づいて、火炉12内の火炎Fの形成領域の位置を推定する。火炎位置推定部71は、赤外線カメラ51のデータを用いる場合、このデータで得られる火炉12内の温度分布から火炎Fの形成領域の位置を推定する。また、火炎位置推定部71は、水分計52のデータを用いる場合、ホッパー10内の被焼却物M中に含まれる水分量と火炎形成領域の位置との予め調べておいた水分量-位置関係と、水分計52により、実際に得られた、ホッパー10内の被焼却物M中に含まれる水分量とから、火炉12内の火炎Fの形成領域の位置を推定する。目標火炎位置記憶部72には、火炉12内で、最も好ましい火炎Fの形成領域の位置が目標火炎位置として記憶されている。ズレ量算出部73は、目標火炎位置を基準にして、火炎位置推定部71が推定した推定火炎位置のズレ方向、及びこの推定火炎位置のズレ量を求める。操作対象決定部74は、推定火炎位置のズレ方向及びズレ量に基づいて、角度変更機構60、設置高さ変更機構65、及び複数の流量調節弁33のうち、いずれを操作対象にするかを決定する。操作量算出部75は、推定火炎位置のズレ方向及びズレ量に基づいて、操作対象決定部74が決定した操作対象の操作量を求める。操作量出力部76は、操作対象決定部74が決定した操作対象に、操作量算出部75が求めた操作量を出力する。 The controller 70 controls the operation of the angle changing mechanism 60, the installation height changing mechanism 65, and the flow rate control valve 33 provided for each of the plurality of mixing gas nozzles 40. As shown in FIG. 10, the controller 70 operates the flame position estimation unit 71, the target flame position storage unit 72, the deviation amount calculation unit 73, the operation target determination unit 74, the operation amount calculation unit 75, and the operation amount calculation unit 75. It has a quantity output unit 76 and. The flame position estimation unit 71 determines the position of the flame F formation region in the furnace 12 based on the flame formation region information acquired by the information acquisition unit 50, that is, based on the data from the infrared camera 51 or the moisture meter 52. presume. When the data of the infrared camera 51 is used, the flame position estimation unit 71 estimates the position of the flame F forming region from the temperature distribution in the furnace 12 obtained from this data. Further, when the flame position estimation unit 71 uses the data of the moisture meter 52, the water content-positional relationship previously investigated between the water content contained in the incinerated object M in the hopper 10 and the position of the flame forming region. The position of the flame F forming region in the furnace 12 is estimated from the amount of water contained in the incinerated material M in the hopper 10 actually obtained by the moisture meter 52. The target flame position storage unit 72 stores the position of the most preferable flame F forming region in the furnace 12 as the target flame position. The deviation amount calculation unit 73 obtains the deviation direction of the estimated flame position estimated by the flame position estimation unit 71 and the deviation amount of the estimated flame position with reference to the target flame position. The operation target determination unit 74 determines which of the angle changing mechanism 60, the installation height changing mechanism 65, and the plurality of flow rate control valves 33 is to be operated based on the deviation direction and the deviation amount of the estimated flame position. decide. The operation amount calculation unit 75 obtains the operation amount of the operation target determined by the operation target determination unit 74 based on the deviation direction and the deviation amount of the estimated flame position. The operation amount output unit 76 outputs the operation amount obtained by the operation amount calculation unit 75 to the operation target determined by the operation target determination unit 74.

次に、図11に示すフローチャートに従って、混合用ガス供給部30aの動作について説明する。 Next, the operation of the mixing gas supply unit 30a will be described according to the flowchart shown in FIG.

まず、情報取得部50が火炎形成領域情報を取得する(S10:情報取得工程)。次に、制御器70が情報取得部50から火炎形成領域情報を受け取り、角度変更機構60、設置高さ変更機構65、及び複数の流量調節弁33のいずれかを制御するための制御演算工程(S11)を実行する。 First, the information acquisition unit 50 acquires flame formation region information (S10: information acquisition step). Next, a control calculation step for the controller 70 to receive flame formation region information from the information acquisition unit 50 and control any of the angle changing mechanism 60, the installation height changing mechanism 65, and the plurality of flow rate control valves 33 ( S11) is executed.

制御演算工程(S11)では、まず、制御器70の火炎位置推定部71が、情報取得部50が取得した火炎形成領域情報に基づいて、つまり赤外線カメラ51叉は水分計52からのデータに基づいて、火炉12内の火炎Fの形成領域の位置を推定する(S12:火炎位置推定工程)。なお、火炎位置推定部71は、赤外線カメラ51からのデータのみに基づいて、火炉12内の火炎Fの形成領域の位置を推定してもよい。すなわち、情報取得部50は、赤外線カメラ51のみでもよい。目標火炎位置記憶部72には、火炉12内で、最も好ましい火炎Fの形成領域の位置が目標火炎位置として記憶されている。ズレ量算出部73は、目標火炎位置を基準にして、火炎位置推定部71が推定した推定火炎位置のズレ方向、及びこの推定火炎位置のズレ量を求める(S13:ズレ量算出工程)。 In the control calculation step (S11), first, the flame position estimation unit 71 of the controller 70 is based on the flame formation region information acquired by the information acquisition unit 50, that is, based on the data from the infrared camera 51 or the moisture meter 52. Then, the position of the formation region of the flame F in the furnace 12 is estimated (S12: flame position estimation step). The flame position estimation unit 71 may estimate the position of the flame F forming region in the furnace 12 based only on the data from the infrared camera 51. That is, the information acquisition unit 50 may be only the infrared camera 51. The target flame position storage unit 72 stores the position of the most preferable flame F forming region in the furnace 12 as the target flame position. The deviation amount calculation unit 73 obtains the deviation direction of the estimated flame position estimated by the flame position estimation unit 71 and the deviation amount of the estimated flame position with reference to the target flame position (S13: deviation amount calculation step).

次に、操作対象決定部74が、推定火炎位置のズレ方向及びズレ量に基づいて、角度変更機構60、設置高さ変更機構65、及び複数の流量調節弁33のうち、いずれを操作対象にするかを決定する(S14:操作対象決定工程)。操作対象決定部74は、例えば、目標火炎位置に対して推定火炎位置が前後方向にズレている場合には、複数の流量調節弁33の全て、叉は、複数の流量調節弁33の一部を操作対象とする。また、操作対象決定部74は、例えば、目標火炎位置に対して推定火炎位置が上下方向にズレている場合には、角度変更機構60又は設置高さ変更機構65を操作対象とする。目標火炎位置に対して推定火炎位置が前後方向にも上下方向にもズレている場合がある。このような場合、操作対象決定部74は、角度変更機構60、設置高さ変更機構65、及び複数の流量調節弁33の全てを操作対象にすることもある。 Next, the operation target determination unit 74 sets any of the angle changing mechanism 60, the installation height changing mechanism 65, and the plurality of flow rate control valves 33 as the operation target based on the deviation direction and the deviation amount of the estimated flame position. It is determined whether or not to be performed (S14: operation target determination step). For example, when the estimated flame position is displaced in the front-rear direction with respect to the target flame position, the operation target determination unit 74 is all of the plurality of flow rate control valves 33 or a part of the plurality of flow rate control valves 33. Is the operation target. Further, for example, when the estimated flame position is displaced in the vertical direction with respect to the target flame position, the operation target determination unit 74 sets the angle changing mechanism 60 or the installation height changing mechanism 65 as the operation target. The estimated flame position may be displaced in the front-back direction or the up-down direction with respect to the target flame position. In such a case, the operation target determination unit 74 may set all of the angle changing mechanism 60, the installation height changing mechanism 65, and the plurality of flow rate control valves 33 as operation targets.

次に、操作量算出部75が、推定火炎位置のズレ方向及びズレ量に基づいて、操作対象決定部74が決定した操作対象の操作量を求める(S15:操作量算出工程)。なお、操作対象決定部74が複数の流量調節弁33を操作対象にした場合、操作量算出部75は、複数の流量調節弁33毎の操作量を求める。操作量出力部76は、操作対象決定部74が決定した操作対象に、操作量算出部75が求めた操作量を出力する(S16:操作量出力工程)。以上で、制御演算工程(S11)が終了する。 Next, the operation amount calculation unit 75 obtains the operation amount of the operation target determined by the operation target determination unit 74 based on the deviation direction and the deviation amount of the estimated flame position (S15: operation amount calculation step). When the operation target determination unit 74 targets a plurality of flow rate control valves 33, the operation amount calculation unit 75 obtains the operation amount for each of the plurality of flow rate control valves 33. The operation amount output unit 76 outputs the operation amount obtained by the operation amount calculation unit 75 to the operation target determined by the operation target determination unit 74 (S16: operation amount output step). This completes the control calculation process (S11).

仮に、操作量算出部75が角度変更機構60に操作量を出力したとする。この場合、角度変更機構60は、この操作量に従って、混合用ガスノズル40の主噴出方向Dmを変える(S17:角度変更工程)。具体的に、推定火炎位置が、例えば、目標火炎位置に対して上方向にズレている場合、混合用ガスノズル40の主噴出方向Dmの水平方向Dhに対する角度αを小さくする。また、推定火炎位置が、例えば、目標火炎位置に対して下方向にズレている場合、混合用ガスノズル40の主噴出方向Dmの水平方向Dhに対する角度αを大きくする。また、操作対象の流量調節弁33に対応する混合用ガスノズル40から推定火炎位置までの距離が、この混合用ガスノズル40から目標火炎位置までの距離より大きい場合、混合用ガスノズル40の主噴出方向Dmの水平方向Dhに対する角度αを小さくする。以上のような制御により、この混合用ガスノズル40から噴出した混合用ガスGmが火炎Fの頂部Ftに向かい、この混合用ガスGmによる引き寄せ効果が高まって、火炎Fの形成領域を第一実施形態よりも最も好ましい領域に近づけることができる。 It is assumed that the operation amount calculation unit 75 outputs the operation amount to the angle changing mechanism 60. In this case, the angle changing mechanism 60 changes the main ejection direction Dm of the mixing gas nozzle 40 according to this operation amount (S17: angle changing step). Specifically, when the estimated flame position is displaced upward with respect to the target flame position, for example, the angle α of the main ejection direction Dm of the mixing gas nozzle 40 with respect to the horizontal direction Dh is reduced. Further, when the estimated flame position is deviated downward from the target flame position, for example, the angle α of the main ejection direction Dm of the mixing gas nozzle 40 with respect to the horizontal direction Dh is increased. When the distance from the mixing gas nozzle 40 corresponding to the flow control valve 33 to be operated to the estimated flame position is larger than the distance from the mixing gas nozzle 40 to the target flame position, the main ejection direction Dm of the mixing gas nozzle 40 The angle α with respect to the horizontal direction Dh of is reduced. By the above control, the mixing gas Gm ejected from the mixing gas nozzle 40 is directed toward the top Ft of the flame F, the attraction effect of the mixing gas Gm is enhanced, and the formation region of the flame F is formed in the first embodiment. It is possible to approach the most preferable area.

また、仮に、操作量算出部75が設置高さ変更機構65に操作量を出力したとする。この場合、設置高さ変更機構65は、この操作量に従って、混合用ガスノズル40の上下方向Dvの位置を変える(S18:位置変更工程)。具体的に、推定火炎位置が、例えば、目標火炎位置に対して上方向にズレている場合、混合用ガスノズル40の設置位置を高くする。また、推定火炎位置が、例えば、目標火炎位置に対して下方向にズレている場合、混合用ガスノズル40の設置位置を低くする。また、操作対象の流量調節弁33に対応する混合用ガスノズル40から推定火炎位置までの距離が、この混合用ガスノズル40から目標火炎位置までの距離より大きい場合、混合用ガスノズル40の設置位置を高くする。以上のような制御により、この混合用ガスノズル40から噴出した混合用ガスGmが火炎Fの頂部Ftに向かい、この混合用ガスGmによる引き寄せ効果が高まって、火炎Fの形成領域を第一実施形態よりも最も好ましい領域に近づけることができる。 Further, it is assumed that the operation amount calculation unit 75 outputs the operation amount to the installation height changing mechanism 65. In this case, the installation height changing mechanism 65 changes the position of the vertical Dv of the mixing gas nozzle 40 according to this operation amount (S18: position changing step). Specifically, when the estimated flame position deviates upward from the target flame position, for example, the installation position of the mixing gas nozzle 40 is raised. Further, when the estimated flame position is deviated downward from the target flame position, for example, the installation position of the mixing gas nozzle 40 is lowered. Further, when the distance from the mixing gas nozzle 40 corresponding to the flow control valve 33 to be operated to the estimated flame position is larger than the distance from the mixing gas nozzle 40 to the target flame position, the installation position of the mixing gas nozzle 40 is raised. do. By the above control, the mixing gas Gm ejected from the mixing gas nozzle 40 is directed toward the top Ft of the flame F, the attraction effect of the mixing gas Gm is enhanced, and the formation region of the flame F is formed in the first embodiment. It is possible to approach the most preferable area.

また、仮に、操作量算出部75が複数の流量調節弁33のうちの全てに、叉は一部に操作量を出力したとする。この場合、複数の混合用ガスノズル40毎に、混合用ガスノズル40から噴出する混合用ガスGmの流量が調節される(S19:流量調節工程)。具体的に、操作対象の流量調節弁33に対応する混合用ガスノズル40から推定火炎位置までの距離が、この混合用ガスノズル40から目標火炎位置までの距離より大きい場合、操作対象の流量調節弁33は、その混合用ガスノズル40から噴出する混合用ガスGmの流量を多くする。この制御により、この混合用ガスノズル40から噴出した混合用ガスGmが火炎Fの頂部Ftに至った際の流速を高めることができる。このため、この制御により、この混合用ガスGmによる引き寄せ効果が高まり、この火炎Fの形成領域を第一実施形態よりも最も好ましい領域に近づけることができる。 Further, it is assumed that the operation amount calculation unit 75 outputs the operation amount to all or a part of the plurality of flow rate control valves 33. In this case, the flow rate of the mixing gas Gm ejected from the mixing gas nozzle 40 is adjusted for each of the plurality of mixing gas nozzles 40 (S19: flow rate adjusting step). Specifically, when the distance from the mixing gas nozzle 40 corresponding to the flow rate control valve 33 to be operated to the estimated flame position is larger than the distance from the mixing gas nozzle 40 to the target flame position, the flow rate control valve 33 to be operated Increases the flow rate of the mixing gas Gm ejected from the mixing gas nozzle 40. By this control, the flow velocity when the mixing gas Gm ejected from the mixing gas nozzle 40 reaches the top Ft of the flame F can be increased. Therefore, by this control, the attraction effect of the mixing gas Gm is enhanced, and the formation region of the flame F can be brought closer to the most preferable region than the first embodiment.

本実施形態では、以上のように、火炎形成領域情報に基づいて、角度変更機構60、設置高さ変更機構65、流量調節器32が動作する。しかしながら、角度変更機構60、設置高さ変更機構65、流量調節器32のうち、少なくとも一つが火炎形成領域情報に基づいて動作すればよい。 In the present embodiment, as described above, the angle changing mechanism 60, the installation height changing mechanism 65, and the flow rate regulator 32 operate based on the flame forming region information. However, at least one of the angle changing mechanism 60, the installation height changing mechanism 65, and the flow rate regulator 32 may operate based on the flame forming region information.

本実施形態の流量調節器32は、第一実施形態と同様に、複数の混合用ガスノズル40毎に設けられている流量調節弁33を有する。ここで、複数の混合用ガスノズル40のうち、流路軸線Apよりも搬送方向上流側Dtuに配置されている複数の混合用ガスノズル40を上流側ノズル群とし、流路軸線Apよりも搬送方向下流側Dtdに配置されている複数の混合用ガスノズル40を下流側ノズル群とする。この場合、流量調節器は、複数の混合用ガスノズル40毎の流量調節弁33の替わりに、上流側ノズル群を構成する複数の混合用ガスノズル40から噴出する混合用ガスGmの流量をまとめて調節する上流側群用流量調節弁と、下流側ノズル群を構成する複数の混合用ガスノズル40から噴出する混合用ガスGmの流量をまとめて調節する下流側群用流量調節弁と、を有してもよい。 The flow rate regulator 32 of the present embodiment has a flow rate control valve 33 provided for each of the plurality of mixing gas nozzles 40, as in the first embodiment. Here, among the plurality of mixing gas nozzles 40, a plurality of mixing gas nozzles 40 arranged on the upstream side Dtu in the transport direction from the flow path axis Ap are designated as upstream nozzle groups, and are downstream in the transport direction from the flow path axis Ap. A plurality of mixing gas nozzles 40 arranged on the side Dtd are designated as a downstream nozzle group. In this case, the flow rate regulator collectively adjusts the flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40 constituting the upstream nozzle group instead of the flow rate adjusting valve 33 for each of the plurality of mixing gas nozzles 40. It has a flow rate control valve for the upstream side group and a flow rate control valve for the downstream side group that collectively adjusts the flow rate of the mixing gas Gm ejected from the plurality of mixing gas nozzles 40 constituting the downstream side nozzle group. May be good.

なお、制御器70は、例えば、CPU、主記憶装置(例えば、メモリ)、外部記憶装置(例えば、ハードディスクドライブ装置)、入出力インタフェース回路等を有するコンピュータで構成してもよい。この場合、外部記憶装置には、以上で説明した制御器70の各機能を実現するためのプログラムが格納されている。さらに、この外部記憶装置には、目標火炎位置が記憶されている。よって、目標火炎位置記憶部72は、外部記憶装置を有して構成される。また、火炎位置推定部71、ズレ量算出部73、操作対象決定部74、及び操作量算出部75は、プログラムに従って動作するCPUと、このCPUの演算過程や演算結果が展開される主記憶装置と、を有して構成される。また、操作量出力部76は、プログラムに従って動作するCPUと、このCPUの演算過程や演算結果が展開される主記憶装置と、入出力インタフェース回路と、を有して構成される。 The controller 70 may be composed of, for example, a computer having a CPU, a main storage device (for example, a memory), an external storage device (for example, a hard disk drive device), an input / output interface circuit, and the like. In this case, the external storage device stores a program for realizing each function of the controller 70 described above. Further, the target flame position is stored in this external storage device. Therefore, the target flame position storage unit 72 includes an external storage device. Further, the flame position estimation unit 71, the deviation amount calculation unit 73, the operation target determination unit 74, and the operation amount calculation unit 75 are a CPU that operates according to a program, and a main storage device in which the calculation process and calculation result of the CPU are developed. And is configured with. Further, the manipulated variable output unit 76 includes a CPU that operates according to a program, a main storage device in which the calculation process and calculation result of the CPU are developed, and an input / output interface circuit.

「混合用ガスノズルの変形例」
以上の各実施形態の混合用ガスノズル40の噴出口44は、図2を用いて前述したように、円形である。しかしながら、混合用ガスノズルの噴出口は、図12~図14の各変形例に示すように、円形でなくてもよい。
"Modification example of gas nozzle for mixing"
The ejection port 44 of the mixing gas nozzle 40 of each of the above embodiments is circular as described above with reference to FIG. However, the ejection port of the mixing gas nozzle does not have to be circular as shown in each modification of FIGS. 12 to 14.

まず、図12を用いて、混合用ガスノズルの第一変形例について説明する。本変形例の混合用ガスノズル40aの噴出口44aは、長方形である。この長方形の長辺は上下方向Dvに延び、この長方形の短辺は水平方向Dhに延びている。よって、この噴出口44aは、水平方向Dhの開口幅より上下方向Dvの開口幅の方が広い。 First, a first modification of the mixing gas nozzle will be described with reference to FIG. 12. The ejection port 44a of the mixing gas nozzle 40a of this modification is rectangular. The long side of this rectangle extends in the vertical direction Dv, and the short side of this rectangle extends in the horizontal direction Dh. Therefore, the ejection port 44a has a wider opening width in the vertical direction Dv than an opening width in the horizontal direction Dh.

次に、図13を用いて、混合用ガスノズルの第二変形例について説明する。本変形例の混合用ガスノズル40bの噴出口44bは、楕円形である。この楕円の長軸は上下方向Dvに延び、この楕円の短軸は水平方向Dhに延びている。よって、この噴出口44bは、第一変形例の噴出口44aと同様、水平方向Dhの開口幅より上下方向Dvの開口幅の方が広い。 Next, a second modification of the mixing gas nozzle will be described with reference to FIG. The ejection port 44b of the mixing gas nozzle 40b of this modification has an elliptical shape. The long axis of this ellipse extends in the vertical direction Dv, and the short axis of this ellipse extends in the horizontal direction Dh. Therefore, the spout 44b has a wider opening width in the vertical direction Dv than the opening width in the horizontal direction Dh, as in the spout 44a of the first modification.

以上の第一及び第二変形例のように、水平方向Dhの開口幅より上下方向Dvの開口幅の方が広いと、噴出口44が円形の場合よりも、上昇気流である燃焼ガスGcに晒される混合用ガスGmの面積が小さくなる。このため、第一及び第二変形例の混合用ガスノズル40a,40bでは、以上の実施形態の混合用ガスノズル40よりも、上昇気流である燃焼ガスGcに対する混合用ガスGmの貫通力を増加させることができる。 As in the above first and second modifications, when the opening width in the vertical direction Dv is wider than the opening width in the horizontal direction Dh, the combustion gas Gc which is an updraft becomes larger than the case where the ejection port 44 is circular. The area of the mixing gas Gm to be exposed becomes smaller. Therefore, in the mixing gas nozzles 40a and 40b of the first and second modifications, the penetrating force of the mixing gas Gm with respect to the combustion gas Gc which is the updraft is increased as compared with the mixing gas nozzle 40 of the above embodiment. Can be done.

なお、第一及び第二変形例の混合用ガスノズル40a,40bにおける噴出口44a,44bの開口面積は、以上の実施形態の混合用ガスノズル40における噴出口44の開口面積とほぼ同じであることが好ましい。すなわち、第一及び第二変形例の混合用ガスノズル40a,40bにおける噴出口44a,44bの開口面積は、第一及び第二実施形態の混合用ガスノズル40における噴出口44の内径が100mmのときの開口面積7850mm(=50mm×50mm×3.14)以上で、第一及び第二実施形態の混合用ガスノズル40における噴出口44の内径が250mmのときの開口面積49060mm(≒125mm×125mm×3.14)以下であることが好ましい。但し、第一及び第二変形例の混合用ガスノズル40a,40bでは、前述したように、第一及び第二実施形態の混合用ガスノズル40よりも混合用ガスGmの貫通力を増加させることができるため、第一及び第二変形例の混合用ガスノズル40a,40bにおける噴出口44の開口面積が以上で例示した開口面積よりも若干小さくてもよい。The opening area of the ejection ports 44a and 44b in the mixing gas nozzles 40a and 40b of the first and second modifications may be substantially the same as the opening area of the ejection port 44 in the mixing gas nozzle 40 of the above embodiment. preferable. That is, the opening area of the spouts 44a and 44b in the mixing gas nozzles 40a and 40b of the first and second modifications is when the inner diameter of the spout 44 in the mixing gas nozzles 40 of the first and second embodiments is 100 mm. When the opening area is 7850 mm 2 (= 50 mm × 50 mm × 3.14) or more and the inner diameter of the ejection port 44 in the mixing gas nozzle 40 of the first and second embodiments is 250 mm, the opening area is 49060 mm 2 (≈125 mm × 125 mm × 3.14). The following is preferable. However, in the mixing gas nozzles 40a and 40b of the first and second modifications, as described above, the penetrating force of the mixing gas Gm can be increased as compared with the mixing gas nozzles 40 of the first and second embodiments. Therefore, the opening area of the ejection port 44 in the mixing gas nozzles 40a and 40b of the first and second modifications may be slightly smaller than the opening area exemplified above.

次に、図14を用いて、混合用ガスノズルの第三変形例について説明する。複数の混合用ガスノズルから噴出する混合用ガスGmの総流量を一定にする場合、噴出口の開口面積を大きくすると、周方向Dcで隣り合う二つの混合用ガスノズルの間隔が広くなり、混合用ガスGmに接触せずに上昇する燃焼ガスGcの量が多くなる。本変形例は、噴出口の開口面積を大きくしても、混合用ガスGmに接触せずに上昇する燃焼ガスGcの量が増加を抑えることができるノズルの例である。 Next, a third modification of the mixing gas nozzle will be described with reference to FIG. When the total flow rate of the mixing gas Gm ejected from a plurality of mixing gas nozzles is made constant, if the opening area of the ejection port is increased, the distance between the two mixing gas nozzles adjacent to each other in the circumferential direction Dc becomes wider, and the mixing gas becomes wider. The amount of combustion gas Gc that rises without contacting Gm increases. This modification is an example of a nozzle capable of suppressing an increase in the amount of combustion gas Gc that rises without contacting the mixing gas Gm even if the opening area of the ejection port is increased.

本変形例の混合用ガスノズル40cには、第一ガス流路42と第二ガス流路43とが形成されている。第一ガス流路42は、ノズル軸線Anを中心として、ノズル軸線方向Danに延びている。この第一ガス流路42におけるノズル軸線方向Danの端は、混合用ガスGmを噴出する第一噴出口45を成す。第二ガス流路43は、ノズル軸線Anに対して鋭角を成し且つ水平方向Dh成分を有する軸線傾斜方向Dsに延びている。なお、ノズル軸線Anに対する軸線傾斜方向Dsの角度βは、例えば、60°である。この第二ガス流路43における軸線傾斜方向Dsの端は、混合用ガスGmを噴出する第二噴出口46を成す。第二噴出口46は、第一噴出口45に対して水平方向Dhに離間した位置に形成されている。 A first gas flow path 42 and a second gas flow path 43 are formed in the mixing gas nozzle 40c of this modification. The first gas flow path 42 extends in the nozzle axis direction Dan with the nozzle axis An as the center. The end of the nozzle axial direction Dan in the first gas flow path 42 forms the first ejection port 45 for ejecting the mixing gas Gm. The second gas flow path 43 has an acute angle with respect to the nozzle axis An and extends in the axis inclination direction Ds having a horizontal Dh component. The angle β of the axis inclination direction Ds with respect to the nozzle axis An is, for example, 60 °. The end of the axis inclination direction Ds in the second gas flow path 43 forms the second ejection port 46 for ejecting the mixing gas Gm. The second spout 46 is formed at a position separated from the first spout 45 in the horizontal direction Dh.

本変形例でも、ノズル軸線方向Danと主噴出方向Dmとが一致する。このため、第一ガス流路42からの混合用ガスGmは、主噴出方向Dmを含む方向に噴出される。一方、第二ガス流路43は、軸線傾斜方向Dsに延び、且つその第二噴出口46が第一噴出口45に対して水平方向Dhに離間した位置に形成されているため、第二ガス流路43からの混合用ガスGmは、第一ガス流路42から噴出した混合用ガスGmよりも、水平方向Dhに離れた位置から水平方向Dhに離れた方向に噴出される。このため、本変形例では、前述したように、噴出口の総開口面積を大きくしても、混合用ガスGmに接触せずに上昇する燃焼ガスGcの量が増加を抑えることができる。 Also in this modification, the nozzle axial direction Dan and the main ejection direction Dm coincide with each other. Therefore, the mixing gas Gm from the first gas flow path 42 is ejected in the direction including the main ejection direction Dm. On the other hand, the second gas flow path 43 extends in the axial direction Ds, and the second ejection port 46 is formed at a position separated from the first ejection port 45 in the horizontal direction Dh, so that the second gas flow path 43 is formed. The mixing gas Gm from the flow path 43 is ejected from a position separated in the horizontal direction Dh from a position separated in the horizontal direction Dh from the mixing gas Gm ejected from the first gas flow path 42. Therefore, in this modification, as described above, even if the total opening area of the ejection port is increased, the increase in the amount of combustion gas Gc that rises without contacting the mixing gas Gm can be suppressed.

なお、本変形例の混合用ガスノズル40cにおける噴出口の総開口面積は、以上の実施形態及び第一及び第二変形例の混合用ガスノズルにおける噴出口の開口面積とほぼ同じであることが好ましい。 It is preferable that the total opening area of the ejection port in the mixing gas nozzle 40c of the present modification is substantially the same as the opening area of the ejection port in the mixing gas nozzles of the above-described embodiment and the first and second modifications.

「混合用ガスノズルの配置の変形例」
複数の混合用ガスノズルの配置の変形例について、図15を用いて説明する。
"Modification example of arrangement of gas nozzle for mixing"
A modified example of the arrangement of a plurality of mixing gas nozzles will be described with reference to FIG.

本変形例の混合用ガス供給部は、複数の混合用ガスノズル40で構成される第一ノズル群40xと、複数の混合用ガスノズル40で構成される第二ノズル群40yと、を有する。第一ノズル群40xを構成する複数の混合用ガスノズル40は、周方向Dcに並んでいる。また、第二ノズル群40yを構成する複数の混合用ガスノズル40は、第一ノズル群40xを構成する複数の混合用ガスノズル40より上の位置で、周方向Dcに並んでいる。また、第二ノズル群40yを構成する複数の混合用ガスノズル40のそれぞれは、第一ノズル群40xを構成する複数の混合用ガスノズル40のうち、周方向Dcで隣り合ういずれか二つの混合用ガスノズル40の間に位置に配置されている。すなわち、本変形例では、全ての混合用ガスノズル40のうち、周方向Dcで隣り合っている二つの混合用ガスノズル40は、上下方向Dvの位置が異なっている。 The mixing gas supply unit of this modification has a first nozzle group 40x composed of a plurality of mixing gas nozzles 40 and a second nozzle group 40y composed of a plurality of mixing gas nozzles 40. A plurality of mixing gas nozzles 40 constituting the first nozzle group 40x are arranged in the circumferential direction Dc. Further, the plurality of mixing gas nozzles 40 constituting the second nozzle group 40y are arranged in the circumferential direction Dc at positions above the plurality of mixing gas nozzles 40 constituting the first nozzle group 40x. Further, each of the plurality of mixing gas nozzles 40 constituting the second nozzle group 40y is one of the plurality of mixing gas nozzles 40 constituting the first nozzle group 40x, which are adjacent to each other in the circumferential direction Dc. It is located between 40. That is, in this modification, of all the mixing gas nozzles 40, the two mixing gas nozzles 40 adjacent to each other in the circumferential direction Dc have different positions in the vertical direction Dv.

第一ノズル群40xを構成する複数の混合用ガスノズル40からの混合用ガスGmに接触しなかった燃焼ガスGcがあっても、この燃焼ガスGcに第二ノズル群40yを構成する複数の混合用ガスノズル40からの混合用ガスGMを接触させることができる。よって、本変形例では、噴出口の開口面積を大きくしても、混合用ガスGmに接触せずに、上昇する燃焼ガスGcの量が増加を抑えることができる。 Even if there is a combustion gas Gc that does not come into contact with the mixing gas Gm from the plurality of mixing gas nozzles 40 constituting the first nozzle group 40x, the combustion gas Gc contains a plurality of mixing gas Gc constituting the second nozzle group 40y. The mixing gas GM from the gas nozzle 40 can be brought into contact with the gas nozzle 40. Therefore, in this modification, even if the opening area of the ejection port is increased, the amount of the rising combustion gas Gc can be suppressed from increasing without coming into contact with the mixing gas Gm.

本変形例では、第一ノズル群40xを構成する複数のノズル、及び第二ノズル群40yを構成する複数のノズルは、いずれも、混合用ガスノズル40である。しかしながら、第一ノズル群40xを構成する複数のノズルのみが混合用ガスノズル40であり、第二ノズル群40yを構成する複数のノズルが二次燃焼用空気ノズル29であってもよい。 In this modification, the plurality of nozzles constituting the first nozzle group 40x and the plurality of nozzles constituting the second nozzle group 40y are all mixing gas nozzles 40. However, only the plurality of nozzles constituting the first nozzle group 40x may be the mixing gas nozzle 40, and the plurality of nozzles constituting the second nozzle group 40y may be the secondary combustion air nozzle 29.

「その他の変形例」
以上の実施形態のストーカ式焼却設備は、排熱回収ボイラー2、減温塔3、燃焼ガス処理器(燃焼ガス処理部)4、排気ガス流路枠5、及び、煙突6を備える。しかしながら、ストーカ式焼却設備は、排熱回収ボイラー2、減温塔3、燃焼ガス処理器4、排気ガス流路枠5、及び、煙突6のうち、いずれかを備えていなくてもよい。
"Other variants"
The stoker-type incineration facility of the above embodiment includes an exhaust heat recovery boiler 2, a temperature reducing tower 3, a combustion gas treatment device (combustion gas treatment unit) 4, an exhaust gas flow path frame 5, and a chimney 6. However, the stoker-type incineration facility may not be provided with any one of the exhaust heat recovery boiler 2, the heat reducing tower 3, the combustion gas processor 4, the exhaust gas flow path frame 5, and the chimney 6.

「付記」
以上の実施形態及び変形例におけるストーカ式燃焼設備は、例えば、以下のように把握される。
(1)第一態様におけるストーカ式燃焼設備は、
水平方向成分を有する方向に被焼却物Mを搬送するストーカ11と、前記ストーカ11を覆い、前記ストーカ11上の被焼却物Mが燃焼する火炉12と、前記被焼却物Mの燃焼で発生する燃焼ガスGcを上方に導く燃焼ガス流路17が形成され、前記ストーカ11の一部の上方に位置するよう前記火炉12に接続されている燃焼ガス流路枠16と、前記ストーカ11上の前記被焼却物Mに燃焼用空気Ga1を供給する燃焼用空気供給部20と、前記燃焼用空気Ga1の一部と前記燃焼ガスGcの一部とのうち、少なくとも一のガスを混合用ガスGmとして前記火炉12内又は前記燃焼ガス流路17中に送る混合用ガス供給部30,30aと、を備える。前記混合用ガス供給部30,30aは、前記混合用ガスGmを前記火炉12内又は前記燃焼ガス流路17中に噴出する1以上のノズル40,40a,40b,40cを有する。前記ノズル40,40a,40b,40cにおける前記混合用ガスGmを噴出する噴出口44,44a,44bの開口面積は、7850mm以上で49060mm以下である。
"Additional Notes"
The stoker type combustion equipment in the above embodiments and modifications is grasped as follows, for example.
(1) The stoker type combustion equipment in the first aspect is
It is generated by the combustion of the stoker 11 that conveys the incinerated object M in the direction having the horizontal component, the furnace 12 that covers the stoker 11 and the incinerated object M on the stoker 11 burns, and the incinerated object M. A combustion gas flow path 17 for guiding the combustion gas Gc upward is formed, and the combustion gas flow path frame 16 connected to the furnace 12 so as to be located above a part of the stoker 11 and the said on the stoker 11. At least one of the combustion air supply unit 20 that supplies the combustion air Ga1 to the incinerated object M, a part of the combustion air Ga1 and a part of the combustion gas Gc is used as the mixing gas Gm. The mixing gas supply units 30 and 30a to be sent into the furnace 12 or the combustion gas flow path 17 are provided. The mixing gas supply units 30, 30a have one or more nozzles 40, 40a, 40b, 40c for ejecting the mixing gas Gm into the furnace 12 or the combustion gas flow path 17. The opening area of the ejection ports 44, 44a, 44b for ejecting the mixing gas Gm in the nozzles 40, 40a, 40b, 40c is 7850 mm 2 or more and 49060 mm 2 or less.

本態様では、ノズル40,40a,40b,40cからの噴出させた混合用ガスGmを火炎Fの頂部Ft又は火炎Fの頂部Ftより上の位置に届かせることができる。このため、本態様では、混合用ガスGmの燃焼ガスGc中への混合率を高めることができ、燃焼ガスGcに含まれる未燃分の燃焼効率を高めることができる。 In this embodiment, the mixing gas Gm ejected from the nozzles 40, 40a, 40b, 40c can be delivered to a position above the top Ft of the flame F or the top Ft of the flame F. Therefore, in this embodiment, the mixing ratio of the mixing gas Gm into the combustion gas Gc can be increased, and the combustion efficiency of the unburned portion contained in the combustion gas Gc can be increased.

(2)第二態様におけるストーカ式燃焼設備は、
前記第一態様におけるストーカ式燃焼設備において、前記混合用ガス供給部30,30aは、前記ノズル40,40a,40b,40cを複数有すると共に、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流量を調節する流量調節器32と、を有する。この場合、前記流量調節器32は、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流速が20m/s以上で90m/s以下になるよう、前記混合用ガスGmの流量を調節する。
(2) The stoker type combustion equipment in the second aspect is
In the stoker type combustion equipment according to the first aspect, the mixing gas supply units 30, 30a have a plurality of nozzles 40, 40a, 40b, 40c and eject from the plurality of nozzles 40, 40a, 40b, 40c. It has a flow rate regulator 32 that adjusts the flow rate of the mixing gas Gm. In this case, the flow rate regulator 32 uses the mixing gas Gm so that the flow velocity of the mixing gas Gm ejected from the plurality of nozzles 40, 40a, 40b, 40c is 20 m / s or more and 90 m / s or less. Adjust the flow rate of.

(3)第三態様におけるストーカ式燃焼設備は、
前記第二態様におけるストーカ式燃焼設備において、複数の前記ノズル40,40a,40b,40cは、水平方向成分を有する方向に並んでおり、前記水平方向成分を有する前記方向で隣り合っている二つの前記ノズル40,40a,40b,40cは、上下方向の位置が異なる。
(3) The stoker type combustion equipment in the third aspect is
In the stoker type combustion equipment according to the second aspect, the plurality of nozzles 40, 40a, 40b, 40c are arranged in a direction having a horizontal component, and two adjacent nozzles 40, 40a, 40b, 40c are adjacent to each other in the direction having the horizontal component. The nozzles 40, 40a, 40b, and 40c have different positions in the vertical direction.

本態様では、混合用ガスGmに接触せずに上昇する燃焼ガスGcの量が増加を抑えることができる。 In this embodiment, the increase in the amount of the combustion gas Gc that rises without contacting the mixing gas Gm can be suppressed.

(4)第四態様におけるストーカ式燃焼設備は、
前記第二態様又は前記第三態様のストーカ式燃焼設備において、前記混合用ガス供給部30,30aは、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得部50を有する。この場合、前記流量調節器32は、前記情報取得部50が取得した前記火炎形成領域情報に基づいて、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流量を調節する。
(4) The stoker type combustion equipment in the fourth aspect is
In the stoker type combustion equipment of the second aspect or the third aspect, the mixing gas supply units 30, 30a grasp the formation region of the flame F formed by the combustion of the incinerator M on the stoker 11. It has an information acquisition unit 50 for acquiring flame formation region information for the purpose of combustion. In this case, the flow rate regulator 32 adjusts the flow rate of the mixing gas Gm ejected from the plurality of nozzles 40, 40a, 40b, 40c based on the flame forming region information acquired by the information acquisition unit 50. do.

(5)他の態様におけるストーカ式燃焼設備は、
水平方向成分を有する方向に被焼却物Mを搬送するストーカ11と、前記ストーカ11を覆い、前記ストーカ11上の被焼却物Mが燃焼する火炉12と、前記被焼却物Mの燃焼で発生する燃焼ガスGcを上方に導く燃焼ガス流路17が形成され、前記ストーカ11の一部の上方に位置するよう前記火炉12に接続されている燃焼ガス流路枠16と、前記ストーカ11上の前記被焼却物Mに燃焼用空気Ga1を供給する燃焼用空気供給部20と、前記燃焼用空気Ga1の一部と前記燃焼ガスGcの一部とのうち、少なくとも一のガスを混合用ガスGmとして前記火炉12内又は前記燃焼ガス流路17中に送る混合用ガス供給部30,30aと、を備える。前記混合用ガス供給部30,30aは、前記混合用ガスGmを前記火炉12内又は前記燃焼ガス流路17中に噴出する複数のノズル40,40a,40b,40cと、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流量を調節する流量調節器32と、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得部50と、を有する。複数の前記ノズル40,40a,40b,40cは、水平方向成分を有する方向に並んでいる。前記流量調節器32は、前記情報取得部50が取得した前記火炎形成領域情報に基づいて、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流量を調節する。
(5) The stoker type combustion equipment in another aspect is
It is generated by the combustion of the stoker 11 that conveys the incinerated object M in the direction having the horizontal component, the furnace 12 that covers the stoker 11 and the incinerated object M on the stoker 11 burns, and the incinerated object M. A combustion gas flow path 17 for guiding the combustion gas Gc upward is formed, and the combustion gas flow path frame 16 connected to the furnace 12 so as to be located above a part of the stoker 11 and the said on the stoker 11. At least one of the combustion air supply unit 20 that supplies the combustion air Ga1 to the incinerated object M, a part of the combustion air Ga1 and a part of the combustion gas Gc is used as the mixing gas Gm. The mixing gas supply units 30 and 30a to be sent into the furnace 12 or the combustion gas flow path 17 are provided. The mixing gas supply units 30, 30a include a plurality of nozzles 40, 40a, 40b, 40c for ejecting the mixing gas Gm into the furnace 12 or the combustion gas flow path 17, and the plurality of nozzles 40, To grasp the formation region of the flame F formed by the combustion of the incinerated object M on the stoker 11 and the flow rate regulator 32 that adjusts the flow rate of the mixing gas Gm ejected from the 40a, 40b, 40c. It has an information acquisition unit 50 for acquiring flame formation region information. The plurality of nozzles 40, 40a, 40b, 40c are arranged in a direction having a horizontal component. The flow rate regulator 32 adjusts the flow rate of the mixing gas Gm ejected from the plurality of nozzles 40, 40a, 40b, 40c based on the flame forming region information acquired by the information acquisition unit 50.

被焼却物M中の水分量に応じて、火炎Fの形成領域が変わる。また、混合用ガスノズル40,40a,40b,40cから混合用ガスGmが噴出されると、この混合用ガスGmの周りの静圧が低下するため、火炎Fは、噴出された混合用ガスGmのそばに引き寄せられる。このため、ノズル40,40a,40b,40cからの噴出する混合用ガスGmの流量を増やして、この混合用ガスGmの流速を高めると、この混合用ガスGmによる火炎F引き寄せ効果を高めることができる。よって、前記情報取得部50を有する本態様では、最も好ましい領域に火炎Fが形成されていない場合でも、この火炎Fの形成領域を最も好ましい領域に近づけることができる。 The region where the flame F is formed changes depending on the amount of water in the incinerator M. Further, when the mixing gas Gm is ejected from the mixing gas nozzles 40, 40a, 40b, 40c, the static pressure around the mixing gas Gm decreases, so that the flame F is the ejected mixing gas Gm. I'm drawn to my side. Therefore, if the flow rate of the mixing gas Gm ejected from the nozzles 40, 40a, 40b, 40c is increased to increase the flow velocity of the mixing gas Gm, the flame F attraction effect of the mixing gas Gm can be enhanced. can. Therefore, in this embodiment having the information acquisition unit 50, even if the flame F is not formed in the most preferable region, the formation region of the flame F can be brought closer to the most preferable region.

(6)第五態様におけるストーカ式燃焼設備は、
前記第一態様から前記第四態様、前記他の態様のいずれか一のストーカ式燃焼設備において、前記ノズル40,40a,40b,40cは、前記混合用ガスGmが、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの頂部Ftに向かうことが可能に設けられている。
(6) The stoker type combustion equipment in the fifth aspect is
In the stoker type combustion equipment according to any one of the first aspect to the fourth aspect and the other aspect, the nozzles 40, 40a, 40b, 40c have the mixing gas Gm on the stoker 11. It is provided so as to be able to go toward the top Ft of the flame F formed by the combustion of the incinerator M.

(7)さらに他の態様におけるストーカ式燃焼設備は、
水平方向成分を有する方向に被焼却物Mを搬送するストーカ11と、前記ストーカ11を覆い、前記ストーカ11上の被焼却物Mが燃焼する火炉12と、前記被焼却物Mの燃焼で発生する燃焼ガスGcを上方に導く燃焼ガス流路17が形成され、前記ストーカ11の一部の上方に位置するよう前記火炉12に接続されている燃焼ガス流路枠16と、前記ストーカ11上の前記被焼却物Mに燃焼用空気Ga1を供給する燃焼用空気供給部20と、前記燃焼用空気Ga1の一部と前記燃焼ガスGcの一部とのうち、少なくとも一のガスを混合用ガスGmとして前記火炉12内又は前記燃焼ガス流路17中に送る混合用ガス供給部30,30aと、を備える。前記混合用ガス供給部30,30aは、前記混合用ガスGmを前記火炉12内又は前記燃焼ガス流路17中に噴出するノズル40,40a,40b,40cを有する。前記混合用ガスGmが、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの頂部Ftに向かうことが可能に、前記ノズル40,40a,40b,40cが設けられている。
(7) The stoker type combustion equipment in still another aspect is
It is generated by the combustion of the stoker 11 that conveys the incinerated object M in the direction having the horizontal component, the furnace 12 that covers the stoker 11 and the incinerated object M on the stoker 11 burns, and the incinerated object M. A combustion gas flow path 17 for guiding the combustion gas Gc upward is formed, and the combustion gas flow path frame 16 connected to the furnace 12 so as to be located above a part of the stoker 11 and the said on the stoker 11. At least one of the combustion air supply unit 20 that supplies the combustion air Ga1 to the incinerated object M, a part of the combustion air Ga1 and a part of the combustion gas Gc is used as the mixing gas Gm. The mixing gas supply units 30 and 30a to be sent into the furnace 12 or the combustion gas flow path 17 are provided. The mixing gas supply units 30, 30a have nozzles 40, 40a, 40b, 40c for ejecting the mixing gas Gm into the furnace 12 or the combustion gas flow path 17. The nozzles 40, 40a, 40b, 40c are provided so that the mixing gas Gm can be directed to the top Ft of the flame F formed by the combustion of the incinerator M on the stoker 11.

生成直後の燃焼ガスGc中には、未燃分が含まれている。火炎Fの頂部Ftに混合用ガスGmを向かわせる、本態様では、混合用ガスノズル40,40a,40b,40cからの混合用ガスGmが火炎Fの頂部Ftに供給され得る。すなわち、本態様では、生成直後の燃焼ガスGc中に、酸素を含む混合用ガスGmが供給される。このため、本態様では、燃焼ガスGc中の未燃分は、この燃焼ガスGcの生成直後から、混合用ガスGmに含まれる酸素で燃焼可能になる。しかも、本態様では、上下方向の広い範囲に渡って、酸素を含む混合ガスを供給することができる。よって、本態様では、燃焼ガスGcの生成直後から、燃焼ガスGc中の未燃分の少なくとも一部が燃焼することになる。 The combustion gas Gc immediately after generation contains an unburned component. In this embodiment, the mixing gas Gm is directed to the top Ft of the flame F, and the mixing gas Gm from the mixing gas nozzles 40, 40a, 40b, 40c can be supplied to the top Ft of the flame F. That is, in this embodiment, the mixing gas Gm containing oxygen is supplied to the combustion gas Gc immediately after the generation. Therefore, in this embodiment, the unburned component in the combustion gas Gc can be combusted by the oxygen contained in the mixing gas Gm immediately after the combustion gas Gc is generated. Moreover, in this embodiment, the mixed gas containing oxygen can be supplied over a wide range in the vertical direction. Therefore, in this embodiment, at least a part of the unburned portion in the combustion gas Gc is burned immediately after the generation of the combustion gas Gc.

(8)第六態様におけるストーカ式燃焼設備は、
前記第一態様から前記第五態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記ノズル40,40a,40b,40cからの前記混合用ガスGmの主噴出方向Dmが、下方向成分と前記燃焼ガス流路17の水平断面における中心を通り且つ上下方向に延びる流路軸線Apに近づく水平方向成分とを有する方向、叉は前記流路軸線Apに近づく水平方向になるよう、前記ノズル40,40a,40b,40cが設けられている。
(8) The stoker type combustion equipment in the sixth aspect is
In the stoker type combustion equipment of any one of the first aspect to the fifth aspect, the other aspect, and the still other aspect, the main mixing gas Gm from the nozzles 40, 40a, 40b, 40c. The direction in which the ejection direction Dm has a downward component and a horizontal component that passes through the center of the horizontal cross section of the combustion gas flow path 17 and approaches the flow path axis Ap extending in the vertical direction, or approaches the flow path axis Ap. The nozzles 40, 40a, 40b, 40c are provided so as to be in the horizontal direction.

(9)第七態様におけるストーカ式燃焼設備は、
前記第六態様のストーカ式燃焼設備において、前記主噴出方向Dmは、水平方向に対して0°以上で且つ60°以下の角度の方向である。
(9) The stoker type combustion equipment in the seventh aspect is
In the stoker type combustion equipment of the sixth aspect, the main ejection direction Dm is a direction having an angle of 0 ° or more and 60 ° or less with respect to the horizontal direction.

(10)第八態様におけるストーカ式燃焼設備は、
前記第一態様から前記第七態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記ノズル40,40a,40b,40cは、前記燃焼ガス流路枠16に設けられている。
(10) The stoker type combustion equipment in the eighth aspect is
In the stoker type combustion equipment of any one of the first aspect to the seventh aspect, the other aspect, and the further other aspect, the nozzles 40, 40a, 40b, 40c are the combustion gas flow path frame 16. It is provided in.

本態様では、火炉12にノズル40,40a,40b,40cが設けられている場合よりも、ノズル40,40a,40b,40cから火炎Fまでの距離を短くすることができる。このため、本態様では、火炉12にノズル40,40a,40b,40cが設けられている場合よりも、混合用ガスGmが火炎Fに至った際の混合用ガスGmの流速を高めることができる。このため、本態様では、混合用ガスGmの燃焼ガスGc中への混合率を高めることができる上に、混合用ガスGmにより火炎Fの引き寄せ効果を高めることができる。 In this embodiment, the distance from the nozzles 40, 40a, 40b, 40c to the flame F can be shortened as compared with the case where the nozzles 40, 40a, 40b, 40c are provided in the furnace 12. Therefore, in this embodiment, the flow velocity of the mixing gas Gm when the mixing gas Gm reaches the flame F can be increased as compared with the case where the nozzles 40, 40a, 40b, and 40c are provided in the furnace 12. .. Therefore, in this embodiment, the mixing ratio of the mixing gas Gm into the combustion gas Gc can be increased, and the effect of attracting the flame F can be enhanced by the mixing gas Gm.

(11)第九態様におけるストーカ式燃焼設備は、
前記第一態様から前記第八態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記燃焼ガス流路17を流れてきた前記燃焼ガスGcを処理する燃焼ガス処理部4を備える。前記混合用ガスGmに含まれ得る前記燃焼ガスGcには、前記燃焼ガス処理部4で処理された前記燃焼ガスGcである排気ガスが含まれる。
(11) The stoker type combustion equipment in the ninth aspect is
Combustion that processes the combustion gas Gc flowing through the combustion gas flow path 17 in any one of the first aspect to the eighth aspect, the other aspect, and the further other aspect. A gas processing unit 4 is provided. The combustion gas Gc that can be contained in the mixing gas Gm includes an exhaust gas that is the combustion gas Gc processed by the combustion gas processing unit 4.

(12)第十態様におけるストーカ式燃焼設備は、
前記第一態様から前記第九態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記ノズル40,40a,40b,40cは、前記ストーカ11の上面から1500mm以上で4000mm以下の位置に設置されている。
(12) The stoker type combustion equipment in the tenth aspect is
In the stoker type combustion equipment according to any one of the first aspect to the ninth aspect, the other aspect, and the further other aspect, the nozzles 40, 40a, 40b, 40c are 1500 mm from the upper surface of the stoker 11. As mentioned above, it is installed at a position of 4000 mm or less.

(13)第十一態様におけるストーカ式燃焼設備は、
前記第一態様から前記第十態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記混合用ガス供給部30,30aは、前記ノズル40,40a,40b,40cからの前記混合用ガスGmの主噴出方向Dmを変える角度変更機構60を有する。
(13) The stoker type combustion equipment in the eleventh aspect is
In the stoker type combustion equipment of any one of the first aspect to the tenth aspect, the other aspect, and the still other aspect, the mixing gas supply units 30, 30a are the nozzles 40, 40a, 40b. , 40c has an angle changing mechanism 60 for changing the main ejection direction Dm of the mixing gas Gm.

被焼却物M中の水分量に応じて、火炎Fの形成領域が変わる。本態様では、火炎Fの形成領域が変わっても、主噴出方向Dmを変えることで、ノズル40,40a,40b,40cからの混合用ガスGmを火炎Fの頂部Ftに導くことができる。また、混合用ガスノズル40,40a,40b,40cから混合用ガスGmが噴出されると、この混合用ガスGmの周りの静圧が低下するため、噴出された混合用ガスGmのそばに火炎Fが引き寄せられる。このため、本態様では、最も好ましい領域に火炎Fが形成されていない場合でも、この火炎Fの形成領域を最も好ましい領域に近づけることができる。 The region where the flame F is formed changes depending on the amount of water in the incinerator M. In this embodiment, even if the formation region of the flame F changes, the mixing gas Gm from the nozzles 40, 40a, 40b, 40c can be guided to the top Ft of the flame F by changing the main ejection direction Dm. Further, when the mixing gas Gm is ejected from the mixing gas nozzles 40, 40a, 40b, 40c, the static pressure around the mixing gas Gm decreases, so that the flame F is located near the ejected mixing gas Gm. Is attracted. Therefore, in this embodiment, even when the flame F is not formed in the most preferable region, the region where the flame F is formed can be brought closer to the most preferable region.

(14)第十二態様におけるストーカ式燃焼設備は、
前記第十一態様のストーカ式燃焼設備において、前記混合用ガス供給部30,30aは、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得部50を有する。この場合、前記角度変更機構60は、前記情報取得部50が取得した前記火炎形成領域情報に基づいて、前記ノズル40,40a,40b,40cの前記主噴出方向Dmを変える。
(14) The stoker type combustion equipment in the twelfth aspect is
In the stoker-type combustion equipment of the eleventh aspect, the mixing gas supply units 30, 30a are for grasping the formation region of the flame F formed by the combustion of the incinerator M on the stoker 11. It has an information acquisition unit 50 for acquiring formation region information. In this case, the angle changing mechanism 60 changes the main ejection direction Dm of the nozzles 40, 40a, 40b, 40c based on the flame forming region information acquired by the information acquisition unit 50.

(15)第十三態様におけるストーカ式燃焼設備は、
前記第一態様から前記第十二態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記混合用ガス供給部30,30aは、前記ノズル40,40a,40b,40cの上下方向における位置を変える設置高さ変更機構65を有する。
(15) The stoker type combustion equipment in the thirteenth aspect is
In the stoker type combustion equipment of any one of the first aspect to the twelfth aspect, the other aspect, and the further other aspect, the mixing gas supply units 30, 30a are the nozzles 40, 40a. It has an installation height changing mechanism 65 that changes the positions of 40b and 40c in the vertical direction.

前述したように、被焼却物M中の水分量に応じて、火炎Fの形成領域が変わる。本態様では、火炎Fの形成領域が変わっても、ノズル40,40a,40b,40cの上下方向における位置を変えることで、ノズル40,40a,40b,40cからの混合用ガスGmを火炎Fの頂部Ftに導くことができる。また、混合用ガスノズル40,40a,40b,40cから混合用ガスGmが噴出されると、この混合用ガスGmの周りの静圧が低下するため、噴出された混合用ガスGmのそばに火炎Fが引き寄せられる。このため、本態様では、最も好ましい領域に火炎Fが形成されていない場合でも、この火炎Fの形成領域を最も好ましい領域に近づけることができる。 As described above, the formation region of the flame F changes depending on the amount of water in the incinerator M. In this embodiment, even if the formation region of the flame F changes, the mixing gas Gm from the nozzles 40, 40a, 40b, 40c can be transferred to the flame F by changing the positions of the nozzles 40, 40a, 40b, 40c in the vertical direction. It can lead to the top Ft. Further, when the mixing gas Gm is ejected from the mixing gas nozzles 40, 40a, 40b, 40c, the static pressure around the mixing gas Gm decreases, so that the flame F is located near the ejected mixing gas Gm. Is attracted. Therefore, in this embodiment, even when the flame F is not formed in the most preferable region, the region where the flame F is formed can be brought closer to the most preferable region.

(16)第十四態様におけるストーカ式燃焼設備は、
前記第十三態様のストーカ式燃焼設備において、前記混合用ガス供給部30,30aは、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得部50を有する。この場合、前記設置高さ変更機構65は、前記情報取得部50が取得した前記火炎形成領域情報に基づいて、前記ノズル40,40a,40b,40cの上下方向における位置を変える。
(16) The stoker type combustion equipment in the fourteenth aspect is
In the stoker-type combustion equipment of the thirteenth aspect, the mixing gas supply units 30, 30a are for grasping the formation region of the flame F formed by the combustion of the incinerator M on the stoker 11. It has an information acquisition unit 50 for acquiring formation region information. In this case, the installation height changing mechanism 65 changes the positions of the nozzles 40, 40a, 40b, and 40c in the vertical direction based on the flame forming region information acquired by the information acquisition unit 50.

(17)第十五態様におけるストーカ式燃焼設備は、
前記第一態様から前記第十四態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記ノズル40cには、前記混合用ガスGmが流れる第一ガス流路42及び第二ガス流路43が形成され、前記第一ガス流路42は、前記ノズル40cのノズル軸線Anを中心として、前記ノズル軸線Anに沿ったノズル軸線方向Danに延び、前記ノズル軸線方向Danの端が前記混合用ガスGmを噴出する第一噴出口45を成す。この場合、前記第二ガス流路43は、前記ノズル軸線Anに対して鋭角を成し且つ水平方向成分を有する軸線傾斜方向Dsに延び、前記軸線傾斜方向Dsの端が前記混合用ガスGmを噴出する第二噴出口46を成す。前記第二噴出口46は、前記第一噴出口45に対して水平方向に離間した位置に形成されている。
(17) The stoker type combustion equipment in the fifteenth aspect is
In the stoker type combustion equipment of any one of the first aspect to the fourteenth aspect, the other aspect, and the further other aspect, the first gas flow through which the mixing gas Gm flows through the nozzle 40c. A path 42 and a second gas flow path 43 are formed, and the first gas flow path 42 extends from the nozzle axis An of the nozzle 40c to the nozzle axis direction Dan along the nozzle axis An, and the nozzle axis line. The end of the direction Dan forms the first ejection port 45 for ejecting the mixing gas Gm. In this case, the second gas flow path 43 extends in the axis inclination direction Ds having an acute angle with respect to the nozzle axis An and having a horizontal component, and the end of the axis inclination direction Ds serves the mixing gas Gm. It forms the second spout 46 that spouts. The second spout 46 is formed at a position horizontally separated from the first spout 45.

本態様では、混合用ガスGmに接触せずに上昇する燃焼ガスGcの量が増加を抑えることができる。 In this embodiment, the increase in the amount of the combustion gas Gc that rises without contacting the mixing gas Gm can be suppressed.

(18)第十六態様におけるストーカ式燃焼設備は、
前記第一態様から前記第十四態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記ノズル40a,40bの前記混合用ガスGmを噴出する噴出口44a,44bは、水平方向の開口幅より上下方向の開口幅の方が広い。
(18) The stoker type combustion equipment in the sixteenth aspect is
In the stoker type combustion equipment of any one of the first aspect to the fourteenth aspect, the other aspect, and the further other aspect, the ejection port 44a for ejecting the mixing gas Gm of the nozzles 40a and 40b. , 44b has a wider opening width in the vertical direction than the opening width in the horizontal direction.

水平方向の開口幅より上下方向の開口幅の方が広いと、噴出口が円形の場合よりも、上昇気流である燃焼ガスGcに晒される混合用ガスGmの面積が小さくなる。このため、本態様では、噴出口が円形の場合よりも、上昇気流である燃焼ガスGcに対する混合用ガスGmの貫通力を増加させることができる。 When the opening width in the vertical direction is wider than the opening width in the horizontal direction, the area of the mixing gas Gm exposed to the combustion gas Gc, which is an updraft, is smaller than that in the case where the spout is circular. Therefore, in this embodiment, the penetrating force of the mixing gas Gm with respect to the combustion gas Gc, which is an updraft, can be increased as compared with the case where the ejection port is circular.

(19)第十七態様におけるストーカ式燃焼設備は、
前記第一態様から前記第十六態様、前記他の態様、前記さらに他の態様、のいずれか一のストーカ式燃焼設備において、前記混合用ガス供給部30,30aが前記混合用ガスGmを噴出する位置よりも高い位置から、前記燃焼ガス流路17中に二次燃焼用空気Ga2を供給する二次燃焼用空気供給部25を備える。
(19) The stoker type combustion equipment in the seventeenth aspect is
In the stoker type combustion equipment of any one of the first aspect to the sixteenth aspect, the other aspect, and the further other aspect, the mixing gas supply units 30 and 30a eject the mixing gas Gm. The secondary combustion air supply unit 25 for supplying the secondary combustion air Ga2 into the combustion gas flow path 17 from a position higher than the position where the combustion gas is to be provided is provided.

本態様では、混合用ガスGmが供給された後、燃焼ガス流路17内を上昇する過程で、二次燃焼用空気Ga2が供給される。このため、混合用ガスGmが供給された後の燃焼ガスGc中に未燃分が残っていても、この未燃分を二次燃焼用空気Ga2で燃焼させることができる。 In this embodiment, after the mixing gas Gm is supplied, the secondary combustion air Ga2 is supplied in the process of rising in the combustion gas flow path 17. Therefore, even if an unburned component remains in the combustion gas Gc after the mixing gas Gm is supplied, this unburned component can be burned by the secondary combustion air Ga2.

また、以上の実施形態及び変形例における被焼却物Mの焼却方法は、例えば、以下のように把握される。 Further, the method of incinerating the incinerator M in the above embodiments and modifications is grasped as follows, for example.

(20)第十八態様における被焼却物Mの焼却方法は、
以下のストーカ式燃焼設備における被焼却物Mの焼却方法である。
このストーカ式燃焼設備は、水平方向成分を有する方向に被焼却物Mを搬送するストーカ11と、前記ストーカ11を覆い、前記ストーカ11上の被焼却物Mが燃焼する火炉12と、前記被焼却物Mの燃焼で発生する燃焼ガスGcを上方に導く燃焼ガス流路17が形成され、前記ストーカ11の一部の上方に位置するよう前記火炉12に接続されている燃焼ガス流路枠16と、前記ストーカ11上の前記被焼却物Mに燃焼用空気Ga1を供給する燃焼用空気供給部20と、を備える。
このストーカ式燃焼設備における被焼却物Mの焼却方法は、前記燃焼用空気Ga1の一部と前記燃焼ガスGcの一部とのうち、少なくとも一のガスを混合用ガスGmとして複数のノズル40,40a,40b,40cから前記火炉12内又は前記燃焼ガス流路17中に送る混合用ガス供給工程を実行する。複数の前記ノズル40,40a,40b,40cにおける前記混合用ガスGmを噴出する噴出口44,44a,44bの開口面積は、7850mm以上で49060mm以下である。前記混合用ガス供給工程は、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流速が20m/s以上で90m/s以下になるよう、前記混合用ガスGmの流量を調節する流量調節工程を含む。
(20) The method of incinerating the incinerator M in the eighteenth aspect is as follows.
It is a method of incinerating the incinerator M in the following stoker type combustion equipment.
This stoker-type combustion facility includes a stoker 11 that conveys the incinerator M in a direction having a horizontal component, a furnace 12 that covers the stoker 11 and burns the incinerator M on the stoker 11, and the incinerator. A combustion gas flow path 17 for guiding the combustion gas Gc generated by combustion of the object M upward is formed, and the combustion gas flow path frame 16 is connected to the incinerator 12 so as to be located above a part of the stoker 11. A combustion air supply unit 20 that supplies combustion air Ga1 to the incinerator M on the stoker 11 is provided.
In the method of incinerating the incinerated material M in this stoker-type combustion facility, a plurality of nozzles 40, using at least one gas of a part of the combustion air Ga1 and a part of the combustion gas Gc as a mixing gas Gm, The mixing gas supply step of sending from 40a, 40b, 40c into the furnace 12 or the combustion gas flow path 17 is executed. The opening areas of the ejection ports 44, 44a, 44b for ejecting the mixing gas Gm in the plurality of nozzles 40, 40a, 40b, 40c are 7850 mm 2 or more and 49060 mm 2 or less. In the mixing gas supply step, the flow rate of the mixing gas Gm is such that the flow velocity of the mixing gas Gm ejected from the plurality of nozzles 40, 40a, 40b, 40c is 20 m / s or more and 90 m / s or less. Includes a flow rate adjustment step to adjust.

(21)第十九態様における被焼却物Mの焼却方法は、
前記第十八形態の被焼却物Mの焼却方法において、前記混合用ガス供給工程は、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得工程を含む。この場合、前記流量調節工程では、前記火炎形成領域情報に基づいて、複数の前記ノズル40,40a,40b,40cから噴出する前記混合用ガスGmの流量を調節する。
(21) The method of incinerating the incinerator M in the nineteenth aspect is as follows.
In the method of incinerating the incinerator M of the eighteenth embodiment, the mixing gas supply step is a flame for grasping a region of flame F formed by combustion of the incinerator M on the stoker 11. It includes an information acquisition step of acquiring formation region information. In this case, in the flow rate adjusting step, the flow rate of the mixing gas Gm ejected from the plurality of nozzles 40, 40a, 40b, 40c is adjusted based on the flame forming region information.

(22)他の態様における被焼却物Mの焼却方法は、
以下のストーカ式燃焼設備における被焼却物Mの焼却方法である。
このストーカ式燃焼設備は、水平方向成分を有する方向に被焼却物Mを搬送するストーカ11と、前記ストーカ11を覆い、前記ストーカ11上の被焼却物Mが燃焼する火炉12と、前記被焼却物Mの燃焼で発生する燃焼ガスGcを上方に導く燃焼ガス流路17が形成され、前記ストーカ11の一部の上方に位置するよう前記火炉12に接続されている燃焼ガス流路枠16と、前記ストーカ11上の前記被焼却物Mに燃焼用空気Ga1を供給する燃焼用空気供給部20と、を備える。
このストーカ式燃焼設備における被焼却物Mの焼却方法は、前記燃焼用空気Ga1の一部と前記燃焼ガスGcの一部とのうち、少なくとも一のガスを混合用ガスGmとして前記火炉12内又は前記燃焼ガス流路17中に送る混合用ガス供給工程を実行する。前記混合用ガス供給工程では、前記混合用ガスGmが、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの頂部Ftに向かうよう、前記燃焼ガス流路17中に前記混合用ガスGmを送る。
(22) The method of incinerating the incinerator M in another aspect is as follows.
It is a method of incinerating the incinerator M in the following stoker type combustion equipment.
This stoker-type combustion facility includes a stoker 11 that conveys the incinerator M in a direction having a horizontal component, a furnace 12 that covers the stoker 11 and burns the incinerator M on the stoker 11, and the incinerator. A combustion gas flow path 17 for guiding the combustion gas Gc generated by combustion of the object M upward is formed, and the combustion gas flow path frame 16 is connected to the incinerator 12 so as to be located above a part of the stoker 11. A combustion air supply unit 20 that supplies combustion air Ga1 to the incinerator M on the stoker 11 is provided.
In the method of incinerating the incinerated material M in this stoker-type combustion facility, at least one of the part of the combustion air Ga1 and the part of the combustion gas Gc is used as the mixing gas Gm in the furnace 12 or in the furnace 12. The mixing gas supply step of sending into the combustion gas flow path 17 is executed. In the mixing gas supply step, the mixing gas Gm is mixed in the combustion gas flow path 17 so as to be directed toward the top Ft of the flame F formed by the combustion of the incinerator M on the stoker 11. Send gas Gm.

(23)第二十態様における被焼却物Mの焼却方法は、
前記第十八形態又は前記他の態様の被焼却物Mの焼却方法において、前記混合用ガス供給工程は、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得工程と、前記火炎形成領域情報に基づいて、前記混合用ガスGmの主噴出方向Dmを変える角度変更工程と、を含む。
(23) The method of incinerating the incinerator M in the twenty-second aspect is as follows.
In the method for incinerating the incinerator M according to the eighteenth aspect or the other aspect, the mixing gas supply step forms a flame F forming region formed by combustion of the incinerator M on the stoker 11. It includes an information acquisition step of acquiring flame forming region information for grasping, and an angle changing step of changing the main ejection direction Dm of the mixing gas Gm based on the flame forming region information.

(24)第二十一態様における被焼却物Mの焼却方法は、
前記第十八形態又は前記他の態様の被焼却物Mの焼却方法において、前記混合用ガス供給工程は、前記ストーカ11上の前記被焼却物Mの燃焼で形成される火炎Fの形成領域を把握するための火炎形成領域情報を取得する情報取得工程と、前記火炎形成領域情報に基づいて、前記混合用ガスGmを噴出する上下方向の位置を変える位置変更工程と、を含む。
(24) The method of incinerating the incinerator M in the twenty-first aspect is as follows.
In the method for incinerating the incinerator M according to the eighteenth aspect or the other aspect, the mixing gas supply step forms a flame F forming region formed by combustion of the incinerator M on the stoker 11. It includes an information acquisition step of acquiring flame forming region information for grasping, and a position changing step of changing the vertical position of ejecting the mixing gas Gm based on the flame forming region information.

本開示の一態様によれば、被焼却物の燃焼効率を高めることができる。 According to one aspect of the present disclosure, the combustion efficiency of the incinerated material can be increased.

1:ストーカ式焼却炉
2:排熱回収ボイラー
3:減温塔
4:燃焼ガス処理器(燃焼ガス処理部)
5:排気ガス流路枠
6:煙突
10:ホッパー
11:ストーカ
12:火炉
13:一次燃焼室
14:受入口
15:排出口
16:燃焼ガス流路枠
17:燃焼ガス流路
18:二次燃焼室
19:開口
20:一次燃焼用空気供給部
21:空気供給器
22:風箱
25:二次燃焼用空気供給部
26:二次燃焼用空気ライン
27:流量調節器
28:流量調節弁
29:二次燃焼用空気ノズル
30,30a:混合用ガス供給部
31:混合用ガスライン
32:流量調節器
33:流量調節弁
34:送風機
40,40a,40b,40c:混合用ガスノズル(又は、単にノズル)
40x:第一ノズル群
40y:第二ノズル群
41:ガス流路
42:第一ガス流路
43:第二ガス流路
44,44a,44b:噴出口
45:第一噴出口
46:第二噴出口
50:情報取得部
51:赤外線カメラ
52:水分計
60:角度変更機構
61:ノズル支持体
62:支持体受け
63:回転駆動機構
65:設置高さ変更機構
66:スライドベース
67:移動機構
68:シール機構
70:制御器
71:火炎位置推定部
72:目標火炎位置記憶部
73:ズレ量算出部
74:操作対象決定部
75:操作量算出部
76:操作量出力部
Ga1:一次燃焼用空気
Ga2:二次燃焼用空気
Gm:混合用ガス
Gc:燃焼ガス
Ge:排気ガス
F:火炎
Ft:頂部
M:被焼却物
Ap:流路軸線
An:ノズル軸線
Dt:搬送方向
Dtu:搬送方向上流側
Dtd:搬送方向下流側
Dc:周方向
Dv:上下方向
Dh:水平方向
Dan:ノズル軸線方向
Dm:主噴出方向
Ds:軸線傾斜方向
H:設置高さ
1: Stoker type incinerator 2: Exhaust heat recovery boiler 3: Temperature reduction tower 4: Combustion gas processor (combustion gas treatment unit)
5: Exhaust gas flow path frame 6: Chimney 10: Hopper 11: Stoker 12: Fire furnace 13: Primary combustion chamber 14: Inlet 15: Discharge port 16: Combustion gas flow path frame 17: Combustion gas flow path 18: Secondary combustion Room 19: Opening 20: Primary combustion air supply unit 21: Air supply device 22: Air box 25: Secondary combustion air supply unit 26: Secondary combustion air line 27: Flow control device 28: Flow control valve 29: Secondary combustion air nozzles 30, 30a: Mixing gas supply unit 31: Mixing gas line 32: Flow controller 33: Flow control valve 34: Blowers 40, 40a, 40b, 40c: Mixing gas nozzle (or simply nozzle) )
40x: first nozzle group 40y: second nozzle group 41: gas flow path 42: first gas flow path 43: second gas flow path 44, 44a, 44b: ejection port 45: first ejection port 46: second injection Exit 50: Information acquisition unit 51: Infrared camera 52: Moisture meter 60: Angle change mechanism 61: Nozzle support 62: Support receiver 63: Rotation drive mechanism 65: Installation height change mechanism 66: Slide base 67: Movement mechanism 68 : Seal mechanism 70: Controller 71: Flame position estimation unit 72: Target flame position storage unit 73: Deviation amount calculation unit 74: Operation target determination unit 75: Operation amount calculation unit 76: Operation amount output unit Ga1: Primary combustion air Ga2: Secondary combustion air Gm: Mixing gas Gc: Combustion gas Ge: Exhaust gas F: Flame Ft: Top M: Incinerator Ap: Flow path axis An: Nozzle axis Dt: Transfer direction Dtu: Transfer direction upstream side Dtd: Transport direction downstream side Dc: Circumferential direction Dv: Vertical direction Dh: Horizontal direction Dan: Nozzle axis direction Dm: Main ejection direction Ds: Axis line tilt direction H: Installation height

Claims (19)

水平方向成分を有する方向に被焼却物を搬送するストーカと、
前記ストーカを覆い、前記ストーカ上の被焼却物が燃焼する火炉と、
前記被焼却物の燃焼で発生する燃焼ガスを上方に導く燃焼ガス流路が形成され、前記ストーカの一部の上方に位置するよう前記火炉に接続されている燃焼ガス流路枠と、
前記ストーカ上の前記被焼却物に燃焼用空気を供給する燃焼用空気供給部と、
前記燃焼用空気の一部と前記燃焼ガスの一部とのうち、少なくとも一のガスを混合用ガスとして前記火炉内又は前記燃焼ガス流路中に送る混合用ガス供給部と、を備え、
前記混合用ガス供給部は、前記混合用ガスを前記火炉内又は前記燃焼ガス流路中に噴出する複数のノズルと、複数の前記ノズルから噴出する前記混合用ガスの流量を調節する流量調節器と、を有し、
前記ノズルにおける前記混合用ガスを噴出する噴出口の開口面積は、7850mm以上で49060mm以下であり、
前記流量調節器は、複数の前記ノズルから噴出する前記混合用ガスの流速が20m/s以上で90m/s以下になるよう、前記混合用ガスの流量を調節し、
複数の前記ノズルは、前記混合用ガスが、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の頂部又は火炎の頂部より上の位置に向かうことが可能に、前記燃焼ガス流路の水平断面の中心を通り且つ上下方向の延びる流路軸線に対する周方向に並んで設けられ、前記火炎が前記流路軸線が存在する位置よりも搬送方向下流側に形成されている場合には、前記火炎の形成領域を前記流路軸線が存在する位置を含む領域に近づける、
ストーカ式焼却設備。
A stoker that transports the incinerator in a direction that has a horizontal component,
A furnace that covers the stoker and burns the incinerator on the stoker.
A combustion gas flow path frame that is connected to the furnace so that a combustion gas flow path that guides the combustion gas generated by combustion of the incinerator upward is formed and is located above a part of the stoker, and a combustion gas flow path frame.
A combustion air supply unit that supplies combustion air to the incinerator on the stoker,
A mixing gas supply unit for sending at least one gas out of a part of the combustion air and a part of the combustion gas as a mixing gas into the furnace or the combustion gas flow path is provided.
The mixing gas supply unit is a flow rate regulator that adjusts the flow rates of a plurality of nozzles that eject the mixing gas into the furnace or the combustion gas flow path, and the mixing gas ejected from the plurality of nozzles. And have
The opening area of the ejection port for ejecting the mixing gas in the nozzle is 7850 mm 2 or more and 49060 mm 2 or less.
The flow rate controller adjusts the flow rate of the mixing gas so that the flow velocity of the mixing gas ejected from the plurality of nozzles is 20 m / s or more and 90 m / s or less.
The plurality of nozzles of the combustion gas flow path allow the mixing gas to be directed to a position above the top of the flame or the top of the flame formed by the combustion of the incinerated material on the stoker. When the flame is provided side by side in the circumferential direction with respect to the flow path axis extending in the vertical direction and passing through the center of the horizontal cross section, and the flame is formed on the downstream side in the transport direction from the position where the flow path axis exists, the said Bring the flame formation region closer to the region containing the position where the flow path axis exists.
Stalker type incinerator.
請求項1に記載のストーカ式焼却設備において、
複数の前記ノズルは、水平方向成分を有する方向に並んでおり、
前記水平方向成分を有する前記方向で隣り合っている二つの前記ノズルは、上下方向の位置が異なる、
ストーカ式焼却設備。
In the stoker-type incinerator according to claim 1 ,
The plurality of nozzles are arranged in a direction having a horizontal component.
Two nozzles adjacent to each other in the direction having the horizontal component have different positions in the vertical direction.
Stalker type incinerator.
請求項1又は2に記載のストーカ式焼却設備において、
前記混合用ガス供給部は、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の形成領域を把握するための火炎形成領域情報を取得する情報取得部を有し、
前記流量調節器は、前記情報取得部が取得した前記火炎形成領域情報に基づいて、複数の前記ノズルから噴出する前記混合用ガスの流量を調節する、
ストーカ式焼却設備。
In the stoker type incinerator according to claim 1 or 2 .
The mixing gas supply unit has an information acquisition unit for acquiring flame formation region information for grasping a flame formation region formed by combustion of the incinerator on the stoker.
The flow rate regulator adjusts the flow rate of the mixing gas ejected from the plurality of nozzles based on the flame forming region information acquired by the information acquisition unit.
Stalker type incinerator.
請求項1から3のいずれか一項に記載のストーカ式焼却設備において、
前記ノズルからの前記混合用ガスの主噴出方向が、下方向成分と前記燃焼ガス流路の水平断面における中心を通り且つ上下方向に延びる流路軸線に近づく水平方向成分とを有する方向、叉は前記流路軸線に近づく水平方向になるよう、前記ノズルが設けられている、
ストーカ式焼却設備。
In the stoker-type incinerator according to any one of claims 1 to 3 ,
The direction in which the main ejection direction of the mixing gas from the nozzle has a downward component and a horizontal component that passes through the center of the horizontal cross section of the combustion gas flow path and approaches the flow path axis extending in the vertical direction, or The nozzle is provided so as to be in the horizontal direction approaching the flow path axis.
Stalker type incinerator.
請求項4に記載のストーカ式焼却設備において、
前記主噴出方向は、水平方向に対して0°以上で且つ60°以下の角度の方向である、
ストーカ式焼却設備。
In the stoker-type incinerator according to claim 4 ,
The main ejection direction is a direction having an angle of 0 ° or more and 60 ° or less with respect to the horizontal direction.
Stalker type incinerator.
請求項1から5のいずれか一項に記載のストーカ式焼却設備において、
前記ノズルは、前記燃焼ガス流路枠に設けられている、
ストーカ式焼却設備。
In the stoker-type incinerator according to any one of claims 1 to 5 ,
The nozzle is provided in the combustion gas flow path frame.
Stalker type incinerator.
請求項1から6のいずれか一項に記載のストーカ式焼却設備において、
前記燃焼ガス流路を流れてきた前記燃焼ガスを処理する燃焼ガス処理部を備え、
前記混合用ガスに含まれ得る前記燃焼ガスには、前記燃焼ガス処理部で処理された前記燃焼ガスである排気ガスが含まれる、
ストーカ式焼却設備。
In the stoker type incinerator according to any one of claims 1 to 6 .
A combustion gas processing unit for processing the combustion gas flowing through the combustion gas flow path is provided.
The combustion gas that can be contained in the mixing gas includes exhaust gas that is the combustion gas processed by the combustion gas processing unit.
Stalker type incinerator.
請求項1から7のいずれか一項に記載のストーカ式焼却設備において、
前記ノズルは、前記ストーカの上面から1500mm以上で4000mm以下の位置に設置されている、
ストーカ式焼却設備。
In the stoker type incinerator according to any one of claims 1 to 7 .
The nozzle is installed at a position of 1500 mm or more and 4000 mm or less from the upper surface of the stoker.
Stalker type incinerator.
請求項1から8のいずれか一項に記載のストーカ式焼却設備において、
前記混合用ガス供給部は、前記ノズルからの前記混合用ガスの主噴出方向を変える角度変更機構を有する、
ストーカ式焼却設備。
In the stoker type incinerator according to any one of claims 1 to 8 .
The mixing gas supply unit has an angle changing mechanism for changing the main ejection direction of the mixing gas from the nozzle.
Stalker type incinerator.
請求項9に記載のストーカ式焼却設備において、
前記混合用ガス供給部は、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の形成領域を把握するための火炎形成領域情報を取得する情報取得部を有し、
前記角度変更機構は、前記情報取得部が取得した前記火炎形成領域情報に基づいて、前記ノズルの前記主噴出方向を変える、
ストーカ式焼却設備。
In the stoker type incinerator according to claim 9 .
The mixing gas supply unit has an information acquisition unit for acquiring flame formation region information for grasping a flame formation region formed by combustion of the incinerator on the stoker.
The angle changing mechanism changes the main ejection direction of the nozzle based on the flame forming region information acquired by the information acquisition unit.
Stalker type incinerator.
請求項1から10のいずれか一項に記載のストーカ式焼却設備において、
前記混合用ガス供給部は、前記ノズルの上下方向における位置を変える設置高さ変更機構を有する、
ストーカ式焼却設備。
In the stoker type incinerator according to any one of claims 1 to 10 .
The mixing gas supply unit has an installation height changing mechanism that changes the position of the nozzle in the vertical direction.
Stalker type incinerator.
請求項11に記載のストーカ式焼却設備において、
前記混合用ガス供給部は、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の形成領域を把握するための火炎形成領域情報を取得する情報取得部を有し、
前記設置高さ変更機構は、前記情報取得部が取得した前記火炎形成領域情報に基づいて、前記ノズルの上下方向における位置を変える、
ストーカ式焼却設備。
In the stoker type incinerator according to claim 11 .
The mixing gas supply unit has an information acquisition unit for acquiring flame formation region information for grasping a flame formation region formed by combustion of the incinerator on the stoker.
The installation height changing mechanism changes the position of the nozzle in the vertical direction based on the flame forming region information acquired by the information acquisition unit.
Stalker type incinerator.
請求項1から12のいずれか一項に記載のストーカ式焼却設備において、
前記ノズルには、前記混合用ガスが流れる第一ガス流路及び第二ガス流路が形成され、
前記第一ガス流路は、前記ノズルのノズル軸線を中心として、前記ノズル軸線に沿ったノズル軸線方向に延び、前記ノズル軸線方向の端が前記混合用ガスを噴出する第一噴出口を成し、
前記第二ガス流路は、前記ノズル軸線に対して鋭角を成し且つ水平方向成分を有する軸線傾斜方向に延び、前記軸線傾斜方向の端が前記混合用ガスを噴出する第二噴出口を成し、
前記第二噴出口は、前記第一噴出口に対して水平方向に離間した位置に形成されている、
ストーカ式焼却設備。
In the stoker-type incinerator according to any one of claims 1 to 12 ,
A first gas flow path and a second gas flow path through which the mixing gas flows are formed in the nozzle.
The first gas flow path extends in the nozzle axis direction along the nozzle axis with the nozzle axis of the nozzle as the center, and the end in the nozzle axis direction forms a first ejection port for ejecting the mixing gas. ,
The second gas flow path forms an acute angle with respect to the nozzle axis and extends in an axis inclined direction having a horizontal component, and the end in the axis inclined direction forms a second ejection port for ejecting the mixing gas. death,
The second spout is formed at a position horizontally separated from the first spout.
Stalker type incinerator.
請求項1から12のいずれか一項に記載のストーカ式焼却設備において、
前記ノズルの前記混合用ガスを噴出する噴出口は、水平方向の開口幅より上下方向の開口幅の方が広い、
ストーカ式焼却設備。
In the stoker-type incinerator according to any one of claims 1 to 12 ,
The ejection port for ejecting the mixing gas of the nozzle has a wider opening width in the vertical direction than an opening width in the horizontal direction.
Stalker type incinerator.
請求項1から14のいずれか一項に記載のストーカ式焼却設備において、
前記混合用ガス供給部が前記混合用ガスを噴出する位置よりも高い位置から、前記燃焼ガス流路中に二次燃焼用空気を供給する二次燃焼用空気供給部を備える、
ストーカ式焼却設備。
In the stoker-type incinerator according to any one of claims 1 to 14 ,
A secondary combustion air supply unit for supplying secondary combustion air into the combustion gas flow path from a position higher than the position where the mixing gas supply unit ejects the mixing gas is provided.
Stalker type incinerator.
水平方向成分を有する方向に被焼却物を搬送するストーカと、
前記ストーカを覆い、前記ストーカ上の被焼却物が燃焼する火炉と、
前記被焼却物の燃焼で発生する燃焼ガスを上方に導く燃焼ガス流路が形成され、前記ストーカの一部の上方に位置するよう前記火炉に接続されている燃焼ガス流路枠と、
前記ストーカ上の前記被焼却物に燃焼用空気を供給する燃焼用空気供給部と、
を備えるストーカ式焼却設備における被焼却物の焼却方法において、
前記燃焼用空気の一部と前記燃焼ガスの一部とのうち、少なくとも一のガスを混合用ガスとして複数のノズルから前記火炉内又は前記燃焼ガス流路中に送る混合用ガス供給工程を実行し、
複数の前記ノズルにおける前記混合用ガスを噴出する噴出口の開口面積は、7850mm以上で49060mm以下であり、
複数の前記ノズルは、前記混合用ガスが、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の頂部又は火炎の頂部より上の位置に向かうことが可能に、前記燃焼ガス流路の水平断面の中心を通り且つ上下方向の延びる流路軸線に対する周方向に並んで設けられ、前記火炎が前記流路軸線が存在する位置よりも搬送方向下流側に形成されている場合には、前記火炎の形成領域を前記流路軸線が存在する位置を含む領域に近づけ、
前記混合用ガス供給工程は、複数の前記ノズルから噴出する前記混合用ガスの流速が20m/s以上で90m/s以下になるよう、前記混合用ガスの流量を調節する流量調節工程を含む、
被焼却物の焼却方法。
A stoker that transports the incinerator in a direction that has a horizontal component,
A furnace that covers the stoker and burns the incinerator on the stoker.
A combustion gas flow path frame that is connected to the furnace so that a combustion gas flow path that guides the combustion gas generated by combustion of the incinerator upward is formed and is located above a part of the stoker, and a combustion gas flow path frame.
A combustion air supply unit that supplies combustion air to the incinerator on the stoker,
In the method of incinerating the incinerator in the stoker type incinerator equipped with
Execution of a mixing gas supply step in which at least one gas out of a part of the combustion air and a part of the combustion gas is sent as a mixing gas from a plurality of nozzles into the furnace or the combustion gas flow path. death,
The opening area of the ejection port for ejecting the mixing gas in the plurality of nozzles is 7850 mm 2 or more and 49060 mm 2 or less.
The plurality of nozzles of the combustion gas flow path allow the mixing gas to be directed to a position above the top of the flame or the top of the flame formed by the combustion of the incinerated material on the stoker. When the flame is provided side by side in the circumferential direction with respect to the flow path axis extending in the vertical direction and passing through the center of the horizontal cross section, and the flame is formed on the downstream side in the transport direction from the position where the flow path axis exists, the said Bring the flame formation region closer to the region containing the position where the flow path axis exists.
The mixing gas supply step includes a flow rate adjusting step of adjusting the flow rate of the mixing gas so that the flow velocity of the mixing gas ejected from the plurality of nozzles is 20 m / s or more and 90 m / s or less.
How to incinerate the incinerator.
請求項16に記載の被焼却物の焼却方法において、
前記混合用ガス供給工程は、前記ストーカ上の前記被焼却物の燃焼で形成される火炎の形成領域を把握するための火炎形成領域情報を取得する情報取得工程を含み、
前記流量調節工程では、前記火炎形成領域情報に基づいて、複数の前記ノズルから噴出する前記混合用ガスの流量を調節する、
被焼却物の焼却方法。
In the method for incinerating an incinerator according to claim 16 .
The mixing gas supply step includes an information acquisition step of acquiring flame forming region information for grasping a flame forming region formed by combustion of the incinerator on the stoker.
In the flow rate adjusting step, the flow rate of the mixing gas ejected from the plurality of nozzles is adjusted based on the flame forming region information.
How to incinerate the incinerator.
請求項16に記載の被焼却物の焼却方法において、
前記混合用ガス供給工程は、
前記ストーカ上の前記被焼却物の燃焼で形成される火炎の形成領域を把握するための火炎形成領域情報を取得する情報取得工程と、
前記火炎形成領域情報に基づいて、前記混合用ガスの主噴出方向を変える角度変更工程と、
を含む、
被焼却物の焼却方法。
In the method for incinerating an incinerator according to claim 16 .
The mixing gas supply step is
An information acquisition step for acquiring flame forming region information for grasping a flame forming region formed by combustion of the incinerator on the stoker, and
An angle changing step of changing the main ejection direction of the mixing gas based on the flame forming region information, and
including,
How to incinerate the incinerator.
請求項16に記載の被焼却物の焼却方法において、
前記混合用ガス供給工程は、
前記ストーカ上の前記被焼却物の燃焼で形成される火炎の形成領域を把握するための火炎形成領域情報を取得する情報取得工程と、
前記火炎形成領域情報に基づいて、前記混合用ガスを噴出する上下方向の位置を変える位置変更工程と、
を含む、
被焼却物の焼却方法。
In the method for incinerating an incinerator according to claim 16 .
The mixing gas supply step is
An information acquisition step for acquiring flame forming region information for grasping a flame forming region formed by combustion of the incinerator on the stoker, and
A position changing step of changing the vertical position of ejecting the mixing gas based on the flame forming region information, and
including,
How to incinerate the incinerator.
JP2020550289A 2018-10-05 2019-09-20 Stalker type incinerator and incinerator method Active JP6992194B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018190390 2018-10-05
JP2018190390 2018-10-05
PCT/JP2019/036870 WO2020071142A1 (en) 2018-10-05 2019-09-20 Stoker-type incineration equipment, and method for incinerating to-be-incinerated matter

Publications (2)

Publication Number Publication Date
JPWO2020071142A1 JPWO2020071142A1 (en) 2021-09-02
JP6992194B2 true JP6992194B2 (en) 2022-01-13

Family

ID=70055152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020550289A Active JP6992194B2 (en) 2018-10-05 2019-09-20 Stalker type incinerator and incinerator method

Country Status (3)

Country Link
JP (1) JP6992194B2 (en)
CN (1) CN112384736B (en)
WO (1) WO2020071142A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445058B1 (en) 2023-05-29 2024-03-06 三菱重工業株式会社 Combustion equipment system and combustion control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022125A (en) 2000-07-06 2002-01-23 Kobe Steel Ltd Stoker furnace and method for incineration therewith
JP2014513786A (en) 2011-03-29 2014-06-05 ヒタチ ゾウセン イノバ アーゲー How to optimize the complete combustion of incinerator exhaust gas

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0487052T3 (en) * 1990-11-22 1997-03-17 Hitachi Shipbuilding Eng Co
JP2654870B2 (en) * 1991-03-27 1997-09-17 日立造船株式会社 Garbage incinerator with fan-type spray type secondary air supply nozzle
JPH05332518A (en) * 1992-06-02 1993-12-14 Kubota Corp Incinerator
JPH0650520A (en) * 1992-07-30 1994-02-22 Mitsubishi Heavy Ind Ltd Supplying method of combustion air for incinerator
JPH07233921A (en) * 1994-02-23 1995-09-05 Kubota Corp Refuse incinerator
JPH07332627A (en) * 1994-06-03 1995-12-22 Kubota Corp Dust incinerator
JPH07332626A (en) * 1994-06-03 1995-12-22 Kubota Corp Dust incinerator
JPH094833A (en) * 1995-06-20 1997-01-10 Kubota Corp Refuse incinerator
JPH09196348A (en) * 1996-01-18 1997-07-29 Kubota Corp Refuse incinerator
JPH1061930A (en) * 1996-08-21 1998-03-06 Kubota Corp Waste incinerator and combustion control method for the same
JP4158069B2 (en) * 1999-04-14 2008-10-01 戸田工業株式会社 Incineration method of garbage
JP2002195534A (en) * 2000-12-26 2002-07-10 Mitsubishi Heavy Ind Ltd Method and system for controlling combustion of refuse incinerator
JP2002357308A (en) * 2001-06-01 2002-12-13 Kobe Steel Ltd Stoker type incinerator and incineration method thereby
JP2002364824A (en) * 2001-06-08 2002-12-18 Kobe Steel Ltd Stoker type incinerator and method of treating incinerated ash
JP2003161420A (en) * 2001-11-28 2003-06-06 Mitsubishi Heavy Ind Ltd Combustion control method and combustion control device of stoker incinerator
JP4020708B2 (en) * 2002-06-20 2007-12-12 株式会社タクマ Exhaust gas treatment method, exhaust gas treatment equipment and stoker-type incinerator
JP2014211243A (en) * 2013-04-17 2014-11-13 株式会社タクマ Combustion control system for refuse incinerator
JP2015169405A (en) * 2014-03-10 2015-09-28 日立造船株式会社 Angle variable type gas blowing-in device
JP6260058B2 (en) * 2014-09-12 2018-01-17 三菱重工環境・化学エンジニアリング株式会社 Stoker-type incinerator
CN105570898A (en) * 2014-10-13 2016-05-11 广州特种承压设备检测研究院 Low-corrosion and high-efficiency city garbage combusting system and method
JP6723864B2 (en) * 2016-08-01 2020-07-15 株式会社タクマ Combustion control device equipped with a garbage moving speed detection function

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022125A (en) 2000-07-06 2002-01-23 Kobe Steel Ltd Stoker furnace and method for incineration therewith
JP2014513786A (en) 2011-03-29 2014-06-05 ヒタチ ゾウセン イノバ アーゲー How to optimize the complete combustion of incinerator exhaust gas

Also Published As

Publication number Publication date
CN112384736B (en) 2023-04-11
WO2020071142A1 (en) 2020-04-09
JPWO2020071142A1 (en) 2021-09-02
CN112384736A (en) 2021-02-19

Similar Documents

Publication Publication Date Title
US20060230995A1 (en) Method and installation for regulating the quantity of circulating solids in a circulating fluidized bed reactor system
TWI633256B (en) Dual phase fuel feeder, boiler having such a fuel feeder and method for burning solid fuel in such a boiler
JP2008057935A (en) Stoker type incinerator and its combustion control method
CN108348851A (en) Sorbent injection system and method for handling flue gas
US20160332117A1 (en) Method of and a scrubber for removing pollutant compounds from a gas stream
US10386064B2 (en) Stoker-type incinerator
JP6992194B2 (en) Stalker type incinerator and incinerator method
JP2011526355A (en) Furnace equipment with internal flue gas recirculation
JP5219468B2 (en) Blowing method of secondary combustion air in the secondary combustion chamber
JP5950299B2 (en) Stoker-type incinerator and combustion method thereof
US8590463B1 (en) Method and apparatus for drying solid fuels
JP6738773B2 (en) Grate waste incinerator
JP2008190808A (en) Combustion device
JP2010091244A (en) Pulverized coal burner and pulverized-coal-fired boiler having the pulverized coal burner
JP6917328B2 (en) Burner device for cement kiln
JP2020190374A (en) Incinerator and control method of incinerator
JP6887917B2 (en) Incinerator plant
WO2005008130A2 (en) Method and apparatus for improving combustion in recovery boilers
JP2019190740A (en) Fire grate structure and stoker type incinerator
WO2020189394A1 (en) Incinerator
JP4524270B2 (en) Exhaust gas cooling facility and control method thereof
JP7137333B2 (en) waste incinerator
JP2642568B2 (en) Secondary combustion method of refuse incinerator
CN107917434A (en) After burner for the flue gas for handling Han bioxin
WO2021106645A1 (en) Stoker furnace

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6992194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157