JP6991523B1 - Manufacturing method of solidified body - Google Patents

Manufacturing method of solidified body Download PDF

Info

Publication number
JP6991523B1
JP6991523B1 JP2020170972A JP2020170972A JP6991523B1 JP 6991523 B1 JP6991523 B1 JP 6991523B1 JP 2020170972 A JP2020170972 A JP 2020170972A JP 2020170972 A JP2020170972 A JP 2020170972A JP 6991523 B1 JP6991523 B1 JP 6991523B1
Authority
JP
Japan
Prior art keywords
solidified body
slag
producing
kneaded
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020170972A
Other languages
Japanese (ja)
Other versions
JP2022062828A (en
Inventor
宏幸 五反田
正寛 崎山
章記 藤森
圭一郎 多田
良輔 高原
庸志 佐々木
恭子 金井
Original Assignee
奥村組土木興業株式会社
合同会社スペースK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥村組土木興業株式会社, 合同会社スペースK filed Critical 奥村組土木興業株式会社
Priority to JP2020170972A priority Critical patent/JP6991523B1/en
Application granted granted Critical
Publication of JP6991523B1 publication Critical patent/JP6991523B1/en
Publication of JP2022062828A publication Critical patent/JP2022062828A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

【課題】環境負荷軽減に寄与し、産業廃棄物として蓄積されているスラグの有効再生活用に資する固化体の製造方法を提供すること。【解決手段】本発明に係る固化体の製造方法は、鉄鋼スラグ(製鋼スラグ、水砕スラグ)と、高炉スラグ微粉末と、塩化物イオン及び硫酸イオンを含む混練水とを混練し、固化体を製造することを特徴とする。上記固化体の製造方法において、補強繊維を混練してもよい。鉄鋼スラグは骨材として用いるものであり、骨材として鉄鋼スラグのみを用いてもよいし、その一定量(例えば10~20重量%)を天然石や天然砂等で置換してもよい。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for producing a solidified body which contributes to reduction of environmental load and contributes to effective regeneration and utilization of slag accumulated as industrial waste. SOLUTION: The method for producing a solidified body according to the present invention is to knead steel slag (steelmaking slag, granulated slag), blast furnace slag fine powder, and kneaded water containing chloride ion and sulfate ion to solidify the solidified body. It is characterized by manufacturing. In the method for producing the solidified body, the reinforcing fibers may be kneaded. The steel slag is used as an aggregate, and only steel slag may be used as the aggregate, or a certain amount (for example, 10 to 20% by weight) thereof may be replaced with natural stone, natural sand, or the like. [Selection diagram] None

Description

本発明は、例えば、スラグを有効利用することができ、かつ、セメントの使用を不要とする固化体の製造方法に関する。 The present invention relates to, for example, a method for producing a solidified body that can effectively utilize slag and does not require the use of cement.

従来、モルタルやコンクリートの結合材にはセメントが使用され、一般的には、石灰石を主原料としたポルトランドセメントが多く用いられている。 Conventionally, cement has been used as a binder for mortar and concrete, and generally, Portland cement mainly made of limestone is used.

しかし、ポルトランドセメントの製造工程(原料である石灰石を焼成する工程)では、地球温暖化ガスである二酸化炭素が大量に排出されるという問題がある。一方で、製鉄所内において鉄鋼製造の過程で生成される鉄鋼スラグは、一部が有価物として再利用されているものの、大半は産業廃棄物として蓄積されている。 However, in the process of manufacturing Portland cement (the process of firing limestone, which is a raw material), there is a problem that a large amount of carbon dioxide, which is a global warming gas, is emitted. On the other hand, most of the steel slag produced in the steel manufacturing process in steelworks is accumulated as industrial waste, although some of it is reused as valuable resources.

本発明は上述の事柄に留意してなされたもので、その目的は、環境負荷軽減に寄与し、産業廃棄物として蓄積されているスラグの有効再生活用に資する固化体の製造方法を提供することにある。 The present invention has been made in consideration of the above-mentioned matters, and an object thereof is to provide a method for producing a solidified body which contributes to reduction of environmental load and contributes to effective regeneration and utilization of slag accumulated as industrial waste. It is in.

上記目的を達成するために、本発明に係る固化体の製造方法は、鉄鋼スラグと、高炉スラグ微粉末と、塩化物イオンの濃度が19~20g/kgであり、硫酸イオンの濃度が2.5~3.0g/kgである混練水とを混練し、セメントを用いずに固化体を製造する(請求項1)。ここで、鉄鋼スラグは骨材として用いるものであり、骨材として鉄鋼スラグのみを用いてもよいし、その一定量(例えば10~20重量%)を天然石や天然砂等で置換してもよい。 In order to achieve the above object, the method for producing the solidified body according to the present invention comprises steel slag, blast furnace slag fine powder, chloride ion concentration of 19 to 20 g / kg, and sulfate ion concentration of 2. Kneading with kneaded water having a concentration of 5 to 3.0 g / kg to produce a solidified body without using cement (claim 1). Here, the steel slag is used as an aggregate, and only the steel slag may be used as the aggregate, or a certain amount (for example, 10 to 20% by weight) thereof may be replaced with natural stone, natural sand, or the like. ..

上記固化体の製造方法において、補強繊維も混練してもよい(請求項2)。 In the method for producing the solidified body, the reinforcing fibers may also be kneaded (claim 2).

本願発明では、環境負荷軽減に寄与し、産業廃棄物として蓄積されているスラグの有効再生活用に資する固化体の製造方法が得られる。 According to the present invention, a method for producing a solidified body that contributes to the reduction of environmental load and contributes to the effective regeneration and utilization of slag accumulated as industrial waste can be obtained.

すなわち、本願の各請求項に係る発明の固化体の製造方法は、結合材として高炉スラグ微粉末を使用し、セメントを用いないようにすることにより、二酸化炭素の排出量を削減できるので、環境負荷軽減に大いに寄与するものとなる。 That is, in the method for producing the solidified body of the invention according to each claim of the present application, carbon dioxide emissions can be reduced by using blast furnace slag fine powder as a binder and not using cement, so that the environment can be reduced. It will greatly contribute to load reduction.

また、高炉スラグ微粉末により、固化体の流動性向上を図ることもできる。 Further, the fluidity of the solidified body can be improved by using the blast furnace slag fine powder.

さらに、高炉スラグ微粉末の水和反応を促進する塩化物イオンにより、固化体の早期強度発現が可能となり、スラグと反応しエトリンガイド結晶を生成する硫酸イオンにより、固化体の強度を増加させることができる。もちろん、水硬性がある鉄鋼スラグ(製鋼スラグ、水砕スラグ)によっても固化体の強度は高まることになる。 Furthermore, the chloride ion that promotes the hydration reaction of the blast furnace slag fine powder enables early development of the strength of the solidified body, and the sulfate ion that reacts with the slag to generate ettrin-guided crystals increases the strength of the solidified body. be able to. Of course, the strength of the solidified body is also increased by the hydraulic slag (steelmaking slag, granulated slag).

しかも、請求項1に係る発明の固化体の製造方法では、産業廃棄物である鉄鋼スラグの更なる有効活用による一層の環境負荷軽減をも図ることができる。 Moreover, in the method for producing a solidified body of the invention according to claim 1, it is possible to further reduce the environmental load by further effectively utilizing steel slag, which is an industrial waste.

請求項2に係る発明の固化体の製造方法では、固化体の耐久性、曲げ強度や靭性等の向上を図ることができる。 The method for producing a solidified body according to claim 2 can improve the durability, bending strength, toughness, and the like of the solidified body.

本発明の実施の形態について以下に説明する。 Embodiments of the present invention will be described below.

本例の固化体の製造方法(以下、「本方法」と略称する。)では、鉄鋼スラグ(製鋼スラグ、水砕スラグ)と、高炉スラグ微粉末と、塩化物イオン及び硫酸イオンを含む混練水と、必要に応じて混和剤(例えばAE減水剤)とを混練し、固化体を製造する。本方法における固化体1m当たりの混合割合は、水が230~290kg、製鋼スラグが0~1250kg、水砕スラグが400~1600kg、高炉スラグ微粉末が500~720kg、混和剤が0~7200gを標準とする。 In the method for producing the solidified body of this example (hereinafter, abbreviated as "this method"), steel slag (steelmaking slag, granulated slag), blast furnace slag fine powder, and kneaded water containing chloride ion and sulfate ion are used. And, if necessary, an admixture (for example, an AE water reducing agent) is kneaded to produce a solidified product. The mixing ratio per 1 m 3 of the solidified body in this method is 230 to 290 kg for water, 0 to 1250 kg for steelmaking slag, 400 to 1600 kg for granulated slag, 500 to 720 kg for blast furnace slag fine powder, and 0 to 7200 g for admixture. Standard.

本方法では、鉄鋼スラグを骨材(粗骨材及び細骨材)として用いるのであり、産業廃棄物の有効活用による環境負荷軽減の面からは、鉄鋼スラグのみを骨材と用いるのが好ましいが、例えば、その一定量(例えば10~20重量%)を、自然物(砂利や砂、火山灰)等のうち、適宜の粒径のものに置換してもよい。 In this method, steel slag is used as an aggregate (coarse aggregate and fine aggregate), and it is preferable to use only steel slag as an aggregate from the viewpoint of reducing the environmental load by effectively utilizing industrial waste. For example, a certain amount thereof (for example, 10 to 20% by weight) may be replaced with a natural substance (gravel, sand, volcanic ash) or the like having an appropriate particle size.

骨材として鉄鋼スラグを用いる本方法の場合、スラグ塊を粗骨材、水砕スラグを細骨材として用いることが考えられる。 In the case of this method using steel slag as the aggregate, it is conceivable to use the slag mass as the coarse aggregate and the granulated slag as the fine aggregate.

塩化物イオン及び硫酸イオンを含む混練水としては、例えば、海水や汽水をそのまま用いてもよいし、海水・汽水の他、上水・中水やその原水(例えば地表水、伏流水、地下水、雨水、雑排水)等に、適宜の物質(例えば塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化カリウム、硫酸ナトリウム、硫酸マグネシウム)を混ぜたものを用いてもよい。この場合、塩化物イオンおよび硫酸イオンの濃度は、それぞれ19~20g/kgおよび2.5~3.0g/kgの範囲が適していると考えられる。 As the kneading water containing chloride ion and sulfate ion, for example, seawater or brackish water may be used as it is, or in addition to seawater / brackish water, clean water / medium water and its raw water (for example, surface water, underflow water, groundwater, etc.) A mixture of an appropriate substance (for example, sodium chloride, magnesium chloride, calcium chloride, potassium chloride, sodium sulfate, magnesium sulfate) with rainwater, miscellaneous wastewater, or the like may be used. In this case, the concentrations of chloride ion and sulfate ion are considered to be suitable in the ranges of 19 to 20 g / kg and 2.5 to 3.0 g / kg, respectively.

本方法における混練は、骨材等の混練材料を例えば二軸強制練りミキサーなどの混練機に投入して行うことができる。 The kneading in this method can be performed by putting a kneading material such as an aggregate into a kneading machine such as a twin-screw forced kneading mixer.

以上説明した本方法は、結合材として高炉スラグ微粉末を使用し、セメントを用いないようにすることにより、二酸化炭素の排出量を削減できる上、産業廃棄物である高炉スラグ微粉末を有効活用することにもなるので、環境負荷軽減に大いに寄与するものとなる。 This method described above uses blast furnace slag fine powder as a binder and eliminates the use of cement, which can reduce carbon dioxide emissions and effectively utilize blast furnace slag fine powder, which is an industrial waste. This will greatly contribute to reducing the environmental load.

また、高炉スラグ微粉末により、固化体の流動性向上を図ることもできる。 Further, the fluidity of the solidified body can be improved by using the blast furnace slag fine powder.

さらに、高炉スラグ微粉末の水和反応を促進する塩化物イオンにより、固化体の早期強度発現が可能となり、スラグと反応しエトリンガイド結晶を生成する硫酸イオンにより、固化体の強度を増加させることができる。もちろん、骨材として用いる鉄鋼スラグも水硬性があるので、この点でも固化体の強度は高まることになる。 Furthermore, the chloride ion that promotes the hydration reaction of the blast furnace slag fine powder enables early development of the strength of the solidified body, and the sulfate ion that reacts with the slag to generate ettrin-guided crystals increases the strength of the solidified body. be able to. Of course, the steel slag used as the aggregate is also hydraulic, so the strength of the solidified body is increased in this respect as well.

本方法により得られる固化体は、従来のモルタルやコンクリートの代わりとなり得るものであり、例えば、海洋・沿岸インフラ整備事業(<海岸線後退防止・島嶼地域国土安全のための造成:地球温暖化に伴う海水面上昇への影響対策>、<人工島築造による国土造成事業:津波・高潮対策用の防潮堤整備事業>)、河川整備(<洪水対策用の築堤事業・堤防嵩上げ事業>、<土石流・火砕流対策事業:導流堤築造>、<砂防事業:砂防堰堤築造>)、道路整備事業(<市町村道・山道・林道におけるコンクリート系舗装道路:基盤、基層、表層>)、その他(<工事用道路におけるコンクリート系舗装道路:基盤、基層、表層>、<駐車場、工場・倉庫造成、一般造成>)といった事業に適用可能であり、海洋・沿岸工事、河川工事(堰堤、防波堤、消波工、人工地盤、堤防、砂防ダム、導流堤)、道路工事、道路系工事(<本設道路、仮設道路>、<駐車場舗装工事、工場・倉庫造成工事、一般造成工事>)といった工種に適用可能である。 The solidified body obtained by this method can replace conventional mortar and concrete. For example, marine and coastal infrastructure development projects (<prevention of coastline retreat / creation for national security of island regions: accompanying global warming] Countermeasures for impacts on sea level rise>, <National land development project by constructing artificial islands: levee development project for tsunami and high tide countermeasures>), river improvement (<dam levee project for flood countermeasures / levee raising project>, <earth and stone flow / Fire crushing flow countermeasure business: dike construction>, <sabo business: sabo dam construction>), road maintenance business (<concrete paved roads on municipal roads, mountain roads, forest roads: foundation, base layer, surface layer>), etc. (<for construction Concrete paved roads: Bases, base layers, surface layers>, <parking lots, factory / warehouse construction, general construction>), and can be applied to marine / coastal construction and river construction (dams, breakwaters, wave-dissipating works). , Artificial ground, embankment, sabo dam, dike), road construction, road system construction (<main road, temporary road>, <parking lot paving construction, factory / warehouse construction construction, general construction construction>) Applicable.

なお、本発明は、上記の実施の形態に何ら限定されず、本発明の要旨を逸脱しない範囲において種々に変形して実施し得ることは勿論である。例えば、以下のような変形例を挙げることができる。 It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be variously modified and implemented without departing from the gist of the present invention. For example, the following modification examples can be given.

本方法において、補強繊維も混練するようにしてもよい。この場合、固化体の耐久性、曲げ強度や靭性等の向上を図ることができ、特に道路盤等に用いて好適な固化体が得られる。補強繊維としては、例えば補強有機繊維であるポリプロピレン繊維(萩原工業株式会社製バルチップ等)を挙げることができる。 In this method, the reinforcing fibers may also be kneaded. In this case, the durability, bending strength, toughness, etc. of the solidified body can be improved, and a solidified body particularly suitable for use in a roadbed or the like can be obtained. Examples of the reinforcing fiber include polypropylene fiber (Balchip manufactured by Hagiwara Industries, Ltd.) which is a reinforcing organic fiber.

また、例えば災害復旧用迂回路舗装道路のように、高速施工が望まれる場合は、本方法においてアルカリイオンも混練するようにしてもよい。具体的には、混練水に水酸化ナトリウム等を混入しておくといった方法が考えられる。 Further, when high-speed construction is desired, for example, a detour paved road for disaster recovery, alkaline ions may also be kneaded in this method. Specifically, a method of mixing sodium hydroxide or the like in the kneaded water can be considered.

ここで、高炉スラグ微粉末を結合材として用いる従来の固化体の製造方法では、通常、石膏を混練する。これは、高炉スラグ微粉末が緻密な結晶構造を形成し、硬化時に収縮によるひび割れが発生し易くなる点を考慮し、石膏を入れておくことにより、硬化初期にエトリンガイド結晶を生成し、収縮し難い結晶構造を形成することでひび割れ発生を抑制するためである。しかし、石膏は固体であり高炉スラグ微粉末との混合性で劣るため、石膏を多めに含ませたり、水を混ぜる前に石膏と高炉スラグ微粉末とを均一に混ぜるための別工程を設けたりする必要が生じる。そこで、本方法において、石膏を用いないようにしてもよく、この場合でも、本方法では硫酸イオンを含んだ混練水を用いるので、硫酸イオンによってエトリンガイド結晶を生成し、ひび割れ発生の抑制を図ることができ、しかも、その混合性に優れるので、硫酸イオンを多めに使用したり、別工程を設けたりする必要がない、といったメリットが得られる。 Here, in the conventional method for producing a solidified body using blast furnace slag fine powder as a binder, gypsum is usually kneaded. This is because the blast furnace slag fine powder forms a dense crystal structure and cracks due to shrinkage are likely to occur during curing. By adding gypsum, ettrin guide crystals are generated at the initial stage of curing. This is to suppress the occurrence of cracks by forming a crystal structure that does not easily shrink. However, since gypsum is solid and inferior in mixing with blast furnace slag fine powder, a large amount of gypsum may be added, or a separate step may be provided to evenly mix the gypsum and blast furnace slag fine powder before mixing with water. Need to be done. Therefore, in this method, gypsum may not be used, and even in this case, since kneaded water containing sulfate ions is used, ettrin guide crystals are generated by the sulfate ions to suppress the occurrence of cracks. Since it can be achieved and its mixing property is excellent, there is an advantage that it is not necessary to use a large amount of sulfate ions or to provide a separate process.

本明細書で挙げた変形例どうしを適宜組み合わせてもよいことはいうまでもない。 Needless to say, the modifications given in the present specification may be combined as appropriate.

Claims (2)

鉄鋼スラグと、高炉スラグ微粉末と、塩化物イオンの濃度が19~20g/kgであり、硫酸イオンの濃度が2.5~3.0g/kgである混練水とを混練し、セメントを用いずに固化体を製造することを特徴とする固化体の製造方法。 Steel slag, blast furnace slag fine powder, and kneaded water having a chloride ion concentration of 19 to 20 g / kg and a sulfate ion concentration of 2.5 to 3.0 g / kg are kneaded and cement is used . A method for producing a solidified product, which comprises producing a solidified product without using it. 補強繊維も混練する請求項1に記載の固化体の製造方法。
The method for producing a solidified body according to claim 1, wherein the reinforcing fibers are also kneaded.
JP2020170972A 2020-10-09 2020-10-09 Manufacturing method of solidified body Active JP6991523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020170972A JP6991523B1 (en) 2020-10-09 2020-10-09 Manufacturing method of solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020170972A JP6991523B1 (en) 2020-10-09 2020-10-09 Manufacturing method of solidified body

Publications (2)

Publication Number Publication Date
JP6991523B1 true JP6991523B1 (en) 2022-01-12
JP2022062828A JP2022062828A (en) 2022-04-21

Family

ID=80185504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020170972A Active JP6991523B1 (en) 2020-10-09 2020-10-09 Manufacturing method of solidified body

Country Status (1)

Country Link
JP (1) JP6991523B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022082672A (en) * 2018-03-16 2022-06-02 株式会社三洋物産 Game machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270746A (en) * 2000-03-28 2001-10-02 Kawasaki Steel Corp Method for producing slag hardened body
JP2003002726A (en) * 2001-04-18 2003-01-08 Nippon Steel Corp Producing method of concrete like solid body using steel making slag
JP2004292296A (en) * 2003-03-28 2004-10-21 Jfe Steel Kk Method of manufacturing slag hardened body
JP2006045048A (en) * 2004-06-30 2006-02-16 Jfe Mineral Co Ltd Solidified body of steel-making slag and method for producing the same
CN102003029A (en) * 2009-09-02 2011-04-06 广东绿由环保科技股份有限公司 Lightweight baking-free brick produced by using various wastes in stainless steel smelting and manufacturing method thereof
JP2012171855A (en) * 2011-02-24 2012-09-10 Yoshiji Hirota Curing composition using no cement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270746A (en) * 2000-03-28 2001-10-02 Kawasaki Steel Corp Method for producing slag hardened body
JP2003002726A (en) * 2001-04-18 2003-01-08 Nippon Steel Corp Producing method of concrete like solid body using steel making slag
JP2004292296A (en) * 2003-03-28 2004-10-21 Jfe Steel Kk Method of manufacturing slag hardened body
JP2006045048A (en) * 2004-06-30 2006-02-16 Jfe Mineral Co Ltd Solidified body of steel-making slag and method for producing the same
CN102003029A (en) * 2009-09-02 2011-04-06 广东绿由环保科技股份有限公司 Lightweight baking-free brick produced by using various wastes in stainless steel smelting and manufacturing method thereof
JP2012171855A (en) * 2011-02-24 2012-09-10 Yoshiji Hirota Curing composition using no cement

Also Published As

Publication number Publication date
JP2022062828A (en) 2022-04-21

Similar Documents

Publication Publication Date Title
CN102344813B (en) Curing agent for curing marine poor subsoil
Lang et al. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge
Waters et al. Concrete: the most abundant novel rock type of the Anthropocene
CN101456705B (en) Hydraulic bag concrete using industrial solid wastes
CN101638311A (en) Slit and sludge curing agent
CN100564694C (en) Sullage solidifying method
Capasso et al. Strategies for the valorization of soil waste by geopolymer production: An overview
CN101081981B (en) Muck soil composite curing agent
KR100988151B1 (en) Hardening material comprising soil, industrial wastes, sea sand and desert sand, and method for preparing the same
CN101602567B (en) Waste mud solidification processing method based on polypropylene acetamide
CN103265239B (en) Method for preparing sludge concrete
CN103130476A (en) Ocean dredging sludge composite solidified material
CN101381194A (en) Environment-friendly type sludge firming agent
Kamon et al. Civil engineering use of industrial waste in Japan
CN103253899A (en) Silt solidification method
CN103319122A (en) Sludge solidification material prepared by comprehensive utilization of alkaline residues
JP6991523B1 (en) Manufacturing method of solidified body
JP2003293345A (en) Earthwork material using steel slag, and method for using the same
Hussan et al. Co-valorization of sediments incorporating high and low organic matter with alkali-activated GGBS and hydraulic binder for use in road construction
CN1301929C (en) Composite silt solidified material
CN114276098A (en) Road base material prepared from casting waste molding sand
CN115140995B (en) Cementing material, mould bag concrete and preparation and application thereof
CN115321929B (en) Cementing material and mould bag concrete containing efficient anti-caking agent as well as preparation and application thereof
JP7465052B2 (en) Manufacturing method for improved soil with high water content
JP2015101830A (en) Sand arrestation soil cement method utilizing organic soil as construction material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6991523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150